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Abstract

We explicitly construct a large class of finite-volume two-magnon string
solutions moving on R x S§2. In particular, by making use of the relationship
between the O(3) sigma model and sine-Gordon theory we are able to find
solutions corresponding to the periodic analogues of magnon scattering and
breather-like solutions. After semi-classically quantizing these solutions we
invert the implicit expressions for the excitation energies in certain limits and
find the corrections for the multi-magnon states. For the breather-like solutions,
we express the energies directly in terms of the action variable whereas for the
scattering solution we express the result as a combination of corrections to the
dispersion relation and to the scattering phase.
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1. Introduction

The solution to the problem of finding the spectrum of the N = 4 super-Yang—Mills dilatation
operator or equivalently, by the conjectured AdS/CFT duality [1, 2], that of finding the energies
of quantum strings on AdSs x S has seen significant progress in recent times. In particular,
the discovery that the perturbative dilatation operator in the planar limit is described by an
integrable spin-chain Hamiltonian [3] and of the existence of classical integrability for the
string sigma model [4] has lead to the introduction of a range of new powerful tools. As is the
case for many integrable models the dispersion relation for the fundamental excitations and
the two body S-matrix provide a complete description of the theory in infinite volumes. That
the fundamental excitation, the magnon, dispersion relation is given by the BMN result [5]

A= 1+ 2sim? (1.1)
T 2
was shown to follow from the existence of global symmetries preserved by the spin-chain
vacuum state [6]. The relevant S-matrix for studying the infinite-volume spectrum was
introduced by [7] and, remarkably, was fixed up to an overall undetermined phase by the
global symmetries in [6]. Furthermore, an asymptotic strong coupling expansion for the
phase itself was conjectured by Beisert, Hernandez and Lopez in [8] based on perturbative
results [9, 10]° and compatibility with the crossing symmetry as formulated by [15]. This
conjecture was subsequently extended by Beisert, Eden and Staudacher [16], via an inspired
‘analytic continuation’, to a weak coupling expansion which begins at fourth order in a loop
expansion and which has passed several checks against perturbative calculations [17]. This S-
matrix provides, via the asymptotic Bethe ansatz [18], predictions for the all-order anomalous
dimensions of operators with infinitely large charges.

Nonetheless, there remain several outstanding issues amongst which is the pressing
question of what happens for operators of finite charge. There is strong evidence that the
long-range interactions of the higher loop terms in the spin-chain Hamiltonian give rise to
3 The tree-level phase was found by [9] and an expression for the one-loop phase was conjectured by [10] based on
earlier results of [11]. That this quantum correction satisfies crossing was shown by [12] and tests of its universality

were performed by [13], see also [14].
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the so-called wrapping interactions which spoil the application of the Bethe ansatz. General
considerations using the thermodynamic Bethe ansatz [19] show that the wrapping effects will
generically occur at the Lth loop order for spin chains of length L and more concretely it was
shown [20] that the anomalous dimensions for finite-spin twist-two operators predicted by
asymptotic Bethe ansatz disagreed with constraints from the BFKL behavior of high-energy
scattering amplitudes. Relatedly, direct perturbative calculations of the four-loop anomalous
dimension of the length four Konishi operator have shown the presence of wrapping effects
[21], see also [22]. (It should be mentioned that there is currently a discrepancy between these
independent calculations.)

The string duals to operators with infinite charges are quantum states of the world-
sheet theory defined on the infinite plane. This is perhaps seen most clearly in the physical
light-cone gauge where the theory is defined on a cylinder with radius proportional to the
light-cone momentum, a combination of the AdS energy and an angular momentum from the
compact space. Taking the infinite angular momentum limit corresponds to decompactifying
the cylinder and one can now consistently define a S-matrix for the resulting massive, non-
Lorentz invariant, integrable world-sheet theory. This world-sheet S-matrix can be calculated
perturbatively and has been show to reproduce the tensor structure [23] of the exact conjectured
S-matrix at leading order and, in the near-flat limit [24], reproduce the phase to two loops
[25]. Furthermore, it has been shown that the conjectured S-matrix is consistent with the
Zamolodchikov—Faddeev algebra following from the conjectured integrability of the string
sigma-model [26]. One particularly elegant result by Hofman and Maldacena [27] is the
construction of the string dual to the elementary spin-chain excitation, the giant magnon,
which has a classical dispersion relation

Ax Y ln 2], (1.2)

b4 2

These giant magnons are rigid open strings moving on R x S? with infinite angular momentum;
they have an infinitely extended world sheet and the magnon momentum corresponds to the
opening angle of the string end points viewed from the center of S2. By considering multi-
magnon solutions it was further possible to calculate the semi-classical scattering phase and
show that it agreed with the previously calculated semi-classical S-matrix of Arutyunov, Frolov
and Staudacher (AFS).

Moving from the theory defined on the plane to the finite-volume theory presents
significant challenges and to date there have been only limited results. Explicit calculations,
[28], of quantum corrections to the energies of rigid spinning strings were shown to disagree
with the predictions of from the Bethe ansatz with corrections that are exponentially small
in the string length [29]. An alternative approach has been to consider the finite-volume
corrections coming from the finite angular momentum, J, analogues of the giant magnons.
The dispersion relation for such finite angular momentum solutions was calculated in [30]
for a variety of gauge choices. The resulting corrections to the single magnon dispersion
relation were exponentially suppressed in the effective string length and gauge dependent.
The gauge dependence followed from the fact that in finite volume it was not possible to
construct a consistent string with non-vanishing magnon momentum though this obstacle
could be overcome by considering the string moving on a orbifold of the S° [31]. Just as
the giant magnon, a string moving on an S? C S°, could be generalized to dyonic bound
states [32], strings in S°, their finite-size counterparts can be similarly generalized [33] and the
corrections to the dispersion relation calculated [34]. Another method makes use of arguments
of Liischer [35], generalized to the non-Lorentz invariant world-sheet theory [36], to use the
asymptotic S-matrix to calculate the leading order exponential corrections to the dispersion
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relation. Indeed this method can be extended to calculate not merely classical corrections
but corrections coming from quantum fluctuations [37]. A very general approach to studying
integrable theories in finite volume is the thermodynamic Bethe ansatz, unfortunately this
usually makes use of the Lorentz invariance of the two-dimensional theory; generalizing the
relevant results to the world-sheet theory is a significant challenge though some progress has
already been made [38].

It is obviously of interest to consider the finite-size corrections to multi-magnon states:
for one thing it makes it possible to form physical closed strings but perhaps more importantly
it allows calculation of the finite-volume effects on the magnon interactions. While the
concept of asymptotic states no longer makes sense on a cylinder and so it is not possible
to define an S-matrix it is of course possible to calculate the corrections to the energies of
multi-magnon states. As it has been the case for the infinite-volume theory it may be that
understanding perturbative results on the world sheet can provide hints for the exact answer
and will certainly provide checks of whatever conjectures are made. Already studies of multi-
giant magnon states at leading order in exponential corrections have been carried out using
algebraic curve methods [39]. For a more concrete description we would like to find string
solutions corresponding to these multi-magnon states. Discouragingly the string equations
of motion are nonlinear and while, by using standard finite-gap methods, it is possible to
find a general abstract solution [40] it is difficult to find explicit solutions that are simple
enough to manipulate. Instead it is possible to make use of the relation between strings on
R x S? and sine-Gordon theory which was first described in [41] and discussed in the context
of AdS/CFT by [42, 43]. This purely classical correspondence relates the string equations
of motion and constraints to the sine-Gordon equation of motion: in the simplest case the
giant magnon corresponds to the kink solution of sine-Gordon theory. Similarly, it was by
using the correspondence between two magnon states and kink—anti-kink states that [27] was
able to calculate the semi-classical scattering phase and breather spectrum. For finite volume
the counting of distinct excitations is not so reliable and instead we classify the different
solutions by the number of independent arguments, called phases, on which they depend. For
example the finite-J one magnon solution of [30] corresponds to the single phase kink-train
of sine-Gordon theory, e.g. [44]. In this work, we make use of the known two-phase solutions
of sine-Gordon theory [45]. These were constructed using the Lamb ansatz [46] where the
sine-Gordon field, ¢ (x, t), is assumed to be of the form

¢(x,t) =2arctan F ()G (x), (1.3)

with F and G even functions satisfying ordinary differential equations which can be solved
in terms of Jacobi elliptic functions. This may seem surprising as the generic two-phase
solution leads to hyperelliptic functions on a genus two Riemann surface. However, if the
initial conditions are symmetric about x = 0 then the solutions are standing waves whose x
and ¢ flows separate and can be expressed in terms of elliptic functions [44].

Reconstructing the target-space string from a given sine-Gordon solution is in general
a very non-trivial problem, fortunately it is possible to make use of the classical relations
between sine-Gordon theory and the geometry of constant curved surfaces, see e.g. [47]. We
explicitly integrate the equations describing the string surfaces, find their embedding for all
values of their parameters, and calculate their global charges. We find a rich moduli space
of solitons consisting of the periodic analogues of magnon scattering solutions and magnon
‘breathers’®. All of these solutions are periodic in time as well as in the spatial coordinate and
4 We call the reconstruction of breather-like sine-Gordon solutions magnon breathers. As discussed in [48] in the
decompactification limit they are superpositions of BPS magnons carrying opposite charges and with both magnons

having real kinematic variables. In order to see this one must go to the larger space R x > where it can be shown that
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so we can use Bohr—Sommerfeld quantization to express their energies in terms of a single
integer quantum number, n, which for the fluxon oscillation solutions is related to the magnon
momentum and for breathers to the usual action variable.

An outline of the paper is as follows. In section 2, we briefly describe the string action
and its relation via Pohlmeyer reduction to sine-Gordon. In section 3, we recall some of the
known solutions of sine-Gordon theory including the periodic two-phase solutions: the fluxon
oscillation, the breather and the plasmon. We perform the reconstruction, solve the inverse map
and find the explicit periodic solutions to the string equations of motion in section 4. In addition
we find explicit formulae for the angular momenta of the individual solutions. In section 5,
after semi-classically quantizing the solutions we find expressions for the energy formulae of
the magnon breathers by expanding in the near-decompactification limit where we find the
finite-size corrections the breather solutions found by Hofman and Maldacena. In addition
we are able to compare our solution for the case of J = 0 with the pulsating circular string
found by Minahan [50] where we find agreement. Furthermore using the relation between
the momentum, phase-shift and oscillation number we identify the dispersion relation for the
single and double magnon solutions. For the appropriate solutions, and in the appropriate
limits, we match those corrections with those previously found in the literature. Additionally,
we find the corrections to the periodic analogue of the scattering phase in the center-of-mass
frame.

2. From strings on R x S? to sine-Gordon

Superstrings living in a AdSs x S° background can be described by the Green—Schwarz—

Metsaev—Tseytlin action for the supercoset % [51]. We will focus on closed bosonic

strings moving in an R x S? subspace, which as we are only interested in classical solutions, is
a consistent truncation. We fix part of the world-sheet diffeomorphism invariance by choosing
the world-sheet metric to be conformally flat 2*” o diag(+, —) (conformal gauge) so the string
action becomes

e

T an )

L
S dt/ do[—(31)* + (97) + A% — D)]. (2.1)
0

The constrained 3-vector, i = (cos ¢ sin @, sin ¢ sin 6, cos #), describes the string on a S? with
unit radius as the overall size, R, has been absorbed into the string tension to form the ’t Hooft
coupling, A. The world-sheet is a cylinder with circumference L and we fix the remaining
gauge-freedom by identifying T with the target-space time, ¢ = t, after which the string is
simply described by an O(3) sigma model. Denoting derivatives by subscripts, 7, = 9,7, etc,
the equations of motion (after solving for the Lagrange multiplier) and the Virasoro constraints
are

flor — Moo = —[(1:)* — (is) 10, (2.2)

()" + (1ip)* = 1, fip 7y = 0. (2.3)

It is worth noting that in this case the constraints are simply that world-sheet energy density
is a constant and that momentum density is zero. It can also easily seen that the equations

they arise from the two-charge magnon solutions of Spradlin and Volovich [49]. Not having the periodic solutions for
this larger sector we are not able to unambiguously determine whether the same interpretation persists for the string
solutions corresponding to both the fluxon and plasmon breather though as they both reduce to the same breather in
the decompactification limit this seems likely.
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of motion follow directly from the constraint equations and, conversely, any solution to the
equation of motion automatically satisfies the constraints.
For strings moving on R x S the relevant global charges are the target-space energy,

i L
E= £5, £ =/ dot, = L, (2.4)
2 0

which in the static gauge is just the string length L, and the angular momentum

VA
T 2m
The closed string states will be classified by the su(2) Cartan element, J3, and the mass shell
condition (conformal constraint) will give the target-space energy as a function of the coupling,
the su(2) charge, and, after quantization, the relevant quantum numbers. By the conjectured
duality this energy should be equivalent to the scaling dimension of a single trace operators
with the same quantum numbers.

In this work we wish to make use of the classical equivalence, first derived by Pohlmeyer
[41], between the O(3) sigma model and sine-Gordon theory. To describe this relation it is
useful to introduce light-cone coordinates, ocf=1+40,04 = %(8, =+ d,), so that the equation
of motion and the constraints become

e = —(i, - 7i)0 (2.6)

L
J 7, J= / doii X iis. (2.5)
0

) -2 1 =2 1
n- =1, ny =1, n- =q. 2.7)

Given the equivalence of the constraints to the equations of motion solving the system
corresponds to finding three vectors, 7, i1y, 7i_, satisfying (2.7). The solution is not unique
and different solutions are distinguished by the angle between 7, and 7i_ as a function of o *.
Defining ¢ to be half of this angle,

cos2¢p = 4ii, i = (iiy)* — ()2, (2.8)

one can show [41] that all conditions on 7 are equivalent to the sine-Gordon equation of motion
for ¢, i.e.,

¢, = —1sin2¢ or $er — Poo = —5 sin2¢. (2.9)

Thus to every solution of the sine-Gordon equation there is a solution to the string equations of
motion satisfying the constraints. The string boundary conditions, however, have to be imposed
additionally. Moreover, the presence of the derivatives in (2.8) makes the inverse map non-local
and therefore complicated. It is also important to stress that the equivalence is only at the level
of the classical equations of motion; in fact the two theories have different Poisson structures
and certainly the two theories are quite different when considered quantum mechanically. The
Pohlmeyer reduction or reformulation has been generalized to other systems, for example the
O(4) sigma model, which is equivalent to complex sine-Gordon [41, 52], and interestingly
the full superstring on the supercoset % [43]. Because of the special properties of
the superstring in the AdSs x S°, for one the theory is conformal even quantum mechanically,
it has been speculated that the equivalence in this case may possibly extend to the quantum
theory.

3. Soliton solutions of sine-Gordon theory

In this section, we describe the known periodic two-phase solutions of the sine-Gordon
equation (2.9). These are the solutions that represent two interacting giant magnons with
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finite angular momentum; see section 4 for the reconstruction of the classical string from these
solutions.

In order to study closed strings with finite world-sheet circumference L, we need to impose
(quasi-)periodic boundary conditions

¢ +L,t)=¢(0,t) mod2r (3.1)

on the sine-Gordon field ¢ (o, 7). The classification of solitonic solutions is most conveniently
done by counting the number of independent linear combinations of o and t on which the
solution depends. These combinations are referred to as phases. In infinite volume, counting
phases are equivalent to counting the number of kinks, but in the case of some periodic
solutions counting kinks are misleading and does not lead to a sensible classification.

In fact, the general n-phase solution can be written in terms of Riemann theta functions
[53]. Here we are only interested in the special but broad class of the two-phase solutions
which can be written in Lamb form [46]

¢ (o, t) = 2arctan F(t)G(0). 3.2)

They were first studied in [45] as a description of the magnetic flux in a Josephson junction
between superconductors. All quasi-periodic two-phase solutions of the form (3.2) can be
divided into three types known as the fluxon oscillation, the fluxon breather and the plasmon
breather’ [45]. They correspond to different combinations of Jacobi elliptic functions for F(t)
and G (o) and will be reviewed in the following. We also include their decompactification
limits, L — oo, as well as the one-phase solutions into this overview. Figure 1 displays the
relevant soliton solutions.

3.1. Single kink

The fundamental soliton solutions on the infinite line are the single kink (+) and the single
anti-kink (—) given by

¢ (o, ) = 2arctane™” @AV (3.3)

with y = 1/4/1 — B2. They are one-phase solutions as they depend on o and 7 only through
the linear combination o — Bt. The free parameter |3| < 1 represents the velocity of the
soliton. Note also the Lamb form (3.2) of this solution.

The string corresponding to this sine-Gordon field is the Hofman—Maldacena giant
magnon [27]. Although it lives on a decompactified world sheet, the length of this string
in target space is finite.

3.2. Kink scattering

The solution describing the scattering of a kink and an anti-kink is given by
inh
(0. 7) = 2arctan S0 YAT (3.4)
Bcoshyo
with y as above. This is a two-phase solution of Lamb form where the parameter 8 denotes the
relative velocity in the center-of-mass frame. From this solution, one can obtain the scattering
of two kinks by the shift

i 4
yo — ya+?, yBt — yﬂr+7, (3.5)

3 In solid state physics the usual nomenclature is ‘fluxon’ for the fluxon oscillation, ‘breather’ for the fluxon breather
and ‘plasmon’ for the plasmon breather [54].
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Figure 1. Sine-Gordon solitons. The first row shows the basic one- and two-soliton
configurations on the infinite line. Their periodic generalizations are shown below, in the
elementary (second row) and the doubled region (third row). The plasmon breather looks
qualitatively the same as the fluxon breather and has the same decompactification limit (c).
The periodic solutions are plotted over two periods, i.e. 2L and 27. Note that in the cases
(d) and (e) we identify ¢ ~ ¢ + 27 to make the solution strictly periodic. (@) Single kink,
(b) kink—anti-kink scattering, (c) breather, (d) kink train (elem), (e) fluxon oscillation (elem),
(f) fluxon breather (elem), (g) kink train (doub), (%) fluxon oscillation (doub) and (i) fluxon
breather (doub).

which results in

coshyBrt

¢ (o, T) = 2arctan 3.6)

Bsinhyo’

These solutions correspond to the scattering of two giant magnons [27].

3.3. Breather

By analytically continuing the velocity in the scattering solution (3.4) to 8 — ia, one obtains
the breather

sin y,at

¢ (o, T) = 2 arctan 3.7

acoshy,o

with ¥, = 1/+/1 +a?. This solution is periodic in T with period T = 02—)’/7 and describes a
bound state of a kink and an anti-kink. A bound state of two kinks does not exist; the analytic
continuation of (3.6) would produce a complex sine-Gordon field.
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The solution (3.7) corresponds to a superposition of two giant magnons with opposite
charges [48].

3.4. Kink train

Now, we turn to o-periodic sine-Gordon fields which, as we will see later, give rise to strings
with finite world sheet. The fundamental periodic soliton solutions are given by the kink train
(+) and the anti-kink train (—),

b0, 7) = % +am(£ (ko — o1)|m). (3.8)

These solutions contain two independent parameters k and » which determine the elliptic
modulus as
1
m= . (3.9
Form < 1, which implies k> < w? or k> > w” + 1, the solution describes an infinite sequence
of kinks (or anti-kinks) moving with fixed velocity w/k and equal separation given by the
spatial period®

2
L= EK(m) for kK< w? or K> w?+1. (3.10)

As every kink is a step of 27, this solution is only guasi-periodic, see figure 1(d). Since every
interval of length L contains exactly one soliton, we call this region of parameter space the
‘elementary region’.

Form > 1, ie. w* < k* < w* + 1, there is an anti-kink (kink) inserted between any
two kinks (anti-kinks) of the infinite sequence moving with the same velocity, see figure 1(g).
These insertions make the field strictly periodic with period

L:iK l for w? <k®> < w?+1. (3.11)
kym  \m

Because the insertions do not occur precisely in the middle of two kinks (anti-kinks), the two
cases are not related by a shift but by a reflection in o and 7. Since every period contains one
kink and one anti-kink, we call this region of parameter space the ‘doubled region’.

Form = 1, or k* = w? + 1, the periods become infinite. Thus, sending m — 1
is the decompactification limit and the solution from both regions go smoothly into (3.3)
with the identification k = y and w = yB. For the solution in the doubled region the kinks
of the opposite kind are pushed infinitely far from the, itself infinite, region captured by the
elementary decompactified solution. In this respect, we note the factor of two difference in the
prefactor of the periods (3.10) and (3.11). In a sense this makes the decompactified doubled
solution twice infinite and gives enough room to include the mirror kink.

The final case k> = w? should be excluded as there m diverges and the solution becomes
arbitrarily oscillatory.

Being a one-phase solution, the periodicity in o implies a periodicity in t. The temporal
(quasi-)periods are given by iL, ie.,

2
ZK(m) for kK2<w? or k*>w*+1,
T = @ 3.12)
4 1 2 2 2
—K| — for w” <k <w”+1.
w/m m

© This formula also hold in the cases k> = w? and k> = w? + 1 where m = o0 and m = 1, respectively.
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We note that the solution (3.8) is not of factorized Lamb form (3.2). This is different from
all other sine-Gordon fields considered in this paper and will require a special treatment.

The string corresponding to the elementary solution is known as the Arutyunov—Frolov—
Zamaklar magnon [30], i.e. the giant magnon with finite angular momentum. In [33], this
string was named single spin helical string of type (i). Type (ii) corresponds to the doubled
region.

3.5. Fluxon oscillation

The periodic generalization of the scattering solution (3.4) is given by [45]
¢ (o, t) = 2arctan [A dn (ko |m,) sc (wT|m;)], (3.13)

where k and w are free parameters of the solution. The elliptic moduli and amplitude are
determined by

2 2, .2 2 2, .2
o l-Frer o I Rre K (3.14)
kK2 w?— k2 w? w*—k? )
Although (3.13) is a real solution for arbitrary real values of the parameters, we will restrict
ourselves to k, w > 0. In this way we avoid awkward case differentiations, and, if desired,
results outside this region can be obtained by a reflection in ¢ and/or 7.

As in the case of a single kink train, there is an elementary region determined by m, < 1
and a doubled region determined by m, > 1. In fact, these conditions divide the parameter
space (k, w) in the exactly same way as before. A graphical representation of the parameter
space is given in figure 2(a). In the elementary region, the solution is quasi-periodic and there
is one kink and one anti-kink scattering off each other within one period, see figure 1(e). In
the doubled region the solution is strictly periodic and one period contains besides the two
scattering kink—anti-kink pair also their mirror image, see figure 1(h).

The (quasi-)periods are given by

2

me =1—

;K(mg) for kK2<w? or k*>w*+1,

L = 4 | (3.15)
ka(}ﬂ—q) for @? <k*<w?+1

and

2
ZK(m,) for K><w® or k*>w’+1,

T=17 A . (3.16)

K(—) for w? < k? < w?+1,

w./m; my

which have the same functional form as in the kink train case. In the decompactification limit,
L, T — oo, the parameters satisfy k% = 1 + w? and the solution reduces to the (3.4) with the
identification

k=y, w = yB. (3.17)
By a shift
ko — ko +iK'(m,), ot = ot +i1K' (m,), (3.18)
which is analogous to (3.5), one obtains the scattering of two kink trains given by
¢ (o, t) = 2arctan [A cs (ko |m,) nd (wt|m;)]. (3.19)
The strings constructed from the solutions (3.13) and (3.19) describe the scattering of two

giant magnons at finite angular momentum.

10
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Figure 2. Parameter space for periodic solutions. The spatial and temporal periods become infinite
along the lines where m, = 1 and m,; = 1, respectively. It will turn out that along the dotted
lines, and in case (b) also along the dash-dotted line, the angular momentum of the associated
string vanishes (m ~ 0.826, 1/mo =~ 1.21). (a) Fluxon oscillation: above the diagonal there is a
region of elementary fuxon oscillations which is disconnected from the decompactification limit
at k2 = w? + 1. (b) Fluxon breather: the elementary region (k* + w* < 1) is subdivided into
regions where m, < 0 (left of dash-dotted line) and 0 < m, < 1 (right of dash-dotted line) and
into regions where 0 < m, < 1 (above dashed line) and 1 < m (below dashed line). (c¢) Plasmon
breather: the shaded regions and their boundaries are excluded because the solution would be
imaginary. The plasmon breather is always periodic in time.

3.6. Fluxon breather

Like in the decompactified case, a breather solution can be obtained from the fluxon oscillation
(3.13) by analytically continuing the frequency parameter @ — iw. Using the identity
sc (iu|m) = icn(u|1 — m), one obtains the fluxon breather [45]

¢ (o, T) = 2arctan [A dn (ko |m ) sn (wT|m)] (3.20)
where the elliptic moduli and amplitude are now given by
0?1 —k* — ? kK1 — k> — o?

my=1-2 "8 "¢ _Lrlor-e
7 K o?+k2 w? W+ k?

(3.21)

ks

11
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As before we choose k, w > 0 for simplicity and deduce results in other regimes by reflecting
the coordinates o and/or t. The parameter space for this solution is very rich, cf figure 2(b),
and allows for many interesting special string solutions. In the elementary region the solution
contains a bound soliton—anti-soliton pair, figure 1(f), which received a mirror pair once one
goes to the doubled region, figure 1(i).

The solution is everywhere strictly periodic with periods

2
EK(ma) for k>+w? <1,
L= (3.22)
4 K ! for k*+w® > 1
— or > 1,
k/mgy My @
and T = % Re(K(m;)). Resolving the real part in this formula yields
4 2
—K(m,) for w* > k(1 —k),
7T=1% 4 1 (3.23)
K <—> for o? <k(l —k).
w./my mq

Along the line k% + w?> = 1 in parameter space the solution becomes decompactified, L = oo,
but remains t-periodic with period T = 2% . The solution goes over into the breather solution

(3.7) with the identification ¢
k=7, ® = yad. (3.24)

3.7. Plasmon breather

The fluxon breather is not the only periodic generalization of the breather on the infinite line.
Another solution, with the same decompactification limit, is given by the plasmon breather
[45]

¢ (o, t) = 2arctan [A cn (ko |m,) cn (wt|m;)]. (3.25)
The elliptic moduli and the amplitude are related by

(1+k%? — o K — (1 — 0?)? 1+k2— ?

E e T T AR TTar e G20
to the free parameters k and w. Those must satisfy |k> — w?| < 1 for ¢ to be real. This
results in a smaller parameter space than for the previous solutions, cf figure 2(c). The
plasmon breather is qualitatively very similar to the fluxon breather and we refer to the latter in
figure 1 to get a visual impression.

The periods are

2 K< ! > for k*+w® <1
— or o <
L— i\/ma Mo (3.27)
EK(mg) for KX+w?>1
and
4
T = —K(@m,). (3.28)
4]
As for the fluxon breather, the spatial period diverges for k> + w> = 1 while the temporal
period stays finite and equal to T = %’ The solution goes also into the breather solution (3.7)

12
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with the same identification (3.24) of the parameters as in the fluxon breather case, but with
an additional shift in 7 by 3.

Given that the fluxon oscillation and the fluxon breather are related by analytic
continuation in w, it is natural to ask what happens when we set ® — iw in the plasmon
breather (3.25). Interestingly, one does not obtain a scattering solution, but instead recovers
the plasmon breather itself with the T coordinate shifted by i(K(mr) +iK'(m,)).

4. From sine-Gordon to strings on R x S?

In this section, we reconstruct the target-space strings corresponding to the solutions of the
sine-Gordon equation discussed in the previous section. The non-periodic sine-Gordon fields
and the kink train lead to well-known giant magnon solutions and are briefly treated here for
completeness and as instructive examples. The periodic two-phase solutions lead to novel
classical closed string solutions on R x S? describing two interacting giant magnons with
finite angular momenta.

Technically we are facing the problem of inverting (2.8). The derivatives in this mapping
cause the string to depend non-locally on the sine-Gordon field. Due to this complication no
general inverse map has been found so far though for previous related work in this context,
see [42, 27].

Our approach is to utilize the formalism used in the theory of surfaces. In fact, the string
target-space vector 71(co, T) parametrizes a patch on the unit sphere which in general overlaps
with itself. In the chosen gauge, the coordinate t also represents time. The coordinate
lines which correspond to light-cone coordinates on the world sheet are what is known as
a Chebyshev net [55] in the mathematical literature. These nets are characterized by the
condition that in any net quadrangle the opposite sides are equal; here this condition is
contained in (2.7). The angle 2¢ between these coordinate lines determines the curvature of
the surface. A surface on the unit sphere has constant Gaussian curvature +1 and the net angles
satisfy the sine-Gordon (2.9) as a consistency condition.

The general formalism works with the trihedron of the surface given by the orthonormal
vectors {71, 1, €2}. On the sphere the coordinate vector 7 also serves as the unit normal vector.
The fundamental equations for the trihedron are (a, b = 1, 2)

de, = w'e, + i, (4.1)

dii = 2%, 4.2)

where we make the following choice for the connection on the sphere:

wl = ¢, do + ¢, dr, w; = —cos ¢ dr, w3 = —sing do (4.3)
with a)ij = —a)j. for i, j = 1, 2,3. From this one reads off the first partial derivatives of the
basis vectors
€lo 0 lon 0 e
22)0 = —(ﬁr 0 —sin ¢ 22 (44)
7 0 sing 0 n

and
éir 0 ¢ —cosg\ (e
é:l=1-¢, O 0 e . 4.5)
Ny cos¢p 0 0 n

The compatibility of the second derivatives follows from the sine-Gordon equation for ¢.
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Reconstruction at fixed . We would like to keep the reconstruction as general as possible.
That being said, in order to make progress we have to assume that the sine-Gordon field
¢ (o, T) satisfies

¢\ _
3o (Siw) =0. (4.6)

In fact this condition is obeyed by any solution of Lamb type (3.2), in particular by all solutions
discussed in the previous section except the kink train’. For solutions subject to (4.6), the first
half (4.4) of the fundamental equations can be diagonalized explicitly because in this case all
elements of the mixing matrix have the same o dependence. We find

¢1(0, 7) = —h(1)a(t) + d(t)[ cos ab(t) + sin ac(7)], 4.7)
éy(0, T) = — sinab (1) + cos ad (), (4.8)
ii(o, T) = d(7)d(t) + h(t)[ cos ab(t) + sinad(7)], (4.9)
where we have defined
W)= — d(0) = h(r)-2 (4.10)
V 1+ (¢, /sin¢)? sin ¢
and
1 ? . / /
a(o, 1) := m/ sing (o', t)do’. 4.11)

The vectors a(t), 13( 1), ¢(1) are integration constants. They are required to be orthonormalized
and independent of o but may depend on 7. Their r-dependence can be determined from
the second half (4.5) of the fundamental equations. We do not need to introduce a further
integration constant oo (7) in (4.11) as this can be absorbed by a redefinition of 5(t) and ¢(7).

There is a very nice geometrical picture for (4.7)—(4.9). Consider the string 7 (o, T) at
some fixed time t. Equation (4.9) shows that the string stretches along a circular arc with
central angle

Aa(r) = maxa(o, T) — mina(o, 7). 4.12)

The arc lies in the {I;(r), ¢(t)} plane, has radius i (t) and is centered at d(t)d(r). This is
illustrated in figure 3.

Complete reconstruction. We are left with finding the 7-dependence of the basis vectors
d, b and ¢ from the second half of the fundamental equations. To this end we differentiate
(4.7)—(4.9) with respect to T and set the result equal to (4.5). This yields

d: 0 M, M,\ [a

be|=|-Ms 0 My ||b (4.13)

Z'r _Mac _Mbc 0 Z'

with
h2 oo .
M,, = _¢ cosa + ho, sina, (4.14)

sin ¢
h2 oo .

ac = 200 Gina - h¢o cosa, (4.15)
sin ¢

7 This shows indirectly that the kink train cannot be cast into the factorized Lamb form. This in turn shows that (4.6)
cannot be a consequence of the sine-Gordon equation.

14
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Figure 3. String reconstruction from sine-Gordon. The global coordinate system is defined by
the constant basis vectors {éy, €y, é;}. The position of the string in spacetime is expressed in the

time-dependent basis {d, b, ¢}. The trihedron {€}, é3, 71} is a set of basis vectors along the string.

e

. = — 5. 4.16
b sin ¢ « ( )

Though it is not apparent, these matrix elements are independent of o. It cannot be otherwise
since the vectors d, b and ¢ do not depend on o. The t-dependence, however, might be
arbitrarily complicated. We proceed with the diagonalization of (4.13) by defining the angle

9 (1) t Mac 4.17)
T) = arctan .
Mab

and introducing a rotated coordinate system through

-

b cos® sind\ (b
<Z/> B <—Sinz§‘ cos ﬁ) (z) ' (4.18)

In this coordinate system we have

a, 0 ¢ O a
bl=|-% 0 Of|FK (4.19)
& 0 o0 0)\y
with
2
@0 (1) 1= CJ(\)/I:; = ﬂ:\/<h:j(:;> + (h¢o)? and p(t) = /wr dr. (4.20)

In order to show (4.19) one has to make use of the sine-Gordon equation as well as the property
(4.6). The solution of (4.19), rotated back to the original coordinate system is

() = sin pdy — cos by,

b(t) = cos ¥ cos @dg + sin q)l;O] — sin ¥¢o, 4.21)

¢(1) = sin¥[ cos pag + sin goI;o] + cos ¥ ¢y,
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where {dy, l;(), Co} is some constant right-handed orthonormal basis. If we make the canonical
choice {éy, €y, €.}, then the vectors in (4.21) are the ordinary basis vectors on the sphere

a(r) = —é,(p(1)), b(r) = é,(D (1), p(1)), c(1) = & (9 (1), p(1)), (4.22)

where the angles ¥ (t) and ¢(t) are determined only by the sine-Gordon field through (4.17)
and (4.17), respectively. When we plug this into (4.9), we find the simple result

ei(o, 1) = th(<p) +dey (9 — a, @), (4.23)
(0, 1) =¢,(% —a, ), (4.24)
n(o, 1) = —dé, (@) + hey (9 — a, ¢) (4.25)

with the functions d = d(t), h = h(t),a = a(o, 1), ¥ = ¥ (1), ¢ = ¢(7), as defined above.
This solves the reconstruction of the string for any sine-Gordon solution that satisfies (4.6)
which includes all solutions of Lamb form. For practical usage, it is worth spelling out the
string target-space vector (4.25) explicit as

dsing + hcos g cos(o — )
n(o,7) = | —dcosg +hsingcos(a — %) | . (4.26)
hsin(a — )
From the constraints (2.3) and the equation of motion (2.2) for the vector 7 we can deduce

the following very non-trivial identities for the sine-Gordon field ¢ and the derived quantities
h,d,a, 9 and ¢:

do, sin(a@ — 9) = h(a, — V), 4.27)
he, cos(a — V) —d, = hcos ¢, (4.28)
do.cos(e —9)+h, =dcos¢. (4.29)

The latter two identities are related by the property h> + d*> = 1. From the d,-part of the
fundamental equations (4.5), we can derive two further identities

dps = o — U, h¢s = ¢ sin(a — V), (4.30)
which are related by (4.27). All of the above identities are ultimately a consequence of the

sine-Gordon equation and the assumed property (4.6), though they are hard to verify in a direct
way.

Angular momentum. The angular momentum of the string in target space is given by

-

J = /daﬁ X My = /da Cos péy, = /da cos ¢[—sinal;(r) +cosac(t)]. (4.31)

Since j is conserved, we can compute it at some T = 7 that is most convenient. Moreover,
we can rotate our coordinate system such that at T = 1o the vectors b(tp) and ¢(tp) point into
a preferred direction, e.g., such that
sin o
J = [ docos¢ |cosa |. (4.32)
0

This formula assumes a different coordinate system for any time t, but that does not matter
for the modulus | 7]. In this way, we avoid having to use the full expressions (4.21) and can
compute the angular moment even without having done the full reconstruction.

16
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Figure 4. Single giant magnon. These plots show the solution for 8 = 0.9. Figure (a) shows the
changing profile « (o, 7) of the string and (b) depicts the string in target space at various fixed times
of distance At = 0.4. The coloring encodes the o-coordinate along the string. From the way the
color changes, one can see that one end of the string is stretched while the other is compressed.
From within a reference frame that rotates together with the string around the sphere, this looks
like a forbidden longitudinal motion of string bits. But actually this stretching and compressing
is a consequence of the fact that there is no longitudinal motion in the rest frame of the sphere.
(a) String profile and (b) target-space string.

4.1. Single magnon at infinite J

We begin by applying the general reconstruction formulae derived above to the single kink
solution (3.3). We readily find that the string radius is constant, 4(t) = 1/y, and hence has
constant distance d(t) = — B from the center of the sphere. The string profile is described by

r
(o, T) = 2 arctan tanh 3 and P (r) = —%, (4.33)

where we have introduced the notation I'(o, ) = y (0 — Bt). The string’s motion around
the sphere is simply ¢(t) = 7. Plugging these functions into (4.26) we find the reconstructed
string as

1
—Bsint — —costtanh I
14

1
n(o,t)=| Bcost — —sinttanh |, (4.34)
14
1
—sech T
14
which is, of course, the giant magnon of Hofman and Maldacena [27] pictured in figure 4.
Using sine = tanh ", cos = sechT” and cos¢ = —tanh I in the formula (4.32), we
find for the components of the angular momentum
tanh® T o, — %
J = / do | tanhT'sechT | = 0 : (4.35)
0 0

Hence, the modulus of the angular momentum can be written as
> 2
=|J|=L- ; (4.36)

which is divergent due to the decompactified world-sheet L = oo.
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Figure 5. Magnon—anti-magnon scattering at infinite J. These plots visualize the solution for
B = 0.9. (a) String radius, (b) azimuthal angle and (c) string profile.

4.2. Magnon—anti-magnon scattering at infinite J

Reconstructing the string corresponding to the soliton scattering solution (3.4) involves slightly
more complicated expressions but is rather straightforward. Radius and position of the string
obey

1 th

L dmy = PPty
V1 + B2y2coth® yBt V1+B2y2coth? yBt
The string describes a full circle in target space where the string bits are distributed according
to ¥ (t) = 0 and

h(r) =

. . Bsinhyo
(o, T) = 2sign(sinh yB1) arctan ————. (4.38)
v/ B? +sinh? yBt
The motion around the sphere follows from the integration of ¢, () = —y2h?(t) and reads
tanh y 8t
¢(T) = —1 + arctan /3— +m0(7). (4.39)
14

Inserting these functions into the general position vector (4.26) gives the reconstructed target-
space string, which represents a magnon with momentum p; scattering off an anti-magnon
with momentum p, = 2w — p;. This is a special case of the string solution for arbitrary
momenta p; and p, found in [49] by the dressing method.

We have plotted the above functions in figure 5 and the target-space string in figure 6(a)
in order to describe some reoccurring features. The functions d(t), ¢(t) and « (o, T) are
discontinuous across T = 0, the time when the string radius vanishes, #(0) = 0. Nevertheless,
the mapping 7 (o, T) from the world sheet to the target space is continuous everywhere. The
discontinuities in d and ¢ exactly compensate each other, i.e. the sign flip in d reflects the
string along the axis defined by a (see figure 3) while the jump from 0 to 7 in ¢ rotates this
axis by 180°. The discontinuity in the profile & does not harm either since it happens when
the string has shrunken to a point. The result of all these discontinuities is an inversion of the
string, which we have tried to indicate by coloring the string in figure 6(a). This inversion is
necessary to preserve the angular momentum of the string.

By means of the formula (4.32) for the angular momentum, we compute

4
J=L——, (4.40)
14

where again L = oo. Being a two-magnon solution, the difference ;7 — L is twice as large as
for the single magnon (4.36).

18
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Figure 6. Two-magnon solutions at infinite J. Shown are the strings in target space at various
times of constant distance. The magnon—anti-magnon scattering solution is a circular string that
spins around the equator and contracts to a point once at T = 0. The magnon-magnon scattering
solution is a folded string in the scape of a semi-circle. Once during its motion around the sphere,
the forward ‘endpoint’ detaches from the equator and it flips over to the back. The magnon breather
solution is again a circular string that periodically shrinks to a point and in between sweeping over
the entire sphere while progressing in azimuthal direction. (¢) Magnon—anti-magnon scattering,
(b) magnon—magnon scattering and (¢) magnon breather.

4.3. Magnon—magnon scattering at infinite J

The string corresponding to the soliton—soliton scattering solution (3.6) is essentially the
complex shift (3.5) of the previous case. Therefore, we merely present the solution for radius
and distance

1 tanh
h(z) = L dm = DR g
V' 1+ B2y2tanh® yBt V1 +B2y2 tanh? y Bt
string profile
h
9(t) =0, (o, T) = 2arctan peoshyo , (4.42)
Vcosh? yBt — B2

and the azimuthal motion

¢ (1) = —y?h*(t) = @(r) = —1 — arctan yf tanh yBT. (4.43)

The angular momentum is the same expression (4.40) as above. We note that these functions
do not posses any discontinuities and refer to figure 6(b) for a spacetime picture.
4.4. Magnon breather at infinite J

Very similar to the previous cases is also the string corresponding to the soliton breather
solution (3.7). For completeness we note the component functions

1 tVa
h(r) = L de) = AT (4.44)
V1 +a*y2cot? yat V1+aty?col? y,at
. . asinh y,0
9(t) =0, (o, T) = 2sign(sin y,at) arctan —————, (4.45)
Ja? +sin? y,at
tan y, 4
o (1) = —yazhz(r) = (1) = —1 +arctan Al YadT + {%J (4.46)
aYa
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and the infinite angular momentum can be written as

4
J=L——. (4.47)
Ya

The string is plotted and described in figure 6.

4.5. Magnon—anti-magnon scattering at finite J

Now we turn to the reconstruction of novel closed string solutions with finite angular momenta
based on the periodic two-phase sine-Gordon fields. The discussion of the periodic one-phase
solution will be postponed until section 4.8 because it is not of Lamb form so that the general
reconstruction formulae do not apply.

We begin with the fluxon oscillation (3.13). The reconstruction proceeds exactly as in
the decompactified cases, different only in that it is technically more demanding because of
the occurrence of elliptic functions. The functions relevant for the computation of the angular
momentum are found to be

1 wds wt nc wt
h(t) = , d(t) = (4.48)
V1 +w?ds’wt nclot V1 +w?ds’wt nclot

Vo +k2(1 — my) sc2wt scko
Vo +k?sclot

where we have omitted the elliptic moduli for notational brevity. If not stated otherwise,
all elliptic functions with arguments ko and wt are understood to have moduli m, and m-,
respectively.

The branches of the arctan in (4.49) have to be chosen appropriately. We place the branch
cuts along the imaginary axis outside the unit circle. In the doubled region we can choose
—m/2 < arctan(...) < /2 for all o, but in the elementary regions we have to define

1 1 1 1
n——|m <arctan(...) < |n+ =)o for n——=|L<o<|n+=]L, (4.50)
2 2 2 2

such that o (o, t) is a smooth function of o.
Carrying out the complete reconstruction we find ¢ (r) = 0 and

9o (1) = —mok*h* (1), 4.51)

which can be explicitly integrated. Using the main branches of the elliptic functions, ¢(7) can
be expressed as

sign (dnowt) | , k>
(P(‘L') = m[k II(1-— QT amwTt

a(o, T) = 2sign(sc wt) arctan

(4.49)

—(k*—H(1 -k + I <k2— am ot

— o’

.

_ 2 2 22 T
w(w” + (k° — w) )r] + 7T {T/ZJ , (4.52)

in the elementary region, and as
1 K\ 1 1 1
= |Ku((1-=)—, Jmiot|— || —
¢(®) wk? — w?) . /m; |: << w2> m, am( " wr'm,) mr>

1 1 1
me )| my

1
— (k2 — a)2)(1 — k2 + a)z)l_[ <mm—, am(vmfa)‘c
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Figure 7. Two-magnon solutions at finite J. The first row shows representative solutions in the
elementary region and the second row shows their counterparts in the doubled region. As before,
the coloring indicates the dependence on the spatial coordinate o and appears non-smooth when
the string is folded. The finite-J scattering solutions (a) and (b) are essentially time periodic
generalizations of the infinite-J versions in figure 6. The finite-J breather (c) is very similar to the
infinite-J breather, but its moduli space much bigger, including, e.g. the circular pulsating string. In
the doubled regime, all finite-J solutions have the same qualitative time evolution: a folded string
that on its way around the equator periodically contracts to a point and stretches out maximally. (a)
Magnon-anti-magnon scattering (elementary region with £ = 2.29 and & = 2.06), (b) magnon—
magnon scattering (elementary region with k = 2.29 and w = 2.06), (c) fluxonic magnon breather
(elementary region with k = 0.83 and w = 0.55), (d) magnon—anti-magnon scattering (doubled
region with k = 2.405 and @ = 2.188), (¢) magnon—magnon scattering (doubled region with
k = 2.405 and w = 2.188) and (f) fluxonic magnon breather (doubled region with £ = 0.90 and
o = 0.89).

— o+ (K — wz)z)\/m_rt] . LTL/zJ (4.53)

in the doubled region.

Figures 7(a) and (d) visualize this solution in the two regions, respectively. Note that the
string 71 (o, T) is not T-periodic in a strict sense because of the motion in the ¢ direction. During
one period the string advances by an azimuthal angle of Agp = ¢(T') which is in general not a
multiple of 27r. Disregarding this motion around the sphere, the string is periodic in t.

In the elementary region, within one period T the string contracts twice to a point and
expands twice to maximal radius

1
Hmax = . (4.54)
M T+ (4 ST —my)2a?
In the decompactification limit this becomes
1 1
— (4.55)

hmax decomp = T /— =
s p \/— ’
l+w? VY
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where we used the identification (3.17). Twice this maximal radius is the separation of the two
points where the string crosses the equatorial plane. This separation is related to the momenta
of the individual magnons which make up the scattering state [27] and is based on the fact that
the magnons in the decompactification limit cleanly separate. In the periodic, finite-volume
case this is not true and maximal radius does not seem to be directly related to the individual
magnons momenta, in fact as the magnons never separate it is not clear that such a concept is
completely unambiguous. We will postpone further discussion of this point until section 5.

For the computation of the angular momentum, we note that cos¢ and cosa are
even functions in o, while sina is odd. This implies that J = |7,| is the only non-
vanishing component. Computing this component at T = 0 we can use cos ¢ (0, 0) = 1 and
cosa(o, 0) = 1 — 2sn’ko, and obtain

L
J =f do cn?(2ko|my), (4.56)
0
which can be evaluated explicitly to
q |[(2 — my)K(my) — 2E(my)] for K><w® or kK>>w’+1,
Mg
J = 4 4.57)

for w? <k < w?+1.

1 1
k«/m_tr K(’"o) E (mg>
We note that in the first case, which corresponds to the elementary region, the angular
momentum 7 is always strictly positive while in the second case, i.e. the doubled region,
it vanishes along the curve in parameter space where m, = 1/mg = 1.210485.. ., see the
dotted line in figure 2(a).

It is interesting to realize that the angular momentum can vanish although the string is
monotonically orbiting the sphere, ¢, > 0, as can be seen from (4.51). The contributions of
the individual string bits to the total angular momentum cancel between the central part and
the ends of the folded string. When the ends reach over the north and south poles of the sphere
this compensation can also happen when the center of mass of the string moves. In fact, if the
target space was, e.g. a cylinder, such a phenomenon could not occur.

4.6. Magnon—magnon scattering at finite J

Reconstructing the string from the soliton—soliton scattering solution (3.19) can be done with
equal time and effort from scratch or by a shift by a quarter of the imaginary period according
to (3.18) and being very cautious about branch cuts. We find

1 mywcnwt sd wt

h(t) = , d(t) = (4.58)
\/l +m2w? cn 207 sd *wt \/1 +m2w? cn 2wt sd ot

Vo —k2(1 —my) nd 2wt nd ko
Vk2nd?wt — »?

and, as before, ¥ (r) = 0 and ¢, (1) = —myk*h%(1). In the elementary regions, the integral
of ¢, simplifies to

1 ) w’m,
v = m[‘k I (m amer

+ (k2 — ) (1 — k> + 0HI((K* — 0*)my, am a)t|mr)i|, (4.60)

a(o, T) = 2sign(m,) arctan (4.59)
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) lc)
) =[5

4.61)

and in the doubled region, it can be written as

_ 1 2 »’
p(r) = a)(kz_—m |:—k II < e am(J_wr
+ (k> —HU — K2+ (k2 w? am<¢_wr

Figure 7(b) show representative strings in the elementary and doubled region, respectively.
The angular momentum of this solution is the same as for the magnon—anti-magnon
scattering given by (4.57).

4.7. Magnon breathers at finite J

There are two breather solutions in sine-Gordon theory on the circle, the fluxon (3.20) and
the plasmon (3.25). Accordingly, we call the strings related to these solutions the ‘fluxonic
magnon breather’ and the ‘plasmonic magnon breather’.

4.7.1. Fluxonic magnon breather. From the fluxon breather solution (3.20) we derive the
functions

1 wdswt cnwt
h(t) = , d(t) = (4.62)
V1 +»?ds’wt cnlot V1 + w?ds2wt cnwt

Vo +k2(1 — mg) sn2wt scko

V? +k?snlot .
The branches of the arctan are to be chosen as in the magnon—anti-magnon scattering case.
Also, we have again ¢ (r) = 0 and ¢, (1) = —myk*h%(1), but since h(t) is different, we find
a different integral. For m, < 1, which covers the entire doubled region as well as the part of
the elementary region where w® > k — k?, we have the formula

_Ln(_k 11 m,” i 4.64
o(t) = ; (—E,amwr > — (—mrﬁ,ama)r mt) + 7 LmJ , (4.64)

and in the remaining part w?> < k — k* with m, > 1 we have

2 2
® k2

+w?—1
e

The angular momentum turns out to be the same functions of m,, as in the scattering case

a(o, T) = 2sign(snwrt) arctan (4.63)

P [2 —mys)K(my) — 2E(m,)] for kZ+w? <1,
M,
J = (4.66)
4 K 1y 2E s for kK*+w?>1
kmgs m(, )

though, of course, the regions are different as is the dependence of m, on the parameters k and
w, see (3.21). As before the angular momentum vanishes in the doubled region for parameters
such that m, = 1/my = 1.210485. ... This curve is plotted in the parameter space diagram
figure 2(b).

23



J. Phys. A: Math. Theor. 41 (2008) 285401 T Klose and T McLoughlin

Besides this, the angular momentum also vanishes along the curve k* = w (1 — ) through
the elementary region of parameter space where m, = 0. This is a very interesting family of
solutions which we consider more explicitly. While #(t) and d(t) are unchanged, the other
functions simplify to

o(o, T) = 2sign(cnwr)ko, o(t) =0, (4.67)
and the range of o becomes 0 to L = 7. By introducing a rescaled coordinate 0" = 2ko, we
can eliminate k from all formulae and find the explicit solution

sign(sn wt) cos o
n(o, 1) = f . - —wdswt cnwt (4.68)
V1 +w?ds’wt enlwt sino’
with ¢’ = 0,...,27. This solution describes a circular string that pulsates between two

antipodes from east to west and in between sweeping the entire sphere. The period of one
oscillation depends on w via

4 , 1 2
T = —K(m,) with m,=(——1) . (4.69)
1) w

Forw = % this period becomes infinite. In this case, the string wraps a great circle at T — £00
and contracts once to a point on one side of the sphere at T = 0.

In section 5.2.1, we show that the semi-classical energy spectrum of the pulsating string
solution (4.68) coincides with the results of [50].

4.7.2. Plasmonic magnon breather. The plasmon breather solution (3.25) gives rise to the
following functions:

1 —wdcwt snwt
d(t) = 4.70)

h(t) = ,
V1 + @?dc 2wt sn2wt V1 +w?dcwr sn2wt

Vg + A2(m, — 1) cn 2wt sdko

o(o, T) = 2sign(cnwt) sign(A) arctan 4.71)
V14 A%cen?wt
and once more we have ¥ = 0 and ¢, = —k?h?*(t). Using appropriate branches of the elliptic
integrals, we can write
o(0) = ﬁ[ —® +w2>2(H(fg, ulf?) - H(i, u f2>>
w 8
+V1 = (k2 — w?)? <H(f£, ul ) — H(% u f2>>
T/4
+2KF (| D) + 7 r ;/2/ J } 4.72)

where the upper sign applies to the elementary and the lower sign to the doubled region. The
argument is defined as u(r) = iarcsinh[ f~1/2 tan(%am(a)r |m<))] and the parameters are

f= %(1 + ot — K+ V(@ + K22 — 1][(w? — k22 — 1)), (4.73)
w

g= +k>+/ (@ +k2)?2 — 1, (4.74)
L= — k> +(0* —k?)? — 1. (4.75)
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As mentioned previously, the plasmon breather is qualitatively extremely similar to the fluxon
breather. This similarity carries over to the reconstructed string solution. Therefore, we refrain
from drawing the plasmonic magnon breather separately and refer to figures figure 7(c) and
(f) showing the fluxonic analog.

The computation of the angular momentum is simplest at T = JTT = iK(m,) as we have

cosgp(o, T/4) =1, o(o, T/4) = £2 arctan \/m, sd ko. (4.76)

Since « is an odd function of o, the only contribution to the angular momentum is given by

L
/ do cosa
0

and integration yields

T 2 I:(Zm(, — DK (L> —2msE <L>i| for k*+o0? <1,
J={" Ve Mo Mo (4.78)

- 4 2 2
C2E(m,) — Koo ) for K2 4wl 1.

T =

L
/ do (2dn’ko — 1)‘ 4.77)
0

The angular moment is strictly positive in the entire elementary region and vanishes in the
doubled region along the curve in parameter space where m, = mg = 0.826 114 .. ., see the
dotted line in figure 2(c).

4.8. Single magnon at finite J

For completeness, and as it necessary to interpret the two magnon solutions, let us give a brief
summary of the finite-J magnon in conformal gauge as originally described by [30] but using
our notations.

As the underlying sine-Gordon kink train (3.8) is not of the Lamb form (3.2), we cannot
make use of the general reconstruction formulae. On the other hand, the angular momentum
J and the world-sheet momentum pys can be found directly by integrating the Virasoro
constraints. Using standard polar coordinates Z = cos 6 and ® on the sphere, these constraints
are given by

. -

VARY A . 77 .

(1 =ZH@*+ P =1, —— +(1-2zHdd=0. 4.79
o+ (1= 2)( ) (-2 (4.79)
Aiming at the one-phase solution, one chooses the ansatz

Z(t,0) = z(ko — wT), O(r,0) =1+ @k — wt) (4.80)
for which one can solve the Virasoro constraints for the derivatives of z and ¢,
ko 2 ww 72— 7%

” 2 2 2 2
&= (m) (& =) G =) V= maa (“4-81)

with

1 w?
Zmin =4/ 1 — ;a Zmax =4/ 1 — W (4.82)

In order to see that this ansatz really corresponds to the kink train (3.8), we have to compute
the associated sine-Gordon field from the definition (2.8) which in polar coordinates reads

cos2¢ = z-z +(1 = Z3)(d2 — d?) (4.83)
2 ' '
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Using (4.80) and (4.81), this gives a relationship between ¢ and z that otherwise only depends
on the parameters k, w and @ . This ¢ reduces to the kink train if and only if
1

2(7,0) = Zmax dn (ko — wt|m) with m=-——r (4.84)
k2 _ a)2

and

a)2 + (kZ _ (,()2)2
2= — (4.85)
For the computation of 7 and pys one only needs (4.81) and not the explicit solution
(4.84) because the integration over o can be substituted by an integration over z. For the

angular momentum one finds

J= /da(] )b = 2/ dz(1 —zz)%
Z

Zmin

2

The world-sheet momentum is computed from the separation of the endpoints and is given by

Zmax (p/
Pws = Ad = 2/ dZm

Zmin

2

k k
= 2\/1+m2w2|:—1_[ <l - —
® ®

2

w
m) - EK(m)]. (4.87)

These expressions are valid in both the elementary region (m < 1, @w > 1) and the doubled
region m > 1, w < 1).

5. Semi-classical quantization and energy relations

In the previous sections, we found for several classes of interacting two-magnon solutions the
spatial period L, the temporal period 7, the target-space energy E and target-space angular
momentum J as exact functions of the parameters k and w. Eliminating the parameters, we
can, in principle, find®

AL, T):=E(L,T)—J(L,T), 5.1

which is the relevant quantity for comparisons with SYM theory and which we will refer to as
energy. This completely solves the classical spectral problem, where L and T are continuous
controllable parameters.

One would now like to convert (5.1) into a dispersion relation in order to make contact
with previously known results (and possibly gain some insight into how integrability might
work at finite size). This means that we need to replace T by the (relative) magnon world-
sheet momentum p whose definition is, however, not unambiguous. In the decompactification
limit the magnon momentum can be identified with the asymptotic angular separation of
the string end points [27]. In going to the two-magnon closed string solutions, where the
individual solitons never cleanly separate, it is not clear how to define the magnon momentum
geometrically. Instead we will make use of the fact that for the finite-size case all the solutions
are periodic in time, and so we can apply the Bohr—Sommerfeld condition to directly perform
the semi-classical quantization.

8 Inthe gauge chosen, we have E(L, T) = ‘/XL, see (2.4).

=2
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For a general system with periodic motion, period 7, that is described by canonical
variables p and g, the method of Bohr—Sommerfeld quantization postulates the existence of
an energy eigenstate whenever the condition

T
/ dtpg = 2nn with n € Z, 5.2)
0

is satisfied. Using the equations of motion, this condition can be cast into the differential form

T(A)dA =2mdn, (5.3)
where A denotes the energy of the system. These semi-classical methods are also valid for
field theories (see, e.g., [56]). Applying (5.3) to the finite-J giant magnon solution and our
two-magnon solutions gives us the excitation energy, A = E — J, in terms of the action
variable n.

For the magnon breathers this directly yields the energy formulae in terms of » and we
are able to straightforwardly find the finite-size corrections to the infinite-J results of [27]. In
addition, in the limit J = 0 the fluxon breather simply becomes the circular pulsating string
of [50] and expanding in large n we are able to match our expression for the energy with that
previously found. For the scattering solution it remains to relate » to the magnon momentum;
an obvious candidate for a closed string is pys = z’z—” However this relation corresponds to
free excitations neither interacting with each other nor with boundaries and will be modified
by the presence of a phase shift describing these interactions. We make use of the usual
quantum-mechanical relation, which can be extended to field theory [57], between the time
delay and this phase. This can then be used to describe the scattering of solitons, a result
which was used in the context of giant magnon scattering [27], and we will use analogous
relations for our finite-J two magnon states.

One obvious, but important point, is that the Bohr—Sommerfeld condition is only valid
for large n and does not include any zero-point energy. To include this effect one should use
the WKB approximation as generalized by Dashen, Hasslacher and Neveu (DHM) [58] to
solitons in quantum field theories (this was done for the decompactified limit by [59]).

5.1. Single magnon at finite J

We apply our method to the single magnon case as a check and as an example of the general
procedure. For nearly all our expansions we consider the solutions near the decompactification
limit where the elliptic modulus controlling the spatial period approaches one, i.e. m, ~ 1 +e€.
We first expand the string length L, the period T and the energy A = g—;L — J in € while
keeping the velocity, or the analogous parameter for the breathers, fixed’. We can then
eliminate € and express the period T as a function of the energy A and the string length L,
which then plays the role of a large expansion parameter. The integral of T (A, L) over A can
then be related to the integer quantum number coming from the Bohr—Sommerfeld relation
(5.3). In order to simplify subsequent formulae we introduce the rescaled energy

D="—"2A. 5.4
7 (5.4

In the elementary region with m = 1 — € and to order O(e~2/P) we find for the period
of the finite-J giant magnon solution
- —2L 4L°D 4ALD?*(2 — D% L
o~ + - .
Va—D2 \J4a—D2 (4—D?3?
9 We should note that this is merely a convenient intermediate step and one can equally well choose to fix some other

parameter. In the end, we will express all our answers in terms of parameters with a gauge invariant target-space
interpretation such as the angular momentum J or A.

(5.5)
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According to (5.3), this should be equal to (2\’/%) 41 and so we must integrate this equation with

respect to D. While It is not clear how to do thls exactly it is straightforwardly done order by
order in inverse powers of L,

(271)211_2 _D+ 2D3 4p* +01 *23L+o i 5.6
ﬁL_ arcsm2 m_Lm 2 e (e ) .6)

We see immediately that at leading order

N/ 1(2nn>

A = —sin—
T 2\J+A
where we used L = %(J + A) and which agrees with the expected infinite magnon energy

provided we identify pys = ﬁ % To compare the higher orders with the results of [30] it is

easiest to rewrite their dispersion relation as pys = pws(D). Noting that J = ‘2/—; (L — D) and
inverting their expression

(5.7

ies
=2sin 2% [ 1 —4sin2 B e 22 (5.8)
2 2
we find
5 D 2D? 2L 59
ws(D) = 2arcsin — + ———¢ D .
Pus(D) 2t T (5.9)
If we set pys = 5ZZ = (2}) z and compare to (5.6), we see that we find agreement for the

terms which are leading order in L but not for the subleading terms. These corrections are
presumably due to the fact that at this order for a finite magnon we must take into account the
interactions between the excitation and the string endpoints. This is analogous to the fact that
for two magnons the terms subleading in L correspond to the interactions between magnons
and hopefully will become clearer after the discussion of the magnon—anti-magnon scattering
solution. Proceeding to the next order we find the same: at each order in e~%/? agreement in
terms of leading order in L given by

D 2D? 2L 4L
D) =2arcsin — + ———e¢ D +4DL>/4— D2e D, 5.10
Pws(D) arcsin > me e ( )

but disagreement at subleading orders. For comparison with later calculations let us record
some of the higher order in exponential correction terms, but at each order again only keep
the largest L piece,

A .
A= £ sin p;“ |:1 4sin? p;s L“""(l +2cos? p;S LZye ™" + 8 cos* p;s L em2her
T

128 ws _ 800 W _
+—— cos® P Lgff et 4 —— cos® P SLgffe ALt
3 2 3 2
9216 W
+ = cos'” pzsLeffe—SLeu--.)}, (5.11)
where we have introduced the effective length L.y = ﬁ
Pus/2)

In the doubled region, the finite-size corrections to the dispersion relation are very similar
to those above but with the sign in front of the coefficient of the first correction flipped. We
will not consider this case in detail here but it is worth keeping this in mind when we calculate
the finite-size corrections to the two-magnon states in the doubled region.
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While we focus on the string theory near decompactification, it may also be interesting
to consider the small radius limit. It is well known that the sine-Gordon theory simplifies
dramatically in this ‘UV’ regime essentially becoming the theory of a free scalar on a circle
and it has proved useful to study the theory as a perturbation from this CFT, e.g. [60]. For the
string theory the underlying theory is of course already conformal, however, this symmetry
can be spontaneously broken by expanding the gauge fixed theory about a non-trivial classical
solution, for example near the BMN solution the string in light-cone gauge is described by a
massive world-sheet theory. While we are not able to make any definite statements regarding
the string theory in this limit as a small step in this direction we describe the classical energies
near the zero length limit. ;s

For the single finite-J magnon we take k ~ é and w ~ £ which implies that the elliptic

. 2
modulus is close to zero m ~ 157 Thus we find

L~ me and pys ~ (1 — ) (5.12)
so that
VAL L
A~ e (1 - T /32)) . (5.13)

In this case zmax and zmin are both close to one and so the target-space extension of the string
becomes very small. The angular momentum scales differently, it is of higher order,

Vi
~ o (5.14)

and so to leading order the string has zero angular momentum. In this limit the string solution
simplifies considerably and it may be feasible to calculate quantum fluctuations about this
background.

J

5.2. Magnon breathers

5.2.1. Fluxonic magnon breather. In the elementary region (i) we have k> + > < 1 so that
mg ~ 1 — €, and in the doubled region (ii) we have k? + w? > 1 so that m, ~ 1 + €. For both
of these cases we take w? > k(1 — k) which is consistent with the decompactification limit.
To O(e **/P) we find

4L
D 256L 64D(=32+5D%) \ .~ .
T D16 | <_(D2716)3/2 T o167 ) b for (@), 515)
P D 1024L 256D(—64(—3+In4)+D*(—6+In4)) | .~ 2 . '
D2—64 + ((D2_64)3/2 + (D2764)5/2 ) e D fOr (11)'
In the elementary region at leading order we have
dA
2rdn = —— (5.16)
/ 16
- D
andso A = ,/n?+ % as in HM.
We can of course continue to the next order,
45 162 45 32J4 41 _[clem .
Jn2+ %+ <n27'r2 n?+ % — nz‘LC (n*+ ﬂ—)) e~ ket for (i),
A= (5.17)

2, 161 _ 64 2, 160 | 32VA(G=In4) (2 16} o— Lo .
n?+ 3 +( O St 18 2D (2 4 104) ) oLl for (i),

where LEE™ = 4(J + A)/,/n? + % and LI™® = 4(J + A)//n? + 1%

w2
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As discussed in section 4.7.1, the fluxonic magnon breather for J = 0 looks remarkably
like the circular pulsating string of Minahan [50] and indeed we expect that the two should be
the same. Although the explicit solution for the circular string was not constructed in conformal
gauge we can certainly match the target-space energies. Let us consider the pulsating circular
string which is wrapped once around the sphere or in the notation of [50], m = 1. The energy
of the string is given by

At ony (14— i<—* )2+ (5.18
TET A 42y ea\mpz) 7)) 18)

In this formula, the numerical constant on the left comes from initially treating the n,, as finite
and then the corrections are calculated assuming 7, and consequently A, is large. In order
to compare we take in our solution k = € which in turn implies that @ = 1 — €2 — * — 2¢°.
As J = 0 we have that

Vi WV
A=—L=— 5.19
2 2¢ ( )
and expressing the period as a function of the energy, 7 = T (A), we can integrate to find
A A2
Amn+—— = 4. (5.20)
dn  64n3

We see that this is the same as (5.18) if we identify n = 2n), and drop the constant from the
left. Missing this ‘ground-state energy’ is the usual approximation made in Bohr—Sommerfeld
quantization.

5.2.2. Plasmonic magnon breather. ~For the elementary region (i) where k*> + w?> < 1 and
my = 1 + ¢, and for the doubled region (ii) where k> + @*> > 1 and m, = 1 — €, we find to
O(ef4L/D)

) 4L
D 256L 64D(—16(1+In4)+ D2 (4+In4)) ) .~ & .
r D16 T (_ D167 T (D> —16)72 )e b for (), 521)
2T D 10241 256D(128—50%) | .~ 2k .. :
5 T \D—e” T Tmear )€ P for (i),

respectively. Integrating and inverting these equations gives

I .
24 g (0 Jp2 g B SVAGHND (404 41)) oL for (i),
A = b4 nemw T n*Lw T (5 22)
- 2, 16% 64n [ 2, 16h , 128VE (2, 161)) o—Ldow . ‘
n<+ = + (—m n< + 7z + 2La (n + ?)) € eff for (l]),

where LEE™ and LI are the same as for the fluxonic magnon breather above.

5.3. Magnon—anti-magnon scattering
For the scattering solutions we first concentrate on the elementary region, k> — w? > 1, with
my =1 — €. To O(e*/P) we have
D2
r_ 4L +2Dln( -2)
V16 — D? V16 — D?
[ 64L2D 32L(3D*(=8 + D?) + 16(16 — DY) In (1 — £))

(16— D22 (16 — D2)5/2
_ 8D(5D*+16(32 — 5D*) In (1 — %) i 523,
(16 — D2)372 ¢ .
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Before continuing further let us consider the leading order and how it matches with previously
known results. At leading order, expressing the energy and period in terms of the velocity,
v = 2, we have

T
Va2 L 2
A= —— and T=—+—Inv". (5.24)
Ty voovy
The expression for the period consists of two terms which have the obvious interpretation
as the time, Ty, for a freely moving particle of velocity v to traverse the length of the string
plus a correction, Tyelay, due to the interaction of the particle with a potential. Following the
discussion of [57] but applied to the string theory, we interpret the center-of-mass motion of
the two magnons as the motion of a particle of energy A and momentum p (which being the
relative momentum is twice the momentum py, of either of the individual magnons) moving

in a periodic box of length g—;L with a potential. The boundary conditions imply

A
2nn = 2£Lp +28(A), (5.25)
b4

where 28 (A) is the phase shift due to the interaction with the potential and corresponds to twice
the phase that each magnon accrues on crossing the other. We now wish to find expressions
for the momenta and phase shift in terms of the energy, A, and so we again make use of the
Bohr—Sommerfeld rule
dn

T =Ty+ 2Tdelay = Zﬂa (5.26)
Substituting (5.25) into (5.26) we identify the terms at each order in L and thus get equations
for p and §. At leading order we find

«/Xdp_l

= - (5.27)

2r dA v

so that, after using the relation between the velocity and the energy,
dD A' WS
2pws=/— = A—2Y* sin 2% (5.28)
/[ _ D b4 2
16

as we expect. The terms at subleading order in L give an expression for §,

a8(A) 2

T = Tdelay = W Inwv. (529)

This is exactly the result for the center-of-mass phase shift used by [27] to calculate the
scattering phase of two magnons in the infinite J limit. Thus we not only reproduce the
single magnon dispersion relation but furthermore we find the correction to the momenta from
the AFS phase. With regard to our previous single magnon results we note that here, even
in the decompactified limit, the subleading terms in L correspond to corrections of the free
dispersion relations.

We now match our result for the finite-size magnons with the spectral curve analysis of
[39]. We proceed as before: we have expanded the period in e=#*/? and we further expand
the coefficients of exponentials in powers of L and then identify the leading term with the
derivative of the momenta and the subleading terms with the phase shift. Thus now keeping
the exponential finite-size correction and at the leading order in L we have

L L*D 4L
T = + ¢ D. (5.30)
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which should, by equations (5.25), (5.26), be equal to % g—g. Integrating, and using p = 2 pys,
we find
D? 4L

. D -
Pws = 2arcsin Z + W e D (5.31)

16
which can be inverted to give

A WS sinzp— T DPws
A=2£sin% 1—4 e 03| (5.32)
T

WS
2

2 Pws
COoS )

Choosing the two magnon case and setting p; = pys and p» = 2w — py, in the multi-magnon
dispersion relation of [39] we find perfect agreement.

We can repeat this to higher orders; expanding the period to order e >*//P (i.e. sixth
order) but again only keeping the leading term in L at each order, we find

_4AL _8L _12L _leL
L L*’De™ D 4 x 16L*e™ D 3x 16°L%e™ D 2x16°L8e™ D

+ + + i + :
@ (=27 D=2 (1= By T 3ps(1— &)

20L 24L
P x16°LY%e™ D 63 x16'L2e D

T =

+ (5.33)
D2\3/2 D2\3/2
3D7(1 - %) 5D°(1 — %)
This can in turn be integrated and inverted to find the dispersion relation
x ws sin? L
A =2 Y G P [1 4 echf[l +2L% e b 4 L4 e 2L
i cos* &=
128 800 9216
+ TLSH 6731‘&( + TLgff 67414“ + TLelgf eiSLCff + i|i| s (5.34)

with Leg = m We note that expansion of the finite-size corrections involves the same
coefficients as for the leading order single magnon. The expansion can be continued to yet
higher orders and the obvious pattern seems to continue though what the resumed, closed
expression is remains undetermined.

We return to O(e */P) and use the expressions for the period (5.23), the Bohr—
Sommerfeld relation (5.26), and boundary conditions (5.25) to find the phase shift due to the
interaction between magnons in a finite volume. Expanding the coefficients of the exponential
correction to the period we identify the derivative of the phase shift with the terms subleading
in L. This can be integrated order by order in L to give an expression for the first exponential
finite-size correction to the center-of-mass phase shift. We find the that at higher orders in
exponential corrections the coefficients of the phase itself has contributions at different orders
in L; though it is straightforward to keep subleading terms, for simplicity we keep only the
leading order. Thus we have

4D2 (—302 +161n (1 _ 22)) aL

2
(o) = ¥ m(z_m(l_%))+ %)

(16 — D2)3/2

1 4L 8L
+O(Ze_D ,e—D> (5.35)
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or rewritten in terms of pys as

A‘ wSs WS
3(pws) = %_(4005 pz <l —In (cos p2 >>

‘2 Pus
. sin® &=

—4( 65in” Pus _ 4 cos? Pus In|{ cos Pws 2 oL
2 2 2 cos® By

1
+0 (Z e—Leff7 e—ZLeff) . (5.36)

Even at leading order this is not the AFS phase evaluated at p; = pys and p, = 2 — pys,
which is to be expected as we have performed the integration with respect to the center-
of-mass energy and, as the result is not Lorentz invariant, calculating in different frames
gives inequivalent answers. We currently do not know the string solution corresponding to
two magnons moving with different velocities and finding the finite-size corrections to the
laboratory frame phase will have to be postponed until these solutions are known.

We of course have corresponding results for the doubled region (k* —w? < 1, my = 1+¢€)
which can be interpreted in a similar fashion. The period including the leading correction is
similar to that of the elementary region,

8L 4D1n (1-2) [ 128L2D
T = + —
V64—D?  \/64—D2 (64— D?)3/2
32L(D*(D*(—7 +1n4) + 64(4 — In4)) — 128(64 — D*) In (1—-27))

(64 — D25
16D(D*(=7 +1n16) + 64D*(2—In 16) + 64(D*(6—In ) —64(3—In4)) In (1—2))] sz
" (64— D?)5/2 ©

(5.37)

and this can be integrated so that

@) n . D Jeda—D? D?
— =8arcsin— —4—+—— —2+In{1 - —
S . 7 64
0D} . 8D*(D*(—7+1n4) + 1281n(1 — ?—:))

(64 — D232 L(64 — D?)3/2

2D%(D2(256(9 — In16) — D221 = 51n4)) — 128(64 — D)5 — Ind) In (1 - %))
" L2(64 — D)5 } o
(5.38)

Again we use (5.25) but here identifying p = 4pys as we are in the doubled region and we
can invert the above equation at leading order in L to write
L

A e
A= g B 1va—se 205
T

(5.39)

2 Pws
COS >

We note that this is four times the single magnon dispersion relation but with the sign of the
exponential corrections flipped. This is consistent with the string being in the doubled region
and the state consisting of two ‘helical’ strings.
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6. Conclusions and outlook

As a step toward understanding the AdS/CFT duality, and particularly the role of integrability,
for states of finite R-charge we have studied the classical finite-volume bosonic string moving
on R x §2. Making use of the connection between the O(3) sigma-model and sine-Gordon
theory we have found explicit two-phase solutions to the string equations of motion with
periodic boundary conditions. We start by considering the known periodic solutions of sine-
Gordon, the fluxon oscillation, the fluxon breather and the plasmon breather, and reconstruct
the corresponding string solutions. The inverse map is non-local and therefore it is very
non-trivial to find these string states. Fortunately, the classical relations between surfaces
of constant curvature and sine-Gordon theory provide a convenient formalism for the string
reconstruction. This allows us to integrate the equations and to find the target space string
for the two-phase solutions corresponding to solitons in the center of mass. Additionally,
we compute the periods, the target-space energy and the angular momentum for these string
configurations.

The two-phase solutions turn out to be significantly simpler than one would naively
expect. They are given in terms of elliptic functions rather than the more general hyper-
elliptic functions which generically correspond to the two-cut Riemann surfaces that follow
from the algebraic curve analysis. This simplicity is a consequence of the string solutions
having vanishing total world-sheet momentum which guarantees that they are indeed physical
closed strings satisfying the world-sheet constraints.

In the context of integrability it has proved useful to admit unphysical strings which serve
as building blocks for physical ones and, if one aims at generalizing the asymptotic Bethe
equations to also describe the finite-size spectrum, it would be important to find periodic
string solutions for magnons with different velocities. Since the gauge fixed world-sheet
theory is no longer Lorentz invariant this is unfortunately not simply a matter of performing a
boost. Another path, but perhaps just as complicated, would be to construct the three magnon
solutions. There are explicit formulae in terms of Riemann theta functions for sine-Gordon
three-phase solutions [61] though at this point one may as well use the generic string solutions
constructed in [40, 62]. The three-magnon result would of course also be interesting as it may
shine light on the question of what are the useful quantities to generalize to arbitrary magnon
states. The three phase solutions would in addition to the spatial and temporal periods have
a third ‘period’ in an independent combination of the space and time coordinates. This new
period would presumably correspond after quantization to the second independent excitation
number describing a three-magnon state.

Having the two-magnon periodic solutions in hand we calculate the finite-size corrections
to their dispersion relations. All the solutions are temporally periodic so we use, as a
first approximation, the Bohr—Sommerfeld condition to relate their energies to the quantum
oscillation number. As mentioned earlier it would be interesting to carry out a proper WKB
analysis of these solitonic solutions a la DHN which would correctly account for the zero-point
contributions (within the context of sine-Gordon theory this was carried out by [63]). For the
string states corresponding to the breathers the relation between the quantum number and the
energy is straightforward and we directly find the exponentially suppressed corrections. While
the breather solutions describe bound states of two solitons in sine-Gordon theory, results in
the decompactification limit [48] suggest that the magnon breathers are presumably not actual
bound states but rather superpositions of BPS magnons with opposite charges. It would be
interesting to check that this is indeed the case. This would require studying finite-J solutions
on R x §3 which may be possible using methods similar to those discussed here and making
use of the relation between the O(4) sigma model and complex sine-Gordon. Additionally we
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are able to make contact with the circular pulsating string where, as the angular momentum
J vanishes, the effective length L/D becomes unity and hence the exponential corrections
are all of order one. Here we expand in large n and we find agreement with the expression
previously calculated by Minahan.

For the scattering states the relation is slightly more complicated and we break the answer
into two parts: the dispersion relation in terms of the magnon momentum and the phase due
to magnon interactions. This splitting is somewhat arbitrary as there is no regime where
the individual magnons are insensitive to each other. This fact is immediately apparent
from previous calculations of the multi-magnon dispersion relation where the energy of each
magnon depends on the momenta of all the others and indeed the energy of the two-magnon
state is not simply the sum of two individual magnon energies. Nonetheless, by making use
of the different dependences on the size of the system we label the different contributions.
The leading part in the string length L at each order in e~ is considered as the term giving
rise to the dispersion relation and the remaining, sub-leading terms as corresponding to the
phase shift due to interactions. This allows us to make contact with previous calculations
and at leading order in L we do indeed find agreement with the dispersion relation of the
finite-size single magnon of AFZ and the multi-magnon dispersion relation of Minahan and
Ohlsson Sax. We are further able to calculate the leading order terms to higher orders in
e~ and find a somewhat regular pattern. It would of course be interesting to find closed all
order expressions for the magnon energies even if only at the classical level. Keeping terms
at sub-leading powers in L we find the finite-size corrections to the analogue of the scattering
phase. However, as mentioned above, from the two-phase solutions we can calculate this
phase only in the center-of-mass frame and it is not clear how to find the analogous result for
arbitrary momenta.
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Appendix A. Elliptic functions

We use the conventions of Abramowitz and Stegun [64]. The elliptic integrals of first, second
and third kind are defined, respectively, as

¢ do
F = _— A.l
(wlm) /(; V1 —msin?6 &1

(4
E(g|m) :=f 1 —msin20do, (A.2)
0

¢ do
II(n, p|m) :=/ - - . (A.3)
0 (1 —nsin20)4/1 —msin20
The complete elliptic integrals are denoted by
K(m) = F(%‘m) E(m) = E(%’m) Ti(n|m) = H(n, %‘m) (A4)
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and K'(m) = K(1 — m). The elliptic amplitude am is defined as the inverse of F

@(u) =am(ulm) < u(p) =F(p|m). (A.5)

Periodicity forr, s € Z

am(u + 2rK(m) + 2isK'(m)|m) = am(u|m) + rr (A.6)

Define also Jacobi elliptic functions

sn (¢|m) = sinam(u|m) (A.7)

cn (u|m) = cosam(u|m) (A.8)

dn (ulm) = /1 — msn?(u|m) (A.9)

paCulm) = 2y = 1 (A.10)
qr(u|m)

where p, q and r are any of the letters s, ¢, d and n.

Some useful identities that we applied are

F(iarcsinh sc (u|m)|1 — m) = iu, (A.11)
II(n, iarcsinhtan z|1 — m) = %[F(zlm) —nII(1 — n, zlm)], (A.12)
—n
and
1 . . 1
F(z|m) = —F <arcsm(\/m sin z) —) , (A.13)
Jm m
1 n . . 1
II(n, zlm) = —=II | —, arcsin(/m sinz)|— | . (A.14)
Jm m m
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