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We reexamine the idea that the origin of black-hole entropy may lie in the entanglement of quantum
fields between the inside and outside of the horizon. Motivated by the observation that certain modes of
gravitational fluctuations in a black-hole background behave as scalar fields, we compute the entangle-
ment entropy of such a field, by tracing over its degrees of freedom inside a sphere. We show that while
this entropy is proportional to the area of the sphere when the field is in its ground state, a correction term
proportional to a fractional power of area results when the field is in a superposition of ground and excited
states. The area law is thus recovered for large areas. Further, we identify the location of the degrees of
freedom that give rise to the above entropy.
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I. INTRODUCTION

Almost four decades ago, Bekenstein argued that if the
second law of thermodynamics is not to be violated in the
presence of a black hole, the black hole must possess an
entropy proportional to its horizon area [1]. The signifi-
cance of this result became clear with Hawking’s demon-
stration of black-hole thermal radiation [2]. Hawking
showed that quantum effects in the background of a body
collapsing to a Schwarzschild black hole (BH) of mass M,
will lead, at late times, to a radiation of particles in all
modes of the quantum field, with a characteristic thermal
spectrum at a temperature equal to
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where � is the surface gravity of the black-hole, G is the
four-dimensional Newton’s constant, and kB is the
Boltzmann constant. Since the Hawking temperature fixes
the factor of proportionality between temperature and sur-
face gravity, one finds the Bekenstein-Hawking area law
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AH is the horizon area, and ‘Pl is the four-dimensional
Planck length. All known black holes in n�>2� space-time
dimensions satisfy the area law (AL).

The universality of the AL has raised some important
questions that remain unanswered: what is the dynamical
mechanism that makes SBH a universal function, indepen-
dent of the black hole’s past history and detailed internal
condition? Why is SBH proportional to AH? What is the
microscopic origin of BH entropy? Are there corrections to
the entropy and if so, how generic are these corrections?

Where are the degrees of freedom, responsible for the
entropy, located? These questions often seem related,
which a correct theory of quantum gravity is expected to
address.

Naturally, there has been considerable work attempting
to address some of the above questions (for recent reviews,
see Refs. [3,4]). Broadly, there have been two approaches:
(i) associating SBH with fundamental degrees of freedom of
a microscopic theory of quantum gravity [5] and
(ii) associating SBH with quantum matter fields propagating
in a fixed BH background [6–8].

In this work, we focus on the second approach and, in
particular, we attribute SBH to the entanglement of the
quantum fields inside and outside the horizon. We show
that it is possible to: (a) obtain generic power-law correc-
tions to Eq. (2) which are small for large horizon radii, can
become significant for small horizons, (b) identify the
degrees of freedom that give rise to entanglement entropy,
and (c) test the robustness of Eq. (2) and its corrections for
massive quantum fields.

Consider a quantum scalar field (in a pure state) prop-
agating in the BH space-time. For an outside observer, the
BH horizon provides a boundary and (s)he can only have
information of the state restricted to outside the horizon.
Consequently, while the full state of the field is pure, the
state restricted to outside the horizon is mixed which leads
to a nonzero entropy. This entropy, aka Von Neumann
entropy, can formally be written as

 S � �kB Tr�� ln�� (3)

where � is the mixed (or reduced) density matrix. The
above microcanonical definition of entropy will be used
here. Although it is also possible to compute the entangle-
ment entropy in the canonical picture [8], its usage is
restrictive due to the fact that it implicitly assumes positive
specific heat. On the contrary, however, a Schwarzschild
BH has a negative specific heat.

About two decades ago, Bombelli et al [6] showed that
the entanglement entropy of scalar fields is proportional to
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AH=a
2, where AH is the area of the boundary of the

region being traced over (the ‘‘horizon‘‘), and a is the
ultraviolet cutoff at the horizon (equivalently, the lattice
spacing, when space is discretized). Identifying a with the
Planck length ‘Pl, one recovers the Bekenstein-Hawking
AL (2). These results were later reproduced by Srednicki
[7], where by tracing over the degrees of freedom inside a
spherical surface of radius R, he showed that the entangle-
ment entropy

 S�
A

a2 ; (4)

where A � 4�R2. Thus, the area law can be considered as
a consequence of the entanglement of the quantum fields
across the horizon.1 (An analytical proof of the area pro-
portionality has recently been given in Ref. [10]. For an
application of entanglement in stringy black holes, see
Refs. [11,12].)

Now, why is such a computation involving scalar fields
in flat space-time relevant for black holes at all? Here, we
try to provide at least a plausible answer to this question: in
Appendix A, we consider gravitational perturbations in a
black-hole background, and show that for certain modes of
these perturbations, the effective action reduces to that of a
scalar field. Further, in Appendix B, we write the corre-
sponding scalar field Hamiltonian in the black-hole back-
ground in Lemaı̂tre coordinates, and show that for a fixed
Lemaı̂tre time, it reduces to that in a flat space-time. Thus,
for time-independent quantities such as entropy, scalar
fields of the type considered here appear to play an im-
portant role.

The computation and the area proportionality of entan-
glement entropy in [6] and Srednicki [7] is based on the
simplifying assumption that the quantum field is in the
vacuum (i.e., ground) state (GS). Recently, two of the
authors (S. D. and S. Sh.) investigated the robustness of
the entanglement entropy: area-law relation by considering
nonvacuum states [13,14]. It was shown that while replac-
ing the vacuum state by a generic coherent state (GCS) or a
class of squeezed states (SS) does not affect the AL, doing
so with a class of n-particle or excited states (ES) results in
a significant deviation from the AL. More specifically, if
the scalar field is in a class of 1-particle ES, it was shown
that the entropy scales as

 S�
�
A

a2

�
�
; (5)

where the power � is always less than unity, and decreases
with the increase in the number of excitations [14] (see
Appendix C for details). Thus, it was shown that the

entanglement entropy does not always lead to AL and its
form crucially depends on the choice of the quantum state.

Given the above results, one may draw two distinct
conclusions: first that entanglement entropy is not ro-
bust—and reject it as a possible source of BH entropy.
Second—since entanglement entropy for ES scales as a
lower power of area—it is plausible that when a generic
state (consisting of a superposition of GS and ES) is
considered, corrections to the Bekenstein-Hawking en-
tropy will emerge. In order to determine which one is
correct, it is imperative to investigate various generaliza-
tions of the scenarios considered in Refs. [6,7,14]. To this
end, in this work we calculate the entanglement entropy of
the mixed superposition of vacuum and 1-particle state
(MS). We show explicitly that the MS entanglement en-
tropy is given by

 S � c0

�
A

a2

�
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�
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�
��
;

(6)

c0, c1 are constants of order unity, and � is a fractional
power which depends on the amount of mixing. Thus, we
show that, for large horizon area (A	 a2), the contribu-
tion of f�A� is negligible and the MS entanglement en-
tropy asymptotically approaches the GS entropy. This is
significantly different from the 1-particle state considered
in Ref. [14] for which the entropy always scales as power
of area, cf. Eq. (5), the power being less than unity. Thus, if
black-hole entropy is a consequence of quantum entangle-
ment, the AL is valid for large horizons, as long as the
quantum field is in a superposition of vacuum and 1-
particle states.

From a physics point of view, we expect power-law
corrections to Bekenstein-Hawking entropy for the follow-
ing two reasons: (a) SBH is a semiclassical result and is
valid for large black holes, i.e. when rh 	 ‘Pl (rh is the
radius of the horizon). It is not clear whether the AL will be
valid for the small BHs (rh � ‘Pl). (b) There is no reason to
expect that the Bekenstein-Hawking entropy to be the
whole answer for a correct theory of quantum gravity.
For instance, it was shown by Wald [15] that if one takes
into account higher curvature corrections to the Einstein-
Hilbert action, the Bekenstein-Hawking entropy is the
leading term in a series expansion.

As mentioned earlier, in this paper, we also identify the
precise location of the microscopic degrees of freedom
(DOF) for the entanglement entropy of the superposition
of vacuum and 1-particle states [16]. We find that the DOF
close to the horizon contribute most to the total entropy.
However, there are small contributions from the DOF far
away from the horizon as well. These far-away DOF con-
tributions are least in the case of vacuum state and increase
as the number of excitations and/or the mixing weight of 1-
particle state with vacuum state increases. Correspon-
dingly, deviations from the AL increases as well. Thus,

1Although one recovers the area law, the divergence of the
entanglement entropy has been a puzzle. The reason for the
divergence is due to the fact that the boundary delineating the
region being traced over is sharp [9].
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the corrections to the AL may, in a way, be attributed to the
far-away DOF.

Finally, we investigate the effect of massive fields on
entanglement entropy. We show that in all cases (vacuum,
1-particle, and superposed states), the massive scalar field
entanglement entropy (Sm) contains an exponential damp-
ing factor in comparison with the massless scalar field
entanglement entropy (S0). The Gaussian fits of the ratio
Sm=S0 with the mass (in appropriate units) show that the
exponential factor depends explicitly on the mass squared
and hence falls off rapidly as the mass is increased.
However, there is not much variation of the fitting parame-
ters for the different—vacuum, 1-particle, and mixed—
states, even when a fairly high amount of excitation is
taken into account. This shows that the mixing proportions
in the GS and ES superposition have little influence on the
ratio Sm=S0. We thus show that the mass overall reduces
the entropy exponentially.

The organization of this paper is as follows: In the next
section, we briefly review the procedure of obtaining the
entanglement entropy of massless scalar fields in flat
space-time. In Sec. III, we obtain the (reduced) density
matrix for the scalar field which is in a superposition of GS
and 1-particle ES. We compute the entanglement entropy
numerically for such a superposition and estimate the
corrections to the BH area law. In Sec. IV, we identify
the locations of the scalar field degrees of freedom that are
responsible for the entanglement entropy for the superpo-
sition of GS and ES. In Sec. V, we obtain the entanglement
entropy for a massive scalar field. We conclude with a
summary and open questions in Sec. VI. In Appendix A,
we discuss the motivation for considering a massless or
massive scalar field for computing the entanglement en-
tropy, and as mentioned before, we show that for certain
modes of gravitational perturbations, the relevant action
reduces to that of a scalar field. In Appendix B, we obtain
the Hamiltonian of a scalar field in a general BH space-
time. We show that this Hamiltonian in Lemaı̂tre coordi-
nates, and at a fixed Lemaı̂tre time, reduces to the scalar
field Hamiltonian in flat space-time. Thus this Hamiltonian
is relevant for the computation of time-independent quan-
tities such as entropy. In Appendix C we briefly review the
results obtained in the earlier works [6,7,14] for the ground
state and 1-particle state.

Before we proceed, a few comments on the notation we
use are in order: The metric is four-dimensional with the
signature ��;�;�;��. We use units with kB � c � @ � 1
and set M2

Pl � 1=�16�G�. The quantum field ’ is a mini-
mally coupled scalar field.

II. ENTANGLEMENT ENTROPY OF SCALAR
FIELDS

In this section, we briefly review the procedure of ob-
taining entanglement entropy for scalar fields propagating
in flat space-time. The motivation for considering scalar

fields for the entanglement entropy computations is dis-
cussed in Appendix A. The relevance of the scalar field
Hamiltonian in flat space-time for computing entropy in a
black-hole space-time is discussed in Appendix B.

The Hamiltonian of a massless scalar field propagating
in flat space-time is given by Eq. (B15). In order to obtain
the entropy, we need to discretize this Hamiltonian on the
radial lattice with lattice spacing a. Discretizing the
Hamiltonian such that r! ri; ri�1 � ri � a and L �
�N � 1�a is the infrared cutoff,2 we get
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lm;j �

�
j�

1

2

�
2
�’lm;j
j
�
’lm;j�1

j� 1

�
2

�
l�l� 1�

j2 ’2
lm;j

�
;

H �
X
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where ’lm;j 
 ’lm�rj�; �lm 
 �lm;j�rj� and
�’lm;j; �l0m0;j0 � � i�ll0�mm0�jj0 . Up to the overall factor of
a�1, Eq. (7) is identical to the Hamiltonian of N coupled
harmonic oscillators (HOs):

 H �
1
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p2
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XN
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xiKijxj; (8)

where the matrix Kij represents the potential energy and
the interaction between the oscillators (i, j � 1; . . . ; N, the
coordinates xi replace the field variables ’lm). For the
Hamiltonian (7), it is given by
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The last two terms denote nearest-neighbor interactions
and originate from the derivative term in Eq. (B15). The
most general eigenstate of the Hamiltonian (8) is a product
of N HO wave functions:

  �x1; . . . ; xN� �
YN
i�1

N iH �i�k
1=4
Di xixi� exp

�
�

1

2
k1=2
Di x2

i

�
;

(10)

where N i s are the normalization constants given by

 N i �
k1=4
Di

�1=4
������������
2�i�i!
p ; (11)

2In discretizing the terms containing the derivatives, one
usually adopts the middle-point prescription, i.e., the derivative
of the form f�x�dx�g�x�� is replaced by fj�1=2�gj�1 � gj�=a.
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x � Ux (UTU � IN), xT � �x1; . . . ; xN�, xT �
�x1; . . . ; xN�, KD 
 UKUT is a diagonal matrix with ele-
ments kDi, and �i�i � 1 . . .N� are the indices of the
Hermite polynomials (H �). The frequencies are ordered
such that kDi > kDj for i > j.

Defining the N � N matrix � � UTK1=2
D U, such that

j�j � jKDj1=2, and tracing over the first n of the N oscil-
lators, one obtains the reduced density matrix:
 

��t; t0� �
Z Yn

i�1

dxi �x1; . . . ; xn; t� ?�x1; . . . ; xn; t0�

�
Z Yn

i�1

dxi exp
�
�
xT�x

2

�YN
i�1

N iH �i�k
1=4
Di xi�

� exp
�
�
x0T�x0

2

�YN
j�1

N jH �j�k
1=4
Di x0i� (12)

where we now denote xT � �x1; . . . ; xn; t1; . . . ; tN�1� �
�x1; . . . ; xn; t�, with t 
 t1; . . . ; tN�n; tj 
 xn�j; j �
1; . . . ; �N � n�. It is easy to check that �2 � �, implying
that � is mixed, i.e., although the full state is pure, the state
obtained by integrating over n HO is mixed. Substituting
the reduced density matrix (12) into the formal expression
(3) will yield a nonzero (positive) entanglement entropy.

It is not possible to obtain a closed form expression for
the density matrix for an arbitrary state (10). However, in
the cases where all the HOs are in their GS [7], or in the
GCS or in a class of SS [14], all of which are minimum
uncertainty states, closed form analytic expressions of
��t; t0�, and hence of the entropy, can be evaluated exactly
and shown to follow the BH AL. For the first ES, not a
minimum uncertainty state, the entropy computed numeri-
cally [14] is found not to obey the AL.

In the following section, we obtain the entanglement
entropy for the superposition of GS and ES. (For the sake
of completeness, we have briefly discussed the entangle-
ment entropy for the ground and first-excited states in the
Appendix C.)

III. ENTANGLEMENT ENTROPY FOR A
SUPERPOSITION OF GS AND ES

In this section, we obtain the entanglement entropy for
the superposition of ground and excited states. (In the
following, we denote all relevant quantities such as the
wave function, density matrix, etc. by the symbol/suffix 0
for GS and by 1 for the first ES.)

The discretized scalar field wave function  in an MS is
a linear superposition of the N-HO GS wave function  0,
Eq. (C1) (Appendix C), and N-HO (1-particle) ES wave
function  1 [corresponding to one HO in the ES, while the
rest N � 1 in their GS, Eq. (C12)], i. e.,

  �x̂; t� � �c0 0�x̂; t� � c1 1�x̂; t�� (13)

where x̂ 
 fx1; � � � ; xng; and as before tj 
 xn�j�j �

1; � � � ; N � n�; t 
 ft1; � � � ; tN�ng � fxn�1; � � � ; xNg.
Normalization of  requires c2

0 � c
2
1 � 1. Here we assume

that c0 and c1 are real constants.
Referring to the Appendix C and using Eq. (C12), we

can write

  �x̂; t� � �c0 � c1f�x̂; t�� 0�x̂; t�; (14)

where

 f�x̂; t� �
���
2
p
�TK1=4

D Ux � yTx; (15)

� being the expansion coefficient defined in Eq. (C14). The
N-dimensional column vector y is given by

 y �
���
2
p
UTK1=4

D � �
yA
yB

� �
: (16)

yA and yB are n- and (N � n)-dimensional column vectors,
respectively.

The density matrix is a sum of three terms:

 ��t; t0� �
Z Yn

i�1

dxi �x̂; t� ?�x̂; t0�

� c2
0�0�t; t0� � c2

1�1�t; t0� � c0c1�2�t; t0� (17)

where �0�t; t0� is the GS density matrix (C4) and �1�t; t0� is
the ES density matrix (C15). It is easy to see that one can
make the following identifications of the matrix � and its
components; and the constant � (see Appendix C), with the
column vector y and its components as

 � �
1

2
yyT �

�A �B

�T
B �C

� �
; �A �

1

2
yAyTA;

�B �
1

2
yAyTB; �C �

1

2
yByTB;

� � Tr��AA
�1� �

1

2
yTAA

�1yA:

(18)

�2 is the cross term in the total density matrix �, Eq. (17),
due to the mixing of GS and ES and can be evaluated as
follows:
 

�2�t; t0� �
Z Yn

i�1

dxi�f�x̂; t� � f�x̂; t0�� 0�x̂; t� ?0 �x̂; t0�

� �yB � p�T�t� t0��0�t; t0�; (19)

where

 p � BTA�1yA (20)

is an (N � n)-dimensional column vector.3

Using Eqs. (C4), (C15), and (C19), the complete MS
density matrix can be written as

3For definitions of matrices A, B, etc., see Appendix C
[Eq. (C2)].
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 ��t; t0� � �c2
0 � c

2
1�f1� u�t; t

0�g � c0c1v�t; t0���0�t; t0�

(21)

where the functions u and v are defined by

 u�t; t0� � �
tT��t� t

0T��t
0

2
� tT�	t0;

v�t; t0� � �yB � p�
T�t� t0�:

(22)

Let us define

 F�t; t0� � 1� �1w�t; t
0� � �2v�t; t

0� �
�2

2

2
v2�t; t0� (23)

where
 

w�t; t0� � �
tT��0t� t

0T��0t
0

2
� tT�	0t

0;

�	0 � �	 � 2�0

�
�	 �

�C

�

�
;

��0 � �� � 2�0

�
�	 �

�C

�

�
(24)

and
 

�0 �
c2

0

~�
; �1 �

c2
1

~�
;

�2 �
c0c1

~�
; ~� � c2

0 � c
2
1�:

(25)

�	0 and ��0 are �N � n� � �N � n� matrices, and con-
stants ��0; �1; �2� describe the amount of mixing between
the GS and ES.

With these definitions, the density matrix (21) can be
rewritten as

 ��t; t0� � ~�F�t; t0��0�t; t
0�: (26)

As for the ES, here too the prefactor F�t; t0� of the Gaussian
�0�t; t

0� cannot be factorized into (N � n) two HO density
matrices. However, as discussed in Appendix C 2, if the
vector tT is outside the maximum tTmax, given by Eq. (C19)
corresponding to the 3
 limits, the argument of �0�t; t0� is
negligible. Therefore, if the conditions (C18) as well as the
conditions

 

~� 1 
 tTmax�	0tmax 
 1; ~�2 
 tTmax��0tmax 
 1

(27)

are satisfied, then we can approximate the prefactor F�t; t0�
as

 F�t; t0� � exp�~�1w�t; t
0� � ~�2v�t; t

0��; (28)

where we have kept terms up to quadratic order in t, t0.
(Note that v�t; t0� is only linear in t, t0 whereas w�t; t0� is
quadratic in t, t0.)

Using Eq. (C4) for �0�t; t0� we can now write the (ap-
proximated) MS density matrix as

 ��t; t0� � ~�

������������������
j�j

�N�njAj

s
exp�z�t; t0� � ~�2v�t; t0�� (29)

where

 z�t; t0� � �
tT�0t� t0T�0t0

2
� tT	0t0 (30)

and

 	0 � 	� ~�1�	0 � 	� ~�1�	 � 2~�0 ~�1

�
�	 �

�C

�

�
;

�0 � �� ~�1��0 � �� ~�1�� � 2~�0 ~�1

�
�	 �

�C

�

�
(31)

are �N � n� � �N � n� matrices. 	0 is symmetric while �0

is not necessarily symmetric.
Let us make the following transformations on the set of

(N � n) variables t 
 fxn�1; � � � ; xNg and t0 

fx0n�1; � � � ; x

0
Ng:

 t! t� s; t0 ! t0 � s (32)

where s 
 fs1; � � � ; sN�ng is a set of (N � n) constant
values. The density matrix (29) reduces to

 ��t; t0� �N exp
�
�
tT�0t� t0T�0t0

2
� tT	0t0

�
(33)

where the normalization constant N is given by

 N � ~�

������������������
j�j

�N�njAj

s
exp��sT�	0 � �0�Ts�: (34)

The (N � n)-dimensional constant column vector s is de-
termined from the equation

 sT
�
	0 �

�0 � �0T

2

�
� �~�2�yB � BTA�1yA�: (35)

It is easy to check that for either c0 � 0 or c1 � 0, the
constant k2 vanishes, whence s � 0, and the density matrix
(33) reduces either to that of pure GS [7] (for c0 � 1, c1 �
0 whence 	0 � 	, �0 � �) or that of ES [14] (for c0 � 0,
c1 � 1, whence 	0 � 	��	, �0 � ����). In general,
when both c0 and c1 are nonvanishing, then under the shifts
	! 	0, �! �0 [where 	0 and �0 are given by Eq. (31)]
the MS density matrix (33) is of the same form as the GS
density matrix (C4), up to a normalization factor given
above. Such a normalization constant does not affect the
entropy computation. Therefore we can use the same steps
as for GS [Eqs. (C5)–(C9), with the replacements 	! 	0,
�! �0] to calculate the total MS entropy.

The rest of the analysis in this section is similar to that of
Ref. [14]. We compute the entanglement entropy numeri-
cally (using MATLAB) in each of the cases:

(i) GS (c0 � 1, c1 � 0)
(ii) ES (c0 � 0, c1 � 1)
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(iii) an equal mixing (MSEq) of ES with GS (c0 � c1 �

1=
���
2
p

), and
(iv) a high mixing (MSHi) of ES with GS (c0 � 1=2,

c1 �
���
3
p
=2).

The computations have been done with a precision4 of
0.0% for the set of values:N � 300, n � 100–200 and o �
30, 40, 50 o being the last nonzero columns of the vector
�T . The conditions (C18) as well as (27) are satisfied for
these values of the parameters.

The expectation value of energy, E, for MS can be ex-
pressed as

 E � E0 �
c2

1

o

XN
i�N�o�1

k1=2
Di ; (36)

where E0 �
1
2

PN
i�1 k

1=2
Di is the (zero-point) GS energy. Now

the excess of energy over the zero-point energy is given by
the second term in the above Eq. (36). As the value of c1 is
between 0 and 1 and since the kDi’s are in ascending order
(kDi > kDj for i > j), the fractional change in energy �E �
E0�=E is at most about�5% (corresponding to the extreme
situation c1 � 1, i.e., ES), for N � 300 and o� 50.
Moreover, since there are o number of terms in the sum
in the second term of Eq. (36), the excitation energy (E �
E0) is of the order unity (in units of 1=a, where a is the
lattice spacing). Therefore if a is chosen to be of the order
of the Planck length, then the above energy is of the order
of the Planck energy. The mass of a semiclassical BH, on
the other hand, is much larger than the Planck mass. Hence,
one may safely neglect the backreaction of the scalar field
on the background geometry.

In Fig. 1, we have plotted the logarithm of the entropy S
versus ln�R=a� � ln�n� 1=2�, for different values of the
excitation (o � 30, 40, 50), for GS, ES, and MS (Eq/Hi).

For GS, the plot is very nearly the same as the numerical
straight line fit obtained in Ref. [7], S � 0:3�R=a�2 with
N � 60 lattice points. For the MS (Eq/Hi) cases, as well as
for ES, the plots are nearly linear for different values of the
excitations o � 30, 40, 50 and appear to coincide with the
plot for GS for large areas (A � 4�R2 	 a2). Numerical
straight line fittings of the logarithm of the ES entropy, SES,
with ln�R=a� shown in [14] revealed that for smaller areas
SES � A�, where � is always <1 and decreases as the
number of excitation o increases. To have a closer look at
the behavior of MS entropy, SMS, (for both equal and high
mixings) and the ES entropy SES with respect to the GS
entropy, SGS, we have plotted in Fig. 2 the ratios SMS=SGS,
SES=SGS and the inverse ratios SGS=SMS, SGS=SES, versus
the area A. For the range of excitations (o � 30, 50), all
the ratios tend to unity as the area increases. Thus the
general criterion of ‘‘asymptotic equivalence‘‘ [17] is ful-
filled, i.e.,

 lim
A!1

SXS�A�

SGS�A�
� 1; lim

A!1

SGS�A�

SXS�A�
� 1 (37)

where XS 
 MS (Eq or Hi) or ES. In other words, the MS
(Eq/Hi) and the ES entropies coincide asymptotically with
the GS entropy. However, as is evident from Fig. 2, the
MS(Eq) entropy is closer to the GS entropy for large A,
than the MS(Hi) entropy and the ES entropy, the latter
being the farthest. This implies that the asymptotic behav-
ior is strongly influenced by the relative weight c1 of the
mixing of ES with GS—the smaller the value of c1 the
sharper is the asymptote.

In order to make things more transparent we have plot-
ted in Fig. 3 the best fit ratios of the MS entropies (for equal
and high mixings, with o � 30, 40, 50) to the GS entropy
using a simple formula:

 

SMS

SGS
� 
0 � 


�
A

a2

�
��
: (38)

The fitting parameters 
0, 
, and � are shown in Table I.
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FIG. 1 (color online). Plots of logarithm of GS, ES, and MS (Eq/Hi) entropies versus ln�R=a�, where R � a�n� 1=2� radius of the
hypothetical sphere (horizon), for N � 300, n � 100–200 and o � 30, 40, 50 (in the ES and MS cases). The numerical precision is
0.01%.

4The computations here are 1 order of magnitude more accu-
rate than those in Ref. [14]
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The parameter 
0 is very close to unity for all values of
o � 30, 40, 50, for both MS(Eq) and MS(Hi) cases.
However, there is a slight increase in 
0 as o increases
or for greater relative weight c1 of mixing of ES with GS
for a particular o [i.e.,
0 is greater in the MS(Hi) case than
in the MS(Eq) case for fixed o]. Neglecting this variation in

0 and noting that the GS entropy can be written as SGS �
n0�A=a2�, where n0 is a constant, we can approximately
express

 SMS � SGS � ~

�
A

a2

�
1��

; (39)

where ~
 � n0
. As the value of the exponent (1� �) lies

between 0 and �1 for both equal and high mixings (see
Table I) the second term in the above Eq. (39) may be
regarded as a power-law correction to the AL, resulting
from entanglement, when the wave function of the field is
chosen to be a superposition of GS and ES. It is important
to note that the correction term falls off rapidly with A
(due to the negative exponent) and in the semiclassical
limit (A	 1) the AL is hence recovered. This lends
further credence to entanglement as a possible source of
black-hole entropy. The correction term is more significant
for higher excitations o or greater ES-GS mixing propor-
tion c1. This is evident from Table I, which shows that the
parameter 
 (and hence ~
) increases and the parameter �
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FIG. 3 (color online). Best fit plots (solid lines) of the relative mixed state entropies (SMS=SGS) for equal and high mixings versus the
area A (in units of a2), for o � 30, 40, 50. The corresponding data are shown by asterisks.
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FIG. 2 (color online). Plots of ratios of GS and MS (Eq/Hi) or ES entropies and their reciprocals versus the area A (in units of a2, a
being the lattice spacing) for o � 30, 50. The plots show the asymptotic nature of the MS and ES entropies with respect to the GS
entropy. The curves on the upper half (above 1) show the variation of SXS=SGS with A, where XS stands for MS(Eq/Hi) or ES, while
the lower curves show the variation of SGS=SXS with A.

TABLE I. Values of the parameters of the fit SMS=SGS � 
0 � 
�A=a2��� for both MS(Eq)
and MS(Hi) cases with the amounts of excitation o � 30, 40, 50.

Fitting Parameters For MSEq For MSHi

o � 30 o � 40 o � 50 o � 30 o � 40 o � 50

0 1.001 1.002 1.003 1.001 1.004 1.006

 1738 4288 8039 2956 7652 14120
� 1.180 1.210 1.225 1.141 1.178 1.192
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(and hence the negative exponent j1� �j) decreases with
the increase in o (fixed c1) or the increase in c1 (fixed o).

Figure 4 shows the variation of �2l� 1�Sl with l, in the
cases of GS, ES, and MS (Eq/Hi) for a fixed n�� 100� and
a set of increasing values of o. For the GS, there is a peak at
l � 0 (s-wave), followed by another one at l � 40 due to
the degeneracy factor (2l� 1). The first peak shifts to a
value l > 0 for the ES, and the shift is greater as o is
increased. There is, however, no second peak in this case,
although there seems to be an increase towards higher
values of l. Thus, higher partial waves are seen to get
excited with greater excitations. In each of the MS cases,
there is a trace of the first peak at l � 0 as for GS, however
the amplitude of that peak is very small compared to the
second peak which appears between l� 10–30 depending
on the value of the excitations o. As in the case of ES, the
second peaks for MS (Eq/Hi) are higher and far away from
l � 0 for increasing values of o. However, relative to the
ES case, there is a broadening of the half-width of the
peaks for MS, though not as broad as that of the second
peak for GS. Thus, as expected, the �2l� 1�Sl vs l curves
for MS show features that are intermediate between those
for GS and ES.

IV. LOCATION OF THE DEGREES OF FREEDOM

Let us now examine closely the expression for the
interaction matrix Kij, Eq. (9), for the system of N HOs.
The last two terms, which signify the nearest-neighbor

(NN) interaction between the oscillators, are solely respon-
sible for the entanglement entropy of black holes, i.e.,
SBH � 0 if these two terms are set to zero. Let us, however,
consider the situation where the NN interactions, and
hence the off-diagonal elements of Kij, are set to zero
(by hand) everywhere except in a ‘‘window,‘‘ such that
the indices i, j run from q� s to q� s, where s � q. Thus
the interaction region is restricted to a width of d � 2s� 1
radial lattice points. Now, choosing the position of the
center of the window q to vary between 0 and a value
qmax > n, we allow the window to move rigidly across
from the origin to a point outside the horizon. Figure 5
shows the variation of the percentage contribution of the
entropy for a fixed window size of 5 lattice points (d � 5,
s � 2), i.e.,

 pc�q� �
S�q; d � 5�

Stot
� 100 (40)

as a function of q for fixed values N � 300, n � 100 in
each of the cases GS, ES, and MS (Eq/Hi) with o � 30, 50.
Here Stot is the total entropy with all the NN interactions
present, i.e., i, j running from 0 to N.

In all the cases of GS, ES, and MS (Eq/Hi) the first
observation is that pc�q� � 0 when q is far away from n.
There is no contribution to the total entanglement entropy
if the interaction window does not include the horizon. For
values of q very close to n there are significant contribu-
tions to Stot and in the case of GS, pc�q� peaks exactly at
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FIG. 4 (color online). Plots of the distribution of entropy per partial wave ��21� 1�Sl� in the cases of GS, ES, and MS (Eq/Hi), for
N � 300, n � 100, and o � 30, 40, 50.
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q � n. For ES and MS, however, the peaks tend to shift
towards a value q > n, their exact positions depending on
the amount of excitation o. Moreover, the amplitudes of the
peaks gradually diminish as the value of o and/or the
mixing weight c1 increases. Thus, we infer that:

(i) The contribution to the total entropy is more from the
DOF that are in the vicinity (inside or outside) of the
horizon, rather than far from it.

(ii) The contributions, however small, from the DOF far
away from the horizon are more for MS(Eq/Hi) and
ES, compared to the GS. In other words, the con-
tributions from the far-away DOF increases with
increase in the number of excitations and amount
of mixing of ES with GS.

Further investigations have been carried out recently in
Ref. [16] to check the effects of the far-away DOF on the
total entropy, by keeping fixed the center of the window at
the horizon, i.e., q � n, while increasing the window width
d from 0 to n. It is found that for GS about 85% of the total
entropy is obtained within a width of just one lattice
spacing, and within a width of d � 3 almost the entire
GS entropy is recovered. Thus most of the GS entropy
comes from the DOF very close to the horizon and a small
part (about 15%) has its origin deeper inside. For ES,
however, the corresponding figures are about 60% (d �
5), and the total ES entropy is recovered when d is as much
as 15–20, depending on the number of excitations o �
30–50. Thus the far-away DOF contribute more to the

entropy for the ES. This, in turn, may be looked upon as
follows: the larger the deviation from the area law, the
larger is the contribution to the total entropy from the DOF
that are far away from the horizon. The situation is inter-
mediate for the MS (which itself interpolates between the
GS and ES): This is evident from Fig. 5 (and also from
Fig. 1) where unlike the curves for ES, those for the MS
cases do not show much deviations from the curve for GS,
even for high excitations o.

V. ENTANGLEMENT ENTROPY OF MASSIVE
SCALAR FIELD

As shown in Appendix A, the equation of motion for
metric perturbations in a general space-time with a cosmo-
logical constant j�j coincides with that of a test massive
scalar field propagating in the background metric. In all our
earlier analysis, we had set, for simplicity, j�j � 0. In this
section, we obtain the entanglement entropy for the mas-
sive scalar field.

The action for the massive scalar field (mass m) prop-
agating in the background space-time g�� is

 S � �
1

2

Z
d4x

�������
�g
p

�g��@�’@�’�m2’2�: (41)

Repeating the steps described in Appendix B for the mas-
sive scalar will lead to massive, free field Hamiltonian
(B15). Discretizing the resulting Hamiltonian, as described
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FIG. 5 (color online). Plots of the percentage contribution pc�q� to the total entropy as a function of window position q, for a window
size d � 5 and fixed N � 300, n � 100, in each of cases of GS, ES, and MS (Eq/Hi). For ES and MS (Eq/Hi) the solid curve is for
o � 30 whereas the broken curve is for o � 50.
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in Sec. II will lead to the N coupled HO Hamiltonian, with
the interaction matrix K�m�ij given by

 K�m�ij � Kij � �ma�
2 (42)

where Kij is the interaction matrix, given by Eq. (9), for a
massless scalar field. Following the steps discussed in
Secs. II and III, we can compute the entanglement entropy
for the massive field (Sm). In Fig. 6, we have plotted Sm=S0

(where S0 is the entropy for the massless scalar) for the GS,
ES, and MS(Eq/Hi) for N � 300, n � 100, o � 50. The
Gaussian fits indicate an exponential fall-off of Sm with
respect to S0 as the mass increases:

 Sm � S0 exp���1�ma� �2�
�� (43)

where �1, �2, and � are the fitting parameters. Depending
on the state (GS, ES, or MS), the parameter �1 varies
between 2.77 and 3.24, �2 is between 0.077 and 0.001,
and the power � is close to 2. Thus approximately Sm=S0

scales as e�m
2a2

. There is, however, a small variation in the
power � for the different cases. The exponential damping
is strongest for GS, and gradually slows down as more and
more ES oscillators are mixed with GS, the damping is
slowest for the ES case.

Although Sm scales as S0 times a mass-dependent ex-
ponential term, the fitting parameters �1, �2, and � change
very little for the different cases GS, MS(Eq/Hi), and ES,

even for a fairly high amount of excitation o � 50. As
such, for a fixed mass m, the variations lnS vs ln�R=a� for
all the cases remain almost the same as those for massless
scalar field, cf. Fig. 1. The analysis and inferences of the
previous sections for the massless scalar go through for the
massive scalar field, resulting in correction terms obtained
before.

VI. CONCLUSIONS

In this work, we have obtained power-law corrections to
entanglement entropy, which may be relevant for the en-
tropy of BH. Indeed, as shown in Appendices A and B,
certain modes of gravitational perturbations in black-hole
space-times behave as minimally coupled scalar fields.
Also for computation of time-independent quantities
done at a fixed value of Lemaı̂tre time, it suffices to
consider an effective flat space Hamiltonian. Extending
the analysis of the earlier work [14], we have shown that
for small black-hole areas the area law is violated not only
when the oscillator modes that represent the scalar DOF
are in ES, but also when they are in a linear superposition
of GS and ES. We found that the corrections to the AL
become increasingly significant as the proportion of ES in
the superposed state increases. Conversely, for large hori-
zon areas, these corrections are relatively small and the AL
is recovered.
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FIG. 6 (color online). Best fit plots of the relative variation of the total entropy Sm for a massive scalar field (in units of the total
entropy S0 corresponding to a massless scalar field) with the mass m times the lattice spacing a, for fixed n � 100, o � 30, in each of
cases of GS, ES, and MS (Eq/Hi). The corresponding data are shown by asterisks. The fits show an exponential damping of the ratio
Sm=S0 with mass.
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It is interesting to compare and contrast the power-law
corrections obtained here to those derived in the case of
higher-derivative gravity [15]. The power-law corrections
to the Bekenstein-Hawking entropy derived in both—en-
tanglement and higher-derivative gravity–these ap-
proaches have the same features. For instance, it was
shown that the entropy of a 5-dimensional Boulware-
Deser black hole [18] is given by

 S �
A
4

�
1�

c

A2=3

�
; c � constant: (44)

As in Eq. (39) the above entropy is proportional to area for
large horizon radius, however it strongly deviates in the
small horizon limit. It is important to note that the correc-
tions to the black-hole entropy are generic and valid even
for black holes in general relativity without any higher
curvature terms.5 It is interesting to investigate the relation
between the entanglement entropy with that of the Noether
charge approach [19].

The location of the DOF that give rise to the entangle-
ment entropy has important implications as far as the
corrections to the AL is concerned. It is found that for
GS, ES, and MS, the contributions to the total entropy from
the DOF that are nearest to the horizon are maximum.
However, there are small contributions from DOF that
are far away from the horizon, which also need to be taken
into account in order for the AL to emerge. These contri-
butions are least in the case of GS and gradually increase as
the proportion of mixing of ES with GS and/or the amount
of excitation increases. Correspondingly, there are increas-
ing deviations from the AL. Thus one is led to conclude
that the AL is intimately linked with near horizon DOF.

We have also shown that the mass of the scalar field does
not have much influence on the corrections to the AL. The
total entropy for the massive field scales as that of the
massless field times a mass-dependent exponentially
damping term that varies very slowly with the mixing
proportion and the amount of excitation which are key to
producing the AL corrections.

Open problems in the context of entanglement entropy
include: (i) The proportionality constant in the relation S �
0:3�R=a�2 for GS obtained in Ref. [7] differs from the 1=4
in the Bekenstein-Hawking relation [Eq. (2)]. This discrep-
ancy persists for MS and ES. A probable reason behind this
mismatch is the dependence of the prefactor on the type of
the discretization scheme. For example, another discreti-
zation scheme, resulting in the NN interactions between
four or more immediate neighbors, would result in a differ-
ent prefactor. Is it then at all possible to obtain the
Bekenstein-Hawking value? (ii) Can a temperature emerge
in the entanglement entropy scenario, and if so, then along

with the current entropy, will it be consistent with the first
law of BH thermodynamics? (iii) Are the second and third
laws of thermodynamics valid for this entropy? (iv) Can
the entanglement of scalar fields help us to understand the
evolution or dynamics of BHs and the information loss
problem? We hope to report on these in the future.
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Note added.—Recently, in Ref. [20], the authors have
calculated the subleading power-law corrections to the
Bekenstein-Hawking entropy using the canonical en-
semble (aka brick wall) approach [8]. The results reported
there agree with the numerical results derived in this work.

APPENDIX A: WHY CONSIDER SCALAR FIELDS?

In this appendix, we briefly discuss the motivation for
obtaining the entanglement entropy of a scalar field. First,
we obtain the equation of motion of the metric perturba-
tions for a general space-time and then, as a special case,
discuss the equation of motion of the perturbations in
asymptotically flat spherically symmetric space-times.

Consider the Einstein-Hilbert action with a positive
cosmological constant (j�j):

 SEH� �g� � M2
Pl

Z
d4x

�������
� �g

p
� �R� 2j�j�: (A1)

Letting �g�� � g�� � h�� and expanding the action keep-
ing only the parts quadratic in h��, we get [21]
 

SEH�g; h� � �M
2
Pl

Z
d4x

������
jgj

q �
2�����

��
� �

1

4
r� ~hr� ~h

�
j�j

2
h�� ~h��

�
(A2)

where

 

~h �� 
 h�� �
1

2
g��h

�
�; ~h 
 ~h��; (A3)

 ���� 

1

2
�r� ~h�� �r� ~h�� �r� ~h���: (A4)

The above action is invariant under the infinitesimal gauge
transformation h�� ! h�� �r��
�� when the back-
ground metric g�� satisfies the vacuum Einstein’s equation
with j�j. We can remove the gauge arbitrariness by im-
posing the harmonic gauge condition @� ~h�� � 0 [21].

Assuming h�� to be small, we can keep only the first
derivatives of h��. With these two conditions, the action
(A2) reduces to (for more details see Ref. [22], pp. 330–
332)

5In this context, it should be mentioned that it is not possible to
check for logarithmic corrections to the entropy in our analysis,
as the numerical error we obtain is much larger than ln�n� 1=2�.
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 SEH�g; h� � �
M2

Pl

2

Z
d4x

������
jgj

q
�r�h��r

�h��

� j�jh��h
���: (A5)

The above action corresponds to the massive spin-2 h��
field propagating in the background metric g�� where the
cosmological constant appears as mass term. In the weak
field limit—when the gravitational field is weak like in the
case of regions close to the black-hole horizons—h�� can
be approximated as a plane-wave perturbation with a par-
ticular frequency, i. e., h�� � M�1

Pl ���’�x
�� (where ��� is

the constant polarization tensor), the above action can be
written as

 SEH�g; h� � �
1

2

Z
d4x

������
jgj

q
�@�’@

�’� j�j’2�: (A6)

which is the action for the massive scalar field propagating
in the background metric g��.

Moreover, for four-dimensional spherically symmetric
space-times, the metric perturbations are of two kinds—
axial and polar [23–25]. The equations of motion of both
these perturbations are scalar in nature and are related to
each other by a unitary transformation [23]. The equation
of motion of the axial perturbations is nothing but the
equation of motion of a test, massless scalar field propa-
gating in the black-hole background:

 �’ 

1�������
�g
p @��

�������
�g
p

g��@�’� � 0: (A7)

Hence, by computing the entanglement entropy of the
scalar fields, we obtain the entropy of a class of metric
perturbations of the background space-time. Of course, a
generic perturbation being a superposition of plane-wave
modes, and entanglement entropy being a nonlinear func-
tion of the wave function, we do not claim that such a
computation would account for the entropy of all pertur-
bations. Nevertheless, it is expected to shed important light
on the role of entanglement in the AL.

In most parts of this work, we calculate the entropy of
the massless scalar field (i.e., setting j�j � 0). In Sec. V,
we obtain the entanglement entropy of the massive field,
corresponding to j�j � 0.

APPENDIX B: HAMILTONIAN OF SCALAR
FIELDS IN BLACK-HOLE SPACE-TIMES

In this appendix, we obtain the Hamiltonian of the
massless scalar field propagating in a general static spheri-
cally symmetric space-time. We show that for a particular
choice of time slicing such a Hamiltonian reduces to the
Hamiltonian of a scalar field in flat space-time.

In Ref. [16], two of the authors (S. D. and S. Sh.) showed
that in a fixed Lemaı̂tre time coordinate, the Hamiltonian
of the scalar field propagating in Schwarzschild space-time
reduces to the scalar field Hamiltonian in flat space-time.

In this appendix, we extend the analysis for any nondegen-
erate static spherically symmetric space-times.

Let us consider the following line element:

 ds2 � �A��; 
�d�2 �
d
2

B��; 
�
� �2��; 
�d�2 (B1)

where A, B, � are continuous, differentiable functions of
��; 
� and d�2 � d�2 � sin2�d�2 is the metric on the unit
2-sphere. The action for the scalar field propagating in the
above background is given by
 

S � �
1

2

Z
d4x

�������
�g
p

g��@�’@�’

� �
1

2

X
lm

Z
d�d


�
�

�2�������
AB
p �@�’lm�

2

�
�������
AB
p

�2�@
’lm�
2 � l�l� 1�

����
A
B

s
’2
lm

�
; (B2)

where we have decomposed ’ in terms of the real spherical
harmonics (Zlm��;��):

 ’�x�� �
X
lm

’lm��; 
�Zlm��;��: (B3)

Following the standard rules, the canonical momenta and
Hamiltonian of the field are given by

 �lm �
@L

@�@�’lm�
�

�2�������
AB
p @�’lm; (B4)

 

Hlm��� �
1

2

Z 1
�
d

� �������
AB
p

�2 �2
lm �

�������
AB
p

�2�@
’lm�2

� l�l� 1�

����
A
B

s
’2
lm

�
;

H �
X
lm

Hlm:

(B5)

The canonical variables �’lm;�lm� satisfy the Poisson
brackets
 

f’lm��; 
�;�lm��; 

0�g � ��
� 
0�;

f’lm��; 
�; ’lm��; 

0�g � 0 � f�lm��; 
�;�lm��; 


0�g:
(B6)

Having obtained the general Hamiltonian, our next step is
to show that this reduces to the flat space-time Hamiltonian
of the scalar field in a fixed Lemaı̂tre time. In the time-
dependent Lemaı̂tre coordinates [22,26] the line element is
given by (B1) with

 A��; 
� � 1; B��; 
� �
1

1� f�r�
; ���; 
� � r;

(B7)

where r � r��; 
�.
The line element in Lemaı̂tre coordinates is related to

that in the time-independent Schwarzschild coordinates,
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viz.,

 ds2 � �f�r�dt2 �
dr
f�r�
� r2d�2; f�r � rh� � 0

(B8)

by the following transformation relations [26]:
 

� � t�
Z
dr

������������������
1� f�r�

p
f�r�

;


 � t�
Z
dr
�1� f�r���1=2

f�r�
;


� � �
Z dr������������������

1� f�r�
p :

(B9)

The advantage of the Lemaı̂tre coordinate over the
Schwarzschild coordinate is that (i) the former is not
singular at the horizon rh as opposed to the latter, and
(ii) 
 (or, �) are space- (or, time)-like everywhere while r
(or, t) is space- (or, time)-like only for r > rh.

Substituting the relations (B7) in the general
Hamiltonian (B5), we get

 Hlm��� �
1

2

Z 1
�
d

�

1

r2
������������������
1� f�r�

p �2
lm �

r2������������������
1� f�r�

p
��@
’lm�2 � l�l� 1�

������������������
1� f�r�

q
’2
lm

�
(B10)

where the conjugate variables satisfy the Poisson brackets
(B6). Note that the scalar field and the Hamiltonian depend
explicitly on the Lemaı̂tre time.

Next, choosing the Lemaı̂tre time (� � �0 � 0), the
relations (B9) lead to

 

d

dr
�

1������������������
1� f�r�

p : (B11)

If we set d� � d� � 0, then for the fixed Lemaı̂tre time �0

it follows that ds2 � d
2=B��0; 
� � dr2, i.e., the cova-
riant cutoff is jdsj � dr.

Substituting the above relation (B11) in the Hamiltonian
(B10) we get
 

Hlm�0� �
1

2

Z 1
0
dr
�

�2
lmr
�2

1� f�r�
� r2�@r’lm�

2 � l�l� 1�’2
lm

�
(B12)

where the variables �’lm;�lm� satisfy the relation

 f’lm�r�;�lm�r0�g �
������������������
1� f�r�

q
��r� r0�: (B13)

Performing the following canonical transformations:

 �lm ! r
������������������
1� f�r�

q
�lm; ’lm !

’lm
r

(B14)

one obtains [27]

 H �
X
lm

1

2

Z 1
0
drf�2

lm�r� � r
2

�
@
@r

�
’lm�r�
r

��
2

�
l�l� 1�

r2 ’2
lm�r�

�
: (B15)

This is nothing but the Hamiltonian of a free scalar field
propagating in flat space-time. This is true for any fixed
value of �, provided the scalar field is traced over either the
region r 2 �0; rh� or the region r 2 �rh;1�. Note that the
black-hole singularity can be entirely avoided for the latter
choice. Now for evaluating time-independent quantities
such as entropy, it suffices to use the above Hamiltonian
(the same cannot be said for time-dependent quantities).

The approach here differs from that of Ref. [28] where
the authors divide the exterior region r � rs into two by
introducing an hypothetical spherical surface and obtain
the entanglement entropy of that surface. In contrast, we
consider the complete r � rs region and obtain the entropy
for the BH horizon. We discuss the possible extensions in
Sec. VI.

APPENDIX C: ENTANGLEMENT ENTROPY FOR
GS AND ES

For the sake of completeness, we outline the essential
steps in the computation of entanglement entropy for
ground state and first-excited state. In the following, we
denote all the quantities, viz., wave function, density ma-
trix, etc. by the symbol/suffix 0 for GS and by 1 for the first
ES.

1. Ground state

In this case the wave function (10) reduces to (on setting
�i � 0, for all i):

  0�x1; . . . ; xN� �
YN
i�1

N �0�
i exp

�
�

1

2
k1=2
Di x2

i

�

�

�
j�j

�N

�
1=4

exp
�
�
xT�x

2

�
: (C1)

Let us decompose

 � �
A B
BT C

� �
(C2)

and define

 	 �
BTA�1B

2
; � � C� 	; (C3)

where A is an n� n symmetric matrix, B is an n� �N �
n� matrix, and C, 	, � are all �N � n� � �N � n� symmet-
ric matrices. The density matrix (12) reduces to [7]
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 �0�t; t0� �

������������������
j�j

�N�njAj

s
exp

�
�
tT�t� t0T�t0

2
� tT	t0

�
:

(C4)

In the above, the matrices B and 	 are nonzero if and only
if the HOs are interacting. Because of the Gaussian nature
of �0�t; t

0� (C4), one can make a series of unitary trans-
formations:

 V�VT � �D � diag; �	 
 ��1=2
D V	VT��1=2

D ;

W �	WT � �	D � diag; v 
 WT�1=2
D V;

(C5)

such that it reduces to a product of (N � n), two HO (N �
2) density matrices, in each of which one oscillator (n � 1)
is traced over [7]:

 �0�t; t
0� �

������������������
j�j

�N�njAj

s
exp

�
�
tT�t� t0T�t0

2
� tT	t0

�
:

(C6)

In the above, the matrices B and 	 are nonzero if and only
if the HOs are interacting. Because of the Gaussian nature
of �0�t; t0� (C4), one can make a series of unitary trans-
formations:

 V�VT � �D � diag; �	 
 ��1=2
D V	VT��1=2

D ;

W �	WT � �	D � diag; v 
 WT�1=2
D V;

(C7)

such that it reduces to a product of (N � n), two HO (N �
2) density matrices, in each of which one oscillator (n � 1)
is traced over [7]:

 �0�t; t0� �

������������������
j�j

�N�njAj

s YN�n
i�1

exp
�
�
v2
i � v

02
i

2
� �	iviv0i

�
;

(C8)

where vi 2 v and �	i 2 �	. The corresponding entropy is a
sum of two HO entropies [7]:
 

S � �
XN�n
i�1

ln�1� 
i� �

i

1� 
i
ln
i


i �
�	i

1�
���������������
1� �	2

i

q :

(C9)

For the total Hamiltonian H, the entanglement entropy is

 S �
Xlmax

l�0

�2l� 1�Sl � 0:3
�
R
a

�
2
; (C10)

where (2l� 1) is the degeneracy factor that follows from
the spherical symmetry of the Hamiltonian, R �
a�n� 0:5� is the radius of the hypothetical spherical sur-
face— the horizon—the DOF inside of which are traced
over, and Sl is the entropy for a given l. Although ideally
the upper limit lmax should be infinity, for numerical esti-

mation of the entropy (for a certain precision) a very large
value of lmax is assigned in practice. The precision goal Pr
is set by demanding that the maximum value of l 
 lmax

should be such that the percentage change in entropy

 

S�lmax� � S�lmax � 5�

S�lmax � 5�
� 100<Pr: (C11)

For instance, if Pr � 0:01, the numerical error in the total
entropy estimation is less than 0.01%.

In the cases of GCS and SS, it has been shown in [14]
that the expression for the total entropy is the same (up to
irrelevant multiplicative factors) as that for GS.

2. First excited state

In this case, we consider one HO is in the excited state
while the restN � 1 are in their GS [13,14]. From Eq. (10),
we have

  1�x1 . . . xN� �
XN
i�1

�
kDi
4�

�
1=4
�iH 1�k

1=4
Di xixi�

� exp
�
�

1

2

X
j

k1=2
Dj x2

j

�
: (C12)

In terms of the pure GS wave function (C1) this can be
written as

  1�x1 . . . xN� �
���
2
p
��TK1=2

D x� 0�x1; . . . ; xN�; (C13)

where

 �T � ��1; . . . ; �N� (C14)

are the expansion coefficients and the normalization of  1

requires �T� � 1.
Using Eq. (12) the density matrix can be evaluated and is

given by

 �1�t; t0� � 2
Z Yn

i�1

dxi�x0T�x� 0�xi; t� ?0 �xi; t
0�

� �
�

1�
tT��t� t0T��t0

2
� tT�	t

0

�
�0�t; t

0�

(C15)

where � is a N � N matrix defined by

 � � UTK1=4
D ��TK1=4

D U 

�A �B

�T
B �C

� �
; (C16)

�A is an n� n symmetric matrix, �B is an n� �N � n�
matrix, �C is an �N � n� � �N � n� symmetric matrix,
and � � Tr��AA�1�. The �N � n� � �N � n� matrices
�	 and �� are given by
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 �	 �
1

�
�2�C ��T

BA
�1B� BTA�1�B

� BTA�1�AA
�1B�;

�� �
1

�
�2�T

BA
�1B� BTA�1�AA

�1B�:

(C17)

�	 is symmetric, while �� is not necessarily symmetric
due to the presence of the first term on the right-hand side.

In general, unlike the GS density matrix �0 (C4), the ES
density matrix �1 (C15) cannot be factorized into (N � n)
two HO density matrices. However, �0 is a Gaussian that
attenuates virtually to zero beyond its few sigma limits.
Therefore, if

 �1 
 tTmax�	tmax 
 1; �2 
 tTmax��tmax 
 1

(C18)

where

 tTmax �

�
3�N � n�������������������������
2Tr��� 	�

p �
�1; 1; . . .� (C19)

corresponding to 3
 limits of the Gaussian inside �0, then
one may approximate

 1�
tT��t� t

0T��t
0

2
� tT�	t0

� exp
�
�
tT��t� t

0T��t
0

2
� tT�	t0

�
: (C20)

As such, with the following shift of parameters,

 	0 
 	��	; �0 
 ����; (C21)

the approximated ES density matrix is also a Gaussian,

 �1�t; t
0� � � exp

�
�
tT�0t� t0T�0t0

2
� tT	0t0

�
: (C22)

This can be factorized once again into two HO density
matrices, and the associated entanglement entropy can be
computed. For the following set of values: N � 300, n �
100–200, o � 10–50, o being the number of last nonvan-
ishing entries in the vector �T , i.e., �T � �1=

���
o
p
��

�0; � � � ; 0; 1; � � � ; 1�, the entropy computation is done nu-
merically (using MATLAB) in [14]. The precision setting
in the computation had been 0.1% and the criteria (C18) is
satisfied for the above choice of the parameters N, n, and o.
The results show that the ES entropy scales as a power of
the area. The power, however, is always less than unity (for
any o > 0) and is lesser and lesser, the higher the value of
o. The AL is thus always violated for the chosen range of
values of n�� 100–200�. The other interesting observation
made in [14] is the shifting of peaks in the variation of the
partial waves �2l� 1�Sl with l for ES as compared to the
case for GS.
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