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Abstract

The Witten spinorial argument has been adapted in several works
over the years to prove positivity of mass in the asymptotically AdS
and asymptotically hyperbolic settings in arbitrary dimensions. In this
paper we prove a scalar curvature rigidity result and a positive mass
theorem for asymptotically hyperbolic manifolds that do not require a
spin assumption. The positive mass theorem is reduced to the rigidity
case by a deformation construction near the conformal boundary. The
proof of the rigidity result is based on a study of minimizers of the
BPS brane action.

1 Introduction

Developments in string theory during the past decade, in particular the
emergence of the AdS/CFT correspondence, have increased interest in the
mathematical and physical properties of asymptotically hyperbolic Rieman-
nian manifolds. Such manifolds arise naturally as spacelike hypersurfaces in
asymptotically anti-de Sitter spacetimes.

Asymptotically hyperbolic manifolds have a rich geometry at infinity, as
exhibited by e.g., renormalized volume and Q-curvature. The mass of an
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asymptotically hyperbolic manifold may, under suitable asymptotic condi-
tions, be defined as the integral of a function defined at infinity, the so-called
mass aspect function. This feature is related to the fact that, in contrast to
the asymptotically Euclidean case, harmonic functions on an AH manifold
are not in general constant, but have nontrivial boundary values at infinity.

In this paper we shall prove a scalar curvature rigidity result and a pos-
itive mass theorem for asymptotically hyperbolic manifolds. The results do
not require a spin assumption. The positive mass theorem is reduced to the
rigidity case by a novel deformation construction near the conformal bound-
ary. The proof of the rigidity result is based on a study of minimizers of the
BPS brane action.

Let (Mn+1, g) denote an (n + 1)-dimensional Riemannian manifold, and
let H

n+1 denote (n+ 1)-dimensional hyperbolic space of curvature K = −1.
As a prelude to proving positivity of mass in the asymptotically hyperbolic
setting (see the discussion below), we first establish the following rigidity
result.

Theorem 1.1. Suppose (Mn+1, g), 2 ≤ n ≤ 6, has scalar curvature S[g]
satisfying, S[g] ≥ −n(n+1), and is isometric to H

n+1 outside a compact set.
Then (Mn+1, g) is globally isometric to H

n+1.

In the case that (Mn+1, g) is a spin manifold, this theorem follows from a
result of Min-oo [19] (see also [2, 13]), as well as from the rigidity part of the
more recently proved positive mass theorem for asymptotically hyperbolic
manifolds [26, 10]. The main point of Theorem 1.1 is that it does not require
a spin assumption. We note, for comparison, that there have been some
other recently obtained rigidity results for hyperbolic space [21, 4, 24, 7] that
do not require a spin assumption, but these impose conditions on the Ricci
curvature.

The proof of Theorem 1.1 is based on the general minimal surface method-
ology of Schoen and Yau [22], adapted to a negative lower bound on the scalar
curvature. This means, in our approach, that minimal surfaces are replaced
by non-zero constant mean curvature surfaces, and the area functional is re-
placed by the so-called BPS brane action, as utilized by Witten and Yau [27]
in their work on the AdS/CFT correspondence. From the regularity results
of geometric measure theory, we require M to have dimension ≤ 7 in order
to avoid the occurrence of singularities in co-dimension one minimizers of the
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brane action 1. In Section 2 we prove a local warped product splitting result,
where the splitting takes place about a certain minimizer of the brane action.
This splitting result, which extends to the case of negative lower bound on
the scalar curvature previous results of Cai and Galloway [6, 5], is then used
to prove Theorem 1.1.

Our original motivation for proving Theorem 1.1 was to obtain a proof
of positivity of mass for asymptotically hyperbolic manifolds that does not
require a spin assumption. In [15], Gibbons et al. adapted Witten’s spino-
rial argument to prove positivity of mass in the 3 + 1 asymptotically AdS
setting. More recently, Wang [26], and, under weaker asymptotic conditions,
Chruściel and Herzlich [10] have provided precise definitions of the mass in
the asymptotically hyperbolic setting and have given spinor based proofs of
positivity of mass in dimensions ≥ 3. These latter positive mass results may
be paraphrased as follows:

Theorem 1.2. Suppose (Mn+1, g), n ≥ 2, is an asymptotically hyperbolic
spin manifold with scalar curvature S ≥ −n(n + 1). Then M has mass
m ≥ 0, and = 0 iff M is isometric to standard hyperbolic space H

n+1.

Physically, M corresponds to a maximal (mean curvature zero) spacelike
hypersurface in spacetime satisfying the Einstein equations with cosmological
constant Λ = −n(n + 1)/2. For then the Gauss equation and weak energy
condition imply S ≥ −n(n + 1).

Here we present the following version of Theorem 1.2, which does not
require M to be spin.

Theorem 1.3. Let (Mn+1, g), 2 ≤ n ≤ 6, be an asymptotically hyperbolic
manifold with scalar curvature S[g] ≥ −n(n + 1). Assume that the mass
aspect function does not change sign, i.e. that it is either negative, zero, or
positive. Then, either the mass of (M, g) is positive, or (M, g) is isometric
to hyperbolic space.

As noted above, the mass aspect function is a scalar function whose in-
tegral over conformal infinity determines the mass; see Section 3 for precise
definitions.

Our approach to proving Theorem 1.3 is inspired by Lohkamp’s variation
[18] of the Schoen-Yau [23] proof of the classical positive mass theorem for

1However, the work of Christ and Lohkamp [8, 17] offers the possibility of eliminating
this dimension restriction.
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asymptotically flat manifolds. Our proof makes use of Theorem 1.1, together
with a deformation result, which shows roughly that if an asymptotically
hyperbolic manifold with scalar curvature satisfying, S ≥ −n(n + 1), has
negative mass aspect then the metric can be deformed near infinity to the
hyperbolic metric, while maintaining the scalar curvature inequality. This
deformation result (Theorem 3.2), along with an analysis of the case in which
the mass aspect vanishes identically (Theorem 3.9), and their application to
the proof of Theorem 1.3 are presented in Section 3.

2 The rigidity result

The aim of this section is to give a proof of Theorem 1.1.

2.1 The brane action

Let (Mn+1, g) be an (n+1)-dimensional oriented Riemannian manifold with
volume form Ω. Assume there is a globally defined form Λ such that Ω = dΛ.

Let Σn be a compact orientable hypersurface in M . Then Σ is 2-sided in
M ; designate one side as the “outside” and the other as the “inside”. Let ν
be the outward pointing unit normal along Σ, and let Σ have the orientation
induced by ν (i.e., determined by the induced volume form ω = iνΩ). Then,
for any such Σ, we define the brane action B by,

B(Σ) = A(Σ) − nV(Σ) , (2.1)

where A(Σ) = the area of Σ, and V(Σ) =
∫
Σ

Λ. If Σ bounds to the inside
then, by Stokes theorem, V(Σ) = the volume of the region enclosed by Σ.
Although Λ is not uniquely determined, Stokes theorem shows that, within a
given homology class, B is uniquely determined up to an additive constant.

We wish to consider the formulas for the first and second variation of the
brane action. First, to fix notations, let A denote the second fundamental
form of Σ; by our conventions, for each pair of tangent vectors X, Y ∈ TpΣ,

A(X, Y ) = 〈∇Xν, Y 〉 , (2.2)

where ∇ is the Levi-Civita connection of (M, g) and h = 〈 , 〉 is the induced
metric on Σ. Then H = trA is the mean curvature of Σ.
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Let t → Σt, −ǫ < t < ǫ, be a normal variation of Σ = Σ0, with variation
vector field V = ∂

∂t

∣∣
t=0

= φν, φ ∈ C∞(Σ). Abusing notation slightly, set
B(t) = B(Σt). Then for first variation we have,

B′(0) =

∫

Σ

(H − n)φ dA (2.3)

Thus Σ is a stationary point for the brane action if and only if it has constant
mean curvature H = n.

Assuming Σ has mean curvature H = n, the second variation formula is
given by

B′′(0) =

∫

Σ

φL(φ) dA , (2.4)

where,

L(φ) = −△φ+
1

2
(SΣ − S − |A|2 −H2)φ , (2.5)

and where SΣ is the scalar curvature of Σ and S is the scalar curvature of
M . Here L is the stability operator associated with the brane action, and is
closely related to the stability operator of minimal surface theory. Using the
fact that H = n, L can be re-expressed as,

L(φ) = −△φ+
1

2
(SΣ − Sn − |A0|2)φ , (2.6)

where Sn = S + n(n+ 1) and A0 is the trace free part of A, A0 = A− h. We
note that, in our applications, Sn will be nonnegative.

A stationary point Σ for the brane action is said to be B-stable provided
for all normal variations t → Σt of Σ, B′′(0) ≥ 0. For operators of the form
(2.6), the following proposition is well-known.

Proposition 2.1. The following conditions are equivalent.

1. Σ is B-stable.

2. λ1 ≥ 0, where λ1 is the principal eigenvalue of L.

3. There exists φ ∈ C∞(Σ), φ > 0, such that L(φ) ≥ 0.

In particular, if λ1 ≥ 0, φ in part 3 can be chosen to be an eigenfunction.
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2.2 Warped product splitting

In this section we prove the local warped product splitting result alluded
to in the introduction. As a precursor, we prove the following infinitesimal
rigidity result.

Proposition 2.2. Let (Mn+1, g) be an oriented Riemannian manifold with
scalar curvature S satisfying,

S ≥ −n(n + 1) . (2.7)

Let Σn be a compact orientable B-stable hypersurface in M which does not
admit a metric of positive scalar curvature. Then the following must hold.

(i) Σ is umbilic, in fact A = h, where h is the induced metric on Σ.

(ii) Σ is Ricci flat and S = −n(n + 1) along Σ.

Proof. By Proposition 2.1, there exists φ ∈ Σ, φ > 0, such that L(φ) ≥ 0.

The scalar curvature S̃ of Σ in the conformally rescaled metric h̃ = φ
2

n−2h is
then given by,

S̃ = φ−
n

n−2 (−2△φ+ SΣφ+
n− 1

n− 2

|∇φ|2
φ

)

= φ−
2

n−2 (2φ−1L(φ) + Sn + |A0|2 +
n− 1

n− 2

|∇φ|2
φ2

) (2.8)

where, for the second equation, we have used (2.6) with f = φ. Since all terms
in parentheses above are nonnegative, (2.8) implies that S̃ ≥ 0. If S̃ > 0
at some point, then by well known results [16] one can conformally change
h̃ to a metric of strictly positive scalar curvature, contrary to assumption.
Thus S̃ vanishes identically, which implies L(φ) = 0, Sn = 0, A0 = 0 and φ
is constant. Equation (2.6), with f = φ then implies that S ≡ 0. By a result
of Bourguinon (see [16]), it follows that Σ carries a metric of positive scalar
curvature unless it is Ricci flat. Thus conditions (i) and (ii) are satisfied.

Proposition 1.1 will be used in the proof of the following local warped
product splitting result.

Theorem 2.3. Let (Mn+1, g) be an oriented Riemannian manifold with
scalar curvature S ≥ −n(n+ 1). Let Σ be a compact orientable hypersurface
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in M which does not admit a metric of positive scalar curvature. If Σ locally
minimizes the brane action B then there is a neighborhood U of Σ such that
(U, g|U) is isometric to the warped product ((−ǫ, ǫ)×Σ, dt2 + e2th), where h,
the induced metric on Σ, is Ricci flat.

By “locally minimizes” we mean, for example, that Σ has brane action less
than or equal to that of all graphs over Σ with respect to Gaussian normal
coordinates. A related result has been obtained by Yau [28] in dimension
three.

Proof. Let H(u) denote the mean curvature of the hypersurface Σu : x →
expxu(x)ν, u ∈ C∞(Σ), u sufficiently small. H has linearization H′(0) = L,
where L is the B-stability operator (2.6). But by Proposition 2.2, L reduces
to −△, and hence H′(0) = −△. We introduce the operator,

H∗ : C∞(Σ) × R → C∞(Σ) × R , H∗(u, k) =

(
H(u) − k,

∫

Σ

u

)
, (2.9)

which one easily checks has invertible linearization about (0, 0), since the
kernel of H′(0) contains only the constants. By the inverse function theorem,
for each τ sufficiently small there exists u = uτ and k = kτ such that H(uτ ) =
kτ and

∫
Σ
uτdA = τ . Since u′(0) ∈ kerH′(0), the latter equation implies that

u′(0) = const > 0. Thus for τ suffiiciently small, the hypersurfaces Σuτ
form a

foliation of a neighborhood U of Σ by constant mean curvature hypersurfaces.
Using coordinates on Σ and the normal field to the Σuτ

’s to transport
these coordinates to each Σuτ

, we have, up to isometry,

U = (−ǫ, ǫ) × Σ g|U = φ2dt2 + ht , (2.10)

where ht = hij(t, x)dx
idxj , φ = φ(t, x) and Σt = {t} × Σ has constant mean

curvature. Since Σ locally minimizes the brane action, we have, B(0) ≤ B(t)
for all t ∈ (−ǫ, ǫ), for ǫ sufficiently small.

Let H(t) denote the mean curvature of Σt. H = H(t) obeys the evolution
equation,

dH

dt
= L(φ) , (2.11)

where for each t, L is the operator on Σt given in Equation (2.5). Since Σ
locally minimizes the brane action, we have H(0) = n. We show H ≤ n for
t ∈ [0, ǫ). If this is not the case, there exists t0 ∈ (0, ǫ) such that H(t0) > n.
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Moreover, t0 can be chosen so that H ′(t0) > 0. Let S̃ be the scalar curvature

of Σt0 in the conformally related metric h̃ = φ
2

n−2ht0 . Arguing similarly as in
the derivation of (2.8), Equations (2.5) and (2.11) imply,

S̃ = φ−
2

n−2 (2φ−1H ′(t0) + S + |A|2 +H2 +
n− 1

n− 2

|∇φ|2
φ2

) , (2.12)

where all terms are evaluated on Σt0 . The Schwartz inequality gives, |A|2 ≥
H2/n > n. This, together with the assumed scalar curvature inequality (2.7),
implies that S + |A|2 +H2 > 0. We conclude from (2.12) that Σt0 carries a
metric of positive scalar curvature, contrary to assumption.

Thus, H ≤ n on [0, ǫ), as claimed. Now, by the formula for the first
variation of the brane action, it follows that

B′(t) =

∫

Σt

(H − n)φ dA ≤ 0 , for all t ∈ [0, ǫ) . (2.13)

But since B achieves a minimum at t = 0, it must be that B′(t) = 0 for
t ∈ [0, ǫ). Hence, the integral in (2.13) vanishes, which implies that H = n
on [0, ǫ). A similar argument shows that H = n on (−ǫ, 0], as well. Equation
(2.11) then implies that L(φ) = 0 on each Σt. Hence, by Proposition 2.1,
each Σt is B-stable. From Proposition 2.2, we have that At = ht, where At
is the second fundamental form of Σt, and that φ only depends on t. By a
simple change of t-coordinate in (2.10), we may assume without loss of gen-
erality that φ = 1. Then the condition At = ht becomes, in the coordinates
(2.10),

∂hij

∂t
= 2hij. Upon integration this gives, hij(t, x) = e2thij(0, x), which

completes the proof of the theorem.

2.3 Proof of the rigidity result

In order to prove Theorem 1.1 it is convenient to work with an explicit
representation of hyperbolic space H

n+1. We start with the half-space model
(Hn+1, gH), where, Hn+1 = {(y, x1, · · · , xn) : y > 0}, and

gH =
1

y2

(
dy2 + (dx1)2 + · · ·+ (dxn)2

)
, (2.14)

and make the change of variable y = e−t, to obtain H
n+1 = (Rn+1, g0), where,

g0 = dt2 + e2t
(
(dx1)2 + · · · + (dxn)2

)
. (2.15)
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As in the statement of Theorem 1.1, let (Mn+1, g) be a Riemannian man-
ifold with scalar curvature S[g] satisfying S[g] ≥ −n(n+1). We assume that
there are compact sets K ⊂ M , K0 ⊂ R

n+1 such that M −K is diffeomor-
phic to R

n+1 −K0, and, with respect to Cartesian coordinates (t, x1, ..., xn)
on the complement of K, g = g0. We want to show that (Mn+1, g) is globally
isometric to H

n+1. Since M is simply connected near infinity, it is in fact
sufficient to show that M has everywhere constant curvature KM = −1. Our
approach to proving this is to partially compactify (M, g) and then minimize
the brane action in a suitable homology class.

To partially compactify, we use the fact that the translations xi → xi+xi0
are isometries on (Rn+1, g0). Choosing a > 0 sufficiently large, we can enclose
the compact setK in an infinitely long rectangular box, with sides determined
by the “planes”, xi = ±a, i = 1, · · · , n,−∞ < t < ∞. We can then identify
points on opposite sides, xi = −a, xi = a, i = 1, ..., n, of the box in the
obvious manner to obtain an identification space which we denote by (M̂, ĝ).
Note that outside the compact set K,

M̂ = R × T n , ĝ = dt2 + e2th , (2.16)

where h is a flat metric on the torus T n. Thus, (M̂, ĝ) is just a standard
hyperbolic cusp outside the compact set K, with scalar curvature satisfying
S[ĝ] ≥ −n(n + 1) globally.

Choose b > 0 large so that K is contained in the region of M̂ bounded
between the toroidal slices t = ±b, and fix a t-slice Σ0 = {t0} × T n, t0 > b.
Σ0 separates M̂ into an “inside” and an “outside”, the inside being the
component of M̂ − Σ0 containing the cusp end t = −∞. We consider the
brane action of hypersurfaces Σ homologous to Σ0,

B(Σ) = A(Σ) − nV (Σ) . (2.17)

We note, as is needed to define B(Σ) unambiguously, that since Σ is homol-
ogous to Σ0 it, too, has a distinguished “inside” and “outside”, determined
by the fact that both Σ0 and Σ are homologous to a t-slice far out on the
cusp end.

We now want to minimize the brane action B in the homology class [Σ0].
The basic approach is to consider a minimizing sequence Σ1,Σ2, ... and use
the compactness results of geometric measure theory to extract a regular limit
surface. The potential difficulty with this approach is that, in principle, the
surfaces Σ1,Σ2, ..., or portions of them, may drift out to infinity along either

9



Σ′ Σ0 Σ′′

Σ̂

Σ

UK

t

Figure 1: Replacing Σ by Σ̂

end of M̂ . But, in fact, that can be avoided in the present situation, owing
to the existence of natural barrier surfaces, namely the t-slices themselves.

Fix t-slices Σ′ = {t1} ×Σ, t1 > t0, and Σ′′ = {t2}×Σ, t2 < −b. We show
that any minimizing sequence can be replaced by a minimizing sequence con-
tained in the region between Σ′ and Σ′′. To this end, consider a hypersurface
Σ homologous to Σ0 that extends beyond Σ′′ into the region t < −t2. With-
out loss of generality we may assume Σ meets Σ′′ transversely. Let D be the
part of Σ meeting {t ≤ −t2}, and let U be the domain bounded by Σ′′ and
D. Then ∂U consists of D and a part D′′ of Σ′′. Let Σ̂ be the hypersurface
homologous to Σ0 obtained from Σ by replacing D with D′′ (see Figure 2).

Since U is contained in a region where the metric (2.16) applies, and since
in this region div(∂t) = n, we apply the divergence theorem to obtain,

nV(Σ̂) − nV(Σ) = n vol(U) =

∫

U

div(∂t)dV

=

∫

D

〈∂t, n〉dA−
∫

D′′

〈∂t, ∂t〉dA

≤ A(D) − A(D′′) = A(Σ) −A(Σ̂) .

Rearranging this inequality gives the desired, B(Σ̂) ≤ B(Σ). By a similar
argument the same conclusion holds if Σ extends beyond Σ′ into the region
{t > t1}.
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Thus, we can choose a minimizing sequence Σi, for the brane action within
the homology class [Σ0] that is confined to the compact region between Σ′

and Σ′′. Since V(Σi) ≤ V(Σ′), we are ensured that limi→∞ B(Σi) > −∞.
Then the compactness and regularity results of geometric measure theory
(see e.g., [14], [22] and references therein) guarantee the existence of a regular
embedded hypersurface S homologous to Σ0 that achieves a minimum of the
brane action on [Σ0]. In general S will be a sum of connected embedded
surfaces, S = S1 + · · · + Sn.

The next thing we wish to observe is that there is a nonzero degree
map from S to the n-torus Σ0. This map comes from the ‘almost product’
structure of M̂ given in (2.10). A simple deformation of the t-lines in the
vicinity of K can be used to produce a continuous projection type map P :
M̂ → Σ0 such that K gets sent to a single point on Σ0 under P , and such that
P ◦ j = id, where j : Σ0 → M̂ is inclusion. Then f = P ◦ i : S → Σ0, where
i : S → M̂ is inclusion, is the desired nonzero degree map. Indeed, f induces
the map on homology f∗ : Hn(S) → Hn(Σ0), and using that S is homologous
to Σ0, we compute, f∗[S] = P∗(i∗[S]) = P∗(j∗[Σ0]) = id∗[Σ0] = Σ0 6= 0.

Thus, by linearity of f∗, at least one of the components of S, S1, say,
admits a nonzero degree map to the n-torus. By a result of Schoen and
Yau [22], which does not require a spin assumption, S1 does not admit a
metric of positive scalar curvature. (In fact it admits a metric of nonnegative
scalar curvature only if it is flat). Moreover, we know that S1 minimizes the
brane action in its homology class (otherwise there would exist a hypersurface
homologous to Σ0 with brane action strictly less than that of S). Thus, we
can apply Theorem 2.3 to conclude that a neighborhood U of S1 splits as a
warped product,

U = (−u0, u0) × S1 ĝ|U = du2 + e2uh , (2.18)

where the induced metric h on S1 is flat. But since S1 in fact globally maxi-
mizes the brane action in its homology class, by standard arguments this lo-
cal warped product structure can be extended to arbitrarily large u-intervals.
Hence K will eventually be contained in this constructed warp product re-
gion. It now follows that M̂ has constant curvature KM̂ = −1. This in turn
implies that M has constant curvature KM = −1. By previous remarks, we
conclude that M is globally isometric to hyperbolic space.
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3 Positivity of mass

The aim of this section is to give a proof of Theorem 1.3 on the positivity
of mass in the asymptotically hyperbolic setting. We shall adopt here the
definition of asymptotically hyperbolic given in Wang [26]:

Definition 3.1. A Riemannian manifold (Mn+1, g) is asymptotically hyper-
bolic provided it is conformally compact, with smooth conformal compactifi-
cation (M̃, g̃), and with conformal boundary ∂M̃ = Sn, such that the metric
g on a deleted neighborhood (0, T ) × Sn of ∂M̃ = {t = 0} takes the form

g = sinh−2(t)(dt2 + h) , (3.19)

where h = h(t, ·) is a family of metrics on Sn, depending smoothly on t ∈
[0, T ), of the form,

h = h0 + tn+1k +O(tn+2) , (3.20)

where h0 is the standard metric on Sn, and k is a symmetric 2-tensor on Sn.

We refer to k as the mass aspect tensor; it is the leading order measure
of the deviation of the metric g from the hyperbolic metric. Its trace with
respect to h0, trh0

k, is called the mass aspect function. Up to a normalizing
constant, the integral of the mass aspect function over the sphere defines the
mass (or energy) of (M, g), mass =

∫
Sn trh0

k.
For convenience, we repeat here the statement of our positivity of mass

result.

Theorem 3.1. Let (Mn+1, g), 2 ≤ n ≤ 6, be an asymptotically hyperbolic
manifold with scalar curvature S[g] ≥ −n(n + 1). Assume that the mass
aspect function trh0

k does not change sign, i.e. that it is either negative,
zero, or positive. Then, either the mass of (M, g) is positive, or (M, g) is
isometric to hyperbolic space.

The proof, which makes use of the rigidity result Theorem 1.1, is carried
out in the next two subsections. In subsection 3.1 we obtain the deformation
result mentioned in the introduction, see Theorem 3.2 below. This, together
with Theorem 1.1, implies that the mass aspect function cannot be negative,
see Proposition 3.3. In subsection 3.2, it is proved, using Theorem 1.1 again,
that if the mass aspect function vanishes then (M, g) is isometric to hyper-
bolic space, see Theorem 3.9. These results together imply Theorem 3.1.
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3.1 The deformation result

Suppose (Mn+1, g) is asymptotically hyperbolic in the sense of Definition 3.1.
Then by making the change of coordinate, t = arcsinh(1

r
), in (3.19) it follows

that there is a relatively compact set K such that M \ K = Sn × [R,∞),
R > 0, and on M \K, g has the form,

g =
1

1 + r2
dr2 + r2h , (3.21)

where h = h(·, r) is an r-dependent family of metrics on Sn of the form,

h = h0 +
1

rn+1
k + σ , (3.22)

where h0 is the standard metric on Sn, k is the mass aspect tensor and
σ = σ(·, r) is an r-dependent family of metrics on Sn such that for integers
ℓ,m ≥ 0, one has,

|(r∂r)ℓ∂mx σ| ≤ C/rn+2, (3.23)

for some constant C. For the proof of the deformation theorem and the
positive mass theorem, it is sufficient to assume condition (3.23) for 0 ≤
ℓ,m ≤ 2.

Let (Mn+1, g) be asymptotically hyperbolic, with scalar curvature satisfy-
ing, S[g] ≥ −n(n+1). What we now prove is that if the mass aspect function
of (M, g) is pointwise negative then g can be deformed on an arbitrarily small
neighborhood of infinity to the hyperbolic metric, while preserving (after a
change of scale) the scalar curvature inequality S ≥ −n(n + 1). A more
precise statement is given below.

Theorem 3.2. Let the metric g be given as above. Suppose that the scalar
curvature of g, S[g], satisfies S[g] ≥ −n(n + 1). If the mass aspect function
trh0

k is pointwise negative, then for any sufficiently large R1 > R there exists
a metric ĝ on M such that,

ĝ =





g , R ≤ r ≤ R1

ga = 1

1+ r2

a

dr2 + r2h0 , 9λR1 ≤ r <∞ ,

(3.24)

where a ∈ (0, 1), and such that,

S[ĝ] ≥ −n(n + 1)

a
. (3.25)
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(The constant λ > 1 depends only on the mass aspect function; see section
3.1.1.)

Theorems 1.1 and 3.2 may be combined to give the following result.

Proposition 3.3. Let (Mn+1, g), 2 ≤ n ≤ 6, be an asymptotically hyperbolic
manifold with scalar curvature satisfying, S[g] ≥ −n(n + 1). Then the mass
aspect function trh0

k cannot be everywhere pointwise negative.

Proof. Suppose to the contrary that the mass aspect function is strictly neg-
ative. Given any p ∈ M , choose R large enough so that p is not in the end
Sn × [R,∞). Theorem 3.2, together with a rescaling of the metric, implies
the existence of a metric g̃ on M such that (M, g̃) satisfies the hypotheses
of Theorem 1.1. Hence, (M, g̃) is isometric to hyperbolic space H

n+1. But,
modulo the change of scale, by our construction, g̃ will differ from g only at
points on the end Sn×[R,∞). It follows that (Mn+1, g) has constant negative
curvature curvature in a neighborhood of p. Since p is arbitrary, (Mn+1, g)
must have globally constant negative curvature, which, by the asymptotics of
(Mn+1, g), must equal −1. Since M is simply connected at infinity, we con-
clude that (Mn+1, g) is isometric to hyperbolic space H

n. But this contradicts
the assumption that the mass aspect function is negative.

Proof of Theorem 3.2: We now turn to the proof of the deformation result.
Introduce coordinates x = (x1, x2, ..., xn) on Sn. We use the convention that
for a function f = f(x, r), f ′(x, r) = ∂rf(x, r), and f ′′(x, r) = ∂2

rf(x, r).
Let ωij and kij be the components of h0 and k, respectively, with respect

to the coordinates (x1, x2, . . . , xn). Then g in (3.21) takes the form

g =
dr2

1 + r2
+ r2

(
ωij +

αij
rn+1

)
dxidxj

where

αij = kij(x) +
βij(x, r)

r
.

We are assuming (cf., (3.23)) αij satisfies the bounds,

|(r∂r)ℓ∂mx αij| ≤ Λ . (3.26)

for all integers ℓ,m, 0 ≤ ℓ,m ≤ 2.
Let µ denote the the mass aspect function, µ = trh0

k = ωijkij; by assump-
tion, |µ| > 0. Let µ̄ = maxx |µ(x)|, µ = minx |µ(x)|. We shall be making

14



estimates of geometric quantities in terms of the above defined constants. In
particular, we shall use a generic constant

C = C(n,R,Λ, µ̄, µ)

depending only on n,R,Λ, µ̄, µ, which may change from line to line.

We shall further use the notation O(1/rk) for a quantity bounded by
C(n,R,Λ, µ̄, µ)/rk.

3.1.1 Preliminary definitions

Fix R1 > R to be specified later. Set

λ =

(
µ̄

µ

) 1

n+1

Let a = a(n, µ̄, µ, R1) ∈ (0, 1) be a number such that

n+ 1

n

√
4

3

µ̄

(4λR1)n+1
<

1

a
− 1 <

n+ 1

n

√
3

4

µ

(3λR1)n+1

To show such an a exists, it suffices to show that

n + 1

n

√
4

3

µ̄

(4λR1)n+1
<
n + 1

n

√
3

4

µ

(3λR1)n+1

or equivalently
3

4

(
4

3
λ

)n+1

>
µ̄

µ
.

By our choice of λ, this is equivalent to

(
4

3

)n

> 1

which is obviously true. It follows from the definition that aր 1 as R1 ր ∞.

15



It is straightforward to show the existence of a smooth function ψ : R →
R+ such that for any R1 > R.

ψ =

{
1, r ≤ 7λR1

0, r ≥ 8λR1
(3.27a)

ψ′(r) ≤ 0 for all r (3.27b)

|ψ′(r)| ≤ b

r
(3.27c)

|ψ′′(r)| ≤ c

r2
(3.27d)

where b, c are positive constants. In the following, we consider a fixed function
ψ satisfying the conditions (3.27).

In the deformation construction, we shall consider functions f : Sn ×
[R,∞) → R, satisfying the following conditions.

f(x,R) = 1, for x ∈ Sn, (3.28a)

and for (x, r) ∈ Sn × [R,∞) the conditions

1

2
≤ f ≤ 2 (3.28b)

|f ′(x, r)| ≤ 1

r2
(3.28c)

|∆Snf | ≤ 1

rn
(3.28d)

|∇Sn

f |2 ≤ 1

rn
. (3.28e)

In particular, the constant function f ≡ 1 satisfies conditions (3.28). In
order to carry out the deformation from the metric g to the metric ga, we
shall consider metrics of the form,

gf,ψ =
1

1 + r2f
dr2 + r2(ωij +

ψαij
rn+1

)dxidxj . (3.29)

Given ψ, the main objective is to construct an f satisfying (3.28) so that gf,ψ
has the required properties.
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3.1.2 Scalar curvature formulas

We need formulas for the scalar curvature S[gf,ψ] of the metric gf,ψ.

Lemma 3.4. Let f, ψ satisfy the assumptions (3.28) and (3.27). Then the
metric gf,ψ has scalar curvature,

S[gf,ψ] = −n(n + 1)f − nrf ′ +
1

rn
(n|µ|ψ′ − r|µ|ψ′′)f + J , (3.30)

where J is a term bounded by C(n,R,Λ, µ̄, µ)/rn+2, and such that J = 0 for
r ≥ 8λR1.

Proof. We describe our approach to carrying out this computation. Setting,

h = 1 + r2f and gij = r2(ωij +
ψαij
rn+1

), (3.31)

gf,ψ becomes,

gf,ψ =
1

h
dr2 + gijdx

idxj . (3.32)

Applying the Gauss equation to an r-slice Σ = Sn × {r} gives,

S[gf,ψ] = SΣ + |B|2 −H2 + 2Ric(N,N) , (3.33)

where SΣ, B and H are the scalar curvature, second fundamental form and
mean curvature of Σ, respectively, and Ric(N,N) is the ambient Ricci curva-
ture in the direction of the unit normal N = h1/2 ∂

∂r
. In terms of coordinates,

B and H are given by, bij = B(∂i, ∂j) = 1
2

√
h ∂rgij, and H = gijbij . We then

compute each term in (3.33) in turn.
For the first three terms we obtain, making use of the bounds (3.26) and

(3.27)

SΣ =
n(n− 1)

r2
+O(

1

rn+3
) (3.34)

H = h
1

2 [
n

r
+
n + 1

2

|µ|ψ
rn+2

− 1

2

|µ|ψ′

rn+1
+O(

1

rn+3
)] (3.35)

|B|2 = Bi
jBj

i = h[
n

r2
+ (n + 1)

|µ|ψ
rn+3

− |µ|ψ′

rn+2
+O(

1

rn+4
)] . (3.36)
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Equations (3.35) and (3.36) combine to give,

|B|2 −H2 = h[−n(n− 1)

r2
− (n− 1)(n+ 1)

|µ|ψ
rn+3

+ (n− 1)
|µ|ψ′

rn+2
+O(

1

rn+4
)] . (3.37)

Applying the Raychaudhuri equation to the unit normal N = h1/2 ∂
∂r

to the
level sets of r, we have,

Ric(N,N) = −N(H) − |B|2 −
√
h∆Σ

1√
h
. (3.38)

Making use of equations (3.35) and (3.36), we derive from (3.38),

Ric(N,N) = −1

2
h′[
n

r
+
n + 1

2

|µ|ψ
rn+2

− 1

2

|µ|ψ′

rn+1
+O(

1

rn+3
)]

+ h[
n(n + 1)

2

|µ|ψ
rn+3

− n
|µ|ψ′

rn+2
+

1

2

|µ|ψ′′

rn+1
+O(

1

rn+4
)]

−
√
h∆Σ

1√
h
. (3.39)

Equations (3.34), (3.37) and (3.39) then combine to give,

S[gf,ψ] =
n(n− 1)

r2
− n(n− 1)

r2
h− n

r
h′ − [

n+ 1

2

|µ|ψ
rn+2

− 1

2

|µ|ψ′

rn+1
+O(

1

rn+3
)]h′

+ [(n+ 1)
|µ|ψ
rn+3

− (n + 1)
|µ|ψ′

rn+2
+

|µ|ψ′′

rn+1
+O(

1

rn+4
)]h

− 2
√
h△Σ

1√
h

+O(
1

rn+3
) . (3.40)

Setting h = 1+r2f in the above, and making use of the bounds (3.28) and
(3.27), one derives in a straight forward manner equation (3.30). Moreover, it
is clear from the computations that all ‘big O’ terms vanish once ψ vanishes.

The following Corollary gives the form of the scalar curvature which will
be used in the deformation construction.

Corollary 3.5. Let f, ψ satisfy the assumptions (3.28) and (3.27). Then,
there is a nonnegative function A1 : [R,∞) → R+, independent of f , such
that

A1 ≤ C(n,R,Λ, µ̄, µ) and A1 = 0 for r ≥ 9λR1 , (3.41)
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and such that the scalar curvature S[gf,ψ] of gf,ψ satisfies the inequality

S[gf,ψ] ≥ − n

rn

[
(rn+1 +

n+ 1

n
|µ|ψ − r

n
|µ|ψ′)f − A1(r)

r

]
′

. (3.42)

Proof. Using the product rule, equation (3.30) may be expressed as,

S[gf,ψ] = − n

rn
(rn+1f)′ +

1

rn
[((n + 1)|µ|ψ − r|µ|ψ′)f ]′

− 1

rn
[(n+ 1)|µ|ψ − r|µ|ψ′]f ′ +O(

1

rn+2
)

which, by the bounds (3.28) and (3.27) simplifies to,

S[gf,ψ] = − n

rn
[(rn+1 − n + 1

n
|µ|ψ +

r

n
|µ|ψ′)f ]′ +O(

1

rn+2
) . (3.43)

It follows that there exists a smooth function A : [R,∞) → R+, satisfying,
A ≤ C(n,R,Λ, µ̄, µ) and A = 0 for r ≥ 9λR1, such that,

S[gf,ψ] ≥ − n

rn
[(rn+1 − n + 1

n
|µ|ψ +

r

n
|µ|ψ′)f ]′ − A(r)

rn+2
. (3.44)

Now define A1 : [R,∞) → R+ by,

A1(r) =
r

n

∫ 9λR1

r

A(t)

t2
dt . (3.45)

One easily checks that the properties (3.41) hold. Moreover, since,
(
A1(r)

r

)
′

= −1

n

A(r)

r2
, (3.46)

inequality (3.42) follows from (3.44). Finally, it is clear from the construction
that A and hence also A1 may be chosen to be independent of f .

3.1.3 Defining η: rounding the corner

Let η1(x, r), η2(r) be given by

η1(x, r) = rn+1 +
n+ 1

n
|µ|ψ − r

n
|µ|ψ′ − A1(r)

r
, (3.47a)

η2(r) =
rn+1

a
, (3.47b)
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η1

η2

η

R1 3λR1 4λR1 7λR1

Figure 2: Construction of η

where the function A1 appearing in η1 is the function A1 defined in Corollary
3.5. By (3.42), S[g1,ψ] ≥ − n

rn η
′

1. Further, ga has constant curvature −1/a,
and hence S[ga] = − n

rn η
′

2.
In the rest of the argument we shall be choosing R1 sufficiently large, so

that the required conditions are satisfied. We shall successively increase R1

as required.

Lemma 3.6. There is an R1 > R, R1 = R1(n,R,Λ, µ̄, µ) such that the
following inequalities hold.

η′1(x, r) < η′2(r) , R1 ≤ r ≤ 7λR1 (3.48a)

η1(x, r) − η2(r) > µ/20 , R1 ≤ r ≤ 3λR1 (3.48b)

η2(r) − η1(x, r) > µ̄/10 , 4λR1 ≤ r ≤ 7λR1 . (3.48c)

Proof. We need to consider only the interval R1 ≤ r ≤ 7λR1. There, ψ ≡ 1,
and ψ′ ≡ 0. We start by proving (3.48a). By construction, we have for
r ≥ R1, using |µ| > 0 and the properties of a, after some manipulations,

η′2 − η′1 >
1

r

[
(
1

a
− 1)(n+ 1)rn+1 − A(r)

nr

]

>
1

r

[√
4

3

(n + 1)2

n

µ̄

(4λ)n+1
− A(r)

nr

]
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Since A(r) ≤ C(n,Λ, R, µ̄, µ), it follows that (3.48a) holds for R1 sufficiently
large.

Next we prove (3.48b). Since (η1 − η2)
′ < 0 for r ≥ R1, it is sufficient to

prove the inequality at r = 3λR1. We have

η1(x, 3λR1) − η2(3λR1) ≥
[(

1 − 1

a

)
+
n + 1

n

µ

(3λR1)n+1

]
(3λR1)

n+1

− A1(3λR1)

3λR1
,

which by using the properties of a and simplifying gives,

>

[
1 −

√
3

4

]
n + 1

n
µ− A1(3λR1)

3λR1
.

One checks that 1 −
√

3/4 > 1/10. Thus, in view of the fact that A1 ≤
C(n,R,Λ, µ̄, µ), by possibly increasing R1 we see that (3.48b) can be made
to hold.

We proceed in a similar fashion to prove (3.48c). We have

η2(4λR1) − η1(x, 4λR1) ≥
[
(
1

a
− 1) − n+ 1

n

µ̄

(4λR1)n+1

]
(4λR1)

n+1

≥
[√

4

3
− 1

]
n + 1

n
µ̄

We note that
√

4/3−1 > 1/10. This completes the proof of Lemma 3.6.

We shall define η = η(x, r) to be a suitably increasing function of the
variable r that smoothly transitions from η1 to η2 (see Figure 1). In order
to make meaningful estimates, its construction shall be made fairly explicit.
Its construction depends on two auxiliary functions α and β, which we now
introduce.

Let α : [0,∞) → R be a function satisfying,

1. α(r) = 0 for r ≤ R1, 2R1 ≤ r ≤ 5λR1, and r ≥ 6λR1.

2. α > 0 for R1 < r < 2R1, α < 0 for 5λR1 < r < 6λR1, and
∫ 6λR1

R1

α(t)dt =

∫
∞

−∞

α(t)dt = 0 . (3.49)
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Consider,

γ(x, r) =
α(r)

η1(x, r) − η2(r)
.

It follows from Lemma 3.6 and the properties of α that γ is nonnegative and
bounded,

0 ≤ γ ≤ C(n,Λ, µ, µ̄) .

Next, define m(x) by the condition

1 +m(x)

∫ 6λR1

R1

γ(x, t) dt = 0 , (3.50)

and let

β(x, r) = 1 +m(x)

∫ r

R1

γ(x, t) dt .

Then, β satisfies,

β = 1, for r ≤ R1 (3.51a)

β = 0, for r ≥ 6λR1 (3.51b)

0 ≤ β ≤ 1, for all r . (3.51c)

Conditions (3.51a), (3.51b) are clear. For (3.51c), we consider, β ′ = mγ.
As observed above, γ ≥ 0, and hence from (3.50), m ≤ 0, so that mγ ≤ 0.
Hence β is decreasing, which implies that 0 ≤ β ≤ 1.

Now we are ready to define η. Let

η(x, r) = η1(x,R1) +

∫ r

R1

[β(x, t)η′1(x, t) + (1 − β(x, t))η′2(t)]dt .

Lemma 3.7. η defined as above satisfies the conditions

η(x, r) =





η1(x, r) r ≤ R1

η2(r) = rn+1

a
, r ≥ 6λR1

(3.52a)

η′(x, r) ≤ η′2(r) =
(n + 1)rn

a
, R1 ≤ r <∞ . (3.52b)
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Proof. For r ≤ R1, we have β = 1, so

η(x, r) = η1(x,R1) +

∫ r

R1

η′1(x, t)dt = η1(x, r) .

In the following calculations, which only involve derivatives and integrals
with respect to r, we suppress reference to x in order to avoid clutter. For
r ≥ 6λR1, we have β = 0, which gives

η(r) = η1(R1) +

∫ 6λR1

R1

[βη′1 + (1 − β)η′2]dt+

∫ r

6λR1

η′2dt (3.53)

= η2(r) − η2(6λR1) + η1(R1) +

∫ 6λR1

R1

(βη′1 + (1 − β)η′2)dt . (3.54)

A partial integration gives

∫ 6λR1

R1

(βη′1 + (1 − β)η′2)dt (3.55)

= η2(6λR1) − η2(R1) + β(η1 − η2)

∣∣∣∣
r=6λR1

r=R1

−
∫ 6λR1

R1

β ′(η1 − η2)dt

(3.56)

use the properties of β and γ

= η2(6λR1) − η2(R1) − (η1(R1) − η2(R1)) −m

∫ 6λR1

R1

αdt (3.57)

use (3.49)

= η2(6λR1) − η1(R1) . (3.58)

Substituting this into the formula for η(x, r), we obtain,

η(x, r) = η2(r), for r ≥ 6λR1

We have now established (3.52a). Next we prove (3.52b). We have

η′ = βη′1 + (1 − β)η′2 (3.59)

23



and hence, by (3.48),

η′ ≤ βη′2 + (1 − β)η′2 (3.60)

= η′2 =
(n+ 1)rn

a
. (3.61)

We shall now make use of the function η defined above to define a function
f , which shall be shown to satisfy the conditions (3.28). This fact allows us
to apply the result of Corollary 3.5 to estimate the scalar curvature of the
deformed metric gf,ψ defined in terms of this f .

3.1.4 Defining f

We define f by,

f =
η + A1

r

η1 + A1

r

, (3.62)

which implies,

(rn+1 +
n+ 1

n
|µ|ψ − r

n
|µ|ψ′)f − A1

r
= η . (3.63)

Here, A1 = A1(r) is the function determined in Corollary 3.5. It is crucial
to note here that A1 is independent of the particular f , as long as it satisfies
the conditions (3.28). Our task is now to show that f defined as above does
satisfy these conditions as long as R1 is chosen sufficiently large. This will
be demonstrated in Lemma 3.8 below. It then follows from equation (3.63)
above, Corollary 3.5 and (3.52b) that S[gf,ψ] satisfies,

S[gf,ψ] ≥ − n

rn
η′ ≥ −n(n + 1)

a
.

In addition we have, gf,ψ = g on [R,R1] and gf,ψ = ga on [9λR1,∞). Thus,
subject to the following lemma, Theorem 3.2 has been proven.

Lemma 3.8. Let η be as in section 3.1.3, and let f be given in terms of η
by (3.62). Then, there is an R1 = R1(n,R,Λ, µ̄, µ) sufficiently large, so that
the inequalities (3.28) are valid.
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Proof. The condition (3.28a) is clear from the construction. Since (3.28c)
implies (3.28b) we only need to verify that |f ′| ≤ 1/r2 and |∂xf | ≤ 1/rn,
|∂2
xf | ≤ 1/rn. We begin by showing there is an R1 sufficiently large, and

not smaller than the previously made choices of R1, so that |f ′| ≤ 1/r2. We
have,

f = 1 +
(η − η1)

η1 + A1/r
. (3.64)

This gives

f ′ =
(η − η1)

′

η1 + A1/r
− (η − η1)

(η1 + A1/r)2
[η′1 + (A1/r)

′] .

Since

η(x, r) = η1(x,R1) +

∫ r

R1

(βη′1 + (1 − β)η′2)dt ,

η1(x, r) = η1(x,R1) +

∫ r

R1

η′1dt

we have,

η − η1 =

∫ r

R1

(1 − β)(η2 − η1)
′ .

so
(η − η1)

′ = (1 − β)(η2 − η1)
′

Hence,

|(η − η1)
′| ≤ (η2 − η1)

′ =

(
1

a
− 1

)
rn(n+ 1) +O(1/r) (3.65)

≤ C

r
. (3.66)

Here and below C = C(n,R,Λ, µ̄, µ) is a generic constant. Recall that by
construction we have

(A1/r)
′ ≤ C

r2
.

Combining the above inequalities, we have
∣∣∣∣

(η − η1)
′

η1 + A1/r

∣∣∣∣ ≤
C

rn+2
. (3.67)
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Now since

|(η − η1)
′| ≤ C

r

we have
|η − η1| ≤ C (3.68)

for r ∈ [R1, 9λR1]. This together with

|η′1| ≤ Crn

implies that ∣∣∣∣
(η − η1)

(η1 + A1/r)2
[η′1 + (A1/r)

′]

∣∣∣∣ ≤
C

rn+2
. (3.69)

Equations (3.67) and (3.69) imply

|f ′| ≤ C

rn+2

for r ∈ [R1, 9λR1]. By choosing R1 large enough, we have

|f ′| ≤ 1

r2

which gives (3.28c).
Next we demonstrate that by, if necessary, further increasing R1, we can

ensure that the condition

|∂kxf | ≤
1

rn
, k = 1, 2,

holds, where ∂x denotes partial differentiation with respect to any one of the
coordinates xi.

Recalling (3.64), we have

∂xf =
∂x(η − η1)

η1 + A1/r
− η − η1

(η1 + A1/r)2
(∂xη1)

We estimate the second term first. By (3.68), |η − η1| ≤ C, so

∣∣∣∣
η − η1

(η1 + A1/r)2
∂xη1

∣∣∣∣ ≤
1

r2n+2
|∂xη1|
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Recalling

η1 = rn+1 +
n+ 1

n
|µ|ψ − r

n
|µ|ψ′ − A1

r

we find |∂xη1| ≤ C. Hence the modulus of the second term in ∂xf is bounded
by C/r2n+2.

Now consider the first term in ∂xf . Recall

η − η1 =

∫ r

R1

(1 − β)(η2 − η1)
′dt

= (1 − β)(η2 − η1)

∣∣∣∣
r

R1

+

∫ r

R1

(η2 − η1)β
′dt

= [1 − β](η2 − η1) +

∫ r

R1

(η2 − η1)β
′dt

so

∂x(η − η1) = −(∂xβ)(η2 − η1) − (1 − β)∂xη1

+

∫ r

R1

([∂x(η2 − η1)]β
′ + (η2 − η1)∂xβ

′) dt .

Now,

∂xβ = (∂xm)

(∫ r

R1

α

η1 − η2

)
+m

∫ r

R1

(
∂x

α

η1 − η2

)
.

Recall,

1 +m

∫ 6λR1

R1

α

η1 − η2
= 0

so

m = − 1
∫ 6λR1

R1

α
η1−η2

= O(1/R1) .

Hence,

∂xm = −
∫ 6λR1

R1
∂x

(
α

η1−η2

)

(∫ 6λR1

R1

α
η1−η2

)2 .

One can see that,

∂x

(
α

η1 − η2

)
= O(1)
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so

∂xm = O(
1

R1
) .

Hence we have, using m = O(1/R1),

∂xβ = O(1)

and therefore
∂xβ(η2 − η1) = O(1) .

Next we consider the second term in ∂xf . We have

|∂xη1| ≤ C ,

so
(1 − β)∂xη1 = O(1) .

Since m = O(1/R1), we have,

β ′ = m
α

η1 − η2
= O(1/R1)

but,
∂x(η2 − η1) = O(1)

so,
∂x(η2 − η1)β

′ = O(1/R1) .

Similarly,
∂xβ

′ = O(1/R1)

and,
η2 − η1 = O(1) .

Hence,
[∂x(η2 − η1)]β

′ + (η2 − η1)∂xβ
′ = O(1/R1) ,

and therefore,
∫ r

R1

[(∂x(η2 − η1))β
′ + (η2 − η1)∂xβ

′] = O(1) .

Adding the three terms, we get,

∂x(η − η1) = O(1) .
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This implies that the first term in ∂xf is

O(1)

η1 + A1/r
= O(

1

rn+1
) ,

i.e.,

|∂xf | ≤
C

rn+1
.

Similar arguments give,

|∂2
xf | ≤

C

rn+1
.

By choosing R1 large enough we obtain,

|∂kxf | ≤
1

rn
, k = 1, 2 .

Lemma 3.8 follows.

As discussed above, now that Lemma 3.8 is established, we have com-
pleted the proof of Theorem 3.2.

3.2 The case of vanishing mass aspect function

In this subsection, we prove the following.

Theorem 3.9. Let (Mn+1, g), 2 ≤ n ≤ 6, be an asymptotically hyperbolic
manifold with scalar curvature satisfying, S[g] ≥ −n(n+ 1). If the mass as-
pect function trh0

k vanishes identically, then (M, g) is isometric to hyperbolic
space.

We note that while Theorem 3.9 generalizes Theorem 1.1, its proof relies
on it. We note also that our positivity of mass result, Theorem 3.1, follows
immediately from Proposition 3.3 and Theorem 3.9.

For notational convenience we set d = n + 1. Further, let capital latin
indices run from 1, . . . , d − 1, let lowercase latin indices run from 1, . . . , d,
and let yA be coordinates on Sd−1. Further, let (xi) = (t, yA) be coordinates
on (0, T ) × Sd−1, and, as usual, let h0 be the standard metric on Sd−1.
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3.2.1 Conformal gauge

Consider a conformally compact d-dimensional manifold (M, g) where M is
the interior of a manifold with boundary M̃ = M ∪ ∂M , and suppose g is of
the form g = ρ−2g̃, with ρ a defining function for ∂M for a metric g̃ which is
smooth on M̃ .

Let θ be a positive function on M̃ . Letting g̃ → θ2g̃ and ρ → θρ leaves
g unchanged. Such a transformation can therefore be viewed as a change of
conformal gauge.

Let g̃ be a metric on M̃ which in a neighborhood of ∂M can be written
in the form

g̃ = dt2 + h0 + tdγ (3.70)

where γ = γijdx
idxj is a smooth tensor field on (0, T ) × Sd−1 for some

T > 0, such that the restriction of γ to ∂M is a smooth tensor on Sd−1, i.e.
γ
∣∣
∂M

= γ(0, y)ABdy
AdyB. The following lemma shows that after a change

of conformal gauge we may assume that g̃ is in Gauss coordinates based on
∂M .

Lemma 3.10. Consider the conformally compact metric g = sinh−2(t)g̃.
There is a conformal gauge change so that g takes the form g = sinh−2(t̂)ˆ̃g,
where t̂(p) = dˆ̃g(p, ∂M), and ˆ̃g is of the form

ˆ̃g = dt̂2 + h0 + t̂dγ̂

where γ̂ = γ̂(t̂, y)ABdy
AdyB is a t̂-dependent tensor field on Sd−1, such that

γ̂
∣∣
∂M

= γ
∣∣
∂M

. In particular, g is asymptotically hyperbolic in the sense of

Definition 3.1, with mass aspect tensor k = γ
∣∣
∂M

.

Proof. Let ρ = sinh(t). Arguing as in [2, Section 5], we shall find a function
θ such that ρ̂ := θρ = sinh(t̂), where t̂ = dˆ̃g(p, ∂M), is the distance to the

boundary in the metric ˆ̃g. This is equivalent to the condition that f̂ :=
arcsinh(ρ̂) = t̂, with |df̂ |ˆ̃g = 1. A calculation as in the proof of [2, Lemma
5.3] shows that this condition is equivalent to the equation

ρg̃(dθ, dθ) + 2θg̃(dθ, dρ) = θ4ρ+ θ2a (3.71)

where a = ρ−1(1 − g̃(dρ, dρ)).
For g̃ of the form (3.70), we have a = −ρ + O(td). Equation (3.71)

is a system of first order partial differential equations, with characteristics
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transversal to ∂M = {t = 0}, and satisfies the conditions for existence of
solutions with initial condition θ = 1 at ∂M , see [25, volume 5, pp. 39-40].
Hence there is a small neighborhood U of ∂M , and a solution θ to (3.71) on
U .

We shall need the following fact.

Claim. θ = 1 + td+1w, where w is smooth up to ∂M

The proof of the claim is straightforward and is left to the reader. Now
we have that t̂ = arcsinh(θ sinh(t)) = t[1 +O(td+1)], and hence

t = t̂[1 +O(t̂d+1)]

where the O(td+1) and O(t̂d+1) terms are smooth functions of (t, y) and (t̂, y),
respectively. It is straightforward to verify that

sinh−2(t) = sinh−2(t̂)[1 + t̂d+1]

and g = sinh−2(t̂)ˆ̃g, with

ˆ̃g = dt̂2 + h0 + t̂dγ̂

where γ̂ has the property that γ̂(0, y) = γ(0, y).
By construction, t̂ is the distance to ∂M , and hence the above is the form

of ˆ̃g in Gauss coordinates, based on ∂M . It follows that γ̂ is a t̂-dependent
tensor on Sd−1.

3.2.2 Conformal deformation

Assume (M, g) is asymptotically hyperbolic in the sense of Definition 3.1.
Then, in slightly different notation, (M, g) has a conformal compactification
(M̃, g̃) with conformal boundary ∂M̃ the round sphere, and such that near
∂M̃ , g has the form,

g = ρ−2g̃ (3.72)

where ρ = sinh(t) and
g̃ = dt2 + h0 + tdγ , (3.73)

where h0 is the standard metric on Sd−1 and γ = γ(t, ·) is a t-dependent
family of metrics on Sd−1 smooth up to ∂M̃ . Note that the mass aspect
tensor is given by, k = γAB

∣∣
∂M̃

.
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Let h = h0 + tdγ be the metric induced on the level sets of t, and let
s denote the scalar curvature defined with respect to h. Further, let Kij =
1
2
∂thij . The only nonvanishing components of K are KAB = 1

2
dtd−1γAB +

O(td).

Let ∇̃ denote the covariant derivative defined with respect to g̃ and let
S̃ denote the scalar curvature of g̃. The formula for the scalar curvature of
conformally related metrics gives,

S = −d(d− 1)∇̃lρ∇̃lρ+ (2d− 2)ρ∇̃l∇̃lρ+ ρ2S̃ .

Claim. S has the asymptotic form,

S = −d(d− 1) +O(td+1) . (3.74)

Indeed, by Taylor’s theorem, we have s = S[h0] +O(td), and hence,

S̃ = s − 2hAB0 ∂tKAB − (hAB0 KAB)2 + 3KABK
AB

= (d− 1)(d− 2) − d(d− 1)td−2hAB0 γAB +O(td−1) .

Further, using ρ = sinh t,

∇̃l∇̃lρ = sinh(t) − g̃ijΓ̃tij cosh(t)

= sinh(t) + hAB0 KAB +O(td)

= sinh(t) +
d

2
td−1hAB0 γAB +O(td) .

Finally, we note that ∇̃lρ∇̃lρ = cosh2(t). Putting this together, one finds
after a few manipulations that the terms involving the mass aspect function,
µ = hAB0 (γAB

∣∣
∂M̃

), in S[g], at order td, cancel. Equation 3.74 follows.

By standard results [3], there is a unique positive solution u such that
limx→∞ u(x) = 1, to the Yamabe equation for prescribed scalar curvature
−d(d− 1) in dimension d,

− 4(d− 1)

d− 2
∆u+ Su+ d(d− 1)u

d+2

d−2 = 0 . (3.75)

Let v = u− 1 and let

Ŝ =
d− 2

4(d− 1)
(S + d(d− 1)) .
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Then the Yamabe equation takes the form

− ∆v + dv + Ŝv = −Ŝ − F(v) (3.76)

where

F(v) =
d(d− 2)

4

[
(1 + v)

d+2

d−2 − 1 − d+ 2

d− 2
v

]

In particular F(v) = O(v2). A straightforward application of the maximum
principle shows that since S[g] ≥ −d(d− 1), we have v ≤ 0 and hence

u ≤ 1 .

Linearizing the Yamabe equation around u = 1, we obtain the equation

−∆ū+ dū+ Ŝū = 0 .

The indicial exponents of this equation are −1, d. It follows that the solution
to the Yamabe equation is of the form u = 1+ v with v = vd,1t

d log t+ vdt
d +

higher order. However since by Equation (3.74), Ŝ = O(td+1), it follows [1]
that vd,1 = 0, and in fact v is smooth up to boundary, with

v = vdt
d + higher order.

Let L = −∆ + d. Equation (3.76) takes the form

Lv = f (3.77)

with f given by
f = −Ŝu−F(u− 1) .

In particular, f ≤ 0 and f 6= 0 except when Ŝ = 0. Let Lt be the operator
defined by

Ltu = − sinh2(t)∂2
t u+ (d− 2) sinh(t) cosh(t)∂tu+ du .

We have
Lu = Ltu− sinh2(t)∂t

√
det h∂tu− sinh2(t)∆hu ,

where ∆h is the Laplacian on Sd−1 with respect to the metric h(t, ·) = h0+t
dγ.

In particular ∆h involves only yA-derivatives.
We now introduce a function w which will be used as a supersolution, in

order to control the leading order term in v. Let w = −td(1 + dt).
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Lemma 3.11. There exists constants t1 = t1(d) > 0, A = A(d) > 0 such
that

Ltw > Atd+1, for 0 < t < t∗

Proof. Using w = −td(1 + dt), we obtain,

Lt(w) = sinh2(t)[d(d− 1)td−2 + d2(d+ 1)td−1]

− (d− 2) sinh(t) cosh(t)[dtd−1 + d(d+ 1)td] − d(td + dtd+1)

= [d(d− 1)td + d2(d+ 1)td+1] − (d− 2)[dtd + d(d+ 1)td+1]

− [dtd + d2td+1] +O(td+2)

= d(d+ 2)td+1 +O(td+2) ,

and the lemma follows.

We have,
Lw = Ltw − sinh2(t)∂t

√
det h∂tw .

For metrics of the form we are considering, trh∂th = O(td−1). Hence by
Lemma 3.11, we have

Lw > Atd+1 − Ct2d

where C = C(d, γ). This means there exists t2 > 0, t2 = t2(d, γ) such that

Lw > 0, for 0 < t < t2 .

Lemma 3.12. Let (M, g) be asymptotically hyperbolic, so that (3.72) and
(3.73) hold. Let f be a function on (M, g), and assume that f is smooth up
to ∂M̃ , with fall off f = O(td+1). Let L = −∆ + d, and let v be the unique
solution to

Lv = f

with v = O(td). Then v = vdt
d + td+1J with vd = vd(y) smooth on ∂M̃ and

J smooth up to ∂M̃ . If f ≤ 0, f 6= 0, then vd < 0.

Proof. Let v̄a = aw and let v be as in (3.77). We have f ≤ 0, and hence by
the strong maximum prinicple, v < 0 in the interior of M̃ . It follows that
there is ǫ > 0, t2 > t3 > 0, so that

sup
y∈Sd−1

v(t3, y) < −ǫ
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For each a ≥ 0, v̄a is a supersolution to L in the region 0 < t < t3 and for
0 ≤ a ≤ a∗, we have that v̄a(t3) > v(t3, y) for y ∈ Sd−1. Further, we clearly
have v̄a(0) = v(0, y) = 0 for y ∈ Sd−1. It follows from the maximum principle
that for small a, v̄a > v in the region 0 < t < t3. Fix an a with this property.
Since v̄a = −atd +O(td+1), dividing the inequality, v ≤ v̄a, by td and letting
tց 0 gives vd ≤ −a.

We are now ready to state the following analogue of a well-known result
in the asymptotically flat setting (cf., [20]).

Proposition 3.13. Let (M, g) be asymptotically hyperbolic in the sense of
Definition 3.1, with scalar curvature S[g] ≥ −d(d − 1), and with strict in-
equality somewhere. Then there exists a conformally related metric ĝ such
that

1. (M, ĝ) is asymptotically hyperbolic,

2. S[ĝ] = −d(d− 1), and

3. µ[ĝ] < µ[g],

where µ[g], µ[ĝ] are the mass aspect functions of (M, g), (M, ĝ), respectively.

Proof. Lemma 3.12, together with the discussion prior to Lemma 3.11, shows
that the solution u to the Yamabe equation is of the form

u = 1 + udt
d + td+1J

with ud = ud(y) < 0, and with J smooth up to ∂M̃ . Then, after a change of
coordinates, ĝ = u4/(d−2)g can be brought into the form,

ĝ = sinh−2(t)(dt2 + h0 + td(γ +
4

d− 2
(1 +

1

d
)udh0) + td+1z)

where z = zijdx
idxj is smooth up to ∂M̃ .

By Lemma 3.10, after a change of conformal gauge, we have

ĝ = sinh−2(t̂)(dt̂2 + h0 + t̂d(γ̂ +
4

d− 2
(1 +

1

d
)udh0))

where γ̂ = γ̂(t̂, y)ABdy
AdyB is smooth up to ∂M̃ and γ̂(0, y) = γ(0, y). It

follows from the above that the mass aspect functions satisfy,

µ[ĝ] = µ[g] +
4(d− 1)

d− 2
(1 +

1

d
)ud < µ[g] , (3.78)

since ud < 0.
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For the purpose of establishing Theorem 3.9, we need the following im-
mediate consequence of Propositions 3.3 and 3.13.

Corollary 3.14. Let (M, g) be as in Theorem 3.9; in particular, assume
µ[g] = 0. Then g has constant scalar curvature S[g] = −d(d− 1).

Proof. Suppose S[g] > −d(d − 1) somewhere. Then, by Proposition 3.13,
there exists a conformally related metric ĝ such that (M, ĝ) is asymptoti-
cally hyperbolic, S[ĝ] = −d(d − 1), and µ[ĝ] < µ[g] = 0. But this directly
contradicts Proposition 3.3.

3.2.3 Deforming the metric

Now we will show that if g has constant scalar curvature S = −d(d− 1) and
vanishing mass aspect function, then it is Einstein, Ricg = −(d− 1)g. Thus,
let (M, g) be as in Theorem 3.9, and assume S[g] = −d(d− 1).

Let

R̂ic = Ric − S

d
g

denote the traceless part of Ric. Note that since g has constant scalar cur-
vature Ric and R̂ic have vanishing divergence.

For the subsequent analysis, we shall need detailed information about the
asymptotic behavior of R̂ic.

Lemma 3.15. Let (M, g) be as in Theorem 3.9 (so that (3.72) and (3.73)
hold, and the mass aspect vanishes). Then

R̂ic = −d
2
td−2γ + td−1z

where z = zijdx
idxj.

Proof. Let R̃ic, ∇̃ denote the Ricci tensor and covariant derivative defined
with respect to g̃. The conformal transformation formula for Ricci curvature
is

Ricij = R̃icij + ρ−1[(d− 2)∇̃i∇̃jρ+ ∇̃l∇̃lρg̃ij]− (d− 1)ρ−2∇̃lρ∇̃lρg̃ij (3.79)

where in the right hand side, indices are raised with g̃.
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Note that if γ = 0, then R̃ic = (d−2)h0 and the only nonvanishing terms
in the formula for Ric are

Rictt = (d− 1) sinh−2(t)

RicAB = (d− 1) sinh−2(t)h0AB

Now we consider the case with nonvanishing γ, but with vanishing mass
aspect function, i.e. µ = hAB0 γAB

∣∣
t=0

= 0.

Let Kij = 1
2
∂tg̃ij . Then the nonvanishing terms in K are KAB =

1
2
dtd−1γAB +O(td). Let h,∇/, ric denote the induced metric, covariant deriva-

tive and Ricci tensor on the level sets Mt of t. We use coordinates yA on
these level sets, and raise and lower indices with h. Note that h = h0 + tdγ,
and hence, since ric involves no t-derivatives, we have by Taylor’s theorem,

ric = Ric[h0] +O(td) = (d− 2)h0 +O(td)

We have from the Gauss, Codazzi, and second variation equations

R̃ictt = −hAB∂tKAB +KACK
C
B

= −1

2
d(d− 1)td−2hABγAB +O(td−1)

which using µ = 0 gives,

= O(td−1) ,

R̃ictA = ∇/BKBA −∇/A(hBCKBC)

= O(td) ,

R̃icAB = ricAB − ∂tKAB + 2KACK
C
B −KABh

CDKCD

= (d− 2)h0 −
1

2
d(d− 1)td−2γAB +O(td−1) .

Thus we have

R̃ic = (d− 2)h0 −
1

2
d(d− 1)td−2γ +O(td−1)

We next consider the remaining terms

Bij = ρ−1[(d− 2)∇̃i∇̃jρ+ ∇̃l∇̃lρg̃ij] − (d− 1)ρ−2∇̃lρ∇̃lρg̃ij .
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Recall that since we are in a Gauss foliation, the only non-vanishing terms
in Γ̃tij are

Γ̃tAB = −KAB .

We have

Btt = −(d− 1) sinh−2(t) ,

BtA = 0 ,

BAB = sinh−1(t)[(d− 2)KAB cosh(t) + sinh(t)hAB]

− (d− 1) sinh−2(t) cosh2(t)hAB ,

= −(d− 1) sinh−2(t)h0AB +
1

2
d(d− 2)td−2γAB +O(td−1) .

This shows that

Ric[g] = −(d− 1)g − d

2
td−2γ +O(td−1)

which gives the Lemma.

Consider the curve,
λs = u4/(d−2)

s gs (3.80)

where, for s small, gs is the smooth curve of metrics, gs = g − sR̂ic[g], and
us is the conformal factor such that S[λs] = −d(d − 1). Note that u0 = 1.
By Lemmas 3.10, 3.15, and our earlier discussion on the asymptotic form
of solutions to the Yamabe equation, λs is asymptotically hyperbolic in the
sense of Definition 3.1. Let µs denote the mass aspect function of λs.

Let ū = ∂us

∂s
|s=0. Then, by differentiating the Yamabe equation (3.75),

with u = us and g = gs, with respect to the parameter s, we obtain the
equation,

−∆ū+ dū = −|R̂ic|2 .
By Lemma 3.12, we have

ū = ūdt
d +O(td+1) ,

with ūd = ūd(y) < 0 if R̂ic 6= 0.

Lemma 3.16.

∂sµs
∣∣
s=0

=
4(d− 1)

d− 2
(1 +

1

d
)ūd .
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Proof. Clearly, α = ∂sµs
∣∣
s=0

is of the form α = αdRic + αu, where

αdRic = ∂sµ(gs)
∣∣
s=0

and
αu = ∂sµ(u4/(d−2)

s g)
∣∣
s=0

.

Let gs = sinh−2(t)g̃s. In order to determine the s-dependence of the mass
aspect function we consider g̃s. It follows from Lemma 3.15 that

sinh2(t)∂sg̃s =
d

2
tdγ +O(td+1) .

Since by assumption trh0
γ
∣∣
∂M

= 0, we have αdRic = 0. It follows that the first
order change in the mass aspect function of λs is given by αu, which clearly
is determined by the first order change in the conformal factor us. The result
follows.

We are now ready to complete the proof of Theorem 3.9.

Proof of Theorem 3.9. Let (M, g) be as in Theorem 3.9. Recall d = n + 1.
By Corollary 3.14, S[g] = −d(d − 1). Suppose that g is not Einstein, i.e.

R̂ic 6= 0. Let λs = u
4/(d−2)
s gs as in (3.80). As previously observed, λs is

asymptotically hyperbolic with scalar curvature S[λs] = −d(d−1), and with
mass aspect µs. By Lemma 3.16, ∂sµs|s=0 < 0, and hence for small s > 0, λs
has negative mass aspect function. But in view of Proposition 3.3, µs < 0
gives a contradiction, and hence it must hold that R̂ic = 0. We can now
apply the rigidity result of Qing [21] (see also [4, 7]) to conclude that in
fact (M, g) is isometric to hyperbolic space. This concludes the proof of the
positive mass theorem in the case of vanishing mass aspect function.

Naturally, it would be desirable to find a way to remove the sign condi-
tion on the mass aspect from our positive mass result. Within the context of
the approach taken in this paper, one possible way to accomplish this would
be to extend the results of Corvino-Schoen [11, 12] and Chruściel-Delay [9]
on initial data deformations to the asymptotically hyperbolic setting. Start-
ing from Proposition 3.13, the aim would be to deform the time-symmetric
initial data to be exactly Schwarzschild-AdS outside a compact set, with-
out changing the scalar curvature and the sign of the mass. Starting from
Schwarzschild-AdS with mass m < 0, the deformation result of section 3.1 is
then easily proved.
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