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Abstract
We discuss results that have been obtained from the implementation of the
initial round of testbeds for numerical relativity which was proposed in the first
paper of the Apples with Apples Alliance. We present benchmark results for
various codes which provide templates for analyzing the testbeds and to draw
conclusions about various features of the codes. This allows us to sharpen the
initial test specifications, design a new test and add theoretical insight.

PACS numbers: 04.70.Bw, 04.25.Dm, 04.40.Nr, 98.80.Cq

1. Introduction

For decades, the field of numerical relativity has been dominated by an often painful quest
for stable black-hole inspiral simulations. More than 40 years after Hahn and Lindquist’s first
pioneering numerical simulation of colliding black holes [1], this quest has recently turned
into a gold rush when Pretorius’s breakthrough simulation [2] based on a harmonic code was
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followed by simultaneous invention of the ‘moving punctures’ method by two independent
groups [3, 4].

The primary motivation for solving the binary black-hole problem in numerical relativity
has however been to supply waveforms for gravitational wave detectors. This goal demands
an approach that goes beyond the efforts that have lead to an explosion in publications from
the binary black-hole community. Cross-validation of waveforms between different groups
(and codes) and comparison with post-Newtonian predictions will be essential for numerical
waveforms to be used in the computationally expensive searches conducted by the international
gravitational wave community. The importance of cross-validation of numerical relativity
results as a community effort was foreseen by the Apples with Apples Alliance (AwA) [5],
which has presented a first round of standardized testbeds [6]. This first round comprises four
tests with periodic boundaries, designed to efficiently exhibit code instability and inaccuracy.
Instabilities currently receive less attention, since it has turned out that, paradoxically, binary
black-hole evolutions are in some sense a simpler problem than had been expected, and current
codes evolving binary black holes do not typically show instabilities. The same codes will
however have difficulties with some of the testbeds presented in the first round. The theoretical
understanding of what works and what does not in numerical relativity is still very much an
open problem. One crucial theoretical advance, which has been made since the publication of
our first paper [6], is the development of a theory for well-posed second order in space, first
order in time systems [7–13], which has been extended to a basic understanding of numerical
stability for such systems [11–13].

Over the past years several groups have committed their test results to a publicly
available data repository, with activities being coordinated via the website http://www.
ApplesWithApples.org. The purpose of the present paper is to document these developments
and discuss their feedback with respect to code performance, to test improvement and to
design further tests. While predating the binary black-hole breakthroughs, we believe that the
initial Apples with Apples tests and results are still valuable as providing a first testbed for a
community effort in numerical relativity.

The tests side-step many issues that would arise in a precise discussion of the binary
black-hole problem, such as the issue of boundaries. We make the natural choice of periodic
boundaries for a first round of tests to isolate the performance of evolution algorithms. This
is equivalent to evolution on the topology of a 3-torus in the absence of boundaries. However,
in the context of general relativity, this introduces complications of a cosmological nature
regarding the instability of Minkowski spacetime to perturbations on a compact manifold, as
has been discussed in [6].

Establishing a paradigm for standardized testbeds for numerical relativity is a formidable
task in itself. We can draw on experience from other fields, such as computational
hydrodynamics where such testbeds have been used for a long time (for an overview of
CFD testbed resources on the web, see, e.g., [14]; for an example of initial-value ordinary
differential equation (ODE) test-suites see [15]). However, general relativity comes with its
own issues that introduce extra complications. First of all, it is important to realize that the
numerical relativity community is small, with very limited available manpower. In contrast to
the size of the field, we are trying to solve many difficult problems at the same time. Numerical
methods are being developed in parallel with the formulation of the continuum problem, with
the construction of physically relevant initial data sets and with the unraveling of the physical
processes involved in the systems under investigation. All of this is, so far, without the help of
comparison with experiments. Groups working in the field are faced with many fundamental
questions in designing their approaches. Codes are in a state of flux that makes careful
documentation easy to postpone. A good example is the issue of boundaries, which can be
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taken to be either a cubic grid boundary or a smooth spherical boundary, which can either be
mapped to infinity or given some finite artificial location, and which are further complicated
by gauge freedom and the requirements of constraint preservation. Useful comparison of the
wide variety of resulting codes requires simple tests which isolate an important facet of the
problem.

We distinguish two fundamentally different types of testbed: the first type compares
different codes and methods in the treatment of a physically interesting set of solutions. In the
context of the binary black-hole problem, a detailed comparison of nonspinning equal-mass
inspiral would be a natural example. The second type is idealized situations, such as the
‘shock tube test’ [16] in computational fluid dynamics. This is the type of testbed we discuss
in the present paper, where we restrict ourselves to a greatly simplified first set of tests [6]:
periodic grids and strict test specifications, which as far as practicable define all the details
of a simulation except the formulation of the Einstein equations. Our experience with the
first round of testbeds confirms this decision: even the analysis of these simple situations has
proved quite challenging. Our conclusions in section 8 discuss how the experience from the
present round of tests can be used in our development of black-hole tests.

We identify five main aims of standardized tests of the ‘idealized’ type:

(i) Standardized tests should provide the young and fast-changing community of numerical
relativists with a common reference frame which will help integrate different efforts
to produce a coherent picture of what works and what does not, and thus reduce the
dependence on anecdote and fashion.

(ii) Tests should be efficient in revealing instabilities or other weaknesses of an algorithm,
both regarding simplicity of the analysis, run time and implementation.

(iii) Tests should help identify where problems come from, as a step toward improvement of
the algorithms.

(iv) Tests should facilitate comparisons between approaches regarding different continuum
formulations, spatial discretizations, time integrators, uses of artificial dissipation, etc.

(v) The development of testbeds should eventually lead to useful code comparisons for judging
the validity of physically interesting simulations, e.g. the binary black-hole problem.

Point (i) has been addressed by organizing this project as a community initiative, which
seeks broad participation and provides test results via web pages and a CVS repository [5].
Regarding point (ii), in this paper we review our original test specifications and propose
modifications to promote efficiency. Point (iii) is essential for the character of this paper: we
focus on presenting test results as a template for analyzing and interpreting results, rather than
just presenting the broadest possible listing of test output for a maximal number of codes. We
feel that it is essential to stress this point: tests which do not directly correspond to a physically
interesting situation are only valuable if they improve our understanding of what really goes
on with a certain code. Only then can we hope to carry over test benefits to other situations.
Such analysis does of course require a certain effort.

Point (iv) is dealt with by providing ‘standard candle results’ in the CVS repository,
i.e., benchmarks that have been obtained with very strictly defined specifications. Point (v)
represents the ultimate goal of the AwA Alliance.

The analysis of test results has led to better understanding of the four original standardized
tests and has led to some improvements in their specifications. We also have added a new
shifted gauge wave test, which closes a gap regarding the ability of a code to handle a shift.
The revised specifications for the five tests are detailed in appendix A. The major changes
from the specifications in [6] are
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• Robust stability test. The rules for how the data should scale with resolution have been
changed; the criteria for passing the test have been restated.

• Linearized wave test. No changes.
• Gauge wave test. The original tests amplitudes A = 0.01 and A = 0.1 have been replaced

with A = 0.5.
• Shifted gauge wave test. This new test has been added.
• Gowdy wave test. No changes.

We have also dropped the original requirement that the tests be run with a iterative Crank–
Nicholson integrator. Conclusions from the test results and our experiences with the testing
procedures, along with the reasons behind the changes and additions in the standard tests, are
summarized in section 8.

The code descriptions and test data on which this paper is based are described in
section 2. The results for the original four standardized tests are discussed in sections 3–5
and 7. Discussion of the shifted gauge wave test and some benchmarks are given in
section 6.

The plots presented in this paper are based upon test output in the CVS repository. Many
of these tests were run with codes in which artificial dissipation was only introduced implicitly
through the use an iterated Crank–Nicholson (ICN) time integrator. It had been a naive hope
at the beginning of this project that the use of ICN might provide a way to standardize the
introduction of dissipation. Most numerical relativity groups now use Runge–Kutta time
integrators with the explicit addition of Kreiss–Oliger dissipation (see appendix C.2). It has
been found that many of the test results presented here could be greatly improved by such
explicit use of dissipation. In addition to artificial dissipation, most codes that simulate binary
black holes use higher order approximations than the second-order accurate codes being
compared here. Consequently, we want to emphasize that the results exhibited in this paper
should not be used to make judgments on particular approaches, but that our purpose is to
assess and improve the test suite and to provide a basis for future code comparisons.

2. Code descriptions

In order to ensure a consistent presentation of test output, we present a brief account of the
numerical codes and algorithms which have been used to produce the data on which this paper
is based. All data are publicly available via the CVS repository (see [5] for details). The
four original standardized tests are denoted by ROBUST (the robust stability test), LINEAR
(the linear wave test), GAUGE (the gauge wave test) and GOWDY (the Gowdy wave test).
Table 1 summarizes the output data that have been submitted for the various codes.

The usefulness of these data depends upon good code documentation. It is beyond the
scope of this paper to provide such documentation for all the codes involved. However, we
will outline some basic code information which is necessary to interpret the test results. The
complexity of this task is somewhat alleviated because all the codes represented here follow
a method of lines approach. We will organize the code descriptions along the following
guidelines.

• A description of the continuum formulation, including a list of all variables, their
associated evolution equations and constraints (both differential and algebraic), equations
governing the lapse and shift and a specification of any free parameters. Terms and
differential operators in the equations should be ordered in the way that they are
approximated by finite difference expressions in order to avoid ambiguities associated
with the Leibniz rule. The hyperbolicity classification should be provided, if known.
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Table 1. Test output and codes considered in this paper. The code abbreviations are explained
below, along with a description of the finite difference algorithm. A ‘++’ indicates a full
complement of test output in the CVS, a ‘+’ indicates partial output which has been used for
our analysis, a ‘−’ indicates partial output on which no meaningful conclusions could be drawn
and a ‘−−’ indicates no output.

CODE ROBUST LINEAR GAUGE GOWDY

Abigel harm ++ ++ ++ ++
AEI CactusEinsteinADM + −− −− ++
Kranc FreeADM + + + +
CCATIE BSSN ++ ++ ++ ++
Kranc BSSN ++ ++ ++ ++
LazEv BSSN ++ ++ ++ ++
HarmNaive ++ ++ ++ ++
KrancNOR ++ ++ ++ ++
KrancFN ++ ++ ++ −−
LSU HyperGR ++ ++ ++ ++

• A description of the semi-discrete system, describing the spatial finite difference equations
on each time level, including the rules for discretizing partial derivatives as centered or one-
sided finite differences and any other discretization techniques, such as spatial averaging
or dissipation. For complicated systems, the finite difference rules may be specified only
for the principal part, with further details supplied by references. (Here we provide some
basic reference material in appendices B and C for compactness of presentation.)

• A description of the numerical time update scheme. All manipulations of data between
intermediate time steps should be specified, such as enforcing a constraint.

As an example, we consider two inequivalent algorithms for the wave equation �φ = 0
(with unit lapse, zero shift and spatial metric γij ), which should be expected to result in
different code performance. In both cases the second order in time system is reduced to first
order in time by introducing the variable π = ∂tφ, and applying, say, fourth-order Runge–
Kutta (see appendix C) to the ODEs of the semi-discrete system obtained using the method of
lines. Two different codes can based upon the following descriptions.

Description I:

(i) The continuum system is

∂tφ = π, (1)

∂tπ = 1√
γ

∂i(
√

γ γ ij ∂jφ). (2)

(ii) The semi-discrete version is obtained by replacing all partial derivatives in (2) by centered
differences:

∂tπ = 1√
γ

D0i (
√

γ γ ijD0jφ),

where D0i is the centered difference operator D0 applied in direction i (see appendix C.1).

Description II (inequivalent with I):

(i) The continuum system is

∂tφ = π, (3)
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∂tπ = γ ij ∂i∂jφ +
1√
γ

∂i(
√

γ γ ij )∂jφ. (4)

(ii) The semi-discrete version is obtained by replacing the partial derivatives in (2) by centered
differences according to

γ ij ∂i∂jφ +
1√
γ

∂i(
√

γ γ ij )∂jφ = γ ijD+iD−jφ +
1√
γ

D0i (
√

γ γ ij )D0jφ, (5)

where D+i and D−i represents forward and backward centered finite differences in the
respective directions (see appendix C.1).

The codes resulting from these two descriptions produce substantially different
performance because of the ‘checkerboard’ design of the stencil used in description I.
Descriptions of the specific codes used in this paper are given in appendix B.

3. Robust stability test

The robust stability test was intended as a first screen to eliminate many unstable evolution
algorithms. The particular importance of this test was due to the fact that instabilities of
numerical codes appeared as a prime obstacle to ‘solve’ the binary black-hole problem,
and essentially no theoretical understanding was available to discuss the well-posedness and
numerical stability of first order in time, second order in space formulations of the Einstein
equations, which have been and still are popular in the field. Recently, a theoretical framework
has become available to discuss the well-posedness and numerical stability of such mixed order
formulations of the Einstein equations [7–13, 17, 18], and it has been extended to the problem
of discretizing the equations in the context of the method of lines [11–13]. As a consequence of
both the recent breakthroughs in the binary black-hole problem and the theoretical advances,
numerical stability has become a relatively minor issue in practice (although there certainly
remain interesting mathematical questions to be pursued). We thus restrict ourselves to a
minimal discussion here, as is sufficient to understand the data available in our test results
repository. For a more in-depth discussion of theoretical and practical aspects of numerical
stability and the robust stability test we refer to [11], which has been directly motivated by
numerical results obtained within this project.

While the other tests give quantitative information about an evolution system, e.g. the
magnitude of the numerical error, the result of the robust stability test is ‘pass’ or ‘fail’. A
stable numerical algorithm is only possible if the underlying continuum problem is well-posed
[19]. In the well-posed case an instability might still arise, either from the numerical technique
or from the existence of an exponential mode in the continuum problem. The test is designed
to avoid continuum instabilities by considering small perturbations of the Minkowski metric.
In addition to providing efficient detection of unstable numerical algorithms (or coding errors)
affecting the principal part of the evolution system, it is also intended to spot instabilities
arising from ill-posed systems, such as weakly hyperbolic systems.

As an example, consider the weakly hyperbolic system

u,t = u,x + v,x

v,t = v,x

(6)

with the periodic solutions

u = ωt cos ω(t + x), v = sin ω(t + x) (7)

ω = 2πm, m = 1, 2, 3, . . .
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on the domain −0.5 � x � 0.5. In terms of the L2-norm

N =
(∫ 0.5

−0.5
(u2 + v2) dx

)1/2

, (8)

the Cauchy data for (7) at t = 0,

u = 0, v = sin ωx, (9)

have norm N(0) = 1/
√

2. However, because of (7), N(t) ∼ ωt for large ω. This leads to a
violation of the well-posedness requirement that in any finite time interval

N(t) < A eKtN(0), (10)

in terms of constants A and K independent of the Cauchy data.
For discretized systems we cannot test well-posedness directly, but rather we test the

analogous concept of numerical stability, i.e., we aim at establishing the existence of constants
A and K, which give rise to the bound

‖vn‖
‖v0‖ � A eKtn , (11)

where vn is the solution of the discrete system at time tn = nk. The test is passed if such
a bound can be established, and is failed otherwise. In the discretized version of a weakly
hyperbolic problem, with grid displacement h, the perturbation of a simulation by random
initial data can be expected to excite numerical error which grows linearly in time according
to u ∼ t/h, corresponding to the shortest wave number ω ∼ 1/h. This would then lead to
secular error growth which increases with resolution. Although the system (6) is well-posed
with respect to a stronger norm including a v2

,x term, a generic perturbation of (6) by lower
order terms would nevertheless produce an exponentially growing instability which cannot be
bounded. See [20] for a more general discussion of such weakly hyperbolic systems.

The key idea of setting initial data for this test is to distribute energy roughly equally over
all frequencies. This is a particularly efficient way to reveal growing modes if the growth rate
increases with resolution, as is the case if the discretization is unstable or if the continuum
problem is ill-posed. In our test we use a spectrum generated by random initial data.

The robust stability test as formulated here tests numerical stability in the linear, constant
coefficient regime. It is based upon small random perturbations of Minkowski space, with the
initial data consisting of random numbers ε applied at each grid point to every code variable
requiring initialization. In numerical evolution, where machine precision takes the place of ε,
a code that cannot stably evolve such random noise would be unable to evolve smooth initial
data.

In spite of its simplicity, our experience has shown that the robust stability test exhibits
various subtle difficulties in designing a single test prescription that is universally effective for
all evolution systems and numerical methods. Some particular problems are:

• For random initial data, where a significant part of the total energy is in high frequencies,
dissipation has a large effect. Some intrinsic dissipation is unavoidable in finite difference
evolution algorithms, and adding artificial dissipation may be necessary to stabilize
certain algorithms [11], and insufficient to stabilize others (such as algorithms for weakly
hyperbolic systems). Simulations of variable coefficient, nonlinear systems normally
require numerical dissipation to obtain a stable evolution, e.g. by adding Kreiss–Oliger-
type dissipation [20] (see appendix C.2). Dissipation can however increase the time scale
on which instabilities become apparent. The detailed way dissipation affects instabilities
varies with the spatial discretization (we only consider second-order approximations here),
with the time integrator, with the grid resolution and with the Courant number.
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• As discussed in the above example, well-posedness and numerical stability are defined
with respect to a certain norm. Using an inappropriate norm can yield misleading results.
Second-order systems require different norms than first-order systems [11].

• Numerical stability of an explicit time integration algorithm can only be expected if
the time step is appropriately restricted by a Courant–Friedrichs–Lewy (CFL) condition.
It is important to distinguish between resolution-dependent blowup associated with ill-
posedness from blowup resulting from a CFL violation. For sufficiently complicated 3D
algorithms, the CFL limit might not be readily deduced from analytic arguments. As
an example, exponential growth of the ADM algorithm was mistakenly provided as an
illustration of a failed robust stability test in [6]. It took subsequent testing and analysis
to reveal that this exponential growth resulted from a CFL violation and that otherwise
the weakly hyperbolic instability of ADM resulted in a secular (linear in time) growth.

As a result of such considerations, we will not try to present a single universally applicable
specification for the robust stability test. Instead, while keeping the original spirit of the test
as a simple and useful first screen, we propose some changes in the guidelines, as discussed
below.

An important issue when performing stability tests is whether the high-frequency modes
are damped. This has important bearing on the long-time behavior of the robust stability test:
all damped modes will decay in time; eventually the undamped frequencies of the discrete
system will dominate the signal. If an analysis of damping factors has not been performed,
the test can therefore also be useful in detecting the spectrum of frequencies which are not
damped. It has been pointed out in [11] for standard discretizations of first order in space
systems that the ‘checkerboard’ mode is undamped, while for typical second-order systems
it is damped. Since the ‘checkerboard’ mode is not realized on grids with an odd number
of points, we adopt the practice of always using an even number of grid points so as not to
muzzle such a potential instability.

In our original specifications, we proposed the relatively large time step dt = 0.5 dx,
which turned out to be larger than the CFL limit for the ADM system. Since a smaller dt also
decreases the amount of dissipation inherent in a time integrator, we now propose a relatively
small time step to avoid distortion of results due to dissipation. Common time integrators in
current practice in numerical relativity are ICN, RK3 and RK4 (sorted by decreasing internal
amount of dissipation). A sufficiently small time step would yield similar results for all of
them. We therefore propose to run with dt = 0.1 dx, which can be further reduced in case of
doubt. See appendix A.1 for details.

For systems that use variables which correspond to spatial derivatives of the ADM 3-
metric and extrinsic curvature, an ambiguity arises: noise can be added uniformly to all
variables, or to the ADM initial data before taking derivatives. There are similar ambiguities
in second-order systems regarding how the range of the random numbers should scale with
resolution. For uniformity of description, we propose to do the simplest thing, namely to
apply noise to all evolution variables in the same way. We propose the range of ±10−10 for
all variables, the same range used for the lowest resolution in the original specifications.

Following common practice at the time, the Hamiltonian constraint was used to analyze
test results. Again following [11], we now propose a pass/fail analysis based upon whether
the time behavior of the norm satisfies (11).

Our core test specification combines both 1D and 3D features by running in a thin channel
along the x-axis. The use of four distinct gridpoints in the y- and z-directions allows for the
checkerboard mode (ghost points may be necessary depending upon the numerical scheme).
The generalization to a full cube 3D test is straightforward, and may add further clarification
in case of dubious results.
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Figure 1. Convergence results for the robust stability test with the Abigel harm (left) and
HarmNaive (right) codes, for runs of one crossing time. The graphs show the error in gxx as
a function of time, obtained by subtracting 1 from its L2-norm. As seen from the slopes of the
graphs, the Abigel harm code (left) passes the test, because there is no increasing rate of error
growth with higher resolution ρ, while the HarmNaive code (right) fails the test because the growth
rate increases with resolution.

The test should be run until one is confident that dissipation effects do not cloud the
result. Without artificial dissipation, a runtime of one crossing time, using output at every time
step, is usually sufficient. This corresponds to 500ρ time steps, for a given resolution ρ (see
appendix A). The test is passed if the norm satisfies the inequality (11) for all resolutions, for
a fixed choice of A and K.

Instabilities caused by the ill-posedness of the evolution system (or by coding errors
in treating the principal part) are already apparent in one-dimensional tests, which can be
performed quickly and economically. An example of how this analysis works is given in
figure 1. The way that the slope of the error versus time depends upon resolution shows that
the Abigel harm code, which is based upon a symmetric hyperbolic formulation, passes the
test; whereas the HarmNaive code, which is based upon a weakly hyperbolic formulation,
fails the test.

4. Linearized wave test

A prime physical objective of numerical relativity is to compute the waveform from a system
of black holes and neutron stars. This test checks the ability of a code to propagate a linearized
gravitational wave, which is a minimally necessary attribute for reliable wave extraction from
strong sources. Test specifications are given in appendix A.2.

The test checks the accuracy of the code in propagating both the amplitude and phase of
the wave. It can reveal whether excessive dissipation has been necessary for good long-term
performance in the robust stability test. For the ρ = 1 coarsest grid (N = 50 grid zones), there
is no enough resolution for second-order accurate codes to obtain accurate phase propagation
and the corresponding runs should only be viewed as an economical first check on the code.
The most useful comparisons are with the ρ = 4 grid.

Figure 2 compares snapshots of the 1D wave after 1000 crossing times which were
obtained with a variety of codes using the ρ = 4 finest grid. For reference, the exact
waveform is also plotted. The snapshots for three of the codes, Abigel harm, HarmNaive
and LazEv BSSN, are very similar and provide a good benchmark for the accuracy that can
be achieved at this resolution. They very closely match the exact solution in amplitude but
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Figure 2. Comparison snapshots of gyy(x) − 1 at t = 1000 for the 1D linearized wave test, with
ρ = 4 resolution.

-0.4 -0.2 0 0.2 0.4
-2e-08

-1e-08

0

1e-08

2e-08
Abigel_harm
CCATIE_BSSN
HarmNaive
Kranc_BSSN
KrancFN
LazEv

Figure 3. Comparison snapshots of the error E in gyy(x) at t = 1000 for the 1D linearized wave
test, with ρ = 4 resolution.

show a phase delay, similar to the delay seen in the following gauge wave test. It should be
expected that phase accuracy could be improved by going to fourth-order accurate methods.
Some snapshots of the corresponding error are displayed in figure 3. Except for the two codes
with the largest phase error, the error at 1000 crossing times is confined to a small band. By
monitoring the growth of the error during the evolution, it was verified that no overall multiple
of 2π phase error is concealed in the snapshots of figure 2.

In addition, the plots of the Hamiltonian in figure 4 show no rapidly growing constraint
violating instabilities in this linear regime. The secular instability of Harm Naive, which
was discussed in the robust stability test, is evident but it does not introduce a large error in
this test. This illustrates that instabilities associated with a weakly hyperbolic system are not
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Figure 4. Comparison of time dependence of the L∞-norm of the Hamiltonian constraint ‖H‖,
shown on a logarithmic scale, for the 1D linearized wave test with ρ = 4 resolution.

necessarily evident in linearized tests where, as discussed in section 3, the unstable modes
only grow secularly in time. The KrancFN code gives good accuracy for the amplitude but a
much larger error in phase. The CCATIE code shows poor accuracy in both phase and error.
It is beyond the scope of this paper to explain the discrepancy between the performance of the
two BSSN codes.

The 1D linear wave test is simple and economical to perform. Although the test is not very
demanding, the results for the metric component gyy in figures 2 and 3 show that it provides
a benchmark which can be useful to identify weaknesses in code performance. The 2D tests
require more computer time and the results were typically in line with expectations from the
1D results.

5. Gauge wave test

The gauge wave test is based on a nonlinear gauge transformation of Minkowski spacetime.
Although the correct solution is a flat spacetime, nonlinear effects and the nontrivial geometry
of the time slices can easily trigger continuum instabilities in the equations. For simple
examples of such effects see [21] for a nonlinear wave equation on flat space, designed
to model problems arising in this testbed, and [22] for a linear example of how nontrivial
geometry of the slicing can trigger instabilities already for the Maxwell equations.

Our original specifications [6] were to run the test with amplitudes A = 0.01 and A = 0.1.
Many codes have been sufficiently improved to handle larger amplitudes, which is generally
more efficient in detecting instabilities with smaller run times. Accordingly, we specify an
amplitude of A = 0.5 in the revised test details given in appendix A.3.

While the gauge wave metric has a rather simple form, the test proved to be challenging for
most evolution codes. One anticipated source of growing error is the instability of a flat space
with T 3 topology [6]. Another problem is the existence of a family of harmonic, exponential
gauge modes corresponding to the substitution H → eλtH (for arbitrary λ) into the metric
(A.10) [21]. The testbed itself corresponds to λ = 0, but numerical error can easily excite this
mode and lead to exponential growth of the wave amplitude. Other instabilities may be present
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Figure 5. Time dependence of the L∞-norm of the Hamiltonian constraint ‖H‖, shown on a
logarithmic scale, for the 1D gauge wave test with resolution ρ = 4 and amplitude A = 0.1.

in individual systems, depending on the detailed form of the reduced evolution system for the
particular formulation. Some of these instabilities can be identified by looking at the growth of
the constraints for the formulation. In addition to instabilities that correspond to solutions of
the continuum problem, individual codes may suffer from numerical instabilities depending on
the discretization schemes. These would typically be seen as high-frequency modes and, for
well-posed systems, can be cured by adding artificial dissipation to the numerical algorithm.

Figure 5 shows the time evolution of the Hamiltonian constraint for the various codes.
The negligible violation of the Hamiltonian constraint by the harmonic codes can be attributed
to the fact that the harmonic coordinate conditions are used to shift the role of the constraint to
an evolution equation. Note that the BSSN codes show rapid growth of Hamiltonian constraint
violation. So far no BSSN code has demonstrated satisfactory performance for this test, and
for brevity we do not include BSSN results in the below results.

5.1. Results

5.1.1. Results for the Abigel harm code. For this particular testbed most components of the
densitized metric ḡµν = √−ggµν have trivial values, the non-trivial ones being

ḡyy = ḡzz = H. (12)

The original implementation of the Abigel code based upon (B.9) leads to a numerically stable
and convergent code, with no high-frequency modes generated. However, as shown by the
dramatic growth of the rescaled error plotted in figure 6, the gauge wave excites exponential
modes ḡyy = ḡzz = 1 − eλtH, λ > 0. This can be understood [21] in terms of solutions of the
harmonic system whose densitized metric components are all trivial except for

ḡyy = ḡzz = F(t, x). (13)

The resulting source term Sµν in (B.9) vanishes except for the components

Syy = Szz = −F 2
t + F 2

x

F
. (14)
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Figure 6. Comparison of code performance between the non-flux-conservative (non-FC) and
flux-conservative (FC) versions of the Abigel harm code, showing graphs of ḡzz(x) at t = 100
for a gauge wave of amplitude A = 0.5 on the ρ = 2 grid. In the non-FC case the graph is
rescaled by the average of the plotted function, showing ḡzz/avg(ḡzz) ≈ ḡzz/ exp(29.8). The
good overlap of this rescaled function with the analytic value clearly indicates that the dominant
error of the non-FC code is a multiplicative function of t. Measurements at t = 100 for the
non-FC code show that logarithm of the spatial average of ḡzz scales roughly as (dx)2, i.e.,
log(avg(ḡzz)ρ=1) ≈ 110.8, log(avg(ḡzz)ρ=2) ≈ 29.8, log(avg(ḡzz)ρ=4) ≈ 7.52, suggesting that
the multiplicative error has exponential growth of the form exp(O((dx)2) · t).

The PDE for F(t, x), which results from inserting (13) into (B.9), reduces to
(−∂2

t + ∂2
x

)
log F = 0, which admits the exponential solutions F = eλtH . These solutions satisfy the
harmonic constraints and the reduced harmonic system (B.9), so that they are also solutions
of the full Einstein equations. Therefore all codes using harmonic gauge conditions might be
expected to excite this mode.

In the case of the Abigel harm code, these modes were suppressed by building semi-
discrete conservation laws into the code which, for the gauge wave initial data, would not
be obeyed by the exponential solution. Namely, by writing (B.9) in the flux-conservative
form (B.10), the principle part of the resulting equation has vanishing source term, S̃µν = 0,
for this test. A summation by parts numerical algorithm then gives rise to the semi-discrete
conservation law

∂t

∑
I,J,K

(gtβ∂β ḡµν) = 0. (15)

While this is a non-generic result (most spacetimes would give a nonzero source term), building
this conservation law into the principal part of the system has proved effective not only in this
particular case but in the other Apples with Apples tests considered in this paper, as well as in
further proposed tests [21, 23, 24].

As shown in figures 7 and 8, the flux-conservative code does not develop exponential
error modes when running with the original ICN integrator (see [23] for similar results with
RK4.) The main source of error is phase error which converges to zero as the grid is refined.
In order to further illustrate this point, figures 7 and 8 give test results for both the 1D and 2D
versions with amplitudes of A = 0.01, 0.1, 0.5.
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Figure 7. Convergence results for the 1D gauge wave simulation with the Abigel harm code, for
amplitudes of A = 0.01 (left) and A = 0.1 (right). The graphs show the L∞-norm of the error in
gxx , defined as gerr

xx = gnum
xx − gana

xx as a function of time, and rescaled by a factor of 1/ρ2. As
seen from the graphs, the lower amplitude runs give no new information.
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Figure 8. Convergence results for the 2D gauge wave simulation with the Abigel harm code,
for amplitude A = 0.5. The left graph shows the L∞-norm of the error in gxx , rescaled by a
factor of 1/ρ2, as a function of time; while the right graph shows the same rescaled error norm
for the violation of the Hamiltonian constraint H. For the Abigel harm code, the vanishing of
the Hamiltonian constraint is an algebraic identity, making H of order roundoff. As a result, the
constraint violation is super convergent. The lower amplitude runs revealed no new features.

5.1.2. Results for the HarmNaive system. This naive harmonic system, although weakly
hyperbolic, behaves identical to the symmetric hyperbolic Abigel harm code for this testbed.
This can be understood given that the RHS for the mixed spacetime components of the
evolution system vanish, i.e.,

∂t ḡ
it = −∂j ḡ

ij = 0, (16)

which implies that the time–time component of the RHS also vanishes, i.e.,

∂t ḡ
tt = −∂j ḡ

tj = 0. (17)

The test-results confirm this.
As expected, tests for the ADM-system also behave identically, since the naive harmonic

system can be understood as a formulation of the ADM-system in the harmonic gauge. We
therefore skip a separate discussion of the ADM-system.
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Figure 9. Comparison snapshots of gxx(x) for the 1D gauge wave with amplitude A = 0.1 at the
end of a run with ρ = 4 resolution. For the Abigel and KrancFN codes, the run lasts the full 1000
crossing times. The KrancNOR code crashes at t = 44.

5.2. Results for the KrancFN and KrancNOR systems

Besides the harmonic codes, KrancFN was the only other code that was able to run for 1000
crossing times for an amplitude A = 0.1. At the end of the run, figure 9 shows that long
wavelength growth due to the eλtH instability of the wave amplitude has become appreciable.

The KrancNOR code picks up the eλtH instability at a faster rate and, although it shows
clear second-order convergent at early times, it crashes at t ≈ 44. The snapshot in figure 9
shows that the error at the end of the run is almost exactly in the eλtH mode.

6. Shifted gauge wave testbed

In the shifted gauge wave test (A.15) we have identified two types of instability [23]. One,
which is analogous to the instability of the gauge wave, arises from the λ-parameter family of
vacuum metrics

ds2
λ = eλt (−dt2 + dx2) + dy2 + dz2 + Hkαkβ dxα dxβ, (18)

which reduces to the shifted gauge wave for λ = 0. The other is an instability peculiar to
harmonic (or generalized harmonic) evolution codes, where the Einstein equations are satisfied
only indirectly through the harmonic conditions. The metric

dŝ2
λ = −dt2 + dx2 + dy2 + dz2 + (H − 1 + eλt̂ )kαkβ dxα dxβ, (19)

where

t̂ = t − Ad

4π
cos

(
2π(x − t)

d

)
, (20)

satisfies the reduced harmonic evolution equations (B.9). The simulation of the shifted
gauge wave by any evolution code based upon a standard reduction of Einstein’s equations to
harmonic form can be expected to excite this instability.

The test was developed in conjunction with the Abigel harm code [23]. For 1D runs with
the ρ = 4 resolution, it was found that the evolution equation (B.10) excited the instability (19)
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Figure 10. Plots of the L∞ error E(t) in gxx obtained with the Abigel code for the 1D shifted
gauge wave test with amplitude A = 0.5 and resolution ρ = 4. Results are compared for the
constraint adjustment (23) with b = 1, the constraint adjustment (24) with c = 1 and the bare
algorithm. The two adjustments show very similar error and both give excellent suppression of the
unstable mode excited by the bare algorithm.

on a timescale t ≈ 500. Further investigation showed that this instability could be suppressed
by adjusting (B.10) according to

S̃µν → S̃µν − Aµν, (21)

where Aµν = 0 when the harmonic constraints

Cµ := − 1√−g
(∂νḡ

µν − H̃µ) = 0 (22)

are satisfied. Particularly effective were the constraint adjustments

Aµν = bCα∇αt

eρσCρCσ
CµCν, b > 0, (23)

where eρσ is the natural metric of signature (+ + ++) associated with the Cauchy slicing, and

Aµν = − c√−g
Cα∂α(

√−ggµν), c > 0. (24)

This is exhibited in figure 10, which shows for a run with amplitude A = 0.5 that these
constraint adjustments suppress instabilities for the entire 1000 crossing time duration of the
test.

Results for the shifted gauge wave tests are also available from the CVS repository for
BSSN codes. In this case, as in the standard gauge wave test, the results are not satisfactory,
and suggest further analysis, which is beyond the scope of this paper. Results obtained
with the Kranc BSSN code and a very small value of the dissipation parameter (σ = 0.001,
see equation (C.7)) for the medium amplitude A = 0.1 are shown in figure 11. While the
code shows second-order convergence for several crossing times, rather quickly an instability
develops that eventually crashes the code. As expected, the instability develops slower for the
lower amplitude A = 0.01, and faster for A = 0.5, where the code crashes within roughly one
crossing time. Similar results are also available in the CVS repository for the CCATIE code.
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Figure 11. Performance of Kranc BSSN for the shifted gauge wave with amplitude A = 0.1
and a dissipation value of σ = 0.001. Left panel. The L2-norm of the Hamiltonian constraint
plotted versus time for resolutions ρ = 1, 2, 4 (short-dashed, long-dashed, full line). Right panel:
convergence test for the L2-norm of tr K for resolutions ρ = 1, 2, 4. Second-order convergence is
lost after a few crossing times.

Results for the shifted gauge wave test have also been obtained [25] using the
Caltech–Cornell group’s spectral version of a code based upon the Kidder–Scheel–Teukolsky
formulation of the Einstein equations [26]. For the 1D test with A = 0.5, they encountered
nonlinear instabilities associated with aliasing after a few crossing times. There are standard
filtering techniques to deal with such aliasing problems. By filtering the top 1/3 spectral
coefficients, they found that the evolutions could be extended as far as t = 60, but further
improvements by filtering did not seem possible. The group has not yet reported results for
their current spectral code which is based upon a generalized harmonic formulation.

7. Gowdy wave test

The previous tests involve spacetimes with small curvature. The Gowdy wave test is based
upon a strongly curved exact solution for an expanding vacuum universe containing a plane
polarized gravitational wave propagating around a 3-torus T 3 [27]. See [28] for a recent
review. The metric has the form

ds2 = t−1/2 eλ/2(−dt2 + dz2) + t (eP dx2 + e−P dy2), (25)

where P(t, z) and λ(t, z) depend periodically on z and the time coordinate t increases as
the universe expands, with a cosmological type singularity at t = 0. The detailed tests
specifications given in appendix A.5 were designed so that neither very large nor very small
numbers enter in the initial data.

In the expanding direction, the qualitative behavior of the solution is characterized by P
slowly decaying to zero while λ grows linearly, with both P and λ exhibiting gravitational
wave oscillations. The linear growth of λ leads to exponential growth of gzz, so that code
accuracy is tested in a harsh situation. This makes evolution with a 3D code difficult compared
with the direct 1D evolution of P used in numerical studies of the approach to the cosmological
singularity [29].

The performance of the various codes in the expanding direction is illustrated by the output
for the trace of the extrinsic curvature K shown in figure 12. Although not apparent from the
figure, the HarmNaive code crashes abruptly at t = 8, as might be expected of a weakly
hyperbolic system in the nonlinear regime. Even though the analytic value of K is negative
and asymptotes to zero with the expansion, short wavelength error in the LS HyperGR and
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Figure 12. Comparison plots of the trace of the extrinsic curvature K for the polarized Gowdy
wave evolved in the expanding direction with the ρ = 4 resolution. Analytically K is spatially
homogeneous; the plots show its maximum value over the numerical grid.

-0.4 -0.2 0 0.2 0.4
0

10000

20000

30000

40000

50000

60000

Figure 13. Plot of the error E(z) in gzz for the polarized Gowdy wave evolved in the expanding
direction with ρ = 4 resolution with the second-order accurate LazEv BSSN code. The error,
plotted at t = 13 just before the code crashes, shows a large short wavelength component which
can be controlled by dissipation.

LazEv BSSN codes triggers an instability leading to a collapsing mode with K > 0. This
is illustrated for the LazEv BSSN run in the snapshot of figure 13, which shows the error in
gzz(t, x) at t = 13 just before the run crashes. The superposition of short wavelength error
with the long wavelength truncation error from the signal is evident.

Further experiments with the LazEv BSSN code showed that this short wavelength
instability could be controlled by numerical dissipation and that the accuracy could be further
improved by using fourth-order finite difference approximations. For the expanding Gowdy
test, this is illustrated in the plots of the rescaled error in the left portion of figure 14 which
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Figure 14. Convergence results for the L∞-norm of the error ‖E(t)‖ in gzz (logarithmic scale)
for the polarized Gowdy wave evolved in the expanding direction. On the left, the results for the
ρ = 2 resolution have been rescaled by 1/16 for the fourth-order accurate LazEv BSSN code with
dissipation. The results indicate stability and convergence but do not give long-term accuracy. On
the right, the error for the ρ = 2 resolution has been rescaled by 1/4 for the second-order system
Abigel Harm code, again showing stability and convergence. Both codes exhibit roughly the same
long-term rate of error growth expected from the exponential growth of gzz.

indicate fourth-order convergence. However, the error still exhibits poor long-term accuracy.
In the right portion of figure 14, we also display the error in the second-order accurate
Abigel Harm code. Both the second-order and fourth-order codes have approximately the
same long-term rate of growth due to the underlying exponential growth in gzz.

The Gowdy test is run in both future and past time directions because analytical studies
[30] and numerical experiments [22, 31] indicate that the sign of the extrinsic curvature
may have important consequences for constraint violation. The subsidiary system governing
constraint propagation can lead to unstable departure from the constraint hypersurface. As
an example, in a hyperboloidal slicing of Minkowski space with unit lapse and zero shift,
the electromagnetic constraint C = ∇aE

a satisfies C(t) = C(0) eKt when the standard
Maxwell evolution equations are satisfied. Thus numerical error can be expected to lead to
exponential growth of the constraint for a hyperboloidal foliation with K > 0. The situation
is more complicated in the nonlinear gravitational case but similar instabilities of the system
of equations governing the constraints are associated with the extrinsic curvature [30]. A
negative value of K (the expanding case) tends to damp constraint violation whereas a positive
value (the collapsing case) can trigger constraint violating instabilities.

In the collapsing direction, we perform the runs with a harmonic time slicing to prolong
the approach to the singularity, as previously done by Garfinkle [32]. The results for the
Hamiltonian constraint for the various codes are shown in figure 15 for the collapsing case.
All the codes now show some growth in the Hamiltonian constraint, either of a slow or runaway
type. The slow growth, exhibited for example by the Abigel harm, AEI CactusEinsteinADM
and KrancNOR codes, can be attributed to the analytic constraint instabilities discussed in
[30]; the Hamiltonian constraint violation remains small (≈10−2) at the end of the run. The
runaway growth exhibited by the LazEv BSSN code can again be controlled by numerical
dissipation. This is demonstrated by the convergence results shown in figure 16 for the
fourth-order dissipated version of the code.

The choice of specifications given in appendix A.5 provides a Gowdy testbed capable
of good discrimination between different formulations. Results for both the expanding
(figure 12) and collapsing (figure 15) directions show a wide spread in the performance
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Figure 15. Comparison plot of the L∞-norm of the Hamiltonian constraint versus harmonic time
t for the polarized Gowdy wave evolved in the collapsing direction with the ρ = 4 resolution.
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Figure 16. Convergence results for the L∞-norm of the Hamiltonian constraint ‖H(t)‖ for the
polarized Gowdy wave evolved in the collapsing direction by the fourth-order system LazEv BSSN
code with dissipation. After rescaling the results for the ρ = 2 by 1/16, they closely match those for
the ρ = 4 resolution. The figure shows stability and convergence of the Hamiltonian constraint up
to 1000 crossing times and demonstrates good performance of the LazEv BSSN code if dissipation
is added.

of the different codes. We observe, as in the gauge wave test, that the BSSN-based codes have
less satisfactory performance.

8. Conclusions

This first round of tests, although modest in scope is a good start at establishing the methods
for code verification that have been deemed necessary for any complicated computational
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discipline, such as numerical relativity, to fulfill its scientific potential. As observed by Post
and Votta [33] in their study of the verification and validification of large scale computational
projects, ‘the peer review process in computational science generally does not provide as
effective a filter as it does for experiment or theory. Many things that a referee cannot detect
could be wrong with a computational science paper . . . . The few existing studies of error
levels in scientific computer codes indicate that the defect rate is about seven faults per 1000
lines of Fortran’. Their observations are especially pertinent for numerical relativity where
validation by agreement with experiment is not available.

Several problems have been encountered in the course of this project. One problem was
getting prompt response from a broad set of groups with many other pressures. The Apples with
Apples workshops were very successful in this regard and were absolutely essential in jump
starting and continuing the project. But after the participants dispersed from the workshops,
outside pressures led to predictable difficulties. Besides teaching and administrative duties,
the overriding scientific pressure in the field has been solving the two black-hole problem and
supplying waveforms. This raises a complicated juggling of priorities between black-hole
simulations and code verification. In order for code verification to be attractive, the tests have
to be useful and the investment in time has to be minimal. This adds emphasis on the need for
tests that are simple to carry out and simple to document the results.

Another level of complication in this project arises from the feedback between test
design and the analysis of test output. This has led us to improvements in the tests and to
their better understanding. In the robust stability test the correct interpretation of results for
weakly hyperbolic algorithms required rethinking the proper choice of norm and refinement
procedure for judging stability. In the gauge wave tests, the desire for computational efficiency
in detecting nonlinear problems at an early time has led us to the adoption of a higher amplitude
A = 0.5 for the test, as opposed to the original specifications A = 0.01 and A = 0.1.

The robust stability test is presented as a pass/fail test. For the linear wave test the
amplitude and phase errors in the output data for the wave profile provide a good comparison
of code performance. For the gauge wave and shifted gauge wave tests, a prime challenge
is the suppression of long wavelength nonlinear instabilities in the analytic problem. For the
Gowdy test, there were unanticipated shortcomings in the output content that should lend
valuable experience in the design of future black-holes tests. Useful benchmarks have been
established for the linear wave, gauge wave and Gowdy wave tests, which have revealed clear
deficiencies in various codes. Such deficiencies raise a clear alert that it is necessary to apply
or recheck other verification techniques, such as convergence tests.

These first round results provide a good basis for proposing new tests. Already, they have
prompted addition of the shifted version of the gauge wave test, in which a non-vanishing
shift fills a gap in the four original tests for periodic boundary conditions. This test has been
useful in developing analytic and numerical techniques for controlling instabilities [23, 25].
A second round of boundary tests based upon the periodic tests have been proposed. The
specifications are given on the Alliance website [5]. Results of some of these boundary tests
have been reported elsewhere [24, 34]. The next stage is to formulate tests involving black
holes.

The code comparisons have proved useful for designing code improvements and for
stimulating the use of new numerical techniques. During the course of this work, results of
the shifted gauge wave test were key to recognizing the importance of discrete energy and flux
conservation for harmonic code performance [23]. The need to carry out the tests with a wide
range of formulations has led to the development of symbolic code generation [35]. Although
the tests were designed for finite difference codes, they have been adapted and applied to
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pseudo-spectral codes [25]. Further independent studies based upon the tests have played a
major part in thesis research [36, 37].

Establishment of the CVS data repository has been an important step in the documentation
of test results. Instructions for accessing the data are given at [5]. The CVS directory
structure has been significantly streamlined and documented since the beginning of the project.
However, the difficulties in completing this analysis of the first round of tests has emphasized
the need of a uniform standard for data structures and output. Rather than trying to anticipate
a complete list of useful output quantities, it seems more desirable to output the 3-metric and
extrinsic curvature at specified times. Then other output quantities can be constructed in post
processing. Ideally, this should be done in some standardized way using automated routines
and graphical interfaces. All of this would require considerable infrastructure to provide
hardware for data storage and software for processing. This is one of the important matters
that will be presented for discussion at future Alliance meetings.
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Appendix A. Revised testbed specifications

We present here the updated specifications for the five standardized testbeds. For each test
we provide the 4-metric of the spacetime, except for the robust stability test where only the
initial Cauchy data are specified. This determines the 3-metric hµν = gµν +nµnν (where nµ is
the future directed unit normal to the Cauchy hypersurface) and the extrinsic curvature Kµν .
We use the convention Kµν = −hρ

µ∇νnρ for which the trace K is negative for an expanding
cosmology. In all cases, the evolution takes place in a fixed rectilinear coordinate domain with
periodic boundary conditions, i.e. a 3-torus. The identified ‘boundaries’ in the 3-torus picture
are located a half step from the first and last grid points along each axis.

Even though we are concerned with three-dimensional codes, for tests with only one-
dimensional features in the x-direction it is efficient to use the minimum number of grid points
in the trivial y- and z-directions, i.e. to run the test in a long channel rather than a cube.
For standard second-order finite differencing this implies that we use 3 or 4 points in those
directions. For all such 1D tests, the evolution domain is

x ∈ [−0.5, +0.5], y = 0, z = 0, (A.1)
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with grid

x = −0.5 +
(
n − 1

2

)
dx, n = 1 . . . 50ρ, dx = 1/(50ρ), ρ ∈ Z. (A.2)

(In the Gowdy wave test, the grid is aligned with the z-direction.) The 2D tests have evolution
domain

x ∈ [−0.5; +0.5] y ∈ [−0.5; +0.5], z = 0 (A.3)

with both the x and y grids satisfying (A.2). The parameter ρ allows for grid refinement. The
coarsest ρ = 1 grid is useful only for debugging. Convergence tests should be made with
ρ = 2 and ρ = 4, with benchmarks for norms, constraints, etc provided by ρ = 4.

We have dropped the original requirement that the tests be run with an iterative-Crank–
Nicholson algorithm since Runge–Kutta time integrators have since proved to be more effective
and have been commonly adopted. For each test, the size of the timestep dt is given in terms
of the grid size to lie within the CFL limit for an explicit evolution algorithm. (For some codes
this may be inappropriate and some equivalent choice of time step should be made.) A final
time T, and intermediate times for data output, are specified for each test. They are chosen to
incorporate all useful features of the test without prohibitive computational expense. Except
for the robust stability test, it is important to calculate the convergence rate of the numerical
error. Additional output variables might be essential to assess the performance of a particular
formulation.

A.1. Robust stability testbed

The 3-metric is initialized as hij = δij + εij , where εij are independent random numbers at
each grid point. All other evolution variables are initialized in the same way. The amplitude
of the random noise is scaled with the grid as

ε ∈ (−10−10/ρ2, +10−10/ρ2). (A.4)

The range of the random numbers ensures that ε2 effects are below round-off accuracy so that
the evolution remains in the linear domain unless instabilities arise.

The timestep is specified to be dt = dx/10 = 0.002/ρ. The use of four distinct gridpoints
in the y- and z-directions allows for instabilities associated with the checkerboard mode.

The test should be run until one is confident that dissipation effects do not cloud the result.
Without artificial dissipation, a run time of one crossing time, using output at every time step,
is usually sufficient. This corresponds to 500ρ time steps. The test is passed if the norm
satisfies the inequality (11) for all resolutions, for some fixed choice of constants A and K.
Appropriate norms for both first- and second-order systems are recommended in [11] and are
publicly available as Cactus thorns [38].

A.2. Linear wave testbed

The initial 3-metric and extrinsic curvature Kij are given by a transverse, trace-free perturbation
with components

ds2 = −dt2 + dx2 + (1 + H) dy2 + (1 − H) dz2, (A.5)

where

H = A sin

(
2π(x − t)

d

)
. (A.6)
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This describes a linearized plane wave traveling in the x-direction. The wavelength is set to
d = 1 to match the periodicity of the evolution domain. The metric has lapse α = 1 and shift
βi = 0. The nontrivial components of extrinsic curvature are

Kyy = − 1
2∂tH, Kzz = 1

2∂tH. (A.7)

In order to test two-dimensional effects, the rotation

x = 1√
2
(x ′ − y ′), y = 1√

2
(x ′ + y ′). (A.8)

leads to a wave propagating along a diagonal. The resulting metric is a function of

sin

(
2π(x ′ − y ′ − t

√
2)

d ′

)
, where d ′ = d

√
2. (A.9)

To obtain the required periodicity of the evolution domain, we set d = 1 in the 1D simulation
and d ′ = 1 in the diagonal simulation. The test should be run in both axis-aligned and diagonal
form.

The test is performed with amplitude A = 10−8, so that quadratic terms are of the order
of numerical round-off. The time step is set to dt = dx/4 = 0.005/ρ As in the gauge wave
case, the 1D evolution is carried out for T = 1000 crossing times, i.e. 2 × 105ρ time steps,
with output every ten crossing times. The 2D diagonal runs are carried out for T = 100, with
output every crossing time. The output quantities are the L∞- and L2-norms, the maxima and
minima, and profiles along the x-axis through the center of the grid of gyy, gzz, Hamiltonian
constraint; and the L∞ error norm for gzz (measuring the difference from the exact solution).

A.3. Gauge wave testbed

The test is based upon the 4-metric

ds2 = (1 − H)(−dt2 + dx2) + dy2 + dz2, (A.10)

with H given by (A.6), which is obtained from the Minkowski metric ds2 = −dt̂2 + dx̂2 +
dŷ2 + dẑ2 by the transformation

t̂ = t − Ad

4π
cos

(
2π(x − t)

d

)
,

x̂ = x +
Ad

4π
cos

(
2π(x − t)

d

)
,

ŷ = y,

ẑ = z.

(A.11)

This describes a sinusoidal gauge wave of amplitude A propagating along the x-axis. The
extrinsic curvature is

Kxx = ∂tH

2
√

1 − H
= −πA

d

cos
( 2π(x−t)

d

)
√

1 − A sin
( 2π(x−t)

d

) , (A.12)

Kij = 0 otherwise. (A.13)

As for the linear wave, the rotation (A.8) leads to wave propagation along a diagonal with
periodic boundary conditions.

The gauge wave is run with amplitude A = 0.5. The time coordinate t in the metric
(A.10) is harmonic and the gauge speed is the speed of light. The time step is set to
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dt = dx/4 = 0.005/ρ. The 1D evolution is carried out for T = 1000 crossing times,
i.e. 2 × 105ρ time steps (or until the code crashes), with output every ten crossing times. The
2D diagonal runs are carried out for T = 100, with output every crossing time.

Output consists of the L∞- and L2-norms, the maxima and minima, and profiles along
the x-axis through the center of the grid (y = z = 0) of gxx , α, tr(K) and the Hamiltonian
constraint; and the L2 error-norm for gxx .

A.4. The shifted gauge wave test

The shifted gauge wave is obtained from the Minkowski metric ds2 = −dt̂2 + dx̂2 + dŷ2 + dẑ2

by the harmonic coordinate transformation

t̂ = t − Ad

4π
cos

(
2π(x − t)

d

)
,

x̂ = x − Ad

4π
cos

(
2π(x − t)

d

)
,

ŷ = y,

ẑ = z

(A.14)

which leads to the Kerr–Schild metric

ds2 = −dt2 + dx2 + dy2 + dz2 + Hkαkβ dxα dxβ, (A.15)

where

kα = −∂α(t − x) (A.16)

and H is again given by (A.6). The extrinsic curvature is

Kxx = ∂tH

2
√

1 + H
, (A.17)

Kij = 0 otherwise. (A.18)

This metric describes a shifted gauge wave of amplitude A propagating along the x-axis. The
coordinate transformation (A.8) rotates the propagation direction to the diagonal.

The shifted gauge wave test is run in a harmonic gauge with amplitude A = 0.5 in both
1D form and diagonal 2D form. As in the linear wave test, for the required periodicity we
set d = 1 in the 1D simulations and d ′ = 1 in the 2D simulations. We set the timestep
dt = dx/4 = 0.005/ρ. The 1D evolution is carried out for T = 1000 crossing times, i.e.
2 × 105ρ time steps (or until the code crash). The 2D runs are carried out for T = 100.

Output data consist of the profiles along the x-axis through the center of the grid
(y = z = 0) of gtt , gxt and gxx , the L2- and L∞-norms of the error and of the Hamiltonian
constraint.

A.5. Polarized Gowdy wave testbed

The polarized Gowdy metrics describe an expanding, toroidal universe containing plane
polarized gravitational waves with metric

ds2 = t−1/2 eλ/2(−dt2 + dz2) + t eP dx2 + e−P dy2, (A.19)

where λ and P are functions of z and t only and are periodic in z. The universe expands as t
increases. The test is carried out in both the collapsing and expanding situations. The metric
is singular at t = 0.
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The Einstein equations reduce to a single evolution equation

P,tt + t−1P,t − P,zz = 0 (A.20)

and the constraint equations

λ,t = t
(
P 2

,t + P 2
,z

)
(A.21)

and

λ,z = 2tP,zP,t . (A.22)

The test is based upon the particular solution to (A.20)

P = J0(2πt) cos(2πz), (A.23)

where Jn are Bessel functions. The metric and extrinsic curvature are

gxx = t eP , gyy = t e−P , gzz = t−1/2 eλ/2, (A.24)

Kxx = − 1
2 t1/4 e−λ/4 eP (1 + tP,t ),

Kyy = − 1
2 t1/4 e−λ/4 e−P (1 − tP,t ), (A.25)

Kzz = 1
4 t−1/4 eλ/4(t−1 − λ,t ),

with

tr K = − 1
4 t1/4 e−λ/4(3t−1 + λ,t ). (A.26)

The shift vanishes and the lapse is

α = √
gzz = t−1/4 eλ/4. (A.27)

For the choice (A.23), the constraints (A.21), (A.22) yield

λ = −2πtJ0(2πt)J1(2πt) cos2(2πz) + 2π2t2
[
J 2

0 (2πt) + J 2
1 (2πt)

]
− 1

2

{
(2π)2

[
J 2

0 (2π) + J 2
1 (2π)

] − 2πJ0(2π)J1(2π)
}
. (A.28)

While P slowly decays to zero, λ undergoes linear growth due to the cosmological expansion,
and both P and λ exhibit gravitational wave oscillations.

The velocity of light is constant in the coordinates chosen in (A.19) so that, with a fixed
spatial discretization dz, the Courant condition is consistent with a fixed timestep dt . This
makes the gauge (A.19) convenient for evolving in the expanding direction by choosing the
initial data from the exact solution at t = 1, which yields data of order unity.

In the backward in time evolution, we choose a harmonic time slicing τ which only
asymptotically reaches the singularity. Starting with the metric (A.19), the slicing is obtained
by a transformation t = F(τ), where the harmonic condition � τ = 0 implies F(τ) = k ecτ .
In order to start the collapse slowly, the free constants c and k are chosen so that the new
lapse satisfies α̂ = 1 at the initial time t = t0. This is accomplished by picking t0 for which
J0(2πt0) = 0 so that (A.28) implies α̂ is independent of z. Using

τ0 = 1
c

ln

(
t0

k

)
, λ(k ecτ0 , z) = λ0

we obtain

α̂0 = ct
3/4
0 eλ0/4. (A.29)

Given our requirement α̂0 = 1, and choosing t0 = τ0, i.e. F(τ0) = τ0, we get

c = t
−3/4
0 e−λ0/4, k = t0 e−ct0 . (A.30)
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We choose a particular value of t0 such that the initial slice is far from the cosmological
singularity, but not so far that we have to deal with extremely large numbers by picking the 20th
zero of the Bessel function J0(2πt0), which yields t0 ∼ 9.875 320 582 9098, corresponding to

c ∼ 0.002 119 511 921 4617, k ∼ 9.670 769 812 7638.

The time step is set to dt = dz/4 = 0.005/ρ with run time T = 1000 or until code crash.
Output consists of the L∞- and L2-norms, the maxima and minima, and profiles along the
z-axis through the center of the grid of gzz, α, tr(K) and the Hamiltonian constraint. We output
norms every crossing time, and profiles either every ten crossing times or once per crossing
time, depending on the behavior of the simulation. We also output the L∞ error norms of the
difference from the exact solution for gxx and gzz for the expanding direction.

Appendix B. Code descriptions

B.1. Standard ADM: Kranc FreeADM, and AEI CactusEinsteinADM codes

The formulation of the Einstein equation by Arnowitt, Deser and Misner (ADM) [39] provides a
standard notion for ‘evolving’ spacetime as an initial-value problem in general relativity, which
was initially presented in a Hamiltonian context. What is referred to as a ‘standard ADM’
system in the numerical relativity community is a reformulation due to York [40], which one
obtains by (3+1)-decomposition of the Einstein tensor (as opposed to (3+1)-decomposition of
the Ricci tensor in the original ADM version), or equivalently by adding appropriate constraint
terms to the evolution equations. As pointed out by Frittelli [41], York’s ‘standard ADM’
system does in particular have nicer properties regarding the constraint propagation system.
This system is particularly simple, has a long history in numerical relativity and exhibits some
typical problems. We therefore use it as the starting point for our numerical comparisons. The
evolution equations are

∂tγij = −2αKij + ∇iβj + ∇jβi (B.1)

∂tKij = αR
(3)
ij + αKKij − 2αKikK

k
j − ∇i∇jα + (∇iβ

k)Kkj + (∇jβ
k)Kki + βk∇kKij , (B.2)

and the constraint equations are

H = HADM := R(3) + K2 − KijK
ij , (B.3)

Mi = MADM
i := ∇jK

j
i − ∇iK, (B.4)

where (γij ,Kij ) are the induced 3-metric and the extrinsic curvature, (α, βi) are the lapse
function and the shift covector, ∇i is the three-dimensional covariant derivative and R

(3)
ij is the

three-dimensional Ricci tensor associated with γij .
We have tested two implementations of the standard ADM system, the code

AEI CactusEinsteinADM, which is freely available via the website [42], and Kranc FreeADM
which is based on the Cactus Toolkit [42] and Kranc software [35]. AEI CactusEinsteinADM
uses a hardcoded ICN time update scheme (see, e.g., [11]), whereas Kranc FreeADM uses
a method of lines (MoL) approach based on the CactusMoL thorn (in practice, RK3, RK4
and ICN (see, e.g., [11]) have also been used, as indicated). In all of these codes, spatial
partial derivatives are reduced to partial derivatives of the 3-metric, i.e., all expressions
such as Christoffel symbols are expanded out. Due to the absence of first-order variables,
no further ambiguities arise. Centered second- and fourth-order discretization is used (see
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appendix C.1), and third-order Kreiss–Oliger dissipation is optionally applied to all variables
(see appendix C.2).

The hyperbolicity of the ADM free evolution scheme has been analyzed and found to
be weakly hyperbolic with the type of gauge conditions that we use [11]. Since many of
our tests are essentially 1D tests, where ADM yields good results, we have also analyzed
the hyperbolicity of ADM in 1D. For simplicity of presentation we restrict ourselves to the
linearized case. Assuming propagation in the x-direction we obtain the following evolution
equations. For the off-diagonal components,

∂tγyz = 2Kyz, ∂tKyz = ∂xxγyz/2, ∂tKxy = 0, ∂tKxz = 0.

The evolution equations for γxy and γxz are analogous to the evolution equation for γyz. The
fact that the evolution equations for Kxy and Kxz are trivial renders the evolution system for the
off-diagonal components weakly hyperbolic (see, e.g., [11]). For the diagonal components,

∂tγii = 2Kii (i = x, y, z), (B.5)

∂tKxx = ∂xxα + 1
2∂xx(γyy + γzz), (B.6)

∂tKjj = 1
2∂xxγjj (j = y, z). (B.7)

Considering for simplicity the densitized lapse case, α = √
γ , the evolution equation for

Kxx becomes

∂tKxx = 1
2∂xxγxx + ∂xx(γyy + γzz)

and one finds that the diagonal subsystem is only weakly hyperbolic. However, within the
subclasses of gauge wave (γyy = γzz = 0) or linear wave (γxx = 0) data, the 1D ADM system
corresponds to copies of the 1D wave equation and is therefore well-posed.

B.2. Abigel harm

The Abigel code developed in Pittsburgh is based upon a symmetric hyperbolic formulation
of the Einstein equations using generalized harmonic coordinates satisfying the curved space
wave equation

� xα = 1√−g
∂µ(

√−ggµν∂νx
α) = 1√−g

H̃ α(xβ, gρσ ), (B.8)

where H̃ α are harmonic source terms. The original version of the evolution equations was
[43]

ḡαβ∂α∂βḡνµ = Sµν, (B.9)

where the left-hand side is the principle part and the right-hand side contains nonlinear first-
derivative terms. Here ḡµν = √−ggµν , with g = det(gµν) = det(ḡµν), and the harmonic
constraints ∂νḡ

µν = H̃µ are used in the Einstein equations to eliminate second derivatives in
the source terms Sµν . For further details concerning the formulation and its implementation
see [43].

The code with which the tests were performed was constructed by rewriting (B.9) in the
flux conservative form

∂α(gαβ∂βḡµν) = S̃µν, (B.10)

and reducing it to the first order in time form

∂t ḡ
µν = − ḡti

ḡt t
∂i ḡ

µν +

√−g

ḡtt
Qµν (B.11)
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∂tQ
µν = −∂i(g

ij ∂j ḡ
µν + git ∂t ḡ

µν) + S̃µν (B.12)

= −∂i

[(
gij − gtigtj

gtt

)
∂j ḡ

µν

]
− ∂i

(
git

gtt
Qµν

)
+ S̃µν (B.13)

= −∂i(h
ij ∂j ḡ

µν) − ∂i

(
git

gtt
Qµν

)
+ S̃µν, (B.14)

in terms of the evolution variables (ḡµν,Qµν), where

Qµν = gtα∂αḡµν (B.15)

and hij = gij − gitgjt /gtt is the spatial 3-metric. Centered derivatives are used to finite
difference (B.11) and the source terms S̃µν in (B.14). The remaining part of equation (B.14)
is finite-differenced as follows:

g
αβ

[I+1/2,J,K] = A+x ḡ
αβ

[I,J,K]√−A+xg[I,J,K]
+ O(�2) (B.16)

h
ij

[I+1/2,J,K] = g
ij

[I+1/2,J,K] − gti
[I+1/2,J,K]g

tj

[I+1/2,J,K]

gtt
[I+1/2,J,K]

(B.17)

∂x(h
xx∂xḡ

µν)[I,J,K] = D−x

(
hxx

[I+1/2,J,K]D+x ḡ
µν

[I,J,K]

)
+ O(�2) (B.18)

∂x(h
xy∂yḡ

µν)[I,J,K] = D−x

(
hxx

[I+1/2,J,K]A+xD0y ḡ
µν

[I,J,K]

)
+ O(�2) (B.19)

∂x

(
gxt

gtt
Qµν

)
[I,J,K]

= D−x

(
gxt

[I+1/2,J,K]

gtt
[I+1/2,J,K]

A+xQ
µν

[I,J,K]

)
+ O(�2), (B.20)

where the averaging operator A+x is defined in appendix C.1. The code is evolved as a
first differential order in time and second order in space system with a two-step iterated
Crank–Nicholson algorithm or fourth-order Runge–Kutta integrator.

B.3. HarmNaive

The HarmNaive code is based upon harmonic coordinates but differs from the Abigel harm
code because the evolution system consists of only the six wave equations (B.10) for the spatial
components ḡij . The time components are propagated by the harmonic conditions (B.8), i.e.,

∂t ḡ
αt + ∂i ḡ

αi = Ĥ α. (B.21)

The coupling between ḡij and ḡαt makes the system only weakly hyperbolic.
The evolution equations for ḡij and Qij are finite differenced as in the Abigel harm code.

The evolution equation (B.21) for ḡαt is approximated by central differences. The update
scheme is a two-step iterative Crank–Nicholson algorithm.

B.4. KrancNOR code

B.4.1. Continuum formulation. Nagy, Ortiz and Reula suggested [17] modifications to the
ADM system such that it can be made strongly hyperbolic whilst remaining in second-order
form. The system we use includes slight adjustments of [9]. Additionally, we use an evolved
lapse.

The variable fi is defined as

fi = γ kl
(
γik,l − 1

2ργkl,i

)
(B.22)
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with parameter ρ. This introduces the new constraint Gi where

Gi := fi − γ kl
(
γik,l − 1

2ργkl,i

)
. (B.23)

Starting from the ADM evolution equations, an evolution equation for fi is obtained
by differentiating (B.22) and commuting space and time derivatives. The Hamiltonian and
momentum constraints are added with parameters c and b, and derivatives of the Gi are added
with parameters a and a′,

∂tγij = −2αKij

∂tKij = −DiDjα + α
(
R

(3)
ij − 2KikK

k
j + KijK

)
+

a

2
G(i,j) + (cH + a′Gk,lγ

kl)γij

∂tfi = αKkl(2γik,l − ργkl,i ) − γ kl[2(αKik),l −ρ(αKkl),i ] + 2bMi

∂tα = −αF(α,K, xi).

The variables γij ,Kij , fi and α are evolved. Due to the symmetries of γij and Kij , this leads
to 16 evolved variables. We write the Ricci tensor entirely in terms of γij ; fi is only used
where it appears as part of Gi .

For those tests requiring harmonic slicing, the lapse source function is

F(α,K, xi) = αK (B.24)

and for the expanding Gowdy test,

F(α,K, xi) = K33/α, (B.25)

which is compatible with the exact lapse in this case. We make the following choice of
parameters:

a = 1, b = 1, a′ = 0, ρ = 2/3, c = 0. (B.26)

Note that choosing parameters

a = 0, b = 0, a′ = 0, ρ = 0, c = 0 (B.27)

leads to a standard ADM system. This is useful for testing the code.

B.4.2. Semi-discrete scheme. To form the semi-discrete approximation, discretization in
space is performed according to the standard second-order accurate discretization C.1.

Finite differences are taken only of the evolved variables γij ,Kij , fi and α. This means
that where derivatives of other quantities appear, they are explicitly written in terms of
derivatives of the evolved variables (e.g. by using the Leibniz rule).

We do not add Kreiss–Oliger-type artificial dissipation, as it was not necessary for stability.

B.4.3. Time integration. Time integration is performed using the method of lines with the
iterative Crank–Nicholson (ICN) method.

B.4.4. Output. For our state vector v = (γij ,Kij , fi)
T we define the L2- and D+-norms,

‖v‖2
L2

≡
∑
grid

(ηikηjlγij γkl + ηikηjlKijKkl + ηijfifj )h
3 (B.28)

‖v‖2
D+

≡ ‖v‖2
L2

+
∑
grid

(ηikηjlηmnD+mγijD+nγkl)h
3, (B.29)
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where η ≡ diag(1, 1, 1). This is the norm obtained from a reduction to first order [11] of the
semi-discrete equations. The exact solution is denoted un

j ≡ u(tn, xj ) and the error is defined
as

E ≡ v − u. (B.30)

For the stability test, the exact solution is taken to be Minkowski in Cartesian coordinates. For
those tests which are perturbations of this solution, we analyze relative error with respect to
this background. We denote the background solution as uB . Hence the relative error about
this background is

r ≡ ‖E‖L2

‖u − uB‖L2

. (B.31)

In general, we run until this quantity exceeds 0.2 (a relative error of 20%).

B.5. Family of BSSN (Shibata–Nakamura and Baumgarte–Shapiro) formulations

The family of BSSN systems is constituted by variations of an evolution system that had
originally been proposed by Nakamura in the late 1980s, and has been subsequently modified
by Nakamura–Oohara and Shibata–Nakamura [44–46], and later by various other authors.
The formulation is characterized by introducing a contracted connection term as a new
variable, a conformal decomposition of the metric and extrinsic curvature variables, and
adding constraints to the evolution equations. In particular, the system can be viewed as the
NOR-system plus a conformal decomposition which leads to the evolution of a unimodular
metric. The advantage of this formulation was re-announced by Baumgarte and Shapiro [47].

Modifications of the system have been obtained by variations in how derivatives of the
new variables are written, how the gauge is specified, how algebraic constraints are treated,
and the way (differential or algebraic) constraints are added to the evolution equations. A
detailed discussion of well-posedness for the BSSN family has been given by Gundlach and
Martin-Garcia [8–10], to which we refer for details about the BSSN family.

The set of evolved variables are the logarithm of the conformal factor ϕ, the conformally
rescaled 3-metric γ̃ij , the trace of the extrinsic curvature K, the conformally rescaled traceless
extrinsic curvature Ãij and the contracted Christoffel symbols �̃i ,

ϕ = (1/12) log(det γij ), (B.32)

γ̃ij = e−4ϕγij , (B.33)

K = γ ijKij , (B.34)

Ãij = e−4ϕ(Kij − (1/3)γijK), (B.35)

�̃i = �̃i
jkγ̃

jk. (B.36)

This immediately leads to the two algebraic constraints

det γij = 1, Ãi
i = 0 (B.37)

and the differential constraint

�̃i − γ̃ jk�̃i
jk = 0, (B.38)

which are propagated by the evolution equations. Note that densitized quantities (those with
a tilde) have their indices raised and lowered with the conformally rescaled 3-metric γ̃ij .

The standard Hamiltonian and momentum constraints (B.3), (B.4) and (B.4) can be
expressed in the BSSN variables as
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H = e−4ϕR̃ − 8 e−4ϕD̃j D̃jϕ − 8 e−4ϕ(D̃jϕ)(D̃jϕ) + (2/3)K2 − Ãij Ã
ij − (2/3)AK, (B.39)

Mi = 6Ãj
i(D̃jϕ) − 2A(D̃iϕ) − (2/3)(D̃iK) + γ̃ kj (D̃j Ãki). (B.40)

The BSSN evolution equations, which are obtained from the ADM equations (B.1)–(B.4)
by using definitions (B.32)–(B.36) and making a standard choice for adding constraints, are

Lnϕ = −(1/6)αK, (B.41)

Lnγ̃ij = −2αÃij , (B.42)

LnK = −DiDiα + αÃij Ã
ij + (1/3)αK2, (B.43)

LnÃij = −e−4ϕ(DiDjα)T F + e−4ϕα
(
RBSSN

ij

)T F
+ αKÃij − 2αÃikÃ

k
j , (B.44)

Ln�̃
i = −2(∂jα)Ãij + 2α

(
�̃i

jkÃ
kj − (2/3)γ̃ ij (∂jK) + 6Ãij (∂jϕ)

)
, (B.45)

where D̃i is the covariant derivative associated with γ̃ij , and Ln = ∂t −Lβ is the Lie derivative
along the unit normal. Note that

∫
LnKd3x is positive definite apart from boundary terms

involving the lapse (which vanish for periodic boundary conditions). The Ricci curvature
RBSSN

ij in terms of the BSSN variables becomes

RBSSN
ij = R̃ij + R

ϕ

ij ,

R
ϕ

ij = −2D̃iD̃jϕ − 2γ̃ij D̃
kD̃kϕ + 4(D̃iϕ)(D̃jϕ) − 4γ̃ij (D̃

kϕ)(D̃kϕ),

R̃ij = −(1/2)γ̃ lk∂l∂kγ̃ij + γ̃k(i∂j)�̃
k + �̃k�̃(ij)k + 2γ̃ lm�̃k

l(i �̃j)km + γ̃ lm�̃k
im�̃klj .

Note that there are different ways to numerically compute the trace free part of the Ricci
tensor, e.g. one can project out the trace of the Ricci tensor according to

RT F
ij = Rij − 1

3Rγij , (B.46)

compute the Ricci Scalar from the Hamiltonian constraint (B.39), or compute the trace free
part explicitly by assuming the algebraic constraints hold.

We refer to the code descriptions below for details concerning the individual codes.
In summary, the fundamental dynamical variables in BSSN are (ϕ, γ̃ij , K, Ãij , �̃

i), which
total 17. The four gauge quantities are (α, βi).

B.5.1. Concrete implementations. We have compared a number of codes based on variants
of the BSSN system. Several of these are based on the Cactus computational toolkit [42]: the
CCATIE BSSN [48, 49] and Kranc BSSN [50] codes, and the LazEv BSSN [51] code. Of
these, CCATIE BSSN and Kranc BSSN use the CactusMoL time integrator, which provides
the RK3, RK4 and ICN methods, among others (see, e.g., [11]). Kranc BSSN is based on the
Kranc code generation software package [35].

All codes use straightforward replacement of partial derivatives by standard second-order
centered finite differences with a three-point stencil (most codes are also able to use standard
centered fourth-order finite differencing).

Most of the BSSN codes have a long history of use in production environments and have
a large number of parameters that allow them great flexibility, e.g. regarding details of the
numerical methods, gauge conditions, or the way the algebraic constraints are treated. Typical
options to solve the algebraic constraints at every intermediate timestep use the following
replacements:
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• Ensure that γ̃ij has unit determinant by setting

γ̃ij → γ̃ij

det γ̃ 1/3
. (B.47)

• Ensure that Ãij remains trace free by setting

Ãij → Ãij − 1
3 Ãlmγ̃ il γ̃ jm. (B.48)

• Divide Ãij by the same factor that is used to remove the determinant of γ̃ij ,

Ãij → Ãij

det γ̃ 1/3
. (B.49)

Note that an ambiguity arises whenever �i or γ̃ kj γij,k occur, as they are related analytically
by the equation �i = −γ ij ,j − 1

2γ il(ln γ ),l . If the constraint γ = 1 holds, e.g. if it is enforced
at each timestep, this is equivalent numerically (up to round-off error) to �i = −γ ij ,j . Some
authors replace γ ij ,j using −�i only when the expression appears under a derivative, but more
complicated rules have also been applied.

Reference [52] describes a widely used combination of BSSN system and gauge condition
in detail and examines this system’s hyperbolicity.

B.6. KrancFN

B.6.1. Continuum formulation. The Friedrich–Nagy system [53] is a frame-based first-order
formulation that has been shown to yield a well-posed initial boundary value problem. The
formulation starts from the four-dimensional vacuum equations

TIJ
µ := [eI , eJ ]µ − (

�I
K

J − �J
K

I

)
eK

µ = 0, µ = 0, 1, 2, 3 (B.50)

�IJKL := RIJKL(�) − CIJKL = 0 (B.51)

HJKL := ∇ICJKL
I = 0, I = 0, 1, 2, 3, (B.52)

where eI denote the tetrad vectors with coordinate components eI
µ; and �I

K
J are the

connection coefficients defined by ∇eI
eK = �I

J
KeJ and satisfying ηJM�I

J
K +ηKJ �I

J
M = 0.

RIJKL and CIJKL denote the components of the Riemann and Weyl tensor with respect to the
tetrad. The Riemann tensor is given in terms of the connection coefficients by

RIJ
L

K(�) = eI

(
�J

L
K

) − eJ

(
�I

L
K

)
−�M

L
K�I

M
J − �I

M
K�J

L
M + �M

L
K�J

M
I + �I

L
M�J

M
K. (B.53)

Equation (B.50) states that the connection is torsion free, (B.51) are the vacuum Einstein
equations and (B.52) is the Bianchi identity for a vacuum spacetime. From (B.50)–(B.52),
a symmetric hyperbolic evolution system is obtained by choosing certain combinations of
components of the above equations as well as a gauge that is adapted to the boundary.

Assuming a boundary at z = const, we foliate the interior domain by timelike
hypersurfaces Tc given by z = c = const. The frame is adapted to this foliation and
boundary such that the frame vector e3 is orthogonal to Tc, which implies for the coordinate
components

ea
3 = 0, a = 0, 1, 2, e3

3 > 0, (B.54)

with e3 being the unit normal to Tc implies �a
3
b = �(a

3
b).
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The mean extrinsic curvature of Tc is prescribed as a function of the coordinates f (xµ)

and used to eliminate the connection coefficient �0
3

0 from the equations

�0
3

0 = f + �1
3

1 + �2
3

2. (B.55)

The variation of e0 within Tc is prescribed by functions FA(xµ),A = 1, 2 according to
De0e0 = FAeA, where D denotes the induced connection on Tc. This eliminates the connection
coefficients

�0
A

0 = FA, A = 1, 2. (B.56)

The tetrad vectors eA are Fermi-transported along e0 with respect to D and therefore

�0
A

B = 0, A,B = 1, 2. (B.57)

The coordinates {xµ} are chosen such that the tetrad vector e0 represents the time flow ∂t , i.e.,

e0
µ = δ0

µ. (B.58)

The ten independent components of the Weyl tensor are encoded in the symmetric and
tracefree tensor fields

Eij := Ci0j0, Bij := 1
2C0ikl

(3)εkl
j

corresponding to the electric and magnetic parts with respect to e0. The conditions
δijEij = δijBij = 0 are incorporated explicitly by eliminating

E33 = −(E11 + E22), B33 = −(B11 + B22) (B.59)

from the equations. In total the Friedrich–Nagy system has 37 variables, namely

u = (
eA

p, e3
µ, �i

0
j , �3

i
j , �(A

3
B), �A

B
C,EiA, BiA

)T
, (B.60)

where

A,B,C = 1, 2, i, j = 1, 2, 3, p = 0, 1, 2, µ = 0, 1, 2, 3.

A symmetric hyperbolic evolution system for the variables (B.60) is obtained by taking
the following combinations of (B.50)–(B.52):

T0A
p = 0, T03

µ = 0, �0Bab = 0, �0131 = 0, �0232 = 0,

�0132 + �0231 = 0, �0130 + �1232 = 0, �0230 + �2131 = 0,

�AB03 = 0, �A003 = 0, �3A03 + �303A = 0, ηab�3ab3 = 0,

H0ij − 1
2δ3

(iεj)
3lHmn0ε

mn
l = 0, 1

2Hmkiε
mk

j + δ3
(iεj)

3mH0m0 = 0,

where the convention for the indices is the same as in equation (B.60) and a, b = 0, 1, 2. The
resulting system is given explicitly in [53, 36] and is of the form

A0∂tu + Ai∂iu + B(u, F ) = 0, (B.61)

where F = (f, FA, ∂µf, ∂µFA) represents the gauge source functions and their derivatives.
The matrices A0, Ai are symmetric and depend on the coordinate components of the frame.
A0 is positive definite as long as 1 − (

e1
0
)2 − (

e2
0
)2 − (

e3
0
)2

> 0, which corresponds to e0

being timelike. Characteristics are timelike and null.
The remaining components of (B.50)–(B.52),

Tij
µ = 0, �ij

L
K = 0, H0k0 = 0, 1

2Hjk0ε
jk

m = 0,

only contain derivatives in directions orthogonal to e0 and are satisfied if satisfied initially by
virtue of the evolution equations (see [53]). e0 in general is not hypersurface orthogonal and
therefore the constraints do contain derivatives in direction of ∂t . In order to monitor these
constraints during a numerical evolution, we eliminate the time derivatives by means of the
evolution equations.
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B.6.2. Numerical implementation. The code is based on the Cactus Computational Toolkit
[42] and the Kranc software [35, 36]. The spatial discretization of (B.61) is done in a
straightforward way

∂tu = −(A0)−1AiDiu + (A0)−1B(u, F ), (B.62)

where Di is the second- (or fourth-order) accurate centered derivative operator in the direction
i (see appendix C.1). Time integration is done with the method of lines (CactusMoL) using
ICN for the second-order scheme and RK4 for the fourth-order scheme. If needed, artificial
dissipation is added to the right-hand side of equation (B.62) in the form

(A0)−1Qdu, (B.63)

where Qd is the Kreiss–Oliger dissipation operator (see appendix C.2). Respecting the
symmetrizer in the dissipation term is essential; replacing it by the identity matrix triggered
exponentially growing continuum modes, e.g. for the gauge wave testbed with nonlinear
amplitude.

B.7. LSU HyperGR

This symmetric hyperbolic first-order formulation is described by Sarbach and Tiglio in
[54]. The system has 34 evolved variables which are the standard ADM metric γij , extrinsic
curvature Kij and lapse α, as well as extra variables dkij = ∂kγij and Ai = ∂iα/α, introduced
to make the formulation first order in space.

In addition to the Hamiltonian constraint H and the momentum constraint Mi , the
constraints arising from those new variables are

CAi
= Ai − ∂iα/α, (B.64)

Ckij = dkij − ∂kγij , (B.65)

Clkij = ∂[ldk]jk. (B.66)

The system of PDEs resulting from the standard ADM (3 + 1)-decomposition of the
Einstein equations is only weakly hyperbolic. To get a symmetric hyperbolic system the
principal part has to be modified further. This is done by adding the constraints to the right-
hand sides of the evolution equations with appropriate multiplicative factors ζ, ξ, η, χ and
ι. Here these parameters are chosen to be constant in space, although in general this is not
necessary. The full set of equations is then

∂0γij = −2Kij , (B.67)

∂0Kij = Rij − 1

α
∇i∇jα − 2KiaK

a
j + KKij + ιγijH + ζγ abCa(ij)b, (B.68)

∂0dkij = −2∂kKij − 2AkKij + ηγk(iMj) + χγijMk, (B.69)

∂0α = −F(α,K, xµ) + S(xµ), (B.70)

∂0Ai = −∂F (α,K, xµ)

∂α
Ai − 1

α

∂F(α,K, xµ)

∂K
∂iK − 1

α

∂F(α,K, xµ)

∂xi
+ ξMi , (B.71)

where ∂0 = (∂t − Lβ)/α,Rij is the Ricci tensor and K is the trace of the extrinsic curvature.
The functions F(α,K, xi) and S(xi) are pure gauge and can be chosen freely. The choices
S = 0 and F = αK provides harmonic gauge conditions.
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Restriction of the parameters χ, ξ, η, ζ, ι to the family

ι = −1/2, ζη = −2, ξ = −1/2χ + 1/4η − 1/2 (B.72)

results in a strongly hyperbolic system. A symmetric hyperbolic subfamily is given by ζ = −1,
which leaves χ as the single free parameter (constrained only by the condition χ �= 0). The
runs presented here were done with the specific choice of χ = −1.

To ensure a numerically stable discretization based on the energy method for hyperbolic
equations, second-order spatial differencing operators that satisfy the summation by parts
(SBP) condition are used [55, 56].

Furthermore, a small amount of dissipation (standard Kreiss–Oliger dissipation operators)
is added to the right-hand sides of the evolution equations.

The integration in time is done with a third-order Runge–Kutta scheme.

Appendix C. Numerical methods

C.1. Spatial discretization

Most of our numerical results are based on second-order accurate centered discretization,

∂i → D0i , ∂i∂j →
{
D0iD0j if i �= j

D+iD−i if i = j,
(C.1)

where

D+vj := vj+1 − vj

�x
,

D−vj := vj − vj−1

�x
, (C.2)

D0vj := vj+1 − vj−1

2�x
,

D+D−vj := vj+1 − 2vj + vj−1

�x2
. (C.3)

For a summary of definitions and results for standard fourth-order discretizations we again
refer to [11], where in particular some results concerning the evolution systems considered
here are derived.

Finally, averaging operators A± are defined as

A+vj := vj+1 + vj

2
(C.4)

A−vj := vj + vj−1

2
. (C.5)

C.2. Artificial dissipation

For second-order accurate codes, it is common practice to add third-order accurate Kreiss–
Oliger dissipation [57] to all right-hand sides of the time evolution equations as

∂tu → ∂tu + Qu. (C.6)
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Here we use the following general form of the Kreiss–Oliger dissipation operator Q of
order 2r:

Q = σ(−1)rh2r−1(D+)
rρ(D−)r/22r , (C.7)

for a 2r − 2 accurate scheme, where the parameter σ regulates the strength of the dissipation
and ρ is a weighting function, which is typically set to 1 in the interior but may go to 0 at a
boundary. Since we mostly focus on second-order accurate codes here, the relevant case is
r = 2, for which

Q = −σh3(D+)
2ρ(D−)2/16, (C.8)

which may be implemented using Erik Schnetter’s Cactus thorn AEIThorns/Dissipation
[38].
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L Manuel González (Berlin: Springer)
[32] Garfinkle D 2002 Harmonic coordinate method for simulating generic singularities Phys. Rev. D 65 044029
[33] Post D E and Votta L G 2005 Computational science demands a new paradigm Phys. Today. 58 35
[34] Rinne O 2006 Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations

Class. Quantum Grav. 23 6275–300
[35] Husa S, Hinder I and Lechner C 2006 Kranc: a mathematica application to generate numerical codes for

tensorial evolution equations Comput. Phys. Comm. 174 983–1004
[36] Alic D 2005 Toward the numerical implementation of well-posed, constraint preserving evolution systems for

general relativity Master’s thesis University of Timisoara
[37] Hinder I 2005 Well-posed formulations and stable finite differencing schemes for numerical relativity

PhD thesis University of Southampton, Southampton, UK
[38] Schnetter E AEIThorns/Dissipation Cactus thorn
[39] Arnowitt R, Deser S and Misner C W 1962 The dynamics of general relativity Gravitation: An Introduction to

Current Research ed L Witten (New York: Wiley) pp 227–65
[40] York J W 1979 Kinematics and dynamics of general relativity Sources of Gravitational Radiation ed L L Smarr

(Cambridge: Cambridge University Press) pp 83–126
[41] Frittelli S 1997 Note on the propagation of the constraints in standard 3 + 1 general relativity Phys. Rev.

D 55 5992–6
[42] Cactus Computational Toolkit http://www.cactuscode.org
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