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Abstract.

We sharpen our discussion of the design and implementation of the initial
round of testbeds for numerical relativity which was presented in the first paper
of the Apples with Apples Alliance. We present benchmark results for various
codes which provide templates for analyzing the testbeds and to draw conclusions
about various features of the codes. This allows us to sharpen the initial test
specifications and add theoretical insight.

PACS numbers: 04.70.Bw, 04.25.Dm, 04.40.Nr, 98.80.Cq

1. Introduction

For decades, the field of numerical relativity has been dominated by an often painful
quest for stable black-hole inspiral simulations. More than forty years after Hahn
and Lindquist’s first pioneering numerical simulation of colliding black holes [1], this
quest has recently turned into a gold-rush when Pretorius’s breakthrough simulation
[2] based on a harmonic code was followed by simultaneous invention of the “moving
punctures” method by two independent groups [3, 4].

The primary motivation for solving the binary black hole problem in numerical
relativity has however been to supply waveforms for gravitational wave detectors.
This goal demands an approach that goes beyond the efforts that have lead to an
explosion in publications from the binary black hole community. Cross-validation of
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waveforms between different groups (and codes) and comparison with post-Newtonian
predictions will be essential for numerical waveforms to be used in the computationally
expensive searches conducted by the international gravitational wave community. The
importance of cross-validation of numerical relativity results as a community effort was
foreseen by the Apples with Apples Alliance (AwA) [5], which has presented a first
round of standardized testbeds [6]. This first round comprises four tests with periodic
boundaries, designed to efficiently exhibit code instability and inaccuracy. Instabilities
currently receive less attention, since it has turned out that, paradoxically, binary
black hole evolutions are in some sense a simpler problem than had been expected,
and current codes evolving binary black holes do not typically show instabilities.
The same codes will however have difficulties with some of the testbeds presented
in the first round. The theoretical understanding of what works and what does not
in numerical relativity is still very much an open problem. One crucial theoretical
advance, which has been made since the publication of our first paper [6], is the
development of a theory for well-posed second order in space, first order in time
systems [7, 8, 9, 10, 11, 12, 13], which has been extended to a basic understanding of
numerical stability for such systems [11, 12, 13].

Over the past years several groups have committed their test results to a
publicly available data repository, with activities being coordinated via the web-
site http://www.ApplesWithApples.org. The purpose of the present paper is
to document these developments and discuss their feedback with respect to code
performance, to test improvement and to the design of further tests. While predating
the binary black hole breakthroughs, we believe that the initial Apples with Apples
tests and results are still valuable as providing a first testbed for a community effort
in numerical relativity.

The tests side-step many issues that would arise in a precise discussion of the
binary black hole problem, such as the issue of boundaries. We make the natural
choice of periodic boundaries for a first round of tests to isolate the performance
of evolution algorithms. This is equivalent to evolution on the topology of a 3-
torus in the absence of boundaries. However, in the context of general relativity,
this introduces complications of a cosmological nature regarding the instability of
Minkowski spacetime to perturbations on a compact manifold, as has been discussed
in [6].

Establishing a paradigm for standardized testbeds for numerical relativity is a
formidable task in itself. We can draw on experience from other fields, such as
computational hydrodynamics where such testbeds have been used for a long time
(for an overview of CFD testbed resources on the web, see e.g. [14]; for an example
of initial value ordinary differential equation (ODE) test-suites see [15]). However,
general relativity comes with its own issues that introduce extra complications. First
of all, it is important to realize that the numerical relativity community is small,
with very limited available manpower. In contrast to the size of the field, we are
trying to solve many difficult problems at the same time. Numerical methods are
being developed in parallel with the formulation of the continuum problem, with the
construction of physically relevant initial data sets and with the unraveling of the
physical processes involved in the systems under investigation. All of this is, so far,
without the help of comparison with experiments. Groups working in the field are
faced with many fundamental questions in designing their approaches. Codes are in
a state of flux that makes careful documentation easy to postpone. A good example
is the issue of boundaries, which can be taken to be either a cubic grid boundary or
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a smooth spherical boundary, which can either be mapped to infinity or given some
finite artificial location, and which are further complicated by gauge freedom and
the requirements of constraint preservation. Useful comparison of the wide variety of
resulting codes requires simple tests which isolate an important facet of the problem.

We distinguish two fundamentally different types of testbed: The first type
compares different codes and methods in the treatment of a physically interesting set
of solutions. In the context of the binary black hole problem, a detailed comparison
of nonspinning equal-mass inspiral would be a natural example. The second type are
idealized situations, such as the “shock tube test” [16] in computational fluid dynamics.
This is the type of testbed we discuss in the present paper, where we restrict ourselves
to a greatly simplified first set of tests [6]: periodic grids and strict test specifications,
which as far as practicable define all the details of a simulation except the formulation
of the Einstein equations. Our experience with the first round of testbeds confirms
this decision: even the analysis of these simple situations has proved quite challenging.
Our conclusions in Sec. 7 discuss how the experience from the present round of tests
can be used in our development of black hole tests.

We identify five main aims of standardized tests of the “idealized” type:

(i) Standardized tests should provide the young and fast-changing community of
numerical relativists with a common reference frame which will help integrate
different efforts to produce a coherent picture of what works and what does not,
and thus reduce the dependence on anecdote and fashion.

(ii) Tests should be efficient in revealing instabilities or other weaknesses of an
algorithm, both regarding simplicity of the analysis, run time and implementation.

(iii) Tests should help identify where problems come from, as a step toward
improvement of the algorithms.

(iv) Tests should facilitate comparisons between approaches regarding different
continuum formulations, spatial discretizations, time integrators, uses of artificial
dissipation, etc.

(v) The development of testbeds should eventually lead to useful code comparisons
for judging the validity of physically interesting simulations, e.g. the binary black
hole problem.

Point (i) has been addressed by organizing this project as a community initiative,
which seeks broad participation and provides test results via web pages and a
CVS repository [5]. Regarding point (ii), in this paper we review our original test
specifications and propose modifications to promote efficiency. Point (iii) is essential
for the character of this paper: we focus on presenting test results as a template for
analyzing and interpreting results, rather than just presenting the broadest possible
listing of test output for a maximal number of codes. We feel that it is essential to
stress this point: tests which do not directly correspond to a physically interesting
situation are only valuable if they improve our understanding of what really goes
on with a certain code. Only then can we hope to carry over test benefits to other
situations. Such analysis does of course require a certain effort.

Point (iv) is dealt with by providing “standard candle results” in the CVS
repository, i.e., benchmarks that have been obtained with very strictly defined
specifications. Point (v) represents the ultimate goal of the AwA Alliance.

The code descriptions and test data on which this paper is based are described
in Sec. 2. The results for the four standardized tests are discussed in Secs. 3, 4,
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5 and 6. Conclusions from the test results and our experiences with the testing
procedures, along with recommendations for changes in the standard test specifications
and proposals for new tests, are given in Sec. 7.

The plots presented in this paper are based upon test output in the CVS
repository. Many of these tests were run with codes in which artificial dissipation
was only introduced implicitly through the use an iterated Crank-Nicholson (ICN)
time integrator. It had been a naive hope at the beginning of this project that the
use of ICN might provide a way to standardize the introduction of dissipation. Most
numerical relativity groups now use Runge-Kutta time integrators with the explicit
addition of Kreiss-Oliger dissipation (see Appendix B.2). It has been found that many
of the test results presented here could be greatly improved by such explicit use of
dissipation. In addition to artificial dissipation, most codes used to simulate binary
black holes use higher order approximations than the second order accurate codes
being compared here. Consequently, we want to emphasize that the results exhibited
in this paper should not be used to make judgments on particular approaches, but
that our purpose is to assess and improve the test suite and to provide a basis for
future code comparisons.

2. Code descriptions

In order to ensure a consistent presentation of test output, we present a brief account
of the numerical codes and algorithms which have been used to produce the data
on which this paper is based. All data are publicly available via the CVS repository
(see [5] for details). The four standardized tests are denoted by ROBUST (the Robust
Stability Test), LINEAR (the Linear Wave Test), GAUGE (the Gauge Wave Test) and
GOWDY (the Gowdy Wave Test). Table 1 summarizes the output data that have been
submitted for the various codes.

CODE ROBUST LINEAR GAUGE GOWDY

Abigel harm ++ ++ ++ ++
AEI CactusEinsteinADM + −− −− ++

Kranc FreeADM + + + +
CCATIE BSSN ++ ++ ++ ++
Kranc BSSN ++ ++ ++ ++
LazEv BSSN ++ ++ ++ ++
HarmNaive ++ ++ ++ ++
KrancNOR ++ ++ ++ ++
KrancFN ++ ++ ++ −−

LSU HyperGR ++ ++ ++ ++

Table 1. Test output and codes considered in this article. The code abbreviations
are explained below, along with a description of the finite difference algorithm. A
“++” indicates a full complement of test output in the CVS, a “+ indicates partial
output which has been used for our analysis, a “−” indicates partial output on
which no meaningful conclusions could be drawn and a “−−” indicates no output.

The usefulness of this data depends upon good code documentation. It is beyond
the scope of this paper to provide such documentation for all the codes involved.
However, we will outline some basic code information which is necessary to interpret
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the test results. The complexity of this task is somewhat alleviated because all the
codes represented here follow a method of lines approach. We will organize the code
descriptions along the following guidelines.

• A description of the continuum formulation, including a list of all variables, their
associated evolution equations and constraints (both differential and algebraic),
equations governing the lapse and shift and a specification of any free parameters.
Terms and differential operators in the equations should be ordered in the way
that they are approximated by finite difference expressions in order to avoid
ambiguities associated with the Leibniz rule. The hyperbolicity classification
should be provided, if known.

• A description of the semi-discrete system, describing the spatial finite difference
equations on each time level, including the rules for discretizing partial derivatives
as centered or one-sided finite differences and any other discretization techniques,
such as spatial averaging or dissipation. For complicated systems, the finite
difference rules may be specified only for the principal part, with further
details supplied by references. (Here we provide some basic reference material
in Appendix A and Appendix B for compactness of presentation.)

• A description of the numerical time update scheme. All manipulations of
data between intermediate time steps should be specified, such as enforcing a
constraint.

As an example, we consider two inequivalent algorithms for the wave equation
�φ = 0 (with unit lapse, zero shift and spatial metric γij), which should be expected
to result in different code performance. In both cases the second order in time system
is reduced to first order in time by introducing the variable π = ∂tφ, and applying,
say, 4th order Runge-Kutta (see Appendix B) to the ODEs of the semi-discrete system
obtained using the method of lines. Two different codes can based upon the following
descriptions.

Description I:

(i) The continuum system is

∂tφ = π, (1)

∂tπ =
1√
γ

∂i(
√

γγij∂jφ). (2)

(ii) The semi-discrete version is obtained by replacing all partial derivatives in (2) by
centered differences:

∂tπ =
1√
γ

D0i(
√

γγijD0jφ),

where D0i is the centered difference operator D0 applied in direction i
(see Appendix B.1).

Description II (inequivalent with I):

(i) The continuum system is

∂tφ = π, (3)

∂tπ = γij∂i∂jφ +
1√
γ

∂i(
√

γγij)∂jφ. (4)
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(ii) The semi-discrete version is obtained by replacing the partial derivatives in (2)
by centered differences according to

γij∂i∂jφ +
1√
γ

∂i(
√

γγij)∂jφ

= γijD+iD−jφ +
1√
γ

D0i(
√

γγij)D0jφ (5)

where D+i and D−i represent forward and backward centered finite differences
in the respective directions (see Appendix B.1).

The codes resulting from these two descriptions produce substantially different
performance because of the “checkerboard” design of the stencil used in I. Descriptions
of the specific codes used in this paper are given in Appendix A.

3. Robust stability test

The robust stability test was intended as a first screen to eliminate many unstable
evolution algorithms. The particular importance of this test was due to the fact that
instabilities of numerical codes appeared as a prime obstacle to “solve” the binary black
hole problem, and essentially no theoretical understanding was available to discuss
the well-posedness and numerical stability of first order in time, second order in space
formulations of the Einstein equations, which have been and still are popular in the
field. Recently, a theoretical framework has become available to discuss the well-
posedness and numerical stability of such mixed order formulations of the Einstein
equations [17, 7, 8, 9, 10, 18, 11, 12, 13], and it has been extended to the problem
of discretizing the equations in the context of the method of lines [11, 12, 13]. As a
consequence of both the recent breakthroughs in the binary black hole problem and
the theoretical advances, numerical stability has become a relatively minor issue in
practice (although there certainly remain interesting mathematical questions to be
pursued). We thus restrict ourselves to a minimal discussion here, as is sufficient
to understand the data available in our test results repository. For a more in-depth
discussion of theoretical and practical aspects of numerical stability and the robust
stability test we refer to [11], which has been directly motivated by numerical results
obtained within this project.

While the other tests give quantitative information about an evolution system,
e.g. the magnitude of the numerical error, the result of the robust stability test is
“pass” or “fail”. A stable numerical algorithm is only possible if the underlying
continuum problem is well-posed [19]. In the well-posed case an instability might
still arise, either from the numerical technique or from the existence of an exponential
mode in the continuum problem. The test is designed to avoid continuum instabilities
by considering small perturbations of the Minkowski metric. In addition to providing
efficient detection of unstable numerical algorithms (or coding errors) affecting the
principal part of the evolution system, it is also intended to spot instabilities arising
from ill-posed systems, such as weakly hyperbolic systems.

As an example, consider the weakly hyperbolic system

u,t = u,x + v,x

v,t = v,x (6)

with the periodic solutions

u = ωt cosω(t + x) , v = sinω(t + x) (7)
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ω = 2πm , m = 1, 2, 3, ...

on the domain −.5 ≤ x ≤ .5. In terms of the L2 norm

N =

(
∫ .5

−.5

(u2 + v2)dx

)1/2

, (8)

the Cauchy data for (7) at t = 0,

u = 0 , v = sin ωx, (9)

has norm N(0) = 1/
√

2. However, because of (7), N(t) ∼ ωt for large ω. This leads
to a violation of the well-posedness requirement that in any finite time interval

N(t) < AeKtN(0), (10)

in terms of constants A and K independent of the Cauchy data.
For discretized systems we can not test well-posedness directly, but rather we test

the analogous concept of numerical stability, i.e., we aim at establishing the existence
of constants A and K, which give rise to the bound

‖vn‖
‖v0‖ ≤ AeKtn , (11)

where vn is the solution of the discrete system at time tn = nk. The test is passed if
such a bound can be established, and is failed otherwise. In the discretized version of a
weakly hyperbolic problem, with grid displacement h, the perturbation of a simulation
by random initial data can be expected to excite numerical error which grows linearly
in time according to u ∼ t/h, corresponding to the shortest wave number ω ∼ 1/h.
This would then lead to secular error growth which increases with resolution. Although
the system (6) is well-posed with respect to a stronger norm including a v2

,x term,
a generic perturbation of (6) by lower order terms would nevertheless produce an
exponentially growing instability which cannot be bounded. See [20] for a more general
discussion of such weakly hyperbolic systems.

The key idea of setting initial data for this test is to distribute energy roughly
equally over all frequencies. This is a particularly efficient way to reveal growing
modes if the growth rate increases with resolution, as is the case if the discretization
is unstable or if the continuum problem is ill-posed. In our test we use a spectrum
generated by random initial data.

The robust stability test as formulated here tests numerical stability in the linear,
constant coefficient regime. This not only simplifies the formulation and execution of
the test but it also provides better insight into both the continuum and discrete
problems. In particular, for most formalisms it is possible to construct explicit
solutions to the discrete equations in this regime and to obtain very precise insight.

In spite of its simplicity, the robust stability test exhibits various subtle difficulties
in designing a single test prescription that is universally effective for all evolution
systems and numerical methods. Some particular problems are:

• For random initial data, where a significant part of the total energy is in
high frequencies, dissipation has a large effect. Some intrinsic dissipation
is unavoidable in finite difference evolution algorithms, and adding artificial
dissipation may be necessary to stabilize certain algorithms [11], and insufficient
to stabilize others (such as algorithms for weakly hyperbolic systems).
Simulations of variable coefficient, nonlinear systems normally require numerical
dissipation to obtain a stable evolution, e.g. by adding Kreiss-Oliger type
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dissipation [20] (see Appendix B.2). Dissipation can however increase the time
scale on which instabilities become apparent. The detailed way dissipation affects
instabilities varies with the spatial discretization (we only consider second order
approximations here), with the time integrator, with the grid resolution and with
the Courant number.

• As discussed in the above example, well-posedness and numerical stability are
defined with respect to a certain norm. Using an inappropriate norm can yield
misleading results. Second order systems require different norms than first order
systems [11].

• Numerical stability of an explicit time integration algorithm can only be expected
if the time step is appropriately restricted by a Courant-Friedrichs-Lewy (CFL)
condition. It is important to distinguish between resolution dependent blowup
associated with ill-posedness from blowup resulting from a CFL violation. For
sufficiently complicated 3D algorithms, the CFL limit might not be readily
deduced from analytic arguments. As an example, exponential growth of the
ADM algorithm was mistakenly provided as an illustration of a failed robust
stability test in [6] . It took subsequent testing and analysis to reveal that this
exponential growth resulted from a CFL violation and that otherwise the weakly
hyperbolic instability of ADM resulted in a secular (linear in time) growth.

As a result of such considerations, we will not try to present a single universally
applicable specification for the robust stability test. Instead, while keeping the original
spirit of the test as a simple and useful first screen, we propose some changes in the
guidelines, as discussed below.

An important issue when performing stability tests is whether the high frequency
modes are damped. This has important bearing on the long-time behavior of the
robust stability test: all damped modes will decay in time; eventually the undamped
frequencies of the discrete system will dominate the signal. If an analysis of damping
factors has not been performed, the test can therefore also be useful in detecting
the spectrum of frequencies which are not damped. It has been pointed out in [11]
for standard discretizations of first order in space systems that the “checkerboard”
mode is undamped, while for typical second order systems it is damped. Since the
“checkerboard” mode is not realized on grids with an odd number of points, we adopt
the practice of always using an even number of grid points so as not to muzzle a
potential instability.

In our original specifications, we proposed the relatively large time step dt =
0.5dx, which turned out to be larger than the CFL limit for the ADM system. Since
a smaller dt also decreases the amount of dissipation inherent in a time integrator,
we now propose a relatively small time step to avoid distortion of results due to
dissipation. Common time integrators in current practice in numerical relativity
are ICN, RK3 and RK4 (sorted by decreasing internal amount of dissipation). A
sufficiently small time step would yield similar results for all of them. We therefore
propose to run with dt = 0.1dx, which can be further reduced in case of doubt. We
also drop the original restriction to a particular numerical integrator.

The robust stability test is based upon a small perturbation of Minkowski space,
with random numbers at each grid point prescribed as initial data for every evolution
variable. For example, the 3-metric is initialized as γij = δij + ǫij , where the ǫij are
independent random numbers. For systems that use variables which correspond to
spatial derivatives of the ADM 3-metric and extrinsic curvature, an ambiguity arises:
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noise can be added uniformly to all variables, or to the ADM initial data before
taking derivatives. There are similar ambiguities in second order systems regarding
how the range of the random numbers should scale with resolution. For uniformity of
description, we propose to do the simplest thing, namely to apply noise to all evolution
variables in the same way. We propose the range of ±10−10 for all variables, the same
range used for the lowest resolution in the original specifications.

Following common practice at the time, the Hamiltonian constraint was used to
analyze test results. Again following [11], we now propose a pass/fail analysis based
upon whether the time behavior of the norm satisfies (11).

Instabilities caused by the ill-posedness of the evolution system, or by coding
errors in treating the principal part, are already apparent in one-dimensional tests,
which can be performed quickly and economically. Some testing of 3-dimensional
modes is also desirable. Our core test specification combines both 1D and 3D features
by running in a thin channel with the specifications:

• Simulation domain: x ∈ [−0.5, +0.5]

• Grid: xn = −0.5 + (n − 1
2 )dx, n = 1 . . . 50ρ, dx = dy = dz = 1/(50ρ), ρ =

1, 2, 4, . . .

• Time step: dt = dx/10 = 0.002/ρ

The use of 4 distinct gridpoints in the y and z directions allows for the
checkerboard mode (ghost points may be necessary depending upon the numerical
scheme). The generalization to full cube 3D tests is straightforward, and may add
further clarification in case of dubious results.

The test should be run until one is confident that dissipation effects do not cloud
the result. Without artificial dissipation, a runtime of one crossing time, using output
at every time step, is usually sufficient. This corresponds to 500ρ time steps. The
test is passed if the norm satisfies the inequality (11) for all resolutions, for a fixed
choice of A and K, The norms for both first and second order systems recommended
in [11] are publicly available as Cactus thorns [21]. An example of how this analysis
works is given in Fig. 1. The Abigel harm code, which is based upon a symmetric
hyperbolic formulation, passes the test; whereas the HarmNaive code, which is based
upon a weakly hyperbolic formulation, fails the test.

4. Linearized wave test

A prime physical objective of numerical relativity is to compute the waveform from
a system of black holes and neutron stars. This test checks the ability of a code to
propagate a linearized gravitational wave, which is a minimally necessary attribute
for reliable wave extraction from strong sources. For the choice of unit lapse and
vanishing shift, the linearized wave is given by the metric

ds2 = −dt2 + dx2 +

(

1 + A sin(
2π(x − t)

d
)

)

dy2 +

(

1 − A sin(
2π(x − t)

d
)

)

dz2, (12)

with the wave amplitude A = 10−8 which is small enough for quadratic terms to be
lost in numerical roundoff. This describes a plane wave traveling in the x-direction The
evolution domain is matched to the wavelength d = 1 so that the resulting periodicity
and toroidal topology avoids dealing with nontrivial boundary conditions. A rotation
of the propagation direction to the diagonal in the (x, y) plane can be used to test 2D
features. Setting d′ = d

√
2 retains periodicity along those directions.
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Figure 1. Convergence results for the robust stability test with the Abigel harm
(left) and HarmNaive (right) codes, for runs of 1 crossing time. The graphs show
the L2 norm of the error in gxx, as a function of time, and shifted by −1. As
seen from the slopes of the graphs, the Abigel harm code (left) passes the test,
because there is no increasing rate of error growth with higher resolution, while
the HarmNaive code (right) fails the test because the growth rate increases with
resolution.

The grid is set up as follows:

• Simulation domain:

1D: x ∈ [−0.5; +0.5], y = 0, z = 0, d = 1

diagonal: x ∈ [−0.5; +0.5], y ∈ [−0.5; +0.5], z = 0, d′ =
√

2

• Grid: xi = −0.5 + (n − 1
2 )dx, n = 1 . . . 50ρ, dx = 1/(50ρ), ρ = (1, 2, 4)

• Time step: dt = dx/4 = 0.005/ρ.

The 1D tests are run for T = 1000 crossing times and the 2D diagonal tests for T = 100
in order to save computational resources.

The test checks the accuracy of the code in propagating both the amplitude and
phase of the wave. It can reveal whether excessive dissipation has been necessary for
good long term performance in the robust stability test. For the ρ = 1 coarsest grid
(N = 50 grid zones), there is not enough resolution for second order accurate codes to
obtain accurate phase propagation and the corresponding runs should only be viewed
as an economical first check on the code. The most useful comparisons are with the
ρ = 4 grid.

Fig. 2 compares snapshots of the 1D wave after 1000 crossing times which were
obtained with a variety of codes using the ρ = 4 finest grid. For reference, the
exact waveform is also plotted. The snapshots for three of the codes, Abigel harm,
HarmNaive and LazEv BSSN, are very similar and provide a good benchmark for the
accuracy that can be achieved at this resolution. They very closely match the exact
solution in amplitude but show a phase delay, similar to the delay seen in the following
gauge wave test. It should be expected that phase accuracy could be improved
by going to fourth order accurate methods. The good accuracy of the HarmNaive
code illustrates that instabilities associated with a weakly hyperbolic system are not
necessarily evident in linearized tests where, as discussed in Sec. 3, the unstable modes
only grow secularly in time. The KrancFN code gives good accuracy for the amplitude
but a much larger error in phase. The CCATIE code shows poor accuracy in both
phase and error. It is beyond the scope of this paper to explain the discrepancy
between the performance of the two BSSN codes.
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Figure 2. Comparison snapshots of gyy(x) − 1 at t = 1000 for the 1D linearized
wave test.

The 1D linear wave test is simple and economical to perform. Although the test
is not very demanding, the results for the metric component gyy in Fig. 2 show that it
provides a benchmark which can be useful to identify weaknesses in code performance.
The 2D tests require more computer time and the results were typically in line with
expectations from the 1D results.

5. Gauge wave test

The gauge wave test is based on a nonlinear gauge transformation of Minkowski
spacetime. Although the correct solution is a flat spacetime, nonlinear effects and
the nontrivial geometry of the time slices can easily trigger continuum instabilities
in the equations. For simple examples of such effects see [22] for a nonlinear wave
equation on flat space, designed to model problems arising in this testbed, and [23]
for a linear example of how nontrivial geometry of the slicing can trigger instabilities
already for the Maxwell equations.

The one-dimensional testbed is defined by the 4-metric

ds2 = −Hdt2 + Hdx2 + dy2 + dz2, (13)

where

H = H(x − t) = 1 − A sin

(

2π(x − t)

d

)

, (14)

which describes a sinusoidal gauge wave of amplitude A propagating along the x-axis.
The grid layout and time step are chosen as for the linear waves test in Sec. 4, and a
rotation of axes again gives rise to a 2D version.

While the gauge wave metric has a rather simple form, the test proved to be
challenging for most evolution codes. One anticipated source of growing error is the
instability of a flat space with T 3 topology [6]. Another problem is the existence
of a family of harmonic, exponential gauge modes corresponding to H → eλtH (for
arbitrary λ) [22]. The testbed itself corresponds to λ = 0, but numerical error can
easily excite modes that result in either exponentially increasing or decaying metric
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components. Additional instabilities may be present in individual systems, depending
on the detailed form of the reduced evolution system for the particular formulation.
Many such instabilities can be identified by looking at the growth of the constraints
for the formulation. In addition to instabilities that correspond to solutions of the
continuum problem, individual codes may suffer from numerical instabilities depending
on the discretization schemes. These would typically be seen as high frequency
modes and, for well-posed systems, can be cured by adding artificial dissipation to
the numerical algorithm.

Our original specifications [6] were to run the the test with amplitudes A =
0.01, 0.1. Many codes have been sufficiently improved to handle larger amplitudes,
which is generally more efficient in detecting instabilities with smaller run times.
Accordingly, we recommend performing this test with an amplitude of A = 0.5. Note
that so far no BSSN code has demonstrated satisfactory performance for this test, and
for brevity we do not include BSSN results here.

5.1. Results

5.1.1. Results for the Abigel harm Code For this particular testbed most components
of the densitized metric ḡµν =

√−ggµν have trivial values, the non-trivial ones being

ḡyy = ḡzz = H (15)

The original implementation of the Abigel code based upon (A.9) leads to a
numerically stable and convergent code, with no high frequency modes generated.
However, as shown by the dramatic growth of the rescaled error plotted in Fig 3,
the gauge wave excites exponential modes ḡyy = ḡzz = eλtH , λ > 0. This can
be understood in terms of solutions of the harmonic system whose densitized metric
components are all trivial except for

ḡyy = ḡzz = F (t, x). (16)

The resulting source term Sµν in Eq. (A.9) vanishes except for the components

Syy = Szz =
−F 2

t + F 2
x

F
. (17)

The PDE for F (t, x), which results from inserting (16) - (16) into Eq. (A.9), reduces
to (−∂2

t + ∂2
x) log F = 0, which admits the exponential solutions F = eλtH . These

solutions satisfy the harmonic constraints and the reduced harmonic system Eq. (A.9),
so that they are also solutions of the full Einstein equations. Therefore all codes using
harmonic gauge conditions might be expected to excite this mode.

In the case of the Abigel harm code, these modes were suppressed by building
semi-discrete conservation laws into the code which, for the gauge wave initial data,
would not be obeyed by the exponential solution. Namely, by writing (A.9) in the flux-
conservative form (A.10), the principle part of the resulting equation has vanishing
source term, S̃µν = 0, for this test. A summation by parts numerical algorithm then
gives rise to the semi-discrete conservation law

∂t

∑

I,J,K

(

gtβ∂β ḡµν
)

= 0. (18)

While this is a non-generic result (most space-times would give a non-zero source
term), building this conservation law into the principal part of the system has proved
effective not only in this particular case but in the other Apples with Apples tests
considered in this paper, as well as in further proposed tests [22, 24, 25].
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Figure 3. Comparison of code performance between the non-flux-conservative
(non-FC) and flux-conservative (FC) versions of the Abigel harm code, showing
graphs of ḡzz(x) at t = 100 for a gauge wave of amplitude A = 0.5 on the
ρ = 2 grid. In the non-FC case the graph is rescaled by the average of the
plotted function, showing ḡzz/avg(ḡzz) ≈ ḡzz/ exp(29.8). The good overlap of
this rescaled function with the analytic value clearly indicates that the dominant
error of the non-FC code is a multiplicative function of t. Measurements at
t = 100 for the non-FC code show that logarithm of the spatial average of
ḡzz scales roughly as (dx)2, i.e., log(avg(ḡzz )ρ=1) ≈ 110.8, log(avg(ḡzz )ρ=2) ≈

29.8, log(avg(ḡzz)ρ=4) ≈ 7.52, suggesting that the multiplicative error has
exponential growth of the form exp(O((dx)2) · t).

As shown in Figs. 4 - 6, the flux-conservative code does not develop exponential
error modes – the main source of error is phase error, when running with the original
ICN integrator (see [24] for results with RK4.) In order to further illustrate this
point, Figs. (4 - 6) give test results for both the 1D and 2D versions with amplitudes
of A = 0.01, 0.1, 0.5,

5.1.2. Results for the HarmNaive System This naive harmonic system, although
weakly hyperbolic, behaves identical to the symmetric hyperbolic Abigel harm code
for this testbed. This can be understood given that the RHS for the mixed space-time
components of the evolution system vanish, i.e.

∂tḡ
it = −∂j ḡ

ij = 0, (19)

which implies that the time-time component of the RHS also vanishes, i.e.,

∂tḡ
tt = −∂j ḡ

tj = 0. (20)

The test-results confirm this.
As expected, tests for the ADM-system also behave identically, since the naive

harmonic system can be understood as a formulation of the ADM-system in the
harmonic gauge. We therefore skip a separate discussion of the ADM-system.
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Figure 4. Convergence results for the 1D gauge wave simulation with the
Abigel harm code, for amplitudes of A = 0.01 (left) and A = 0.1 (right). The
graphs show the L∞ norm of the error in gxx, defined as gerr
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a function of time, and rescaled by a factor of 1/ρ2. As seen from the graphs, the
lower amplitude runs give no new information.
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Figure 5. Convergence results for the 2D gauge wave simulation with the
Abigel harm code, for amplitude A = 0.5. The left graph shows the L∞ norm of
the error in gxx, rescaled by a factor of 1/ρ2, as a function of time; while the right
graph shows the same rescaled error norm for the violation of the Hamiltonian
constraint H. For the Abigel harm code, the vanishing of the Hamiltonian
constraint is an algebraic identity, making H of order roundoff. As a result,
the constraint violation is super-convergent. The lower amplitude runs revealed
no new features.

5.1.3. Results for the KrancNOR System This code picks up a non-constraint
violating exponentially growing mode, probably of the form eλtH . The error is smooth,
with L2 norm that is 2nd order convergent at early times, but which is super convergent
at later times (most likely due to the fact that for the lower gridsizes the error becomes
of non-linear amplitude earlier.)

6. Gowdy wave test

The previous three tests involve spacetimes with small curvature. The polarized
Gowdy wave test is based upon a strongly curved exact solution. These Gowdy
spacetimes describe an expanding vacuum universe containing a plane polarized
gravitational wave propagating around a 3-torus T 3 [26]. See [27] for a recent review
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Figure 6. LEFT: Profile of the metric component gxx(x) for the 1D gauge wave
with amplitude A = .1 at t = 100 crossing times, as evolved by the Abigel harm
code. The plot shows, for three different gridsizes, that the phase converges to its
analytic value as the grid is refined. RIGHT: Profile of gxx(x) for the 2D gauge
wave with amplitude of A = 0.5 evolved on the coarsest grid (ρ = 1). The (x, y)
surface plot shows that gxx(x) is smooth, with no apparent high frequency error
modes.

of their properties and studies. The polarized Gowdy metric has the form

ds2 = t−1/2eλ/2(−dt2 + dz2) + t(eP dx2 + e−P dy2), (21)

where P (t, z) and λ(t, z) depend periodically on z and satisfy

P,tt + t−1 P,t − P,zz = 0. (22)

λ,t = t (P 2
,t + P 2

,z) (23)

λ,z = 2 t P,z P,t. (24)

The shift vanishes, and the lapse is given by

α =
√

gzz = t−1/4eλ/4, (25)

which satisfies the Bona-Masso-style evolution equation (A.25), or alternatively

∂tα = −trKα2 − α/t. (26)

The test is based upon the solution [28]

P = J0(2πt) cos(2πz), (27)

λ = −2πtJ0(2πt)J1(2πt) cos2(2πz) + 2π2t2
[

J2
0 (2πt) + J2

1 (2πt)
]

− 1
2

{

(2π)2
[

J2
0 (2π) + J2

1 (2π)
]

− 2πJ0(2π)J1(2π)
}

,
(28)

expressed in terms of the Bessel functions Jn.
The time coordinate t has been chosen such that time increases as the universe

expands. Note that the metric has a cosmological type singularity at t = 0. However,
the test is run in both future and past time directions in order to measure performance
in both collapsing and expanding situations. The motivation for this is that according
to analytical studies [29] and numerical experiments [23], [30] the sign of the extrinsic
curvature may have important consequences for triggering or damping constraint
violating instabilities.

The qualitative behavior of the solution can be characterized by noting that P
slowly decays to zero while λ grows linearly due to the cosmological expansion, and
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both P and λ exhibit gravitational wave oscillations. The non-vanishing components
of extrinsic curvature,

Kxx = − 1

2
t1/4e−λ/4eP (1 + tP,t),

Kyy = − 1

2
t1/4e−λ/4e−P (1 − tP,t), (29)

Kzz =
1

4
t−1/4eλ/4(t−1 − λ,t),

do not have a fixed sign but the trace,

trK = −1

4
t1/4e−λ/4(3t−1 + λ,t), (30)

is negative and decays in absolute value consistent with the cosmological expansion
The linear growth of λ leads to exponential growth of gzz. This adds to the

difficulty of evolution with a 3D code, as compared with the direct 1D evolution of P
used in numerical studies of the approach to the cosmological singularity [31].

The grid is chosen analogous to the 1D wave tests:

• Simulation domain: z ∈ [−0.5; +0.5], x = y = 0

• Grid: zn = −0.5 + (n − 1
2 )dz, n = 1 . . . 50ρ, dz = 1/(50ρ), ρ = (1, 2, 4)

• Time step: dt = dz/4 = 0.005/ρ

• Run time: t = 1000, i.e., 1000 crossing times or until code crash.

The (coordinate) velocity of light is constant in the coordinates of (21) so that
for a fixed spatial discretization dz the Courant condition is consistent with a fixed
timestep dt. This makes the gauge (21) convenient for evolving in the expanding
direction. For this forward evolution, the initial time is set at t = 1 to provide initial
data of order unity and the lapse is chosen to correspond to (25). The exponential
growth in the metric can trigger an early crash so that code accuracy is tested in a
harsh situation. This is illustrated by the various code results shown in Fig. 7.

For runs in the collapsing direction, the approach to the singularity at t = 0 is
prolonged by evolving with a harmonic time slicing, as previously done by Garfinkle
[32]. The harmonic time coordinate τ , given by F (τ) := kecτ = t, has lapse

α̂(τ) = ck3/4e3cτ/4+λ(F (τ),z)/4. (31)

The free constants c, k are chosen to start the collapse slowly and to simplify the initial
data. We choose the initial time so that τ0 = t0 and pick t0 ∼ 9.8753205829098,
corresponding to the 20th zero of the Bessel function, J0(2πt0) = 0, so that (28)
implies α̂ is independent of z. This allows us to initialize α̂0 = 1 by setting

c ∼ 0.0021195119214617, k ∼ 9.6707698127638.

This places the initial slice far from the cosmological singularity, but not so far that
we have to deal with extremely large numbers. The initial values of the metric
components are gxx = gyy = t0, gzz ∼ 2.283 × 103. This challenges a numerical code
to accurately track a small effect (the dynamics in gxx and gyy) together with a larger
effect (the dynamics in gzz). Typical code results are shown in Fig. 8. Other choices of
initial data are of course possible, and certainly worth exploring. The current choice
seems to provide a standard testbed capable of good discrimination between different
formulations.
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Figure 7. Comparison plots of the trace of the extrinsic curvature K for
the polarized Gowdy wave evolved in the expanding direction with the ρ = 4
resolution. Analytically K is spatially homogeneous; the plots show its maximum
value over the numerical grid.

Both results, for the expanding (Fig. 7) and collapsing (Fig. 8) directions show
that the test is able to discriminate between different codes. We observe, as in
the gauge wave test, that BSSN-based codes show a less satisfactory performance.
Interestingly, the collapsing direction clearly discriminates between different BSSN-
based codes.

7. Conclusions

This first round of tests, although modest in scope is a good start at establishing the
methods for code verification that have been deemed necessary for any complicated
computational discipline, such as numerical relativity, to fulfill its scientific potential.
As observed by Post and Votta [33] in their study of the verification and validification
of large scale computational projects, “the peer review process in computational
science generally doesn’t provide as effective a filter as it does for experiment or theory.
Many things that a referee cannot detect could be wrong with a computational science
paper.... The few existing studies of error levels in scientific computer codes indicate
that the defect rate is about seven faults per 1000 lines of Fortran”. Their observations
are especially pertinent for numerical relativity where validation by agreement with
experiment is not available.

Several problems have been encountered in the course of this project. One
problem was getting prompt response from a broad set of groups with many other
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Figure 8. Comparison plot of the L∞ norm of the Hamiltonian constraint for
the polarized Gowdy Wave evolved in the collapsing direction with the ρ = 4
resolution.

pressures. The AppleswithApples workshops were very successful in this regard and
were absolutely essential in jump-starting and continuing the project. But after
the participants dispersed from the workshops, outside pressures led to predictable
difficulties. Besides teaching and administrative duties, the overriding scientific
pressure in the field has been solving the two black hole problem and supplying
waveforms. This raises a complicated juggling of priorities between black hole
simulations and code verification. In order for code verification to be attractive, the
tests have to be useful and the investment in time has to be minimal. This adds
emphasis on the need for tests that are simple to carry out and simple to document
the results.

Another level of complication in this project arose from the feedback between test
design and the analysis of test output. We have been led in this way to improvements
in the tests and to their better understanding. In the robust stability test the correct
interpretation of results for weakly hyperbolic algorithms required rethinking the
proper choice of norm and refinement procedure for judging stability. In the gauge
wave tests, the desire for computational efficiency in detecting nonlinear problems at
an early time has led us to the recommendation of a higher amplitude A = .5 for the
test, as opposed to the original specifications A = .01 and A = .1.

The robust stability test is presented as a pass/fail test. For the linear wave
and gauge wave tests the amplitude and phase errors in the output data for the wave
profile provide a good comparison of code performance. For the Gowdy test, there were
unanticipated shortcomings in the output content that should lend valuable experience
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in the design of future black holes tests. Useful benchmarks have been established
for the linear wave, gauge wave, and Gowdy wave tests, which have revealed clear
deficiencies in various codes. Such deficiencies raise a clear alert that it is necessary
to apply or recheck other verification techniques, such as convergence tests.

These first round results provide a good basis for proposing new tests. In another
project utilizing the gauge wave test, a shifted version of the test has also been
formulated and studied [24, 34]. This new test involving a shift vector fills a gap in
the four original tests for periodic boundary conditions. A second round of boundary
tests based upon the periodic tests have been proposed. The specifications are given
on the Alliance website [5]. Results of some of these boundary tests have been reported
elsewhere [25, 35]. The next stage is to formulate tests involving black holes.

The code comparisons have proved useful for designing code improvements and
for stimulating other new developments. During the course of this work, results of
the shifted gauge wave test were key to recognizing the importance of discrete energy
and flux conservation for harmonic code performance [24]. The need to carry out the
tests with a wide range of formulations has led to the development of symbolic code
generation [36]. Although the tests were designed for finite difference codes, they have
been adapted and applied to pseudo-spectral codes [34]. Further independent studies
based upon the tests have played a major part in thesis research [37, 38].

Establishment of the CVS data repository has been an important step in the
documentation of test results. Instructions for accessing the data are given at [5].
The CVS directory structure has been significantly streamlined and documented since
the beginning of the project. However, the difficulties in completing this analysis
of the first round of tests has emphasized the need of a uniform standard for data
structures and output. Rather than trying to anticipate a complete list of useful output
quantities, it seems more desirable to output the 3-metric and extrinsic curvature at
specified times. Then other output quantities can be constructed in post processing.
Ideally, this should be done in some standardized way using automated routines and
graphical interfaces. All of this would require considerable infrastructure to provide
hardware for data storage and software for processing. This is one of the important
matters that will be presented for discussion at future Alliance meetings.
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Appendix A. Code descriptions

Appendix A.1. Standard ADM: Kranc FreeADM, and AEI CactusEinsteinADM
codes

The formulation of the Einstein equation by Arnowitt, Deser and Misner (ADM) [39]
provides a standard notion for “evolving” space-time as an initial value problem in
general relativity, which was initially presented in a Hamiltonian context. What is
referred to as a “standard ADM” system in the numerical relativity community is
a reformulation due to York [40], which one obtains by 3+1–decomposition of the
Einstein tensor (as opposed to 3+1–decomposition of the Ricci tensor in the original
ADM version), or equivalently by adding appropriate constraint terms to the evolution
equations. As pointed out by Frittelli [41], York’s “standard ADM” system does in
particular have nicer properties regarding the constraint propagation system. This
system is particularly simple, has a long history in numerical relativity and exhibits
some typical problems. We therefore use it as the starting point for our numerical
comparisons. The evolution equations are

∂tγij = − 2αKij + ∇iβj + ∇jβi (A.1)

∂tKij = αR
(3)
ij + αKKij − 2αKikKk

j −∇i∇jα

+ (∇iβ
k)Kkj + (∇jβ

k)Kki + βk∇kKij , (A.2)

and the constraint equations are

H = HADM := R(3) + K2 − KijK
ij , (A.3)

Mi = MADM
i := ∇jK

j
i −∇iK, (A.4)

where (γij , Kij) are the induced three-metric and the extrinsic curvature, (α, βi) are
the lapse function and the shift covector, ∇i is the 3-dimensional covariant derivative

and R
(3)
ij is the 3-dimensional Ricci tensor associated with γij .

We have tested two implementations of the standard ADM system, the
code AEI CactusEinsteinADM, which is freely available via the website [42], and
Kranc FreeADM which is based on the Cactus Toolkit [42] and Kranc software
[36]. AEI CactusEinsteinADM uses a hardcoded ICN time update scheme (see e.g.
[11]), whereas Kranc FreeADM uses a method of lines (MoL) approach based on the
CactusMoL thorn (in practice, RK3, RK4 and ICN (see e.g. [11]) have also been
used, as indicated). In all of these codes, spatial partial derivatives are reduced to
partial derivatives of the 3-metric, i.e., all expressions such as Christoffel symbols
are expanded out. Due to the absence of first-order variables, no further ambiguities
arise. Centered second and fourth order discretization is used (see Appendix B.1),
and third order Kreiss-Oliger dissipation is optionally applied to all variables (see
Appendix B.2).

The hyperbolicity of the ADM free evolution scheme has been analyzed and found
to be weakly hyperbolic with the type of gauge conditions that we use [11]. Since many
of our tests are essentially 1D tests, where ADM yields good results, we have also
analyzed the hyperbolicity of ADM in 1D. For simplicity of presentation we restrict
ourselves to the linearized case. Assuming propagation in the x–direction we obtain
the following evolution equations. For the off-diagonal components we get

∂tγyz = 2Kyz, ∂tKyz = ∂xxγyz/2, ∂tKxy = 0, ∂tKxz = 0.



Implementation of standard testbeds for numerical relativity 21

The evolution equations for γxy and γxz are analogous to the evolution equation for
γyz. The fact that the evolution equations for Kxy and Kxz are trivial renders the
evolution system for the off-diagonal components weakly hyperbolic, see e.g. [11]. For
the diagonal components we get

∂tγii = 2Kii (i = x, y, z), (A.5)

∂tKxx = ∂xxα +
1

2
∂xx(γyy + γzz), (A.6)

∂tKjj =
1

2
∂xxγjj (j = y, z). (A.7)

Considering for simplicity the densitized lapse case, α =
√

γ, the evolution
equation for Kxx becomes

∂tKxx =
1

2
∂xxγxx + ∂xx(γyy + γzz)

and one finds that the diagonal subsystem is only weakly hyperbolic. However, within
the subclasses of gauge wave (γyy = γzz = 0) or linear wave (γxx = 0) data, the 1D
ADM system corresponds to copies of the 1D wave equation and is therefore well-
posed. The case for the Bona-Masso lapse condition is analogous.

Appendix A.2. Abigel harm

The Abigel code developed in Pittsburgh is based upon a symmetric hyperbolic
formulation of the Einstein equations using generalized harmonic coordinates
satisfying the curved space wave equation

�xα =
1√−g

∂µ(
√−ggµν∂νxα) =

1√−g
H̃α(xβ , gρσ), (A.8)

where H̃α are harmonic source terms. The original version of the evolution equations
was [43]

ḡαβ∂α∂β ḡνµ = Sµν (A.9)

where the left hand side is the principle part and the right hand side contains
nonlinear first-derivative terms. Here ḡµν =

√−ggµν , with g = det(gµν) = det(ḡµν).

and the harmonic constraints ∂ν ḡµν = H̃µ are used in the Einstein equations to
eliminate second derivatives in the source terms Sµν . For further details concerning
the formulation and its implementation see [43].

The code with which the four tests were performed was constructed by rewriting
(A.9) in the flux conservative form

∂α

(

gαβ∂β ḡµν
)

= S̃µν . (A.10)

and reducing it to the first order in time form

∂tḡ
µν = − ḡti

ḡtt
∂iḡ

µν +

√−g

ḡtt
Qµν (A.11)

∂tQ
µν = − ∂i

(

gij∂j ḡ
µν + git∂tḡ

µν

)

+ S̃µν (A.12)

= − ∂i

[(

gij − gtigtj

gtt

)

∂j ḡ
µν

]

− ∂i

(

git

gtt
Qµν

)

+ S̃µν (A.13)

= − ∂i

(

hij∂j ḡ
µν

)

− ∂i

(

git

gtt
Qµν

)

+ S̃µν (A.14)
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in terms of the evolution variables (ḡµν , Qµν), where

Qµν = gtα∂αḡµν (A.15)

and hij = gij − gitgjt/gtt is the spatial 3-metric. Centered derivatives are used to
finite difference (A.11) and the source terms S̃µν in (A.14). The remaining part of
Eq. (A.14) is finite-differenced as follows:

gαβ
[I+1/2,J,K] =

A+xḡαβ
[I,J,K]

√

−A+xg[I,J,K]

+ O(∆2) (A.16)

hij
[I+1/2,J,K] = gij

[I+1/2,J,K] −
gti
[I+1/2,J,K] gtj

[I+1/2,J,K]

gtt
[I+1/2,J,K]

(A.17)

∂x

(

hxx∂xḡµν

)

[I,J,K]

= D−x

(

hxx
[I+1/2,J,K] D+xḡµν

[I,J,K]

)

+ O(∆2) (A.18)

∂x

(

hxy∂y ḡµν

)

[I,J,K]

= D−x

(

hxx
[I+1/2,J,K] A+xD0y ḡµν

[I,J,K]

)

+ O(∆2) (A.19)

∂x

(

gxt

gtt
Qµν

)

[I,J,K]

= D−x

(

gxt
[I+1/2,J,K]

gtt
[I+1/2,J,K]

A+xQµν
[I,J,K]

)

+ O(∆2) (A.20)

where the averaging operator A+x is defined in Appendix B.1. The code is evolved
as a first differential order in time and second order in space system with a 2-step
iterated Crank-Nicholson algorithm.

Appendix A.3. HarmNaive

The HarmNaive code is based upon harmonic coordinates but differs from the
Abigel harm code because the evolution system consists of only the 6 wave equations
(A.10) for the spatial components ḡij . The time components are propagated by the
harmonic conditions (A.8), i.e.

∂tḡ
αt + ∂iḡ

αi = Ĥα. (A.21)

The coupling between ḡij and ḡαt makes the system only weakly hyperbolic.
The evolution equations for ḡij and Qij are finite differenced as in the Abigel harm

code. The evolution equation (A.21) for ḡαt is approximated by central differences.
The update scheme is a 2-step iterative Crank-Nicholson algorithm.

Appendix A.4. KrancNOR code

Appendix A.4.1. Continuum formulation Nagy, Ortiz and Reula suggested [17]
modifications to the ADM system such that it can be made strongly hyperbolic whilst
remaining in second order form. The system we use includes the slight adjustments
of [9]. Additionally, we use an evolved lapse. The variable fi is defined as

fi = γkl(γik,l −
1

2
ργkl,i) (A.22)

with parameter ρ. This introduces the new constraint Gi where

Gi := fi − γkl(γik,l −
1

2
ργkl,i). (A.23)

Starting from the ADM evolution equations, an evolution equation for fi is
obtained by differentiating (A.22) and commuting space and time derivatives. The
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Hamiltonian and momentum constraints are added with parameters c and b, and
derivatives of the Gi are added with parameters a and a′:

∂tγij = − 2αKij

∂tKij = − DiDjα + α(R
(3)
ij − 2KikKk

j + KijK) +
a

2
G(i,j) + (cH + a′Gk,lγ

kl)γij

∂tfi = αKkl(2γik,l − ργkl,i) − γkl [2(αKik),l −ρ(αKkl),i ] + 2bMi

∂tα = − αF (α, K, xi).

The variables γij , Kij , fi and α are evolved. Due to the symmetries of γij and Kij ,
this leads to 16 evolved variables. We write the Ricci tensor entirely in terms of γij ;
fi is only used where it appears as part of Gi.

For those tests requiring harmonic slicing, the lapse source function is

F (α, K, xi) = αK (A.24)

and for the expanding Gowdy test,

F (α, K, xi) = K33/α (A.25)

which is compatible with the exact lapse in this case. We make the following choice
of parameters:

a = 1, b = 1, a′ = 0, ρ = 2/3, c = 0. (A.26)

Note that choosing parameters

a = 0, b = 0, a′ = 0, ρ = 0, c = 0 (A.27)

leads to a standard ADM system. This is useful for testing the code.

Appendix A.4.2. Semi-discrete scheme To form the semi-discrete approximation,
discretization in space is performed according to the standard second order accurate
discretization B.1. Finite differences are taken only of the evolved variables γij , Kij ,
fi and α. This means that where derivatives of other quantities appear, they are
explicitly written in terms of derivatives of the evolved variables (e.g. by using the
Leibniz rule). We do not add Kreiss-Oliger type artificial dissipation, as it was not
necessary for stability.

Appendix A.4.3. Time integration Time integration is performed using the method
of lines with the iterative Crank-Nicholson (ICN) method.

Appendix A.4.4. Output For our state vector v = (γij , Kij , fi)
T we define the L2 and

D+ norms:

‖v‖2
L2

≡
∑

grid

(ηikηjlγijγkl + ηikηjlKijKkl + ηijfifj)h
3 (A.28)

‖v‖2
D+

≡ ‖v‖2
L2

+
∑

grid

(ηikηjlηmnD+mγijD+nγkl)h
3 (A.29)

where η ≡ diag(1, 1, 1). This is the norm obtained from a reduction to first order [11]
of the semi-discrete equations. The exact solution is denoted un

j ≡ u(tn, xj) and the
error is defined as

E ≡ v − u. (A.30)
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For the stability test, the exact solution is taken to be Minkowski in Cartesian
coordinates. For those tests which are perturbations of this solution, we analyze
relative error with respect to this background. We denote the background solution as
uB. Hence the relative error about this background is

r ≡ ‖E‖L2

‖u − uB‖L2

. (A.31)

In general, we run until this quantity exceeds 0.2 (a relative error of 20%).

Appendix A.5. Family of BSSN (Shibata-Nakamura and Baumgarte-Shapiro)
formulations

The family of BSSN systems is constituted by variations of an evolution system
that had originally been proposed by Nakamura in the late 80s, and has been
subsequently modified by Nakamura-Oohara and Shibata-Nakamura [44, 45, 46], and
later by various other authors. The formulation is characterized by introducing a
contracted connection term as a new variable, a conformal decomposition of the
metric and extrinsic curvature variables, and adding constraints to the evolution
equations. In particular, the system can be viewed as the NOR-system plus a
conformal decomposition which leads to the evolution of a unimodular metric. The
advantage of this formulation was re-announced by Baumgarte and Shapiro [47].
Modifications of the system have been obtained by variations in how derivatives of the
new variables are written, how the gauge is specified, how algebraic constraints are
treated, and the way (differential or algebraic) constraints are added to the evolution
equations. A detailed discussion of well-posedness for the BSSN family has been given
by Gundlach and Martin-Garcia [8, 9, 10], to which we refer for details about the
BSSN family. The set of evolved variables are the logarithm of the conformal factor
ϕ, the conformally rescaled three-metric γ̃ij , the trace of the extrinsic curvature K, the

conformally rescaled traceless extrinsic curvature Ãij , and the contracted Christoffel

symbols Γ̃i:

ϕ = (1/12) log(detγij), (A.32)

γ̃ij = e−4ϕγij , (A.33)

K = γijKij, (A.34)

Ãij = e−4ϕ(Kij − (1/3)γijK), (A.35)

Γ̃i = Γ̃i
jk γ̃jk. (A.36)

This immediately leads to the two algebraic constraints

det γij = 1, Ãi
i = 0 (A.37)

and the differential constraint

Γ̃i − γ̃jkΓ̃i
jk = 0, (A.38)

which are again propagated by the evolution equations. Note that densitized quantities
(those with a tilde) have their indices raised and lowered with the conformally rescaled
three-metric γ̃ij .

The standard Hamiltonian and momentum constraints (A.3,A.4) and (A.4) can
be expressed in the BSSN variables as

H = e−4ϕR̃ − 8e−4ϕD̃jD̃jϕ − 8e−4ϕ(D̃jϕ)(D̃jϕ) + (2/3)K2

− ÃijÃ
ij − (2/3)AK, (A.39)

Mi = 6Ãj
i(D̃jϕ) − 2A(D̃iϕ) − (2/3)(D̃iK) + γ̃kj(D̃jÃki). (A.40)
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The BSSN evolution equations, which are obtained from the ADM equations (A.1
- A.4) by using the definitions (A.32 - A.36) and making a standard choice for adding
constraints, are

Lnϕ = − (1/6)αK, (A.41)

Lnγ̃ij = − 2αÃij , (A.42)

LnK = − DiDiα + αÃijÃ
ij + (1/3)αK2, (A.43)

LnÃij = − e−4ϕ(DiDjα)TF + e−4ϕα(RBSSN
ij )TF + αKÃij − 2αÃikÃk

j , (A.44)

LnΓ̃i = − 2(∂jα)Ãij + 2α
(

Γ̃i
jkÃkj − (2/3)γ̃ij(∂jK) + 6Ãij(∂jϕ)

)

, (A.45)

where D̃i is the covariant derivative associated with γ̃ij , and Ln = ∂t − Lβ is the Lie
derivative along the unit normal. Note that

∫

LnKd3x is positive definite apart from
boundary terms involving the lapse (which vanish for periodic boundary conditions).
The Ricci curvature RBSSN

ij in terms of the BSSN variables becomes

RBSSN
ij = R̃ij + Rϕ

ij ,

Rϕ
ij = − 2D̃iD̃jϕ − 2γ̃ijD̃

kD̃kϕ + 4(D̃iϕ)(D̃jϕ) − 4γ̃ij(D̃
kϕ)(D̃kϕ),

R̃ij = − (1/2)γ̃lk∂l∂kγ̃ij + γ̃k(i∂j)Γ̃
k + Γ̃kΓ̃(ij)k + 2γ̃lmΓ̃k

l(iΓ̃j)km + γ̃lmΓ̃k
imΓ̃klj .

Note that there are different ways to numerically compute the trace free part of the
Ricci tensor, e.g. one can project out the trace of the Ricci tensor according to

RTF
ij = Rij −

1

3
Rγij , (A.46)

compute the Ricci Scalar from the Hamiltonian constraint (A.39), or compute the
trace free part explicitly by assuming the algebraic constraints hold. We refer to the
code descriptions below for details concerning the individual codes. In summary, the
fundamental dynamical variables in BSSN are (ϕ, γ̃ij , K,Ãij ,Γ̃

i), which total 17. The
4 gauge quantities are (α, βi), and the 9 constraint components are (H,Mi,Gi,A,S),
i.e., 9 components.

Appendix A.5.1. Concrete implementations We have compared a number of codes
based on variants of the BSSN system. Several of these are based on the Cactus
computational toolkit [42]: the CCATIE BSSN [48, 49] and Kranc BSSN [50] codes,
and the LazEv BSSN [51] code. Of these, CCATIE BSSN and Kranc BSSN use
the CactusMoL time integrator, which provides the RK3, RK4 and ICN methods,
among others (see e.g. [11]). Kranc BSSN is based on the Kranc code generation
software package [36]. All codes use straightforward replacement of partial derivatives
by standard second order centered finite differences with a three point stencil (most
codes are also able to use standard centered fourth order finite differencing).

Most of the BSSN codes have a long history of use in production environments
and have a large number of parameters that allow them great flexibility, e.g.
regarding details of the numerical methods, gauge conditions, or the way the algebraic
constraints are treated. Typical options to solve the algebraic constraints at every
intermediate timestep use the following replacements:

• Ensure that γ̃ij has unit determinant by setting

γ̃ij → γ̃ij

det γ̃1/3
. (A.47)
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• Ensure that Ãij remains trace-free by setting

Ãij → Ãij −
1

3
Ãlmγ̃ilγ̃jm. (A.48)

• Divide Ãij by the same factor that is used to remove the determinant of γ̃ij :

Ãij → Ãij

det γ̃1/3
. (A.49)

Note that an ambiguity arises whenever a Γi or a γ̃kjγij,k occurs, as they are
related analytically by the equation Γi = −γij ,j − 1

2γil(ln γ),l. If the constraint γ = 1
holds, e.g. if it is enforced at each timestep, this is equivalent numerically (up to
round-off error) to Γi = −γij ,j . Some authors replace γij ,j using −Γi only when
the expression appears under a derivative, but more complicated rules have also been
applied.

Appendix A.6. KrancFN

Appendix A.6.1. Continuum formulation The Friedrich-Nagy system [52] is a frame-
based first order formulation that has been shown to yield a well-posed initial boundary
value problem. The formulation starts from the four dimensional vacuum equations

TIJ
µ := [eI , eJ ]µ − (ΓI

K
J − ΓJ

K
I)eK

µ = 0, µ = 0, 1, 2, 3 (A.50)

∆IJKL := RIJKL(Γ) − CIJKL = 0 (A.51)

HJKL := ∇ICJKL
I = 0, I = 0, 1, 2, 3 (A.52)

where eI denote the tetrad vectors with coordinate components eI
µ, ΓI

K
J are the

connection coefficients defined by ∇eI
eK = ΓI

J
KeJ and satisfying ηJM ΓI

J
K +

ηKJ ΓI
J

M = 0. RIJKL and CIJKL denote the components of the Riemann and
Weyl tensor with respect to the tetrad. The Riemann tensor is given in terms of the
connection coefficients by

RIJ
L

K(Γ) = eI(ΓJ
L

K) − eJ(ΓI
L

K)

−ΓM
L

KΓI
M

J − ΓI
M

KΓJ
L

M + ΓM
L

KΓJ
M

I + ΓI
L

MΓJ
M

K . (A.53)

Eq. (A.50) states that the connection is torsion free, Eq. (A.51) are the vacuum
Einstein equations and Eq. (A.52) is the Bianchi identity for a vacuum spacetime.
From Eqs. (A.50) – (A.52), a symmetric hyperbolic evolution system is obtained by
choosing certain combinations of components of the above equations as well as a gauge
that is adapted to the boundary.

Assuming a boundary at z = const, we foliate the interior domain by time-like
hypersurfaces Tc given by z = c = const. The frame is adapted to this foliation and
boundary such that the frame vector e3 is orthogonal to Tc, which implies for the
coordinate components

ea
3 = 0, a = 0, 1, 2, e3

3 > 0. (A.54)

e3 being the unit normal to Tc implies Γa
3
b = Γ(a

3
b).

The mean extrinsic curvature of Tc is prescribed as a function of the coordinates
f(xµ) and used to eliminate the connection coefficient Γ0

3
0 from the equations,

Γ0
3
0 = f + Γ1

3
1 + Γ2

3
2. (A.55)
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The variation of e0 within Tc is prescribed by functions FA(xµ), A = 1, 2 according
to De0e0 = FAeA, where D denotes the induced connection on Tc. This eliminates
the connection coefficients

Γ0
A

0 = FA, A = 1, 2. (A.56)

The tetrad vectors eA are Fermi-transported along e0 with respect to D and therefore

Γ0
A

B = 0, A, B = 1, 2. (A.57)

The coordinates {xµ} are chosen such that the tetrad vector e0 represents the time
flow ∂t, i.e.,

e0
µ = δ0

µ. (A.58)

The ten independent components of the Weyl tensor are encoded in the symmetric
and tracefree tensor fields

Eij := Ci0j0, Bij :=
1

2
C0ikl

(3)ǫkl
j

corresponding to the electric and magnetic parts with respect to e0. The conditions
δijEij = δijBij = 0 are incorporated explicitly by eliminating

E33 = −(E11 + E22), B33 = −(B11 + B22) (A.59)

from the equations. In total the Friedrich-Nagy system has 37 variables, namely

u = (eA
p, e3

µ, Γi
0
j , Γ3

i
j , Γ(A

3
B), ΓA

B
C , EiA, BiA)T , (A.60)

where
A, B, C = 1, 2, i, j = 1, 2, 3, p = 0, 1, 2, µ = 0, 1, 2, 3.

A symmetric hyperbolic evolution system for the variables (A.60) is obtained by
taking the following combinations of Eqs. (A.50) – (A.52):

T0A
p = 0, T03

µ = 0, ∆0Bab = 0, ∆0131 = 0, ∆0232 = 0,

∆0132 + ∆0231 = 0, ∆0130 + ∆1232 = 0, ∆0230 + ∆2131 = 0,

∆AB03 = 0, ∆A003 = 0, ∆3A03 + ∆303A = 0, ηab∆3ab3 = 0,

H0ij −
1

2
δ3

(iǫj)
3lHmn0 ǫmn

l = 0,
1

2
Hmki ǫmk

j + δ3
(iǫj)

3m H0m0 = 0

where the convention for the indices is the same as in Eq. (A.60) and a, b = 0, 1, 2.
The resulting system is given explicitly in [52, 37] and is of the form

A0∂tu + Ai∂iu + B(u, F ) = 0, (A.61)

where F = (f, FA, ∂µf, ∂µFA) represents the gauge source functions and their
derivatives. The matrices A0,Ai are symmetric and depend on the coordinate
components of the frame. A0 is positive definite as long as 1−(e1

0)2−(e2
0)2−(e3

0)2 >
0, which corresponds to e0 being time-like. Characteristics are time-like and null.

The remaining components of Eqs. (A.50)–(A.52),

Tij
µ = 0, ∆ij

L
K = 0, H0k0 = 0,

1

2
Hjk0ǫ

jk
m = 0,

only contain derivatives in directions orthogonal to e0 and are satisfied if satisfied
initially by virtue of the evolution equations (see [52]). e0 in general is not hypersurface
orthogonal and therefore the constraints do contain derivatives in direction of ∂t. In
order to monitor these constraints during a numerical evolution, we eliminate the time
derivatives by means of the evolution equations.
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Appendix A.6.2. Numerical implementation The code is based on the Cactus
Computational Toolkit [42] and the Kranc software [36, 37]. The spatial discretization
of Eqs. (A.61) is done in a straight forward way

∂tu = −(A0)−1AiDiu + (A0)−1B(u, F ), (A.62)

where Di is the 2nd (or 4th order) accurate centered derivative operator in the
direction i (see Appendix B.1). Time integration is done with the method of lines
(CactusMoL) using ICN for the 2nd order scheme and RK4 for the 4th order scheme.
If needed, artificial dissipation is added to the right hand side of equation (A.62) in
the form

(A0)−1Qd u, (A.63)

where Qd is the Kreiss-Oliger dissipation operator (see Appendix B.2). Respecting the
symmetrizer in the dissipation term is essential, replacing it by the identity matrix
triggered exponentially growing continuum modes e.g. for the gauge wave testbed with
non-linear amplitude.

Appendix A.7. LSU HyperGR

This symmetric hyperbolic first order formulation is described by Sarbach and Tiglio
in [53]. The system has 34 evolved variables which are the standard ADM metric
γij , extrinsic curvature Kij and lapse α, as well as extra variables dkij = ∂kγij and
Ai = ∂iα/α, introduced to make the formulation first order in space. In addition
to the Hamiltonian constraint H and the momentum constraint Mi, the constraints
arising from those new variables are

CAi
= Ai − ∂iα/α, (A.64)

Ckij = dkij − ∂kγij , (A.65)

Clkij = ∂[ldk]jk. (A.66)

The system of PDEs resulting from the standard ADM 3+1 decomposition of the
Einstein equations is only weakly hyperbolic. To get a symmetric hyperbolic system
the principal part has to be modified further. This is done by adding the constraints to
the right hand sides of the evolution equations with appropriate multiplicative factors
ζ, ξ, η, χ and ι. Here these parameters are chosen to be constant in space, although in
general this is not necessary. The full set of equations is then

∂0γij = − 2Kij , (A.67)

∂0Kij = Rij −
1

α
∇i∇jα − 2KiaKa

j + KKij + ιγijH + ζγabCa(ij)b, (A.68)

∂0dkij = − 2∂kKij − 2AkKij + ηγk(iMj) + χγijMk, (A.69)

∂0α = − F (α, K, xµ) + S(xµ), (A.70)

∂0Ai = − ∂F (α, K, xµ)

∂α
Ai −

1

α

∂F (α, K, xµ)

∂K
∂iK − 1

α

∂F (α, K, xµ)

∂xi
+ ξMi, (A.71)

where ∂0 = (∂t − Lβ)/α, Rij is the Ricci tensor and K the trace of the extrinsic
curvature. The functions F (α, K, xi) and S(xi) are pure gauge and can be chosen
freely. The choices S = 0 and F = αK provides harmonic gauge conditions.
Restriction of the parameters χ, ξ, η, ζ, ι to the family

ι = −1/2, ζη = −2, ξ = −1/2χ + 1/4η − 1/2 (A.72)
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results in a strongly hyperbolic system. A symmetric hyperbolic subfamily is given by
ζ = −1, which leaves χ as the single free parameter (constrained only by the condition
χ 6= 0). The runs presented here were done with the specific choice of χ = −1.

To ensure a numerically stable discretization based on the energy method for
hyperbolic equations, second order spatial differencing operators that satisfy the
summation by parts (SBP) condition are used [54, 55]. Furthermore a small amount of
dissipation (standard Kreiss-Oliger dissipation operators) is added to the right hand
sides of the evolution equations. The integration in time is done with a third order
Runge-Kutta scheme.

Appendix B. Numerical methods

Appendix B.1. Spatial discretization

Most of our numerical results are based on second order accurate centered
discretization:

∂i → D0i , ∂i∂j →
{

D0iD0j if i 6= j
D+iD−i if i = j

, (B.1)

where

D+vj :=
vj+1 − vj

∆x
, (B.2)

D−vj :=
vj − vj−1

∆x
,

D0vj :=
vj+1 − vj−1

2∆x
,

D+D−vj :=
vj+1 − 2vj + vj−1

∆x2
. (B.3)

For a summary of definitions and results for standard fourth order discretizations we
again refer to [11], where in particular some results concerning the evolution systems
considered here are derived.

Finally, averaging operators A± are defined as:

A+vj :=
vj+1 + vj

2
(B.4)

A−vj :=
vj + vj−1

2
. (B.5)

Appendix B.2. Artificial Dissipation

For second order accurate codes, it is common practice to add third order accurate
Kreiss–Oliger dissipation [56] to all right-hand-sides of the time evolution equations
as

∂tu → ∂tu + Qu. (B.6)

Here we use the following general form of the Kreiss–Oliger dissipation operator Q of
order 2r,

Q = σ(−h)2r−1(D+)rρ(D−)r/22r, (B.7)

for a 2r − 2 accurate scheme, where the parameter σ regulates the strength of the
dissipation and ρ is a weighting function, which is typically set to 1 in the interior but



Implementation of standard testbeds for numerical relativity 30

may go to 0 at the boundary. Since we mostly focus on second order accurate codes
here, the relevant case is r = 2, for which

Q = −σh3(D+)2ρ(D−)2/16, (B.8)

which may be implemented using Erik Schnetter’s Cactus thorn AEIThorns/Dissipation

[21].
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[12] B. Szilágyi, H-O. Kreiss, and J. Winicour. Modeling the black hole excision problem. Phys.
Rev. D, 71:104035, 2005.

[13] Mohammad Motamed, M. C. Babiuc, B. Szilagyi, H-O. Kreiss, and J.Winicour. Finite difference
schemes for second order systems describing black holes. Phys. Rev. D, 73:124008, 2006.

[14] Computational Fluid Dynamics Wiki / Validation and test cases, CFD Online,
http://www.cfd-online.com/Wiki/Validation and test cases.

[15] Test set for IVP solvers. http://pitagora.dm.uniba.it/∼testset/.
[16] R. Courant and K. O. Friedrichs. Supersonic flows and shock waves. Springer, Berlin, 1976.
[17] G. Nagy, O. E. Ortiz, and O. A. Reula. Strongly hyperbolic second order Einstein’s evolution

equations. Phys. Rev. D, 70:044012, 2004.
[18] Carsten Gundlach and Jose M. Martin-Garcia. Well-posedness of formulations of the Einstein

equations with dynamical lapse and shift conditions. Phys. Rev. D, 74:024016, 2006.
[19] G. Calabrese, J. Pullin, O. Sarbach, and M. Tiglio. Convergence and stability in numerical

relativity. Phys. Rev. D, 66:041501, 2002.
[20] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time dependent problems and

difference methods. Wiley, New York, 1995.
[21] Erik Schnetter. AEIThorns/Dissipation Cactus thorn.
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