
653

Relativity/Cosmology: Article / Article

Where are the degrees of freedom responsible
for black-hole entropy?1

Saurya Das, S. Shankaranarayanan, and Sourav Sur

Abstract: Considering the entanglement between quantum field degrees of freedom inside and outside the horizon as a
plausible source of black-hole entropy, we address the question: where are the degrees of freedom that give rise to this
entropy located? When the field is in ground state, the black-hole area law is obeyed and the degrees of freedom near the
horizon contribute most to the entropy. However, for excited state, or a superposition of ground state and excited state,
power-law corrections to the area law are obtained, and more significant contributions from the degrees of freedom far
from the horizon are shown.

PACS Nos.: 04.60.−m, 04.62., 04.70.−s, 03.65.Ud

Résumé : Considérant l’enchevêtrement entre les degrés de liberté du champ quantique à l’intérieur et à l’extérieur de
l’horizon comme source vraisemblable de l’entropie du trou noir, nous posons la questions : où sont localisés les degrés
de liberté qui donnent naissance à cette entropie ? Quand le champ est dans le fondamental, les lois de surface du trou
noir sont valides et les degrés de liberté près de l’horizon contribuent le plus à l’entropie. Cependant, pour un état excité
ou une superposition d’état excité et du fondamental, nous obtenons des corrections en loi de puissance pour les lois de
surface et nous montrons que des contributions plus significatives originent de degrés de liberté loins de l’horizon.

[Traduit par la Rédaction]

1. Introduction

The study of black holes (BHs) has always been a major
testing arena for models of quantum gravity. The key issue has
been to identify the microscopic origin of black-hole entropy
SBH. The questions that naturally arise in this context are the
following:

(i) Why isSBH, given by the well-known Bekenstein–Hawking
relation, [1, 2],

SBH =
(
kB

4

) A
�2

Pl

(1)

(where �Pl ≡ √
�G/c3 is the Planck length and kB is

the Boltzmann constant) proportional to the horizon area
A, as opposed to volume (usual for thermodynamic sys-
tems)?

(ii) Are there corrections to this so-called “area law” (AL),
and if so, how generic are these corrections?

(iii) Can we locate the degrees of freedom (DoF) that are
relevant for giving rise to the entropy?

In the attempts to address these questions there have been
two distinct approaches, viz., the one that associates SBH with
fundamental DoF such as string, loop, etc. [3] and the other
that attributes SBH to the entanglement of quantum field DoF
inside and outside the BH event horizon [4–7]. In this article,
we adopt the second approach and consider a quantum scalar
field (in a pure state) propagating in the BH spacetime. Since
the BH horizon provides a boundary to an outside observer,
the state restricted outside the horizon is mixed and leads to a
nonzero entanglement (Von Neumann) entropy: SEnt = −kB
Tr (ρ ln ρ), where ρ is the mixed (or reduced) density matrix
obtained by tracing over the scalar DoF inside and outside the
horizon.

In refs. 4 and 5 — for a scalar field in the vacuum or ground
state (GS) — it is shown that SEnt of scalar fields propagating
in static BH and flat spacetime (the DoF being traced inside
a chosen closed surface) leads to the AL. In refs. 8–10, the
robustness of the AL is examined by considering nonvacuum
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states. It was shown that AL continues to hold for minimum
uncertainty states, such as the generic coherent state (GCS) or
a class of squeezed states (SS), but for (1-particle) excited states
(ES) or for a GS–ES superposition or mixing of state (MS), one
obtains power-law corrections to the AL. Although for a large
horizon area the correction term is negligible, for small BHs
the correction is significant.

To understand the deviation from the AL for ES or MS phys-
ically, we ascertain the location of the microscopic DoF that
lead to SEnt in these cases [10, 11]. We find that although the
DoF close to the horizon contribute most to the total entropy,
the contributions from the DoF that are far from the horizon are
more significant for ES or MS than for the GS. Thus, the cor-
rections to the AL may, in a way, be attributed to the far-away
DoF. We also extend the flat space-time analysis in ref. 5 to
(curved) spherically symmetric static black-hole spacetimes.

In Sect. 2, we first discuss the relevance of choosing scalar
fields (for the entanglement entropy computations) from the
point of view of the scalar part of gravitational perturbations in
static BH spacetimes. We then show that in Lemaître coordi-
nates the scalar-field Hamiltonian in the BH spacetime reduces
to that in flat spacetime at a fixed Lemaître time. In Sect. 3,
we briefly review the procedure for obtaining the entanglement
entropy and show the numerical estimations for the cases of
GS, ES, and MS. In Sect. 4, we locate the scalar-field DoF that
are responsible for the entanglement entropy and compare the
results for GS and ES–MS. We conclude with a summary and
open questions in Sect. 5.

In the following, we use units with kB = c = � = 1 and set
M2

Pl = 1/(16πG).

2. Hamiltonian of scalar fields in black-
hole spacetimes

Let us first consider the scalar part of the gravitational per-
turbations in a static asymptotically flat spherically symmet-
ric spacetime background with metric gµν . For a metric per-
turbation hµν , the linearized form of the Einstein–Hilbert ac-
tion is invariant under the infinitesimal gauge transformation
hµν → hµν + ξ(µ;ν). Imposing the harmonic gauge condi-
tion, i.e., ∂µ(2hµν − gµνhαα) = 0 [12] and keeping only the
first derivatives of hµν , one finally obtains the linearized spin-2
equation [13],

SEH(g, h) = −M
2
Pl

2

∫
d4x

√|g| ∇αhµν∇αhµν (2)

Assuming plane-wave propagation of the metric perturbations,
i.e., hµν = MPlεµνϕ(x

µ) (where εµν is a polarization tensor),
in the weak-field limit, the action above reduces to the action for
a massless scalar field ϕ propagating in the background metric
gµν ,

SEH(g, h) = −1

2

∫
d4x

√|g| ∂αϕ∂αϕ (3)

Hence, computation of the entanglement entropy of the scalar
fields indeed leads to the entropy of the scalar mode of metric
perturbations of the background spacetime. The Hamiltonian

of a scalar field propagating in a general spherically symmetric
spacetime background with line element

ds2 = −A(τ, ξ) dτ 2 + dξ2

B(τ, ξ)

+ ρ2(τ, ξ)
(

dθ2 + sin2 θdφ2
)

(4)

is given by

H =
∑
lm

1

2

∫ ∞

τ

dξ

[√
AB

ρ2 
2
lm + √

AB ρ2(∂ξϕlm)
2

+l(l + 1)

√
A

B
ϕ2
lm

]
(5)

where A,B, and ρ are continuous differentiable functions of
(τ, ξ), and we have decomposed ϕ in terms of the real spherical
harmonics Zlm(θ, φ), i.e., ϕ(xµ) = ∑

lm ϕlm(τ, ξ)Zlm(θ, φ).

In the time-dependent Lemaître coordinates [13, 14] the line-
element is given by (4) withA(τ, ξ) = 1,B−1(τ, ξ) = 1−f (r),
and ρ(τ, ξ) = r(τ, ξ). This line-element is related to that in the
time-independent Schwarzschild coordinates by the following
transformation relations [14]:

τ = t±
∫

dr

√
1 − f (r)

f (r)

ξ = t +
∫

dr
[1 − f (r)]−1/2

f (r)
(6)

As opposed to the Schwarzschild coordinate, the Lemaître co-
ordinate is not singular at the horizon rh, and ξ (or, τ ) is space-
like (or time-like) everywhere, while r (or t) is space-like (or
time-like) only for r > rh. Choosing a fixed Lemaître time
(τ = τ0 = 0), the relations (6) lead to: dξ/dr = 1/

√
1 − f (r).

Putting this into (5) and performing the canonical transforma-
tions, 
lm → r

√
1 − f (r)
lm, and ϕlm → ϕlm/r the Hamil-

tonian reduces to that of a free scalar field propagating in flat
spacetime [15],

H =
∑
lm

1

2

∫ ∞

0
dr

{
π2
lm(r)+ r2

[
∂

∂r

(
ϕlm(r)

r

)]2

+ l(l + 1)

r2 ϕ2
lm(r)

}
(7)

This holds for any fixed τ , provided the scalar field is traced over
either the region r ∈ (0, rh] or the region r ∈ [rh,∞). Hence,
the evaluation of the entanglement entropy of the scalar field in
flat spacetime corresponds to the evaluation of the entropy of
BH perturbations at a fixed Lemaître time.
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3. Entanglement entropy of scalar fields

We discretize the scalar field Hamiltonian (7) on a radial
lattice with spacing a,

H =
∑
lm

Hlm

=
∑
lm

1

2a

N∑
j=1

[
π2
lm,j +

(
j + 1

2

)2

×
(
ϕlm,j

j
− ϕlm,j+1

j + 1

)2

+ l(l + 1)

j2 ϕ2
lm,j

]
(8)

where πlm,j are the momenta conjugates of ϕlm,j and (N+1)a
is the infrared cutoff.Hlm in (8) is of the form of the Hamiltonian
of N coupled harmonic oscillators (HOs),

H = 1

2

N∑
i=1

p2
i + 1

2

N∑
i,j=1

xiKij xj (9)

where the interaction matrix Kij is given by,

Kij = 1

i2

[
l(l + 1) δij + 9

4
δi1δj1

+
(
N − 1

2

)2

δiNδjN +2

(
i2 + 1

4

)
δi,j (i �=1,N)

]

−
[
(j + 1

2 )
2

j (j + 1)

]
δi,j+1 −

[
(i + 1

2 )
2

i(i + 1)

]
δi,j−1 (10)

The last two terms denote nearest-neighbour interactions and
originate from the derivative term in (7).

The most general eigenstate of the Hamiltonian (9) is a prod-
uct of N HO wave functions:

ψ(x1, . . . , xN) =
N∏
i=1

k
1/4
Di

π1/4
√

2νi νi ! Hνi

(
k

1/4
Di xi

)

× exp

(
−1

2
k

1/2
Di x2

i

)
(11)

where x = Ux (UT U = IN ), KD ≡ UKUT (diagonal), and
νi (i = 1 . . . N) are the indices of the Hermite polynomials
(Hν). The frequencies are ordered such that kDi > kDj for
i > j .

The reduced density matrix is obtained by tracing over the
first n of the N oscillators,

ρ
(
x; x′) =

∫ n∏
i=1

dxi ψ (x1, . . . , xn; xn+1, . . . , xN)

× ψ�
(
x1, . . . , xn; x′

n+1, . . . , x
′
N

)
(12)

It is not possible to obtain a closed form expression for ρ(x; x′)
for an arbitrary state (11). We resort to the following cases to
compute the entropy numerically3 using the relation S = Tr
(ρ ln ρ):

3The computations are done with a precision of 0.01%, for N = 300,
and n = 100–200.

(i) Ground state (GS) with N -particle wave function:

ψ0(x; x′) ∼ exp

[
−1

2

N∑
i=1

k
1/2
Di x2

i

]

(ii) Excited (one-particle) state (ES) with N -particle
wave function: ψ1(x; x′) = √

2αT K1/2
D x ψ0(x; x′)

(where aT = (a1, . . . , aN) are the expansion coeffi-
cients, and the normalization of ψ1 requires aT a = 1).
We choose aT = 1/

√
o(0, · · · 0, 1 · · · 1) with the last o

columns being non-zero.

(iii) GS–ES linearly superposed (i.e., mixed) state (MS) with
N -particle wave function: ψ(x; x′) = c0ψ0(x; x′) +
c1ψ1(x; x′). Normalization of ψ requires constants c0
and c1 related by c2

0 + c2
1 = 1. For simplicity, we choose

c0 = 1/2. (See details in ref. 10).

3.1. Results
For GS, one recovers the AL — SGS ∼ A/a2, where a is the

ultraviolet cutoff at the horizon (set to be 
 �P). For MS and
ES, we obtain power-law corrections to the AL,

SMS/ES = SGS + σ
(
A/a2

)1−ν
(13)

whereσ = constant of order unity and ν is a fractional index that
depends on the excitation o.As the horizon area A increases, the
correction term becomes negligible and SMS → SGS asymp-
totically. For small BHs, however, the correction is significant.
Fig. 1 shows the logarithm of entropy versus log(R/a) charac-
teristics for GS, MS, and ES (R being the horizon radius), as
well as the asymptotic equivalence of GS and MS/ES entropies,
and the numerical fit that leads to the above result (13).

4. Location of the degrees of freedom

Let us take a closer look at the interaction matrix Kij (10)
for the system ofN HOs. The last two terms, which signify the
nearest-neighbour (NN) interaction between the oscillators, are
solely responsible for the entanglement entropy of black holes.
Let us perform the following operations.

4.1. Operation I
We set NN interactions to zero (by hand) everywhere except

in a “window” such that the indices i and j run from q − s

to q + s, where s ≤ q. We thus restrict the thickness of the
interaction region to t = 2s + 1 radial lattice points, while
allowing it to move rigidly across from the origin to a point
outside the horizon. The variation of the percentage contribution
of the total entropy Stot for a fixed window size of t = 5 lattice
points, i.e., pc(q) = [S(q, t = 5)/Stot] × 100, as a function of
q is shown in Fig. 2 forN = 300, n = 100, in each of the cases
GS and MS, ES with o = 30 and 50. In all the cases, pc(q) = 0
when q is far away from n (i.e., horizon), whereas for values of
q very close to n there are significant contributions to Stot. For
GS, pc(q) peaks exactly at q = n. For MS and ES, however,
the peaks shift towards a value q > n, and the amplitudes of the
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Fig. 1. (a) log(entropy) versus log(R/a) for GS, MS, and ES (Eq/Hi). R = a(n + 1/2) is the horizon radius, N = 300, n = 100–200,
o = 50. (b) Plots of SMS/SGS, SES/SGS and SGS/SMS, SGS/SES (for o = 50) with A to show the asymptotic nature of MS and ES
entropies. (c) Best fit plots of SMS/SGS versus A for o = 30, 40, 50.
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Fig. 2. Plots of the percentage contribution pc(q) to the total entropy as a function of window position q for a window size t = 5, fixed
N = 300, and n = 100, in each of the cases of GS, MS, and ES. For MS and ES, the continuous curve is for o = 30, whereas the
broken curve is for o = 50.
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peaks also decrease as the amounts of excitation o increase [10,
11]. Therefore, (a) the near-horizon DoF contributes most to
Stot and (b) the contributions from the far-away DoF are greater
for MS and ES than for GS.

4.2. Operation II
We set the NN interactions to zero (by hand) everywhere

except in a window whose center is fixed at p ≤ i and j ≤ n,
and the window thickness t ≡ n− p is varied from 0 to n, i.e.,
from the origin to the horizon. For GS, we find that about 85%
of the total entropy is obtained within a width of just one lattice
spacing, and within a width of t = 3 the entire GS entropy
is recovered. Thus most of the GS entropy comes from the
DoF very close to the horizon and a small part has its origin
deeper inside. For ES, however, the total entropy is recovered
for much higher values of t (than for GS) since the DoF that
are away from the horizon contribute more as the excitation
o increases. Thus, larger deviation from the area law may be
attributed to a larger contribution to the total entropy from the
DoF far from the horizon. The top three panels of Fig. 3 depict
the variation of the percentage contribution to the total entropy,
i.e.,pc(t) = [S(t)/Stot]×100, as a function of t for GS (o = 0)
and ES (with o = 30, 50). The situation is intermediate for MS
(which interpolates between the GS and the ES), i.e., the total

entropy is recovered for values of t greater than that for GS but
less than that for ES (with same value of o). The percentage
increase in entropy when the interaction region is incremented
by one radial lattice point,�pc(t) = pc(t)−pc(t − 1), versus
(n−t) plots for GS and ES are shown in the bottom three panels
of Fig. 3. In the case of GS, the inclusion of the first lattice point
just inside the horizon leads to an increase from 0% to 85% of
the total GS entropy. The next immediate points add more to
this, but the contributions are lesser and lesser with inclusion
of points further and further from the horizon. For ES however,
inclusion of one lattice point adds 70(50)%, for o = 30(50), to
the entropy, while the next immediate points contribute more
than those for the GS.

5. Conclusions

We have thus shown that if the black-hole entropy is looked
upon as that due to the entanglement between scalar field de-
grees of freedom inside and outside the horizon, there are power-
law corrections to the Bekenstein–Hawking area law when the
field is in an excited state or in a superposition of ground state
and excited state. Although such corrections are negligible for
semiclassical black holes, they become increasingly significant
with a decrease in horizon area as well as for increasing exci-

© 2008 NRC Canada



Das et al. 657

Fig. 3. The top three panels show the variations of the percentage contribution pc(t) of total entropy with window width t , for GS
(o = 0) and ES (with o = 30, 50). The bottom three panels show the plots of �pc(t) versus n − t for GS and ES. Both sets of panels
are for N = 300 and n = 100, 150, and 200.

tations. The deviation from the area law for excited state and
mixing of states may be attributed to the fact that the scalar
field degrees of freedom that are farther from the horizon con-
tribute more to the total entropy in the cases of excited state and
the mixing of states than in the case of ground state. The near
horizon degrees of freedom contribute most in any case, how-
ever. We have also extended the flat spacetime analysis done
in ref. 5 to static spherically symmetric black-hole spacetimes
with nondegenerate horizons.

We conclude with some open questions related to our work.

(i) Can a temperature emerge in the entanglement entropy
scenario and would it be consistent with the first law of
black-hole thermodynamics?

(ii) Is dS/dt ≥ 0?, i.e., is the second law of thermodynamics
valid?

(iii) Will the entanglement of scalar fields help us to under-
stand the information loss problem?

We hope to report on these in future.
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