IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 25 (2008) 145021 (18pp) doi:10.1088/0264-9381/25/14/145021

Axisymmetric evolution of Einstein equations and
mass conservation

Sergio Dain

Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cérdoba, Ciudad
Universitaria, (5000) Cérdoba, Argentina

and

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Miihlenberg 1,
D-14476 Potsdam, Germany

Received 13 May 2008, in final form 10 June 2008
Published 30 June 2008
Online at stacks.iop.org/CQG/25/145021

Abstract

For axisymmetric evolution of isolated systems, we prove that there exists a
gauge such that the total mass can be written as a positive definite integral on
the spacelike hypersurfaces of the foliation and the integral is constant along
the evolution. The conserved mass integral controls the square of the extrinsic
curvature and the square of first derivatives of the intrinsic metric. We also
discuss applications of this result for the global existence problem in axial
symmetry.

PACS number: 04.20.Ex

1. Introduction

The main unsolved problem in general relativity is the global existence of solutions of
Einstein’s equations that describe the dynamics of strong gravitational fields. Symmetries
have traditionally played an important role in this problem. The presence of a symmetry
reduces the degrees of freedom of Einstein equations and hence considerably simplify its
analysis. This is of course useful as a preliminary step in understanding the full problem but
also many models with symmetries have direct physical applications.

In a vacuum, due to Birkhoff’s theorem, spherical symmetry has no dynamics. For
isolated systems, the next possible model with symmetries are axially symmetric spacetimes.
It has been proved in [5] that no additional symmetry can be imposed to the spacetime if
we want to keep the gravitational radiation and a complete null infinity. This result singles
out axially symmetric spacetimes as the only models for an isolated, dynamical system with
symmetries.

There exist many relevant physical models one can study in axial symmetry: head-
on collisions of two black holes, rotating starts and black holes, the critical collapse of
gravitational waves. These models have been studied numerically. Particularly relevant for
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the results presented in this paper are the following references in which axial symmetry is
imposed explicitly on the equations using cylindrical coordinates: [2, 8, 17, 23, 27-30].

From the analytical point of view, there exist no results up until now for axially symmetric
isolated systems (see the review [25] for results with other kinds of symmetries in cosmologies).
One of the purpose of this paper is to initiate the study of this problem. We mention a related
problem: cosmologies with U(1) symmetries. This symmetry was analyzed in [9, 12]. The
equations are locally the same as in the axially symmetric case but the boundary conditions
are radically different. In axial symmetry the Killing vector vanishes at the axis and that is the
main source of the difficulties.

For axially symmetric data, the total ADM mass [1] can be written as a positive definite
volume integral over one spacelike hypersurface (see [6, 14, 16, 19, 22]). This fact is likely
to play a major role in the initial value (see the discussion in [15]). In order to study the
implication of this integral formula for the evolution, the first natural step is to prove that
there exists a gauge such that the mass integral holds not only at one hypersurface but in a
whole foliation and it is conserved along the evolution. This is the subject of the present
paper. To understand this result, let us review the notion of mass in general relativity and its
conservation.

The total mass of an isolated system is a boundary integral at infinity calculated on a
given spacelike hypersurface. If we consider not only one hypersurface but a foliation on
the spacetime we can ask the question of whether the mass is conserved along this particular
foliation. That is, whether the boundary integral gives the same result if it is calculated on
different slices of the foliation. Any foliation is determined by the choice of a lapse function and
a shift vector. If the lapse and shift of the foliation satisfy some fall-off conditions (this class is
called asymptotically flat gauges), then the mass boundary integral is conserved. These notions
appear naturally in the Hamiltonian formulation of general relativity (see [4, 24, 31, 32]).

In any physical theory conserved quantities (in particular, conserved energies) are very
important to control the evolution of the system. However, in general relativity, the conserved
mass appears as a boundary integral and not as a volume integral (as, for example, in the wave
equation). Hence it is not possible to relate the mass with any norm of the fields to control
their evolution (for the wave equation the energy is precisely the norm of the wave). Axially
symmetric systems represent a remarkable exception. As was mentioned above in this case
it is possible to write the mass as a positive definite volume integral. However, this integral
formula is valid only in a particular gauge. Moreover, this gauge cannot be given a priori, it
is a dynamical gauge which is prescribed as a solution of a system of differential equations.
The natural question is whether this particular gauge satisfies the fall-off conditions which
guarantee the conservation of the mass. Our main result is that the answer to that question
is yes. In other words, there exists a gauge for which the mass can be written as a positive
definite integral on each slice of the foliation and this integral is conserved along the evolution
on this particular foliation. Then, in this gauge, the conserved mass controls the norm of the
metric and the second fundamental form along the evolution and hence this particular gauge
is likely to be the most relevant one to study axially symmetric isolated systems (we further
discuss this point in section 6).

The plan of the paper is as follows. In section 2, we describe our main result which
is given by theorem 2.1. In section 3, we review the well-known (2+1)+1 formalism and
compute the behavior of the fields at infinity and near the axis. In section 4 we describe the
gauge. We also derive the mass integral formula in the (2+1)+1 formalism. This derivation
is remarkably simpler than those presented so far in the literature. In section 5 we prove the
main result. Finally, in section 6 we discuss the implications of this result for the evolution
problem.
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2. Main result

An initial data set for the Einstein vacuum equations is given by a triple (S, yap, Kap) Where
S is a connected three-dimensional manifold, y,;, a (positive definite) Riemannian metric and
K., a symmetric tensor field on §, such that the vacuum constraint equations

D,K — DK =0, (1)
OR K, K®+K?=0, 2

are satisfied on S, where D and ® R are the Levi-Civita connection and the Ricci scalar
associated with y,, and K = Ka;,y“b . In these equations the indices are moved with the
metric y,; and its inverse y*. For simplicity, in the present paper we assume S = R>. We
expect, however, that the results presented here generalize to the asymptotically Euclidean
manifold with many ends.

We will further assume that the data are axially symmetric, which means that there exists
a Killing vector field n¢, i.e

£r] Yab = 07 (3)
where £ denotes the Lie derivative, which has complete periodic orbits and such that
£,Kqu =0. 4)

The Killing vector field has associated the following scalars with respect to the metric y,p.
The norm

32 =y, 5)
and the twist

@' = €ape D'1y°. (6)
The prime in the notation of @' is justified in section 3, where we will show that «’ is related
to the time derivative of the four-dimensional twist potential .

The data are called asymprotically flat if there exists a coordinate system x* (u = 1, 2, 3)
in R? such that the metric components in these coordinates satisfy the fall-off conditions

Yuv = 5//,1) + Ooo(r_l/z)» @)
and the extrinsic curvature components
Ky = 000 (r™%), ®)

where we write f = 00,(rF) if f satisfies 3% f = o(r¥~1?!), for all @. Here 8, 1s the
Euclidean metric in the coordinates x*, r is the Euclidean radius r = ,/x#x"§,,, 0 denotes
partial derivatives with respect to the coordinates and « is a multindex.

The data are called maximal if the trace of K, is equal to zero, i.e.

K =y"K, =0. ©)
Following [18], we define the two-dimensional quotient metric g, by
Nalb
4ab = Yab — 22 (10)

In [14] it is proved that for any axially symmetric and asymptotically flat metric y,; there
exists a coordinate system (p, z, ¢), which we call the isothermal coordinates, such that the
metric g, and the Killing vector have the following form:

_ 2ugq.2 2 a_ i ‘
qg = e (dp” +dz°), n _(8¢> , (1
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and the norm is given by
A= pedl?, (12)

where u and o are smooth functions. To these coordinates we associated Cartesian coordinates
(x, y, z) via the standard formula x = p cos¢, y = p sin¢. It follows from the results proved
in [14] that in the coordinates (x, y, z) the metric y,; is asymptotically flat. Hence, without
loss of generality, in the following we take x* to be (x, y, z).

In isothermal coordinates we consider the following integral:

1 o0 00 5 eZua)/Z 5 b
= — d do|” + +2e* K"K, do, 13
"=15 ) zfo [Ial 3 e b}pp (13)

where [d0|* = 02 +072. Note that the volume element p dz dp is equivalent to the volume
element in Cartesian coordinates dx dy dz where the integration domain is R*. We will see in
section 4 that for asymptotically flat, axially symmetric and maximal data m defined by (13)
is the total mass.

The mass integral (13) is positive definite, and is zero only for flat spacetime. The first
two terms in the integrand contain the square of first derivatives of the metric and the third
term contains the square of the extrinsic curvature.

We want to prescribe gauge conditions for the evolution such that the integral (13) holds
not only at the initial surface but in any surface of the foliation. We prescribe the lapse by
the requirement that the maximal condition (9) is preserved under evolution. The shift vector
is prescribed by the condition that the isothermal coordinates are preserved by the evolution.
In this way we obtain a coordinate system (¢, p, z, ¢), we call it the maximal-isothermal
gauge. These gauge conditions are explicitly given in section 4. This gauge has been used
in numerical evolutions in the following references [8, 17, 23, 27, 28]. This is a dynamical
gauge, namely, the lapse and shift are calculated in terms of the initial data at each step of the
evolution.

The main result of this paper is given by the following theorem.

Theorem 2.1. Let (R3, Vabs Kap, n*) be an axially symmetric, maximal, vacuum,
asymptotically flat initial data. Then, there exists a unique solution of the maximal-isothermal
gauge equations and the mass integral given by (13) is conserved along the evolution, that is
dm(t)

d

0. (14)

This theorem is proved is section 4. We divide the proof in lemma 5.1, theorems 5.2 and
5.3. For the sake of clarity, in this section we presented the results using the standard
3+1 decomposition. However, for axially symmetric spacetimes there exists a more natural
decomposition, the (2+1)+1 formalism described in the section 3. The maximal-isothermal
gauge conditions and the mass formula are better expressed in this formalism.

3. Axisymmetric evolution equations

In this section we review the (2+1)+1 formalism, which has two parts. First, a reduction of the
field equations by the action of the symmetry [18] and second a time plus space decomposition
of the reduced equations (see [8, 23, 27]). We also give some useful formulae which relate the
quantities in the (2+1)+1 formalism with the natural ones in the standard 3+1 decomposition.
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3.1. The (2+1)+1 formalism

Consider a vacuum solution of Einstein’s equations, i.e., a four-dimensional manifold V with
metric g, for which the Ricci tensor ¥R, vanishes. Suppose, in addition, that there exists
a spacetime Killing vector n“. We define the norm and the twist of n“, respectively, by

2 =~
2= 1"n"gap. Wa = €apean’ V1, (15)
where V, is the connection and €,.4 the volume element with respect to g,». Assuming that

the manifold is simply connected and using ¥R, = 0 it is possible to prove that w, is the
gradient of a scalar field w

w, = V,0. (16)
In our case the Killing field will be spacelike, i.e. > > 0.

In the presence of a Killing field, there exists a well-known procedure to reduce the field
equations [18]. Let N denote the collection of all trajectories of ¢, and assume that it is a
differential 3-manifold. We define the Lorentzian metric 4., on N by

NaNb

8ab = hap + 2 )
Einstein vacuum equation are equivalent to the following set of equations intrinsic to (N, hyp)
1
V, VA = —mV“wVaw, (18)
3
V, Vi = XV“a)Vak, (19)
ORap = 1y Vph + L(v Vo — V,oVohg) (20)
a )\' a 2X4 a C a ’

where V, and ®R,;, are the connexion and the Ricci tensor of h,,. The system of
equations (18)—(20) can be interpreted as the Einstein equation in three dimensions
(equation (20)) coupled with a matter sources given by equations (18) and (19).

We make a 2+ 1 decomposition of (N, i) and the field equation (20). Let n* be the unit
normal vector orthogonal to a spacelike, two-dimensional slice S. By construction we have
n’n, = 0. And hence the norm defined in (15) is equivalent to (5). The intrinsic metric on S
is denoted by g, and it is given by

hab = —NgNp + qap. (21)

Our convention for the signature of A, is (— + +). In terms of the lapse o and shift vector 8¢
the line element takes the form

h = —a?de* +¢q;;(dx’ + B de)(dx/ + g7 dr), (22)

where i, j = 1, 2. The extrinsic curvature x,; of the slices S is given by!

Xab = _qgvcnb = _%£nqub- (23)
We write the field equations (20) as evolution equations for (g.p, Xa»)

Gab = —20 Xap + £8Gap, (24)

Xab = £ﬂXab +o (XXab + (Z)Rab - 7?'ab - 2XacX;) - DanOl, (25)

and constraint equations

! Opposite sign convention with respect to [33].



Class. Quantum Grav. 25 (2008) 145021 S Dain

DR — xxap + x> = 1, (26)
D% xap — Doy = Jp, (27)

where a dot denotes partial derivative with respect to the ¢ coordinate, ¥ R, is the Ricci tensor
and D, is the connexion with respect to g5, > R, denotes the projection of @R, into S and

w=29Runn" +®@ R, (28)

Jp = —qin“IRe,. (29)

The scalar @, which appears as ‘matter source’ in the Hamiltonian constraint (28), will be
relevant in the computation of the mass. We will need its explicit expression

|DAJ? D). z 1, 5
n=72 e +2Da< . >+2KX+W(Q) + |Dw|), 30)
where the prime denotes directional derivative with respect to n¢, that is
N =n'Voh=£,A. 31)
Note that
N =a (k- £50). (32)

To obtain equation (30) we have used equations (18) and (19).
Finally, it is convenient to decompose the extrinsic curvature y,; in its trace x and trace
free part k,;, that is

kab = Xab — qabg- (33)

3.2. Relations with the 3+1 decomposition

Take the definition of the spacetime twist potential (15) and (16). The derivative o’ is given
by

o = n"Vyo = n“eupean’Vene. (34)

Note that n%e,p4 is the volume element on the three-dimensional slice S denoted by €,p. in
section 2. The covariant derivative V, in (34) appears antisymmetrized and hence we can
replace it by any covariant derivative, in particular D,. Then, we obtain that (34) is equivalent
to (6).

The twist potential w can be calculated in terms of the initial data as follows. Define the
vector S¢ by

Sa = Kapn". (35)
Using the definition of K,

Kap = =y Veny, (36)
we obtain

Sa = —nVna, (37

where we have used the Killing equation V(7 = 0, equation n,n® = 0 and the following
expression for the metric y,;:

8ab = Yab — Nallp. (38)
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We use the following expression for the covariant derivative of 1, (see [18]):

_ 1 1 _
Valle = = €apeal’ @’ + —nga Dpjh. 39
Mo = 577 €abed @+ 511a Do) (39)
Using (39) and (37) we obtain
€arcS'n" = —1D,o. (40)

Note that the left-hand side of equation (40) is calculated only with the initial data. This is the
desired equation.

The relation between the trace of the extrinsic curvature K of the slice Sd and the trace of
extrinsic curvature x of the slice S is given by

!/

K=yx—-—. 41
X=3 (41)
If we prescribe K = 0 then we have
)\‘/
= —. 42
xX=7 (42)
The relation between the two extrinsic curvatures is given by
Xab = 44qh Kea- 43)
The following component of the extrinsic curvature will be used in the next section:
Kgp = Kapn®n” = —)/1. (44)

Using equations (35), (40), (43) and (44) we obtain the following expression for the square of
Kahl
)»/2 |D(1)|2

KCKap = xxap + — + )
ab = X Xab 2 e

(45)

4. Maximal-isothermal gauge and mass integral

In this section, we review the well-known maximal-isothermal gauge (see [8, 17, 23, 27, 28])
using the (2+1)+1 formalism presented in the previous section. We analyze the fall-off behavior
of the fields in this gauge near the axis at infinity. Finally, we present a new derivation of the
mass integral formula.

4.1. Gauge

The maximal gauge condition is well known. In the standard 3+1 decomposition, the equation
for the lapse is given by

Aya = aKKp, (46)
where A, denotes the Laplacian with respect to the metric y,,.

The shift vector is fixed by the requirement that the isothermal coordinates are preserved
under the evolution. In isothermal coordinates, the two-dimensional metric g,; has the form
(11). If we take a time derivative to (11) we obtain

qub = 2uqaba (47)
that is, the tensor ¢, is pure trace. Hence, the trace free part (with respect to g,;) of the
evolution equation (24) is given by

(‘Cqﬂ)ab = 2akyp, (48)

7
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where L, is the conformal Killing operator with respect to gqp

(LgB)ab = DaBp + DpBa — qapDeB*. (49)
Equation (48) constitute a first-order elliptic system which determines 8¢ under appropriate
boundary conditions, as we will see in section 5. Summarizing, the lapse and shift for the
maximal-isothermal gauge are determined by equations (46) and (48).

4.2. Fall-off behavior and axial regularity in isothermal coordinates

The fall of conditions (7) for the three-dimensional metric implies that (see [14])

Uu=0= ooo(r_l/z). (50)
From equations (43) and equation (8) we obtain
Xij = 000 (r /%), (51)

The function A’ /A will be important in the following section, we need to compute its fall-off
behavior. This behavior is not an obvious consequence of (8) because the relation between
these two functions involves a quotient by p2. To compute the fall off of this function we
proceed as follows. In Cartesian components we have

X

nt=-y, n' =x, (52)
and hence
Kgp = V2K — 2xyK,, +x2Kyy. (53)

Following [14] it is enough to consider the plane x = 0 which is transversal to the Killing
vector. If we use (44), (53) and (12) and then evaluate at x = 0 we have
Mo Ky
—x = —)\'2 = K.X.)C' (54)
Hence, at this plane the function A’/A is smooth and it has the same fall off as K,j,, namely

!’

== o). (55)

Since the plane x = 0 is transversal to the axial Killing vector it follows that (55) holds
everywhere.

The regularity of the metric y,, and the extrinsic curvature K,, at the axis implies
restrictions on the behavior of the different quantities (for a detailed discussion of this issue
see [27] and [29]). We summarize here two important consequences of axial regularity. First,
the function ¢ defined by

o

g=u=-7, (56)
vanished at the axis (see [14])
q(p=0)=0. (57)

Second, the functions involved satisfy parity conditions with respect to the p coordinate. In
particular we have

u,q,0, k;’ are even functions of p, (58)
and
A, kf are odd functions of p. 59)

Note that odd functions vanish at the axis.

8
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4.3. Mass formula

Consider the Hamiltonian constraint (26). Using equations (12) and (56) we write the
Hamiltonian constraint in terms of p, o and ¢ in such a way that there are no singular
terms at the axis. To do this, we use the following elementary identities.

The Ricci scalar of g,y is given by

@R =—2e*Au, (60)
where A is the flat two-dimensional Laplacian

Au=upp+u,. (61)
Using equation (12) we obtain

IDAP _ IDlogi? = ‘D<g+logp>‘2. (62)

A2 2

Finally, the p coordinate satisfy

@ Alogp =0, (63)
where we have defined ¥ A as the three-dimensional flat Laplacian

OAu = Au+ %. (64)

Using equations (56), (60), (62) and (63) the Hamiltonian constraint (26) can be written
in the following form:

2u 1

A 1
—20A0 —2Ag = e? [2xabxab +2x (—x +2¥> +|Do|? + F(a/z + |Dw|2)] . (63

We define the mass as the integral of the right-hand side of this equation, namely

m= 1 2kkyy — x> +4 l +|Do|* + i(w’z +|Dw») ) pdV,, (66)
- 16 s ab X X Py )\,4 1Y 5
where we have used (33) and dV, = e dp dz denotes the volume element with respect to ggy.
Note that we introduce a weight p in the integral. If we impose the condition K = 0 (using
equation (41)) we get that the integrand is positive definite, namely
1

16 g
For maximal two-dimensional slices x = 0 the integral (66) is also positive definite. However,
this choice will not give an equation for the lapse function (analog to (46)) with positive definite
solutions. To prove the equivalence of equation (67) with (13) we use (45).

The crucial point is that this volume integral can be written as a boundary integral at
infinity using the left-hand side of equation (65). We have

1 o0 o0
m = —-/ dz/ (PAo +Ag)pdp. (68)
4 —00 0

This integral can be converted into a boundary integral at infinity as follows. For the first term
we use that p dp dz is the volume element in R? and then we can use the divergence theorem
in three dimensions to obtain

A2 1
m <2k””kab + 3ﬁ +|Do|? + F(w’2 + |Da)|2)> pdV,. (67)

T

oo oo
f dz / PDAopdpdz = lim | d,0rpdo. (69)
) 0 r— 00 0
The second term in (68) can be also written in the divergence form

/dp dz(q.pp +q.2)p = /dp dz((eq.p — @).p + (0q.2) ). (70

9
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We use the divergence theorem in two dimensions to transform this volume integral in a
boundary integral. Namely, let €2 be an arbitrary domain, we have

/ dodz((pg.p —q).p +(0q2).2) = f V.ads, (71)
Q I

where 7 is the two-dimensional unit normal, ds the line element of the one-dimensional
boundary d€2 and V is the two-dimensional vector given in coordinates (p, z) by

V= ((pg.p — 9, (0q.2))- (72)

Let Q2 be the half plane p > 0. By (57) and the assumption that g is smooth we have that
the vector V vanishes at the axis. Then the only contribution of the boundary integral is at
infinity, namely

| dapdpaz = tim [ caq-q)ow. 73)
p>0 r—00 0
Summing (73) and (69) we obtain the final expression for the mass as boundary integral
1 . T q
m= —-— lim (8,0 +0,q — —) rpdo. (74)
r—00 O r
We can write this expression in terms of u instead of g
1 . T 1 o u
m= —- lim —0,0 + — +0,u — — | rpdo. (75)
4r—o00 Jog \2 2r r

Until now we have not mentioned the relation of m with the total mass. In fact in order to
prove theorem 2.1 we do not need any other information. The quantity m is a positive definite
integral that can be expressed as a boundary integral at infinity. As a consequence we will
prove that it is conserved along the evolution in the maximal-isothermal gauge.

However, it is possible to show that m is precisely the total mass of the spacetime. There
is an interesting and subtle point here. The equivalence of this formula with the total mass
have been previously proved using a strong fall-off condition for g (see [6, 16, 19]), namely

q = 00 (r %), (76)

which implies that ¢ does not appear in the boundary integral (75). Recently, this equivalence
was proved without this restriction [14]. In the deduction we have made, we have not used any
restriction for ¢ which is consistent with [14]. Note the simplicity of this deduction (which is
much in the spirit of the energy defined in [12] for cosmologies) compared with those using
three-dimensional slices like [19].

We also mention that in the following section we will prove that the strong decay condition
(76) is preserved by the evolution.

5. Existence of the gauge and mass conservation

We begin with the lapse equation (46). This condition does not require any symmetry on
the data. The existence and uniqueness of the solution of this equation in the standard 3+1
decomposition are well known. For completeness we review this result.

Lemma 5.1. There exists a unique smooth strictly positive solution a of equation (46) with
the following fall-off

a—1=o0.0""%. (77

10
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Proof. Set

a=o-—1, (78)
then, using (46), we have that

Ao — fa=f, (79)

where f = K%K, > 0. The fall-off behavior assumed for K, in (8) implies that f € H?, P
for all s. Here Hj denote weighted Sobolev spaces. See [3, 7, 10] and reference therein for
definition and properties of these spaces. We use the index notation of [3].

The decay assumed on the metric y,;, (7) implies that the operator A, — f : Hyp s —
H; s_» is an isomorphism for 6 = —1/2 (see for example [11, 21]). Note that we use this
theorem for dimension 3. Then there exists a unique solution @ € H’, , of equation (79).
Moreover @ > 0 by the maximum principle (for a version of the maximum principle for
non-compact manifold see for example [11]). Hence, we have that & > 0. ]

If the data is axially symmetric then the solution « will be also axially symmetric: take

the Lie derivative with respect to n to both sides of equation (79), we get

A, E@) — fE,@) =0, (80)
since £, € H?, , (to see this, take the expression of 7 in Cartesian coordinates (52)), the
isomorphism theorem mentioned above implies that £,& = 0. Finally, we note that since « is
smooth in (x, y, z), it follows that an axially symmetric « is an even function of p.

We consider now the equation for the shift. Instead of solving the first-order system (48)
we will solve a second-order system obtained from taking a derivative to (48). Then, we will
show that a solution of the second-order system is also a solution of the original equation (48)
under appropriate boundary conditions.

Under the conformal transformations (11), the conformal Killing operator rescale like

Ly(Blap = €L B)ab, 81)
where L is the flat conformal Killing operator

(LB)ab = 9aPp + Ba — qapdcp*- (82)
We take a flat divergence to equation (48) and use equation (81) to get

A Ba) = 20" (e kap), (83)
where we have used

8" (LB)ab = ABa- (84)
If we contract equation (83) with % and use ¢* = e~2“§® we obtain our final equation

AB* = 20" (aky), (85)

where ¢ = q"bﬁl, and kj = q“keyp.

As was mentioned in section 4.2, the smoothness of the metric at the axis implies that the
relevant functions satisfy parity conditions in the p coordinate. In particular, the components
of the shift vector 8¢ should satisfy

IBZ(IO9 Z):IBZ(—IO, Z)v :3/)(107 Z):_ﬂp(_pv Z) (86)
Theorem 5.2. There exists a unique, smooth, solution B¢ of equation (85) with the following
fall-off behavior

B = 00(r™7?). (87)
The solution satisfies the parity conditions (86) and the gauge equation (48).
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Moreover, the quotient 8° / p is smooth and have the following fall-off

&) (88)
PO

Remark: the fall-off condition (88) will be essential in the proof of the mass conservation
theorem 5.3.
Proof. We distinguish the two components of equation (85)

ABP = F?*, AB* = F*, (89)
where

F/ =207 (akf), F* =207 (ak3). (90)
The function « is even in p, using (58) and (59) we obtain that F* is odd and F* is even in p.

In terms of the cylindrical coordinates (p, z), the source functions F are defined only for

p > 0. But because they satisfy parity conditions we can smoothly extend them to all R? by
the following prescription:

FP(p,2) = =F’(=p,2), Fi(p,2) = F(=p,2). O
Hence, we can consider equations (89) as Poisson equations
Au = f, (92)

in R? with decay conditions at infinity (87). Uniqueness of the solution of (92) under the
decay condition (87) follows immediately integrating by parts the Laplace equation. Namely,
for any domain €2 we have

quu:/a(uau)—qu:?{ ua,,u—/ [oul?, (93)
Q Q Q2 Q

and hence for a solution of Au = 0 we have

y§ uanu:/ |0ul>. (94)
Q2 Q

Let ©2 be a ball of radius R, and take the limit R — oo. By the decay condition (87), the
boundary integral in (94) vanishes. Then, it follows that ¥ must be constant, by the decay
condition it must be zero. Since the homogeneous equation has only the trivial solution
uniqueness follows. Also, for solutions in this class, integrating equation (92) we obtain that
the source must satisfy the condition

f=0. (95)
R2

We need to verify (95) for our source functions. The function F” is odd in p, hence it satisfies
(95) automatically. For F* we use that it can be written in the divergence form

F* =30, vl = Zaki. (96)
Then we have
FZ=2f FZ=2/ v’ (97)
R p=0 p=0
using the divergence theorem in two dimension we get
[o¢]
/ L =/ v?|,=0dp + lim f v'ds, (98)
p>0 0 R=o0 Sy

12
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where Cg denotes the semicircle with r = R. By the decay condition (51) for k,; and (77)
for the lapse, we have that the second boundary integral vanishes. For the first one, we use
equation (59) to conclude that

v |,—o = 0. (99)

And hence we obtain the desired result that F* satisfies (95).
To actually obtain a solution of equation (92) we use the Green formula for the Laplacian
in two dimensions G (x, x’) = —log |x — x’|>. A solution u has the integral representation

u(x) :/ G(x,x) f(x)dx'. (100)
RZ

In polar coordinates (r, 6) (related to (p, z) by the standard formula z = r cosfp = r sinf)
we have the well-known expansion of G

m

o0
G(r6;r',6) = —2logr +2 3 ~—cos(n(@ — ) for r>r,  (101)
= nr"
o0 rn
= —2logr'+2) " ——cos(n(® — ) for r<r. (102)
- nr'

We use the trigonometric identity
cos(n(® — 6")) = cos(nh) cos(nd’) + sin(nd) sin(nd’), (103)

to split the sum in terms which are odd functions of 6 (and hence of p) and terms which are
even functions of 6.

If the source function f in the integral (100) is odd in p, then the terms involving cos(n6")
vanish, for even source functions the terms with sin(n6’) vanish.

We are interested in the fall-off behavior of the solution. It is convenient to split the
source functions F into two terms, one with compact support in some ball and the other
which pick up the decay behavior. Let x : R — R be a cut-off function such that
X € CPMR),0 < x < 1,x(t) = 1for0 <t < 1,x() = 0 for 2 < ¢ and write
xr() = x(/R), foo = (1 — xg) f, where R is an arbitrary positive number.

Using the expansion (101) we compute the integral (100). Note that the term with log r
vanishes due to (95). For »r > R we have for 8*

pr =23 D g By + ), (104)
n=I n
where
R
A, = / r" sin(n@ ) FPr' dr’ d6’, (105)
0
B,(r)=r"" / r"™ sin(n®")FLr' dr’ do’, (106)
R
*© 1 : / / / /
Cu(r) = r”/ — sin(n®") F5r' dr' do’. (107)
’ r n
For 5% we have a similar expansion for » > R
> cos(nb)
pr=2) [r™" Ay + Bo(r) + G, ()], (108)
n

n=1
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where
R
A, = / r"™ cos(n@")F*r' dr' do’, (109)
0
B,(r)=r"" / r" cos(nd)FZr' dr' do’, (110)
R
* 1
C,(r)=r" / — cos(nf")F3,r' dr' d¢’. (111)
r r’n
We use the decay condition (51) to obtain that the sources satisfy
FP = F* = 0,(r—?). (112)
From (112) we get that
B,(r) = Cy(r) = 0 (r™'7?). (113)

These are the solutions of our problem. It is clear that they satisfy the parity conditions (86).
The important property of the representation (104) is that it allows us to prove (88). In
effect, we use the trigonometric identity [20]

n—1

sin(n) = Z <Z)(cos 0) (sin6)" ¥ sin G(n - k)n) (114)

k=0
to obtain that the function ®, defined by

. n—1
®,0) = sin(n6) = Z <n>(cos 0)(sin6)" %! sin (%(n — k)n) (115)

sin 6 = k
is a smooth function. Hence, using (104), we obtain the expansion
, >, 0,0
P 2Z£[r*"+1An +r "B, (r) +r'C,(r))]. (116)
P n=1 n

Using a similar argument as above we obtain (88).
Finally, we need to verify that our solution of equation (85) is also a solution of the
first-order system (48). Define the trace free tensor #,;, by

tar = ((LqBap — 20tkap) €. (117)
We have proved that

8%ty = 0. (118)
Lett,, =t and t,, = t,, then equation (118) is given by

o1ty + oo, =0, o1ty — dt; = 0. (119)

These are the Cauchy—Riemann equation for a complex function f = f; +if,. That is, a
non-trivial solution of (119) implies that f is an entire function on the complex plane. But
t; and , decay to zero at infinity. Hence, by Liouville’s theorem, f vanishes. And then, we
obtain that § is also a solution of the gauge equation (48). (]

Solutions of equation (92) can be obtained by other methods, for example see proposition
2.6 in [14]. In the proof above we have used the Green function in order to prove (88). It
is likely that also this kind of expansion can be obtained by other methods like those used in
[13].

14
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To prove the mass conservation we will make use of the evolution equation given by the
trace of (24), namely

2i = —ay + DB (120)
In terms of partial derivatives this equation is written like

20 = —ay + 08 +2B du. (121)

Theorem 5.3 (Mass conservation). We have

dm(t
mo _, (122)
dt
Proof. We use equation (75) to get
dm(t 1 T 3 /
m0 _ 1 ~0,6 +— 40,0 — 2 ) rpdo. (123)
dr 16 r—c Jo \2 2r r

In order to prove that this integral is zero we have to compute the decay of the integrand at
infinity. We begin with the terms containing ¢ .
We use the relation

)\‘/ O,/ IO/
— =+ —, (124)
A 2 p
and
/ pr / 1 . i
p=—-—, o' =—(6 —poo), (125)
o o
to conclude that
XA p
6 =2a— + B'ojo0 +2—. (126)
A P
Using equations (55) and (88) we obtain
6 = 00 (r /7). (127)
For 11 we use equation (121) and the decay on $ to get
i = 00 (r3/%). (128)
Using (127) and (128) we obtain that the boundary integral (123) vanishes. U

We mention also another consequence of equation (121). From this equation we deduce
that

§ = 000 (r /). (129)

Then, if the function g has initially the stronger decay (76), this decay will be preserved by
the evolution.

6. Final comments

In this final section we discuss the implication of the results presented here for the evolution
of axially symmetric isolated systems.

The first question one needs to face in the evolution problem is the choice of gauge. In
axial symmetry there have been studied different kind of gauge conditions (see for example

15
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[2, 29]). The mass conservation formula single out a particular one. If we define appropriate
Sobolev norms, then the mass formula essentially implies that the H' norm of the metric
and the L? norm of the extrinsic curvature are bounded along the evolution. This is a very
desirable property which is not present in other gauges. The mass conservation formula
strongly suggests that the most convenient gauge for the axially symmetric evolution problem
is the maximal isothermal one.

As was mentioned in the introduction, the conservation of mass is closely related with the
Hamiltonian formulation of general relativity. The maximal-isothermal gauge is a dynamical
gauge that depends on the time coordinate. The analysis of time-dependent gauge conditions
and its relation with conserved quantities in the Hamiltonian formulation was recently studied
in [31, 32]. The maximal-isothermal gauge satisfies the fall-off conditions described in these
references.

In axial symmetry, even when the gauge conditions are fixed there exist many possibilities
to extract from Einstein equations a set of evolution equations. The reason for this ambiguity
is that Einstein equations in three dimensions have no dynamics, this essentially means that
equation (20) can be replaced by the constraint equations (26)—(27) (see [12]). If we chose
to do so, then we obtain an evolution scheme in which the evolution equations are given by
(18) and (19), and the other equations (including gauge conditions) are elliptic constraint. But
there exist other alternatives. Following [27], we can classify them by the number of evolution
equations used versus the number of elliptic constraint equations. The scheme presented above
has the minimum number of evolution equations and the maximum of constraint equations.
This is called a fully constrained system. On the opposite side we have a system in which we
do not solve for the constraints and we solve the evolution equations (24) and (25). This is
called a free evolution scheme. In between we have other possibilities to construct partially
constrained systems. In all cases, the gauge conditions are solved as elliptic constraints. That
is, all schemes have a mix of evolution and elliptic equations (see the discussion in chapter 3
of [27]).

To prove the mass conservation we have used two equations: the Hamiltonian constraint
(26) and the evolution equation for the conformal factor of the two-dimensional metric (120).
In a free evolution scheme the Hamiltonian constraint is not solved. Hence, the mass will
not be conserved for arbitrary data. It will be only conserved for data that satisfies the
constraint equations. Then, in this case the mass integral formula will be not useful for
controlling the evolution. The same will happen with partially constrained systems in which
the Hamiltonian constraint is not solved or the evolution equation (120) is not used. Such
systems were discussed in [27] and in [8] (in this reference, these kinds of systems appear
when the evolution of the conformal factor is used instead of the Hamiltonian constraint).

On the other hand, for a fully constrained scheme (like the ones used in [8, 28]) and a
partially constrained scheme in which both the Hamiltonian and the evolution equation for
the metric are used (like the one studied in [17]) the mass will be conserved. The mass
conservation formula singles out these two schemes. The natural problem now is to study
their well posedness.

Finally, it is interesting to note that the integral mass formula has a direct application
in numerical simulations. In numerical simulations of isolated systems, one often uses a
position-dependent resolution that is high in the central region and much lower close to the
outer boundary of the computational domain. Hence computing the mass as a volume integral
is more accurate than as a boundary integral. The resulting approximation to the mass is much
better conserved during the evolution? [26].

2 1 thank O Rinne for pointing this out to me.
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