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Abstract
In 1952, Yvonne Choquet-Bruhat demonstrated that it makes sense to consider
Einstein’s vacuum equations from an initial value point of view; given initial
data, there is a globally hyperbolic development. Since there are many
developments, one does, however, not obtain uniqueness. This was remedied
in 1969 when Choquet-Bruhat and Robert Geroch demonstrated that there is
a unique maximal globally hyperbolic development (MGHD). Unfortunately,
there are examples of initial data for which the MGHD is extendible, and, what
is worse, extendible in inequivalent ways. Thus it is not possible to predict
what spacetime one is in simply by looking at initial data and, in this sense,
Einstein’s equations are not deterministic. Since the examples exhibiting this
behaviour are rather special, it is natural to conjecture that for generic initial
data, the MGHD is inextendible. This conjecture is referred to as the strong
cosmic censorship conjecture and is of central importance in mathematical
relativity. In this paper, we shall describe this conjecture in detail, as well as
its resolution in the special case of T 3-Gowdy spacetimes.

PACS numbers: 04.20.Dw, 04.20.Ex, 04.20.Ha

1. The initial value problem

Einstein introduced his equations in 1915, cf [12, 13], but it was not until much later that
they were studied from a partial differential equation (PDE) point of view. There were natural
reasons for this, one of them being that, due to the diffeomorphism invariance, writing down
the equations in arbitrary coordinates does not yield a PDE for which there is, e.g., an initial
or a boundary value formulation. However, there is something to be learnt by considering the
equations in coordinates. Here, we shall restrict our attention to the vacuum equations, and
they can be written

Rµν = 0, (1)

where Rµν are the components of the Ricci tensor. In coordinates, we have

Rµν = − 1
2gαβ∂α∂βgµν + ∇(µ�ν) + gαβgγ δ[�αγµ�βδν + �αγµ�βνδ + �αγν�βµδ], (2)
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where

�αγβ = 1
2 (∂αgβγ + ∂βgαγ − ∂γ gαβ), �α = gαβgµν�β

µν, ∇µ�ν = ∂µ�ν − �α
µν�α,

and a parenthesis denotes symmetrization, i.e.

∇(µ�ν) = 1
2 (∇µ�ν + ∇ν�µ).

The problem is the second term on the right-hand side of (2), which involves second derivatives
of the metric. However, if we have a solution, we can choose local coordinates so that the
second term on the right-hand side of (2) disappears. What then results is a system of second
order hyperbolic PDEs; in other words, something similar to a system of wave equations.
From a naive point of view, we are thus led to expect that

• the natural PDE problem is the initial value problem.
• a natural choice for initial data is the metric and the first time derivative of the metric.

Due to the diffeomorphism invariance, there is, however, a problem in general.
Diffeomorphism invariance means that if (M, g) is a vacuum solution to Einstein’s equations
and φ is a diffeomorphism of M, then (M, φ∗g) is a vacuum solution to Einstein’s equations.
As a consequence, if one writes down Einstein’s equations with respect to coordinates without
imposing any additional restrictions, there will be no uniqueness; pulling back the metric by a
diffeomorphism which is the identity on a neighbourhood of the initial hypersurface but which
is not the identity everywhere will typically lead to a different metric with respect to fixed
coordinates even though the initial data remain the same. It thus seems reasonable to hope for
an initial value formulation, but it is also clear that we need a geometric way to phrase it.

Let us consider the problem of formulating an initial value problem from a different
perspective. Given a vacuum spacetime (M, g), can it be uniquely determined by initial data,
and if so, what should the initial data be? Note that this involves restrictions on the spacetime.
The initial data should be specified on a hypersurface, say 	, so the first question is what the
restrictions on 	 should be. It seems natural to require that information not be allowed to
travel from one part of 	 to another; otherwise there are consistency problems if one wants to,
say, perturb the initial data. Furthermore, it seems natural to require that all the information
that arrives at a spacetime point can be traced back to the initial hypersurface; if not, it is not
so clear that it is possible to predict what happens at the point solely on the basis of initial
data. Since information travels along causal curves in general relativity, it thus seems natural
to at least require that

• consistency: no timelike curve intersects 	 twice.
• predictability: every inextendible timelike curve intersects 	 at least once.

One can of course sum up the above by demanding that every inextendible timelike curve
intersect 	 exactly once. A hypersurface 	 with this property is called a Cauchy hypersurface
and a Lorentz manifold admitting a Cauchy hypersurface is called globally hyperbolic. Note
that the property of being globally hyperbolic is a property of the spacetime, as opposed to a
property of the hypersurface. From now on, 	 will be assumed to be smooth and spacelike,
i.e. the metric induced on 	 is positive definite. Simple examples of Cauchy hypersurfaces
are the constant t hypersurfaces in Minkowski space and in the standard Robertson–Walker
spacetimes.

What should the information on 	 be? Natural candidates are the induced metric, say
h, and the induced second fundamental form, say k. First of all, these data are geometric
and secondly, considering these objects in local coordinates, the second fundamental form is
roughly speaking the first time derivative of the metric. There is, however, one problem: h
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and k are not independent of one another—they have to satisfy certain equations called the
vacuum constraint equations:

r − kij k
ij + (tr k)2 = 0, (3)

Djkji − Di(tr k) = 0, (4)

where D is the Levi-Civita connection of h, r is the associated scalar curvature and indices
are raised and lowered by h. These equations follow from the fact that 	 is a spacelike
hypersurface in a Lorentz manifold satisfying Einstein’s vacuum equations. What we have
said so far was carried out starting with a solution to Einstein’s vacuum equations, but at this
stage we can consider 	 to be an abstract manifold and consider h to be a Riemannian metric
and k to be a symmetric covariant two-tensor on 	 satisfying the constraint equations. And we
can do this without any reference to an ambient space. This leads to the following formulation
of the initial value problem.

Definition 1. Initial data to Einstein’s vacuum equations consist of a three-dimensional
manifold 	, a Riemannian metric h and a covariant symmetric two-tensor k on 	, both
assumed to be smooth and to satisfy (3) and (4). Given initial data, the initial value problem is
that of finding a four-dimensional manifold M with a Lorentz metric g such that (1) is satisfied,
and an embedding i : 	 → M such that i∗g = h and that if κ is the second fundamental form
of i(	), then i∗κ = k. Such a Lorentz manifold (M, g) is called a development of the data. If,
furthermore, i(	) is a Cauchy hypersurface in (M, g), then (M, g) is referred to as a globally
hyperbolic development of the initial data. In both cases, the existence of an embedding i is
tacit.

The seminal result in this field is due to Yvonne Choquet-Bruhat, and the statement is as
follows, cf [11].

Theorem 1. Given initial data (	, h, k) to Einstein’s vacuum equations, there is a globally
hyperbolic development.

This is a fundamental result, but in some sense it is disappointing; one obtains a globally
hyperbolic development, but there are in fact infinitely many. The problem is that if person
A has one development and person B has another development with completely different
properties, there is no contradiction because there is no uniqueness. To obtain uniqueness, the
development needs to be maximal in some sense.

Definition 2. Given initial data to (1), a maximal globally hyperbolic development (MGHD)
of the data is a globally hyperbolic development (M, g), with embedding i : 	 → M , such
that if (M ′, g′) is any other globally hyperbolic development of the same data, with embedding
i ′ : 	 → M ′, then there is a map ψ : M ′ → M which is a diffeomorphism onto its image
such that ψ∗g = g′ and ψ ◦ i ′ = i.

Uniqueness is an immediate consequence of this definition. However, existence is far
from obvious. For this reason, the following result of Yvonne Choquet-Bruhat and Robert
Geroch from 1969, cf [3], is of fundamental importance.

Theorem 2. Given initial data to (1), there is a maximal globally hyperbolic development of
the data which is unique up to isometry.

Remark. When we say that (M, g) is unique up to isometry, we mean that if (M ′, g′) is another
maximal globally hyperbolic development, then there is a diffeomorphism ψ : M → M ′ such
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that ψ∗g′ = g and ψ ◦ i = i ′, where i and i ′ are the embeddings of 	 into M and M ′

respectively. The theorem is a consequence of theorem 1, local uniqueness, Zorn’s lemma and
some additional geometric arguments.

This is a rather abstract result, but considering the initial value problem in general relativity
without it would be meaningless. On the other hand, it does not say anything about causal
geodesic completeness or curvature blow up.

2. Strong cosmic censorship

The maximal globally hyperbolic development is of course maximal in the class of all globally
hyperbolic developments, but there is no reason to believe it to be maximal in the class of all
developments. Unfortunately, there are initial data for which the MGHD is extendible and,
what is worse, extendible in inequivalent ways. The canonical example is Taub–NUT, cf [4].
As a consequence, the initial data do not uniquely determine the spacetime. A natural reaction
to this fact would be to say that the initial value problem in general relativity is nonsense and
one should not consider it at all. However, the examples for which the MGHD is extendible
are very special and one is led to the following conjecture.

Conjecture 1. For generic initial data to Einstein’s vacuum equations, the maximal globally
hyperbolic development is inextendible.

Remark. Note that the statement is a bit vague; to get a precise statement, one has to specify
what one means by generic and what differentiability class one has in mind when speaking of
extendibility.

This is what will be referred to in these notes as the strong cosmic censorship conjecture
and the particular formulation is due to Eardly and Moncrief, cf [10]. If this conjecture were
true, then it would still make sense to consider Einstein’s equations from an initial value point
of view. The statement is rather abstract, but it is connected to a question of more apparent
physical interest, namely the question of curvature blow up at singularities.

Due to the work of Hawking and Penrose, we have been led to identify the existence
of singularities with causal geodesic incompleteness. Of course, for this to make sense,
the spacetime one considers has to be maximal in some natural sense; one can for instance
consider the MGHD corresponding to initial data. The singularity theorems give quite general
conditions ensuring that the MGHD is causally geodesically incomplete, but it is also of
interest to know if the gravitational field (curvature) blows up as one approaches a singularity
(in practice, we shall here use the Kretschmann scalar,

Rαβγ δR
αβγ δ

as an indicator for curvature blow up). Unfortunately, there are examples in which there are
singularities in the sense of causal geodesic incompleteness but the curvature remains perfectly
bounded. Again, the Taub–NUT spacetimes are the canonical examples. One is thus led to
the following conjecture.

Conjecture 2. For generic initial data to Einstein’s vacuum equations, curvature blows up in
the incomplete directions of causal geodesics in the MGHD.

Remark. This statement implies strong cosmic censorship.

To hope to prove this conjecture or strong cosmic censorship in all generality is not
realistic. A more realistic problem would be to consider the same conjectures but to restrict
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one’s attention to a specific symmetry class of solutions, the hope in the long run being that it
will be possible to reduce the symmetry conditions gradually.

In cosmology, the simplest starting point would be to consider spatially homogeneous
models. In the case of vacuum, such models are well understood as far as this question
is concerned, with the exception of Bianchi VI−1/9. The natural next step after spatial
homogeneity is to look at the Gowdy spacetimes. There is a special subcase of this called
polarized Gowdy, where the equations reduce to a linear PDE. For this case, the above questions
have been sorted out, cf [6]. What will be discussed here concerns general T 3 Gowdy. In that
case, the relevant equations are a system of nonlinear hyperbolic PDEs.

It should perhaps be pointed out that the motivation for studying these models is that they
are the simplest ones in which one can study Einstein’s vacuum equations in a cosmological,
inhomogenous, nonlinear setting, and the desire to understand the equations in such a situation
supercedes the desire to have a physically realistic model.

Finally, let us mention that there are other results concerning strong cosmic censorship in
a cosmological setting with surface and T 2 symmetry, cf [7–9]. However, the methods used
in these papers do not yield any conclusions concerning curvature blow up.

3. The T 3-Gowdy spacetimes

The Gowdy spacetimes were first introduced in [14] (see also [5]), and in [18] the fundamental
questions concerning global existence were answered. These spacetimes can be characterized
by geometric conditions, but since we wish to avoid the technical details, we shall take the
Gowdy vacuum metrics on R × T 3 to be the metrics of the form

g = e(τ−λ)/2(−e−2τ dτ 2 + dθ2) + e−τ [eP dσ 2 + 2 eP Q dσ dδ + (eP Q2 + e−P ) dδ2]. (5)

Here, τ ∈ R and (θ, σ, δ) are coordinates on T 3. The functions P,Q and λ only depend on τ

and θ . Consequently, translations in σ and δ constitute isometries, so that we have a T 2 group
of isometries acting on the spacetime. The Einstein vacuum equations become

Pττ − e−2τPθθ − e2P
(
Q2

τ − e−2τQ2
θ

) = 0, (6)

Qττ − e−2τQθθ + 2(PτQτ − e−2τPθQθ) = 0, (7)

and

λτ = P 2
τ + e−2τP 2

θ + e2P
(
Q2

τ + e−2τQ2
θ

)
, (8)

λθ = 2(PθPτ + e2P QθQτ ). (9)

Obviously, (6) and (7) do not depend on λ, so the idea is to solve these equations and then
find λ by integration. There is, however, one obstruction to this; the integral of the right-
hand side of (9) has to be zero. This is a restriction to be imposed on the initial data for P
and Q, which is then preserved by the equations. In the end, the equations of interest are,
however, the two nonlinear coupled wave equations (6) and (7). In the above parametrization,
the singularity corresponds to τ → ∞. Note that P = τ,Q = 0 and λ = τ is a solution
to (6)–(9). The Riemann curvature tensor of the corresponding metric is identically zero. In
fact, the corresponding spacetime is a part of Minkowski space after suitable identifications
have been carried out. The existence of this special solution is, in part, the reason why the
Gowdy spacetimes are interesting; since there is a solution with a singularity in the sense
of causal geodesic incompleteness for which the curvature remains perfectly bounded, it is
necessary to prove that this solution is unstable under perturbations.
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4. Main result

In order for us to be able to make a formal statement of strong cosmic censorship, let us
introduce the following terminology.

Definition 3. Let Si,p denote the set of smooth initial data to (6) and (7) on R × S1, and let
Si,p,c denote the subset of Si,p such that the corresponding solutions obey∫

S1
(PτPθ + e2P QτQθ) dθ = 0. (10)

Remark. The left-hand side of (10) is independent of τ due to the equations.

Definition 4. Let (M, g) be a connected Lorentz manifold which is at least C2. Assume there
is a connected C2 Lorentz manifold (M̂, ĝ) of the same dimension as M and an isometric
embedding i : M → M̂ such that i(M) �= M̂ . Then M is said to be C2-extendible. If (M, g)

is not C2 extendible, it is said to be C2 inextendible.

Finally, we are able to give a precise statement of strong cosmic censorship in the class
of T 3 Gowdy spacetimes, cf [26].

Theorem 3. There is a subset Gi,c of Si,p,c with the following properties

• Gi,c is open with respect to the C2 × C1 topology on Si,p,c,
• Gi,c is dense with respect to the C∞ topology on Si,p,c,
• every MGHD corresponding to initial data in Gi,c has the property that in one time

direction, it is causally geodesically complete, and in the opposite time direction, the
Kretschmann scalar Rαβγ δR

αβγ δ is unbounded along every inextendible causal curve,
• every MGHD corresponding to initial data in Gi,c is C2 inextendible.

Remark. All T 3-Gowdy spacetimes have the property that every causal geodesic is complete
to the future and incomplete to the past, cf [23].

Note that the first two points of the statement clarify what is meant by generic in this
context (openness and denseness) and Gi,c is the set of generic initial data. The openness
means that the property of being generic is stable; starting with generic initial data, there is
a ball with positive radius centered at this initial data contained in the set of generic initial
data. The denseness means that arbitrary initial data can be arbitrarily well approximated by
generic initial data.

5. Expanding direction

Let us describe some of the aspects of the asymptotic behaviour of solutions. It is natural
to divide the problem of analyzing the asymptotics into a consideration of the expanding
direction and a consideration of the direction towards the singularity. In the present section,
we shall use the time coordinate t = e−τ , since t → ∞ then corresponds to the expanding
direction. With respect to this time coordinate, the equations take the form

Ptt +
1

t
Pt − Pθθ − e2P

(
Q2

t − Q2
θ

) = 0 (11)

Qtt +
1

t
Qt − Qθθ + 2

(
PtQt − PθQθ

) = 0. (12)
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Figure 1. The three types of non-degenerate circles together with the solution at a fixed point in
time, as seen in the upper half plane.

These equations can be viewed as a wave map equation with hyperbolic space as a target,
cf [24]. The representation of hyperbolic space naturally associated with the equations is

gR = dP 2 + e2P dQ2 (13)

on R
2 and the map taking (Q, P ) to (Q, e−P ) defines an isometry from (R2, gR) to the upper-

half plane model. One reason for making this observation is that, when studying the behaviour
of solutions, it is important to keep in mind that the natural geometry with which to measure
the length of tangent vectors etc. in the target space is the hyperbolic one. Another reason is
that due to the wave map structure, isometries of hyperbolic space map solutions to solutions;
it is often convenient to use a suitable isometry to make the solution as simple as possible.

In order to visualize a solution, it is natural to think of [Q(t, ·), P (t, ·)] for each time t as
a loop in hyperbolic space. With this perspective, a solution is a loop evolving with time and
a natural object to consider is the length of the loop, which is given by

�(t) =
∫

S1

[(
P 2

θ + e2P Q2
θ

)
(t, θ)

]1/2
dθ.

It turns out that, for a given solution, there is a constant C > 0 such that

�(t) � Ct−1/2

for all t � 1 (this result, as well as most other results quoted in this section are to be found
in [23], but see also [2] for numerical results that influenced the mathematical studies). As a
consequence, the spatial variation of the solutions dies out. Thus, it seems natural to expect
the solutions to behave as spatially homogeneous solutions to the equations asymptotically.
The orbits of the spatially homogeneous solutions are the geodesics of hyperbolic space. In
other words, they are circles intersecting the boundary at a right angle (where we use the
terminology, as we shall below as well, that straight lines in the upper-half plane are called
circles). However, when analyzing the asymptotics, one can see that solutions generally
asymptote to circles that need not be the orbits of geodesics. There are four types of circles
in the upper half plane: a point (a degenerate circle), a non-degenerate circle that does not
intersect the boundary, a circle that touches the boundary (a horocycle) and a circle that
intersects the boundary transversally. After applying a suitable isometry of hyperbolic space,
the non-degenerate situations can be reduced to one of the cases illustrated in figure 1. The
figures depicted should be interpreted in the following way: the wiggly line represents the
solution at one point in time (i.e. a loop), the length of the loop shrinks to zero and the solution
converges to the circles depicted, going to infinity in the first case, to the origin in the second
case, and oscillating around the circle forever in the third case. The first case is a borderline
case between the last two; if one perturbs the initial data of a solution as depicted on the left,
one will typically end up with a solution behaving as depicted in the center or on the right.
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However, the other two situations are stable under perturbations. In all the cases, the solutions
are arbitrarily well approximated by solutions to an ODE. After applying a suitable isometry
of hyperbolic space, a non-degenerate spatially homogeneous solution has the y-axis as its
orbit. For a solution, say x, there is a circle, say �, such that the distance from x to � tends to
zero as t−1/2. The most interesting situation is when � is a non-degenerate circle which does
not intersect the boundary. What happens in that case is that the solution oscillates around
the circle for ever and is asymptotically periodic in a logarithmic time coordinate. In fact,
(Q − α/(2β), P ) can in the limit be arbitrarily well approximated by a solution (u, v) to

2u̇ = β

t

(
e−2v +

α2 + 4βγ

4β2
− u2

)
, (14)

v̇ = β

t
u (15)

where

α = 1

2π

∫
S1

{2Q(tQt) e2P − 2(tPt )} dθ (16)

β = 1

2π

∫
S1

e2P (tQt) dθ (17)

γ = 1

2π

∫
S1

{(tQt)(1 − e2P Q2) + 2Q(tPt )} dθ (18)

are quantities that are preserved by the evolution, i.e. they are constants (in the case that the
solution converges to a non-degenerate circle which does not intersect the boundary, we have
α2 + 4βγ < 0, which is impossible for a spatially homogeneous solution). In fact, for every
ε > 0 there is a t0 such that for t � t0,

(Q − α/(2β) − u)2 + (P − v)2 � ε2

where (u, v) is a solution of (14) and (15) with suitably chosen initial data.
There are several remarks worth making in the present context. First of all, the solution

is, in the expanding direction, arbitrarily well approximated by a solution to an ODE, but the
relevant ODE is not the ODE one obtains by dropping the spatial derivatives in the original
equation. In fact, the behaviour of solutions to the relevant ODE is qualitatively completely
different from the behaviour of spatially homogeneous solutions. We are led to make the
following observations.

• Say that we have a solution to a PDE and that it, asymptotically, is arbitrarily well
approximated by a solution to an ODE, does the ODE solution have to be a spatially
homogeneous solution to the PDE? No!

• Say that we wish to model some phenomenon with a nonlinear evolutionary PDE, but
we do not know which PDE is the relevant one. Say, furthermore, that we know that,
asymptotically, the phenomenon is arbitrarily well approximated by a solution to an ODE.
Does the PDE we choose have to have the property that it allows the given ODE solution
as a spatially homogeneous solution? No!

• Say that we wish to understand the asymptotic behaviour of solutions to a PDE, the
spatial variations of which die out asymptotically. Is it enough to consider perturbations
of spatially homogeneous solutions to the equations to get an impression of what types
of qualitative behaviour is possible? No! There are examples where interesting and
important phenomena are missed if one takes the perturbation point of view.
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All this having been said, it should be pointed out that the spacetime metrics corresponding to
these ‘funny’ solutions are rather similar to spatially homogeneous vacuum metrics. Whether
the above observations are of any relevance to cosmology is debatable, but they are worth
keeping in mind. In particular, just because the spatial variation of a solution to a PDE dies
out asymptotically does not mean that it is well approximated by a spatially homogeneous
solution to the PDE.

Finally, let us make some observations concerning the asymptotic behaviour that might
be of relevance to those interested in making a numerical analysis of this class of spacetimes.
Let us consider the polarized subcase, i.e. the equations one obtains when Q = 0.
Considering (11) and (12), it is clear that the equations then reduce to the single, linear
equation

Ptt +
1

t
Pt − Pθθ = 0. (19)

Due to results of [16], there is, given a solution P to (19), two constants α and β and a solution
ν to the flat space wave equation, i.e.

νtt − νθθ = 0,

with the property that its mean value is always zero, i.e.∫
S1

ν(t, θ) dθ = 0

for all t > 0, such that

P = α ln t + β + t−1/2ν + ψ, (20)

where ψ = O(t−3/2), and similarly for the first derivatives of ψ , and the mean value of ψ is
zero. Due to results of [25], one can also go in the other direction, i.e. given constants α and
β and a solution to the flat space wave equation ν with zero mean value, there is a unique ψ

with the above mentioned properties such that P given by (20) satisfies (19). In other words,
one can consider α, β and ν as data at the moment of infinite expansion.

The point is that, considering (20), it is clear that the most important object, determining
the overall behaviour, is α. This constant can be obtained as

α = 1

2π

∫
S1

tPt (t, θ) dθ. (21)

The right-hand side is, needless to say, conserved by the evolution. However, considering the
integrand, one sees that

tPt = α + t1/2νt − 1
2 t−1/2ν + tψt . (22)

Note that the last two terms converge to zero as t → ∞. However, νt is bounded but no better,
so that the second term tends to infinity as t1/2 as t → ∞ (recall that we are free to specify
ν under the conditions mentioned above, so that we can take it to be, e.g., sin t sin θ ). Let us
sum up the above observations

• The constant α given by (21) determines the overall behaviour of P.
• The relevant integrand appearing in (21) is given by (22).
• In the limit as t → ∞, only the first two terms on the right-hand side of (22) are of

relevance.
• The second term in (22) vanishes upon integration, but from a numerical point of view

it seems natural to expect the first term to be noise for t large enough. Consequently, it
seems natural to expect that the object appearing on the right-hand side of (21) not to be
preserved by the numerical evolution and, since α determines the overall behaviour, to
expect that the numerical solution might deviate significantly from the real solution as
t → ∞.

9



Class. Quantum Grav. 25 (2008) 114010 H Ringström

y

x

Figure 2. The asymptotic behaviour of a solution satisfying asymptotics of the form (23) and (24)
as seen in the upper-half plane model.

The crucial point is that there are objects appearing in the expression for Pt which are on
two different scales: there is the ‘spatially homogeneous scale’ which is on the level of t−1

and determines the overall behaviour and the ‘spatially inhomogenous scale’ which is on the
level t−1/2. It seems reasonable to expect, for reasons mentioned above, that this difference
of scales might cause problems from a numerical point of view. However, and this is the
important point, it is exactly this difference of scales that makes the general (non-polarized)
inhomogenous problem tractable from a mathematical point of view. In other words, the
difference in scales which might be expected to be a nuisance from a numerical point of view,
is of a great help in the mathematical analysis.

6. The direction towards the singularity

The natural starting point for discussing the asymptotic behaviour in the direction of the
singularity is the asymptotic expansions first proposed by Grubišić and Moncrief, cf [15]. In
our setting, the natural expansions are

P(τ, θ) = va(θ)τ + φ(θ) + u(τ, θ) (23)

Q(τ, θ) = q(θ) + e−2va(θ)τ [ψ(θ) + w(τ, θ)] (24)

where w, u → 0 as τ → ∞ and 0 < va(θ) < 1. Note that if we have a solution with such
expansions, then Q(τ, θ) converges and P(τ, θ) tends to infinity as τ → ∞. Viewing this
in the upper-half plane, where x = Q and y = e−P , we see that for a fixed θ the solution
roughly speaking goes to the boundary along a geodesic in the upper-half plane model, cf
figure 2. In [17, 19], the authors developed methods for proving that given va, φ, q, ψ with
a suitable degree of regularity and 0 < va < 1, there are unique solutions to (6) and (7) with
asymptotics of the form (23) and (24). It is of interest to note that if q is constant, the condition
on va can be relaxed to va > 0. In [21, 22], we proved results going in the other direction, i.e.
we provided conditions on initial data which lead to asymptotic expansions of the form (23)
and (24).

6.1. Asymptotic velocity

According to our experience, the most important part of the expansions (23) and (24) is the
function va . This object may seem to be arbitrary and devoid of geometric content. That
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this is not the case can be seen in the following way. Define the potential and kinetic energy
densities by

P(τ, θ) = e−2τ
(
P 2

θ + e2P Q2
θ

)
(τ, θ) (25)

K(τ, θ) = (
P 2

τ + e2P Q2
τ

)
(τ, θ). (26)

Note that these objects are geometric in nature, cf (13). Differentiating the expansions,
assuming uτ ,wτ → 0, and computing K, one sees that this expression converges to v2

a . In this
sense, v2

a has a geometric significance. One can prove that the pointwise limit of the kinetic
energy density always exists. This naturally leads to the following definition.

Definition 5. Let (Q, P ) be a solution to (6) and (7) and let θ0 ∈ S1. Then we define the
asymptotic velocity at θ0 to be

v∞(θ0) = [
lim

τ→∞K(τ, θ0)
]1/2

.

The importance of the asymptotic velocity is partly due to the fact that it can be used as an
indicator for curvature blow up. The reason is that the S1 coordinate of an inextendible causal
curve has to converge to something, say θ0, in the direction of the singularity (see below) and
if v∞(θ0) �= 1, then the curvature blows up along the causal curve. Note that the solution
P = τ,Q = 0 has the property that v∞ = 1. Furthermore, the corresponding metric, with
λ = τ , has a curvature tensor which is identically zero. In other words, if v∞(θ0) = 1, the
curvature need not necessarily blow up along a causal curve ending at θ0. Another reason
why the asymptotic velocity is of importance is that it can be used as an indicator for the
existence of expansions of the form (23) and (24). An example of such a statement would
be if 0 < v∞(θ0) < 1 and Pτ (τ, θ0) → v∞(θ0), then there are expansions of the form (23)
and (24) in a neighbourhood of θ0, cf [24].

6.2. Generic solutions

To give a formal definition of the set of generic initial data would require an extensive technical
digression. Since we wish to avoid that here, we refer the reader to [26] for the details and
simply describe some aspects of the asymptotic behaviour of the corresponding solutions.
Let (Q, P ) be a smooth solution corresponding to generic initial data and let the associated
asymptotic velocity be denoted by v∞. Except for a finite number of exceptional points,

lim
τ→∞ Pτ (τ, θ) = v∞(θ), v∞(θ) ∈ (0, 1).

For a θ satisfying these two conditions, there is an open neighbourhood of θ such that we
have expansions of the form (23) and (24) in this neighbourhood, as was noted above. The
exceptional points are of two types, so let us denote the corresponding coordinates on S1 by
θ1, . . . , θl and θ ′

1, . . . , θ
′
m. For i = 1, . . . , l, we have

lim
τ→∞ Pτ (τ, θi) = v∞(θi) v∞(θi) ∈ (1, 2).

These points are referred to as true spikes, since v∞, which is a geometric quantity, is
discontinuous at θi, i = 1, . . . , l. For i = 1, . . . , m, we have

lim
τ→∞ Pτ (τ, θ

′
i ) = −v∞(θ ′

i ) v∞(θ ′
i ) ∈ (0, 1).

These points are referred to as false spikes, since v∞ is perfectly smooth across a false spike,
but the limit of Pτ is discontinuous. The reader interested in more details concerning the
asymptotics is referred to [24, 26].

The reader interested in numerical studies of the singularity is referred to, e.g. [1], and a
good reference for a discussion of spikes is [20], see figure 3.
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Figure 3. The first picture depicts Q for a false spike about to form and the second one Pτ for a
true spike about to form.
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Figure 4. A causal triangle.

(This figure is in colour only in the electronic version)

6.3. Causal structure

Consider the Gowdy metric (5) in the τθ directions. Changing the time coordinate to t = e−τ ,
the singularity corresponds to t = 0 and the Gowdy metric in the tθ directions is conformal
to the Minkowski metric. One consequence of this is that the S1 coordinate of an inextendible
causal curve converges in the direction of the singularity. Say, furthermore, that one wants to
be able to predict what happens at (t, θ) = (0, θ0). Then it is enough to know what the initial
data are at t = T for θ ∈ [θ0 − T , θ0 + T ], cf figure 4.

6.4. Conclusions

As has already been pointed out above, the causal picture in the tθ directions is conformal to
that of Minkowski space after suitable identifications have been made in the spatial direction.
If one is interested in determining the behaviour of the metric along causal curves, it is thus
enough to focus on causal triangles (by a causal triangle we here mean a triangle with one
vertex at the singularity such that the two sides intersecting at that point form 45◦ angles to the
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left and to the right of the vertical axis and such that the base of the triangle is parallel to the
horizontal axis, see figure 4). It is important to note that the behaviour is quite simple in a causal
triangle; the potential energy density P converges to zero, Pτ converges, eP Qτ converges to
zero and the spatial variation of Pτ converges to zero. Furthermore, the spikes are only visible
if one considers larger regions and in the proof of the existence of the limit defining the
asymptotic velocity it is of crucial importance to consider causal triangles and nothing more.
The drawback is of course that one only obtains information concerning one spatial point on
the singularity. However, there are solutions for which the asymptotic velocity has infinitely
many points of discontinuity. Widening the causal triangle to a region which includes an open
subset of the singularity, the situation can thus become extremely complicated; there could be
infinitely many points of discontinuity of the asymptotic velocity, the potential energy density
need not converge to zero in the widened region etc. In other words, there are many reasons
for focusing on a causal triangle; this is exactly the region one needs to control in order to
predict the behaviour along causal curves and considering anything larger makes the situation
much harder to analyze. This observation is of potential importance when considering classes
of spacetimes with less symmetry. If, in the class of Gowdy spacetimes, the situation becomes
almost unmanageable when taking the step from one point at the singularity to an open interval,
then it seems unreasonable to expect the situation to be easier to deal with in a more general
class. As a consequence, it seems natural to try to limit one’s attention to as small a region
as possible which is still large enough that one can predict what happens up to the singularity
along some causal curve. One way of doing so would be to consider a past intextendible causal
curve, take the causal future of it and intersect it with some Cauchy hypersurface. Knowing
the initial data on the resulting subset of the Cauchy hypersurface, say D	 , would be sufficient
for predicting the behaviour of the gravitational field in the direction toward the singularity
along the causal curve with which we started. However, for this to be useful, one needs to
know that D	 is not ‘too large’, but a priori, there is no reason to assume it to be smaller than
	 itself. Note that in the BKL picture and similar proposals, it is assumed that D	 tends to
a point as the distance from 	 to the singularity tends to zero (this distance is of course not
canonically defined, but for each point on 	, we can compute the maximum length of past
directed causal curves starting at that point, then we can take the infimum over 	 of all the
lengths and finally define the result to be the distance). From this point of view, it is of central
importance to understand the causal structure close to the singularity. It is of interest to note
that is not thoroughly understood even in the case of spatially homogeneous spacetimes; the
causal structure of Bianchi VIII and IX in the direction of the singularity remains a mystery.

Finally, let us note that there are infinite dimensional families of initial data, the asymptotic
behaviour in the direction of the singularity of which is unstable under perturbations. In fact,
as we noted in connection with (23) and (24), we are allowed to specify va , φ and ψ freely
under the condition that va > 0. However, if va � 1 at some point, one is not free to specify q;
it has to be constant. In other words, we can demand that va = 4711 on the entire circle and we
are still free to specify φ and ψ as we wish. However, the generic solutions have asymptotic
velocity strictly less than 2, so that a slight perturbation of the initial data of the solutions with
va = 4711 suffices in order to yield solutions with drastically different asymptotic behaviour.
There are also solutions with an infinite number of true spikes, cf remark 8.6 of [24]. However,
this behaviour is unstable as well, since no generic solution has this property.
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