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ABSTRACT

We test statistically the hypothesis that radio pulsar glitches result from an avalanche process, in which angular
momentum is transferred erratically from the flywheel-like superfluid in the star to the slowly decelerating, solid crust
via spatially connected chains of local, impulsive, threshold-activated events, so that the system fluctuates around a
self-organized critical state. Analysis of the glitch population (currently 285 events from 101 pulsars) demonstrates
that the size distribution in individual pulsars is consistent with being scale invariant, as expected for an avalanche
process. The measured power-law exponents fall in the range �0:13 � a � 2:4, with a � 1:2 for the youngest pul-
sars. The waiting-time distribution is consistent with being exponential in seven out of nine pulsars where it can be
measured reliably, after adjusting for observational limits on theminimumwaiting time, as for a constant-rate Poisson
process. PSR J0537�6910 and PSR J0835�4510 are the exceptions; their waiting-time distributions show evidence
of quasi-periodicity. In each object, stationarity requires that the rate k equal���̇ /h��i, where �̇ is the angular accel-
eration of the crust, h��i is the mean glitch size, and ��̇ is the relative angular acceleration of the crust and superfluid.
Measurements yield � � 7 ; 10�5 for PSR J0358+5413 and � � 1 (trivially) for the other eight objects, which have
a < 2. There is no evidence that k changes monotonically with spin-down age. The rate distribution itself is fitted
reasonably well by an exponential for k � 0:25 yr�1, with hki ¼ 1:3þ0:7

�0:6 yr
�1. For k < 0:25 yr�1 the exact form is un-

known; the exponential overestimates the number of glitching pulsars observed at low k, where the limited total
observation time exercises a selection bias. In order to reproduce the aggregate waiting-time distribution of the glitch
population as a whole, the fraction of pulsars with k > 0:25 yr�1 must exceed �70%.

Subject headinggs: dense matter — pulsars: general — stars: interiors — stars: neutron — stars: rotation

1. INTRODUCTION

Glitches are tiny, impulsive, randomly timed increases in the
spin frequency � of a rotation-powered pulsar, sometimes ac-
companied by an impulsive change in the frequency derivative �̇.
They are to be distinguished from timing noise, a type of rota-
tional irregularity where pulse arrival times wander continuously,
although there is evidence that timing noise is the cumulative re-
sult of frequent microglitches in certain pulsars (Cordes &Downs
1985; D’Alessandro et al. 1995).

At the time of writing, 285 glitches in total have been detected
in 101 objects (�6% of the known radio pulsar population), the
majority in the last four years, as facilitated by the Parkes Multi-
beam Survey, refined multifrequency ephemerides, and better
interference rejection algorithms (Hobbs 2002; Krawczyk et al.
2003; M. Kramer & A. Lyne 2005, private communication;
D. Lewis 2005, private communication; Janssen & Stappers 2006).
Efforts to analyze the data statistically have focused on the corre-
lation of glitch activity with age (McKenna&Lyne 1990; Shemar
&Lyne 1996; Urama&Okeke 1999; Lyne et al. 2000;Wang et al.
2000) and Reynolds number (Peralta 2006; Melatos & Peralta
2007), the postglitch relaxation timescale (Wang et al. 2000;
Wong et al. 2001), the size distribution (Morley&Garcı́a-Pelayo
1993a, 1993b; Peralta 2006), and the correlation between glitch
sizes and waiting times (Wang et al. 2000; Wong et al. 2001;
Middleditch et al. 2006; Peralta 2006). Hobbs (2002) reviewed
the role of observational selection effects.

Most glitching pulsars (65%) have been seen to glitch once,
but a minority glitch repeatedly; the current record holder is PSR
J1740�3015, with 33 glitches. Of those objects which glitch re-

peatedly, most do so at unpredictable intervals, but two (PSR
J0537�6910 and Vela) are quasi-periodic; Vela, in particular,
has been likened to a relaxation oscillator (Lyne et al. 1996). The
fractional increase in � spans seven decades (3 ; 10�11 � �� /� �
2 ; 10�4) across the glitch population and as many as four de-
cades in a single object (e.g., 7 ; 10�10 � �� /� � 2 ; 10�6 in
PSR J1740�3015). The spin-down age �c ¼ �� /(2�̇) of glitch-
ing pulsars spans four decades, from 1 ; 103 to 3 ; 107 yr. In many
respects, therefore, the glitch phenomenon is scale invariant.
This striking property invites physical interpretation.

Theories of pulsar glitches have focused mainly on the local
microphysics of the superfluid in the stellar interior and its cou-
pling to the solid crust, for example the strength of vortex pin-
ning (Anderson& Itoh 1975; Jones 1998), the rate of vortex creep
(Link & Epstein 1996), or the conditions for exciting superfluid
turbulence (Peralta et al. 2005, 2006; Melatos & Peralta 2007;
Andersson et al. 2007). Ultimately, however, the local micro-
physics must be synthesized with the global, collective dynamics
in order to make full contact with observational data. (Likewise,
a practical model of earthquakes must synthesize the micro-
physics of rock fracture with the macrodynamics of interacting
tectonic plates.) For example, if approximately 1016(�� /1 Hz)
vortices unpin from crustal lattice sites in sympathy during a
glitch, they must communicate rapidly across distances much
greater than their separation. How? And why does the number
that unpin fluctuate so dramatically (by up to 4 orders of mag-
nitude) from glitch to glitch in a single pulsar, while always
amounting to a small fraction (�� /�) of the total?

Such collective, scale-invariant behavior is a generic feature
of a class of natural and synthetic far-from-equilibrium systems,
called self-organized critical systems, that are discrete, interac-
tion dominated, and slowly driven, and that adjust internally via
erratic, spatially connected avalanches of local, impulsive, threshold-
activated, relaxation events (Jensen 1998). Such systems fluctuate
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around a stationary state toward which they evolve spontane-
ously, in which global driving balances local relaxation on aver-
age over the long term. The archetype of a self-organized critical
system is the sandpile (Bak et al. 1987).

In this paper, we study pulsar glitches as an avalanche process,
as first proposed by Morley & Garcı́a-Pelayo (1993a). After re-
viewing self-organized criticality in x 2, we define the statistical
sample on which our study is based (x 3) and analyze the ob-
served distribution of glitch sizes (x 4) and waiting times (x 5).
Some implications for glitch physics are explored in x 6.We only
include radio pulsars in the sample, to preserve its homogeneity,
even though glitches have now been observed in anomalous
X-ray pulsars (magnetars) as well (Dall’Osso et al. 2003; Kaspi
& Gavriil 2003).

2. AVALANCHE DYNAMICS

A system in a self-organized critical state exhibits the fol-
lowing distinguishing features (Jensen 1998).

1. It is composed of many discrete, mutually interacting el-
ements, whose motions are dominated by local (e.g., nearest-
neighbor) rather than global (e.g., mean field) forces.3

2. Each element moves when the local force exceeds a thresh-
old (stick-slip motion). Hence stress accumulates sustainedly at
certain random locations, while relaxing quickly elsewhere; at
any instant, the system houses numerous metastable stress res-
ervoirs, separated by relaxed zones.

3. An external force drives the system slowly, in the sense that
elements adjust to local forces rapidly compared to the driver
timescale. Combined with local thresholds, this ensures that the
system evolves quasi-statically through a history-dependent se-
quence of metastable states (a huge number of which are available).

4. Transitions from one metastable state to the next occur via
avalanches: spatially connected chains of local equilibration
events, in which one element relaxes and redistributes some local
stress to its neighbors, which in turn can exceed their thresholds
and relax (knock-on effect). The duration of even the largest ava-
lanches is short compared to the driving timescale (see previous
point).

5. Avalanches have no preferred scale: they can involve a few
(commonly) or all (rarely) of the elements in the system. Their
sizes and lifetimes follow power-law distributions, whose expo-
nents are related. The numerical values of the exponents depend
on the spatial dimensionality of the system, the spatial symme-
tries of the local forces and redistributive channels, the strength
of the local forces (Field et al. 1995), and the level of conserva-
tion (Olami et al. 1992).4

6. Over the long term, the system tends toward a critical state,
which is stationary on average but not instantaneously. For ex-
ample, on average, the power input by the external driver equals
the energy per unit time released by avalanches. But there are
fluctuations, because, at any instant, a random amount of energy
is stored in metastable local reservoirs.

Avalanche dynamics are generically observed in nature when
conditions (1)Y(3) are met, and properties (4)Y(6) emerge irre-
spective of the detailed microphysics (Jensen 1998). Likewise,
in this paper, we remain agnostic about the microphysics of pul-

sar glitches; the statistical analysis presented below makes no
assumptions in this regard. Nevertheless, it is striking that the
traditional glitch paradigm—a collective unpinning of quantized
superfluid vortices interacting with an inhomogeneous, slowly
decelerating crust—conforms closely with conditions (1)Y(6)
(Anderson & Itoh 1975; Alpar et al. 1996). So too does an
alternative paradigm, based on crust fracture (Alpar et al. 1996;
Middleditch et al. 2006), whose terrestrial counterpart (plate
tectonics) is renowned as an archetype of self-organized critical-
ity (Sornette et al. 1991). We elucidate the analogy briefly before
continuing.
Consider a rectilinear array of quantized vortices, each car-

rying circulation �, spaced evenly according to Feynman’s rule
(4�� /� vortices per unit area) in the neutron superfluid permeat-
ing the inner crust of a neutron star. A small percentage of the
vortices are pinned to defects and /or nuclei at random locations
in the crustal lattice, clustered to varying degrees (Alpar et al.
1996;Wong et al. 2001). As � decreases gradually due to electro-
magnetic spin down, most vortices move apart, and the outermost
ones are expelled. However, the pinned vortices stay (nearly)
fixed, in metastable reservoirs separated by relaxed zones (see
condition [2]), creeping slowly between adjacent pinning sites
in response to thermal fluctuations (Link et al. 1993). The res-
ervoirs are identical to the capacitive elements (vortex traps sur-
rounded by vortex depletion regions) postulated by Alpar et al.
(1996) and Wong et al. (2001). They may be seeded by star-
quakes, which create large numbers of fresh lattice dislocations
with deep pinning potentials, or they may emerge spontaneously
in the self-organized critical state, as successive generations of
vortex avalanches traverse the crust. As the pinned vortices in-
creasingly lag the regular, unpinned array, a gradient in vortex
density is established, and the local Magnus force on a pinned
vortex rises. When the pinning threshold is overcome, a pinned
vortex unpins and moves abruptly away from the pinning site
(stick-slip motion), disturbing the local superfluid velocity field
(and hence the Magnus force) appreciably. Often, this is enough
to push neighboring, barely subcritical, pinned vortices over their
thresholds, triggering an avalanche.Most vortices in the avalanche
rejoin the regular, unpinned array, and the crust spins up propor-
tionately to compensate. The timescale for a vortex to adjust lo-
cally to the Magnus and pinning forces is much shorter than � /�̇,
in keeping with condition (3).
Classic laboratory experiments on magnetic flux vortices in a

type II superconductor (e.g., NbTi) immersed in a slowly chang-
ing magnetic field, an exactly analogous system, clearly exhibit
properties (4)Y(6) (Field et al. 1995). Vortices are expelledmostly
in a continuous flow (cf. steady spin down) and occasionally in
avalanches (cf. glitches). The distribution of avalanche sizes is
measured to be a power law over several decades, whose expo-
nent depends on the strength of the applied magnetic field (which
controls the vortex spacing and hence the strength of the vortex-
vortex interaction). The temporal fluctuation spectrum scales as
an inverse power of frequency at high frequencies. After initial
transients die away, the superconductor fluctuates around a self-
organized critical state, called the Bean state, where the Lorentz
force acting on each vortex is everywhere equal to the maximum
pinning force.
If the pinning sites are sparsely distributed, so that global

(mean field) forces dominate local forces between pinned vortex
clusters, scale invariance breaks down (Jensen 1998). Avalanches
still occur, but they are distributed narrowly around a character-
istic size and lifetime, involving nearly all the vortices instead of
small, independent subsets. In this regime, avalanches recur quasi-
periodically, not stochastically. Similar behavior is observedwhen

3 Tectonic plates, or grains of sand in a pile, are terrestrial examples of inter-
acting elements.

4 In this respect, far-from-equilibrium critical systems differ from equilibrium
critical systems (e.g., second-order phase transition in a ferromagnet), whose expo-
nents depend only on the dimensionality of the system and its order parameter(s).
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the external driver acts too rapidly, but this situation never arises
in pulsars.

Scale-invariant avalanche dynamics and self-organized criti-
cal states are observed widely elsewhere, e.g., in sandpiles (Bak
et al. 1987), earthquakes (Sornette et al. 1991), solar flares (Lu&
Hamilton 1991; Wheatland 2000), and bursts from soft-gamma-
ray repeaters (GöğüY et al. 2000). The analogywith pulsar glitches
has been pointed out by Morley & Garcı́a-Pelayo (1993a) and
Carroll (1998), and modeled using a cellular automaton by Morley
& Schmidt (1996).

3. DATA

Table 1 lists all 285 glitches discovered up to the time of writ-
ing and known to the authors. It is compiled from published
sources (Shemar & Lyne 1996; Lyne et al. 2000; Wang et al.
2000; Hobbs 2002; Krawczyk et al. 2003; Janssen & Stappers
2006; Middleditch et al. 2006; Peralta 2006), the Australia Tele-
scope National Facility Pulsar Catalogue (Manchester et al. 2005),
which can be accessed online,5 and unpublished data communi-
cated privately by M. Kramer, D. Lewis, and A. G. Lyne (2005).
For each pulsar, the table lists its J2000.0 coordinates and the
number of glitches detected (Ng). The earliest and latest epochs
observed (tmin and tmax, respectively) are recorded separately in
Table 2 for the nine pulsars withNg > 5. A footnote signifies that
segmented data spans are not specified in the cited references; in
this situation, tmin and tmax are estimated by eye from spin-down
histories graphed in the cited references, where available, or else
from the first and last glitches by default. For each glitch, Table 1
lists its epoch, the fractional increase in its spin frequency�� /�,
and one or more bibliographic references. Uncertainties are quoted
as a trailing integer in parentheses, corresponding to an absolute
number of days for t [e.g., MJD 51141(248) meansMJD 51141�
248] and an uncertainty in the last significant digit for�� /� [e.g.,
0.04(2) means 0:04� 0:02]. For some newly discovered glitches,
the information is incomplete. Epochs and sizes have been mea-
sured for 271 and 250 glitches, respectively. Other parameters,
such as the healing fraction and postglitch relaxation timescale,
are omitted, as they are not analyzed in this paper; please consult
Peralta (2006) and references therein for a full catalog.

4. SIZE DISTRIBUTION

4.1. Scale Invariance

If pulsar glitches are the result of an avalanche process, their
size distribution should be scale invariant in any individual pul-
sar, with a probability density function

p(��=�) / (��=�)�a: ð1Þ

The exponent a is set by the dimensionality6 and symmetries of
the local forces, which are likely to be universal, and the strength
and level of conservation of these forces, which are functions of
temperature and therefore not universal (see x 2). One therefore
expects a to differ from pulsar to pulsar. As a corollary, the ag-
gregate size distribution drawn from all pulsars is not expected to
be a simple power law of the form of equation (1).

To test these ideas, we construct the observed cumulative size
distributions of the nine known pulsars with Ng > 5. The selec-
tion criterion Ng > 5 is arbitrary; it seeks to limit the impact of
random errors while testing as many objects from Table 1 as

possible. We then compare the data against the theoretical cu-
mulative distribution

P(��=�) ¼ (��=�)1�a � (��=�)1�a
min

(��=�)1�a
max � (��=�)1�a

min

; ð2Þ

derived from equation (1). The theoretical distribution is nor-
malized after restricting it to the domain (�� /�)min � �� /� �
(�� /�)max, where (�� /�)min and (�� /�)max are the smallest and
largest glitches observed in that pulsar respectively, as quoted in
Table 1. There are more sophisticated ways to choose (�� /�)min

and (�� /�)max, which we consider further below, but this is a
conservative starting point.

For each object, we choose a to minimize the Kolmogorov-
Smirnov (K-S) statistic D, i.e., the maximum unsigned distance
between the curves. The numerical results are recorded in Table 3,
while the measured and theoretical cumulative distributions are
plotted together in Figure 1. (Cumulative distributions are free
of binning bias.) The goodness of the fit at the optimal value of
a is characterized by PK-S, which is defined such that 1� PK-S
equals the probability that the K-S null hypothesis (that the two
data sets are drawn from the same underlying distribution) is
false.7 The 1 � lower and upper bounds, a� and aþ, mark the
range of a where the null hypothesis is rejected with less than
68% confidence. Note that the interval ½a�; aþ� is asymmetric
about the optimal a and widest for the best fits.

The results in Table 3 confirm what is apparent by eye from
Figure 1: the null hypothesis that the size distribution is described
by a power law for all nine pulsars with Ng > 5 is not ruled out
at the 1 � level of confidence. In turn, this is consistent with the
avalanche hypothesis. However, in two objects, namely PSR
J0537�6910 and PSR J0835�4510, the agreement is marginal.
Interestingly, these two objects are also the only ones discovered
so far that are believed to glitch quasi-periodically (Lyne et al.
1996; Middleditch et al. 2006).

4.2. PSR J0537�6910 and PSR J0835�4510

Quasi-periodicity is a natural feature of avalanche dynamics
when mean field forces overwhelm local interactions, as described
in x 2. We explore its manifestation in glitch waiting times in x 5.
With respect to glitch sizes, we note that avalanches in the quasi-
periodic regime tend to be distributed narrowly around a charac-
teristic size (Jensen 1998). This can bemodeled crudely by adding a
term proportional to � �� /� � (�� /�)c½ � to equation (1), viz.,

p(��=�) ¼ Cs(��=�)�a þ Cp� ��=� � (��=�)c½ �; ð3Þ

where (�� /�)c denotes the characteristic size, and the scale-
invariant and quasi-periodic components are weighted by the con-
stants Cs and Cp, respectively. Normalization fixes Cs in terms of
Cp (or vice versa), with Cs þ Cp 6¼ 1 in general. The associated
cumulative size distribution is given by

P(��=�) ¼ CpH ��=� � (��=�)c½ �

þ
(1� Cp) (��=�)1�a � (��=�)1�a

min

� �
(��=�)1�a

max � (��=�)1�a
min

; ð4Þ

where H( � ) denotes the Heaviside step function.

5 See http://www.atnf.csiro.au /research /pulsar/psrcat.
6 The effective dimension need not equal 3. For example, it may equal 2 in a

rectilinear vortex array or faulting crust, where the local forces act in the transverse
plane, and 3 in a turbulent vortex tangle (Peralta et al. 2005, 2006).

7 The K-S test is most sensitive to discrepancies near the median. An alter-
native test, based on Kuiper’s statistic, mitigates this bias (Press et al. 1986). It
will be worth implementing when more data become available. The K-S test is
also inefficient if the underlying probability density function contains a narrow
notch, where the probability vanishes. Again, there are insufficient data at hand to
look for such a notch; it is difficult to find in a cumulative distribution, and the
probability density function is biased by binning when Ng is small.
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TABLE 1

Parameters of Pulsar Glitches

PSR J Ng

Epoch

(MJD)

�� /�

(10�9) References

0142+61 .............. 1 51141 650 1

0157+6212 .......... 1 48504 2.46 1

0358+5413 .......... 6 46077(2) 5.5(1) 2

46497(4) 4368(1) 2

51673(15) 0.04(2) 3

51965(14) 0.030(2) 3

52941(9) 0.04(1) 3

53216(11) 0.10(2) 3

0528+2200 .......... 3 42057 1.3 2

52289 1.46 3

53379 0.17 3

0534+2200 .......... 26 40493.4(1) 4(2) 2

41163(1) 2.2(1) 4

41250(1) 2(1) 5

42448(1) 44.0(6) 2

43023(1) 1.1(1) 4

43768(1) 2.8(1) 4

46664.42(5) 4.1(1) 2

47768.4(2) 85.0(4) 2

48945.5(2) 4.5(7) 2

50020.6(3) 2.7(7) 6

50259.93(2) 22(1) 6

50459.1(5) 7.67(3) 6

50489(2) 6.67 6

50812.9(1) 8.67(2) 6

51452.3(1) 9.67(2) 6

51741(5) 24(5) 7

51805.03(3) 3.3(2) 8

52083.969(2) 23.6(6) 8

52146.757(9) 8(1) 8

52498.22(6) 2.6(2) 8

52587.84(3) 1.1(2) 8

53067.059(1) 210(1) 8

53254.039(1) 4.84(8) 8

53331(1) n /a 8

53463.72(3) n /a 8

53476.7(8) n /a 8

0537�6910 ......... 23 51285(8.6) 681(65) 9

51568(6.8) 449(8) 9

51711(6.7) 315(9) 9

51826(7.1) 140(7) 9

51880(5.5) 141(20) 9

51959(4.9) 456(46) 9

52171(8.3) 185(6) 9

52242(7.8) 427(6) 9

52386(5.7) 168(20) 9

52453(6.9) 217(30) 9

52546(6.2) 421(18) 9

52740(5.3) 144(6) 9

52819(3.6) 256(16) 9

52887(4.5) 234(23) 9

53014(9.5) 338(10) 9

53125(2.8) 18(14) 9

53145(2.7) 392(8) 9

53288(2.4) 395(10 9

53446(1.7) 259(16) 9

53551(4.4) 322(26) 9

53699(3.9) 402(8) 9

53860(1.5) 236(20) 9

53951(1.5) 18(20) 9

0540�6919 ......... 1 51325 1.9 10

0601�0527 ......... 1 51662 0.19 11, 8

0614+2229 .......... 1 51339 n /a 11, 8

TABLE 1—Continued

PSR J Ng

Epoch

(MJD)

�� /�

(10�9) References

0631+1036 ....... 9 50185.711(6) 5.1(1) 11, 8

50479.74(7) 3.7(2) 8

50608.246(2) 57.9(3) 8

50730(2) 1662.8(4) 8

51911.133(8) 1.33(8) 8

52852.586(2) 17.4(2) 8

53228.387(2) 1.9(1) 8

53359.27(1) 1.9(3) 8

53621(2) n /a 8

0659+1414 ....... 2 50185 0.39 11, 8

51039 1.4 8

0729�1448 ...... 1 52149.6 31 11, 8

0742�2822 ...... 5 n /a n /a 11

51770 1 3

52027 2.1 3

53090.2 2.9 3

53469.7 1.1 3

0745�5353 ...... 1 n /a n /a

0758�1528 ...... 1 49948 0.13 11, 8

0826+2637 ....... 1 n /a n /a 11

0835�4510 ...... 17 40280(4) 2340(10) 2

41192(8) 2050(30) 2

41312(4) 12 12

42683(3) 1990(10) 2

43693(12) 3060(60) 2

44888.0707(4) 1145(3) 2

45192(5) 2050(10) 2

46257.2284(2) 1601(1) 2

47519.803(8) 1807.1(8) 2

48457.382(10) 2715(2) 2

48550(1) 5.6 13

49559.057(2) 835(2) 2

49591.158(2) 199(2) 2

50369.345(2) 2110(17) 13

51559.345(5) 3120 14

53195.09(5) 2100 15

53959.93(2) 2620 16

1016�5857 ...... 1 52550 n /a 8, 17

1048�5832 ...... 4 48944 19 13

49034 3000 13

50788 769 13

52733 n /a 8

1105�6107....... 2 50417 279.7 13

50610 2.1 13

1112�6103....... 1 51513 n /a 8

1119�6127....... 2 51398 4.4 18

53300 100 8

1123�6259....... 1 49705.87 749.31 13

1141�3322....... 1 50551 0.7 11, 8

1302�6350 ...... 1 50690.7 3.2 3

1328�4357 ...... 1 43590 1.16 2

1341�6220 ...... 12 47989(24) 1507(1) 13

48453(12) 24.2(9) 13

48645(10) 990(3) 13

49134(22) 10(2) 13

49363(130) 142(21) 13

49523(17) 33(3) 13

49766(2) 11(1) 13

49904(16) 16(7) 13

50008(16) 1636(13) 13

50321.7(6) 27(1) 13

50528.9(8) 20(4) 13

50683(13) 703(4) 13
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TABLE 1—Continued

PSR J Ng

Epoch

(MJD)

�� /�

(10�9) References

1357�6429 ......... 1 52021 2425 19

1401�6357 ......... 1 48305 2.49 11, 8

1413�6141 ......... 1 n /a n /a 8

1437�6146 ......... 1 51614 n /a 8, 17

1509+5531.......... 1 41732 0.22 19

1532+2745.......... 1 n /a n /a 11

1539�5626 ......... 1 48165 2790.8 2

1603�2531 ......... 1 n /a n /a

1614�5048 ......... 1 49803 6460 13

1617�5055 ......... 1 49960 600 20

1644�4559 ........ 3 43390 191 2

46453 803.6 2

47589 1.61 2

1705�1906 ......... 1 48888 0.44 11, 8

1705�3423 ......... 2 50060 n /a 11, 8

51940 0.6 11, 8

1708�4008......... 2 51459 620 21

52014 140 22

1709�4429......... 1 48780 2050 2

1717�3425 ......... 1 49868 n /a 8

1720�1633 ......... 1 n /a n /a

1721�3532 ......... 1 49969.7 8 8

1726�3530 ......... 1 n /a n /a 8

1730�3350 ......... 2 47990 3080 2

52139 3190 8

1731�4744 ......... 2 49397.3 139.2 13

50703 3.1 13

1737�3137 ......... 2 51553 4 8

53052.8 236 8

1739�2903 ......... 1 46956 3.09 2

1739�3131 ......... 1 n /a n /a 11

1740+1311 .......... 1 n /a n /a 11

1740�3015 ......... 30 47003(50) 420(20) 2

47281(2) 33(5) 2

47332(16) 7(5) 2

47458(2) 30(8) 2

47670.2(2) 600.9(6) 2

48149(2) 4(2) 8

48186(6) 642(16) 23

48218(2) 48(10) 23

48431(2) 15.7(5) 23

49046(4) 9.1(2) 2

49239(2) 169.7(2) 2

49451.7(4) 9.5(5) 24

49543.9(8) 3(6) 24

50574.5497(4) 439.3(2) 24

50941.6182(2) 1443(3) 24

51334(2) 1.1(6) 8

51685(24) 0.7(4) 3

51822(7) 0.8(3) 3

52007(6) 0.7(1) 3

52235(2) 42.1(9) 3

52240.2(2) 5(1) 8

52266.8(2) 14.3(7) 8

52271(2) 444(5) 3

52344(2) 220.6(9) 3

52603(5) 1.5(1) 3

52759(5) 1.6(3) 3

52859(2) 17.6(3) 3

52943.5(2) 22.1(4) 3

53023.512(2) 1850.0(8) 8

53741(2) n /a 8

1743�3150 ......... 1 49553 1.6 11, 8

1755�2534 ......... 1 52170 n /a 8

TABLE 1—Continued

PSR J Ng

Epoch

(MJD)

�� /�

(10�9) References

1759�2205 .......... 1 51800 28 8

1801�0357.......... 1 48016 2.9 24

1801�2304.......... 9 46907(40) 200(30) 2

47855(50) 231.2(9) 2

48454(3) 347.68(8) 2

49709(32) 64(2) 23

50055(4) 22.6(9) 24

50363.414(4) 80.6(6) 24

50938(2) 4(1) 8

52126(100) 651(3) 8

53356(100) 499(4) 8

1801�2451 .......... 5 49476 1988 13

50651 1247 13

52567 n /a 8

52791 n /a 8

53030.51 16.1 8

1803�2137 .......... 4 48245 4075 2

50269.4 5.3 24

50765 3185 13

50765 27 13

53429 3943 8

1806�2125 .......... 1 51063 15615 25

1809�1917 .......... 1 53250 1629.1 8

1812�1718 .......... 2 49926 1.6 11, 8

53105.68 14.7 11, 8

1814�1744 .......... 5 51384 9 8

51700 5 3

52094.96 27 8

52117 33 3

53302 7 3

1824�1118........... 1 52402 1.3 11, 8

1824�2452 .......... 1 51980 0.0095 26

1825�0935 .......... 8 49615(8) 0.2(1) 27

49857(8) 12.6 28

49940(2) 5.21(7) 27

50557(6) 12.6(2) 27

51060(8) 20 28

51879(8) 31.4(2) 28

52058(2) 29(1) 8

52802.6(2) 1.8(7) 8

1826�1334 .......... 3 46507 2700 2

49014 3060 2

53738 n /a 8

1827�0958.......... 1 n /a n /a 11

1833�0559 .......... 1 52200 n /a 8

1833�0827 .......... 1 48041 1864.8 2

1835�1106........... 1 52265 27 11, 8

1838�0453 .......... 1 52000 26 8

1841�0425 .......... 1 53356 578.5 8

1844�0538 .......... 2 47438 0.8 8

47955 0.5 8

1845�0316 .......... 1 52212.9 30 8

1856+0113........... 1 n /a n /a 11

1901+0716........... 1 46859 30 2

1902+0615........... 4 48645.11 0.45 8

49441 0.23 8

50311 0.31 8

51165.9 0.47 8

1903+0135........... 1 48634 n /a 11, 8

1905�0056.......... 2 49385 n /a 11, 8

49695.3 0.21 11, 8

1908+0909 .......... 2 52240 11.8 8

53340 1.7 8

1909+0007 .......... 1 49491.9 0.72 8
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Parameters determined by fitting equation (4) to the data are
recorded in Table 4, while the corresponding measured and theo-
retical cumulative distributions are plotted together in Figure 2.
The fits are much improved, with Cp � 0:2 in both objects, al-
though, to be fair, the delta-distributed component is not strictly
required, at least not at the 1 � level. Importantly, the delta-
distributed component contains only �20% of the glitches, not
all of them. This is consistent with the historical interpretation of
the pulsar data (Lyne et al. 1995; Marshall et al. 2004). It is also
seen in self-organized critical systems such as sandpiles, where
large, system-spanning, quasi-periodic avalanches of a character-
istic size are interspersed with small, randomly timed avalanches,
which are power-law distributed (Rosendahl et al. 1993; Jensen
1998).

4.3. Upper and Lower Cutoffs

Strictly speaking, it is incorrect to normalize P(�� /�) by choos-
ing (�� /�)min and (�� /�)max to be the smallest and largest glitches
observed in a pulsar, respectively. A better choice of (�� /�)min is
the actual resolution of the timing experiment, which varies with
object and epoch. Janssen & Stappers (2006) simulated detection
of a microglitch in a noisy time series and obtained (�� /�)min ¼
1 ; 10�11. Usually, this information is not provided explicitly and
must be estimated from the size uncertainties quoted for detected
glitches. All the same, the smallest glitch observed is likely to be a
reasonable estimate of��min , because the occurrence probability
increases steeply as�� decreases, according to Table 3. On the
other hand, (�� /�)max is limited by the total observing time. Its
true value exceeds the largest glitch observed, but not by much,
because the occurrence probability decreases steeply as ��
increases.
To quantify these effects, we allow (�� /�)min to vary between

0.5 and 1.0 times the smallest glitch size observed, (�� /�)max to
vary between 1.0 and 2.0 times the largest glitch size observed,
and fit equation (4) again to the data. For every object, (�� /�)min

and (�� /�)max shift only slightly, and a stays within the range
½a�; aþ� in Tables 3 and 4. This confirms that the smallest and
largest glitches provide reasonable estimates of (�� /�)min and
(�� /�)max. At the 1 � level, the constrained and unconstrained
fits are both consistent with the data.

4.4. Aggregate Distribution

Figure 3 displays the cumulative size distribution for the glitch
population in aggregate, together with the best power-law fit of
the form of equation (2). The fit is poor. When all 250 glitches
with measured sizes are included, the best fit corresponds to
a ¼ 0:96, (�� /�)min ¼ 9:5 ; 10�12, (�� /�)max ¼ 2:0 ; 10�5,
andPK-S ¼ 7:1 ; 10�4.When the glitches from PSR J0537�6910
and PSR J0835�4510 are excluded, the best fit corresponds to

TABLE 1—Continued

PSR J Ng

Epoch

(MJD)

�� /�

(10�9) References

1910+0358 ........... 1 52331 1.4 8

1910�0309 ........... 3 48241 0.6 24

49219.85 1.84 24

53232.75 2.66 8

1913+0446............ 1 53500 n /a 8

1918+1444 ............ 1 52285 2.2 11, 8

1919+0021............ 1 50174 1.29 24

1922+2018 ............ 1 n /a n /a 2

1932+2220 ............ 4 46900 4450 8

50264 4457 24

52210 12 8

52394 12 8

1946+2611............ 1 53326 70 8

1952+3252 ............ 5 n /a n /a 11

51967 2.25 3

52385 0.72 3

52912 1.29 3

53305 0.51 3

2021+3651 ............ 1 52630.07 2587 29

2040+1657 ............ 1 53142 n /a 8

2116+1414 ............ 3 47972 0.2 11, 8

49950 0.07 8

51357 0.11 8

2225+6535............ 4 43072 1707 2

51900 0.14 3

52950 0.08 3

53434 0.19 3

2229+6114 ............ 1 53064 1133 8

2257+5909 ............ 1 49463.2 0.92 24

2301+5852 ............ 1 52443.9 4100 30

2330�2005 ........... 1 n /a n /a 2

2337+6151 ............ 1 53639 20000 8

Note.—n /a: not available.
References.— (1) Morii et al. 2005; (2) Lyne et al. 2000; (3) Janssen &

Stappers 2006; (4) Lohsen 1981; (5) Lohsen 1975; (6) Wong et al. 2001;
(7) Wang et al. 2001; (8) M. Kramer & A. Lyne 2005, private communica-
tion; (9) Middleditch et al. 2006; (10) Zhang et al. 2001; (11) Hobbs et al. 2004a;
(12) Downs 1981; (13) Wang et al. 2000; (14) Dodson et al. 2002; (15) Dodson
et al. 2004; (16) Flanagan & Buchner 2006; (17) Hobbs et al. 2004b; (18) Camilo
et al. 2000; (19) Camilo et al. 2004; (20) Torii et al. 2000; (21) Kaspi et al. 2000;
(22) Kaspi & Gavriil 2003; (23) Shemar & Lyne 1996; (24) Krawczyk et al.
2003; (25) Hobbs et al. 2002; (26) Cognard & Backer 2004; (27) Shabanova
1998; (28) Shabanova 2005; (29) Hessels et al. 2004; (30) Kaspi et al. 2003.

TABLE 2

Observing-Time Intervals for Pulsars with Ng > 5

PSR J

tmin

(MJD)

tmax

(MJD)

0358+5413 ...................... 41807 53546

0534+2200 ...................... 40466a 53476a

0537�6910 ..................... 51197 53952

0631+1036 ...................... 50186a 53621a

0835�4510 ..................... 40140a 53960a

1341�6220 ..................... 47915 51022

1740�3015 ..................... 46770a 53190

1801�2304 ..................... 46697 53356a

1825�0935 ..................... 48300a 52803a

a Segmented data spans are not published. The val-
ues tmin and tmax are estimated by eye from graphed spin-
down histories, where available, or else from the first and
last glitches by default.

TABLE 3

Power-Law Size Distribution Parameters for Pulsars with Ng > 5

PSR J a� a aþ PK-S

0358+5413 ................. 1.5 2.4 5.2 0.9913

0534+2200................. 1.1 1.2 1.4 0.86

0537�6910 ................ 0.39 0.42 0.43 0.36

0631+1036 ................. 1.2 1.8 2.7 0.99896

0835�4510 ................ �0.20 �0.13 0.18 0.908

1341�6220 ................ 1.2 1.4 2.1 0.77

1740�3015 ................ 0.98 1.1 1.3 0.9920

1801�2304 ................ 0.092 0.57 1.1 0.99968

1825�0935 ................ �0.30 0.36 1.0 0.99904
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a ¼ 0:98 andPK-S ¼ 3:2 ; 10�4, with (�� /�)min and (�� /�)max

as before. Either way, we can state confidently that the theoretical
and observed data are drawn from different underlying distribu-
tions. This is not surprising; the results in Figure 1 and Table 3
demonstrate clearly that the size distribution in individual pulsars
is consistent with being scale invariant, but that a differs from ob-
ject to object. Hence the aggregate distribution is expected to be a

weighted sum of power laws, not a pure power law. Accordingly,
the size distribution in individual pulsars is amore direct probe of
glitch physics than the aggregate distribution (Lyne et al. 2000).
The aggregate distribution can be inverted, in principle, to de-
termine how a is distributed across the pulsar population. We
defer this exercise until better historical estimates of (�� /�)min

and (�� /�)max, as well as more data, become available.

Fig. 1.—Cumulative distributions of fractional glitch sizes�� /� in the nine pulsars that have glitched more than five times. The observational data (histograms) are
plotted together with the best power-law fits (solid curves) given by eq. (2), where (�� /�)min and (�� /�)max are taken from Table 1 and a is taken from Table 3.

TABLE 4

Two-Component Size Distribution Parameters for Quasi-periodic Glitchers

PSR J a� a aþ Cp (�� /�)c PK-S

0537�6910 ................ 0.22 0.44 0.68 0:25� 0:05 (3:0� 0:5) ; 10�7 0.81

0835�4510 ................ �0.49 0.11 0.44 0:15� 0:05 (2:5� 0:5) ; 10�6 0.97

AVALANCHE DYNAMICS OF RADIO PULSAR GLITCHES 1109No. 2, 2008



Janssen & Stappers (2006) claimed that the glitches in PSR
J1740�3015 are drawn from a flat size distribution in log (�� /�),
i.e., a ¼ 1, with PK-S ¼ 0:902. This agrees with the results in
Table 3.

Lyne et al. (2000) noted some evidence for an excess of large
glitches, which is corroborated to some extent by Figure 3a. How-
ever, the excess largely disappears when the quasi-periodic glitchers
are excluded, as in Figure 3b. Large glitches do not originate
preferentially from any particular class of object. While it is true
that the most active objects (e.g., PSR J0537�6910 and PSR
J0835�4510) experience relatively large and narrowly distrib-
uted glitches, with�� /� > 10�7, other active objects (e.g., PSR
J1740�3015) experience a mix of small and large events, and
there are several objects (e.g., PSR J1806�4212) that have
only glitched once, with�� /� > 10�5 for that single glitch. Fur-
thermore, although PSR J0534+2200 is sometimes portrayed as
unusual for not experiencing large glitches, its size distribution is
actually relatively flat (a � 1:2). There is every reason to expect
that it will experience large glitches in the future, but these events
will be slow in coming, because PSR J0534+2200 builds up dif-
ferential rotation between the crust and superfluid at a relatively
slow rate, as we show in x 5.8

5. WAITING-TIME DISTRIBUTION

5.1. Poisson Process

If pulsar glitches are the result of an avalanche process, they
should be statistically independent events. To understand why,
recall that a system in a self-organized critical state configures
itself into many metastable stress reservoirs insulated by relaxed
zones (x 2). Every avalanche relaxes one reservoir, typically oc-
cupying a small fraction of the system, and the next avalanche
occurs at random, typically far from its predecessor. There is es-
sentially no interference between successive avalanches; this is
verified empirically in tests with cellular automata (Jensen 1998).
Avalanches in the tail of the size distribution, which relax the
whole system, are an (extremely rare) exception.
Given statistical independence, and assuming that the system

is driven at a constant (mean) rate, the avalanche model predicts
that the time between successive glitches,�t, termed the waiting
time, obeys Poisson statistics (Jensen 1998; Wheatland 2000).
Hence, in any individual pulsar, the waiting-time distribution is
exponential, with a probability density function

p(k;�t) ¼ k exp (�k�t): ð5Þ

The mean glitching rate k is different for every pulsar. It depends
on the rate at which differential rotation builds up between the
superfluid and the crust (/�̇), as well as the capacity to store the
differential rotation (e.g., strength of pinning, rate of vortex creep,
shear modulus of the crust). The storage capacity is presumably

Fig. 2.—Cumulative distributions of fractional glitch sizes�� /� for the two pulsars that have a quasi-periodic component. The observational data (histograms) are
plotted together with the best two-component fits (solid curves) given by eq. (4), where (�� /�)min and (�� /�)max are taken from Table 1, and a,Cp, and (�� /�)c are taken
from Table 4.

Fig. 3.—Aggregate cumulative distributions of fractional glitch sizes�� /� for all glitching pulsars (left ) and for all glitching pulsars except PSR J0537�6910 and
PSR J0835�4510, which have a quasi-periodic component (right). The observational data (histograms) are plotted together with the best power-law fits (solid curves)
given by eq. (2), for the best-fit parameters in x 4.4.

8 Wong et al. (2001) argued that the relative angular acceleration of the crust
and superfluid in the Crab, inferred from the activity parameter, is much smaller
than expected, given the large ��̇ /�̇ � 10�4 observed during glitches. This par-
adox is resolved if most of the differential rotation is being stored temporarily, in
advance of a large glitch in the future.
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controlled by thermodynamic variables such as temperature, as
well as the inhomogeneous nuclear structure of the crust. We do
not expect k to change appreciably during four decades of pulsar
timing. In principle, however, as more data are collected in future,
this claim can be tested by using a Bayesian blocks algorithm to
divide the time series into a sequence of Poisson processes with
piecewise-constant rates (Scargle 1998; Wheatland 2000; Connors
& Carramiñana 2003).9

The avalanche model makes a further powerful prediction. Sup-
pose the system tends toward a stationary, self-organized critical
state, in which global driving balances local release in a time-
averaged sense (property [6], x 2); i.e., there is no secular ac-
cumulation or leakage of stress. Stationarity implies that the
mean waiting time h�ti ¼ k�1, multiplied by the rate at which
crust-superfluid differential rotation builds up (��̇), equals the
mean glitch size h��i, i.e.,

k ¼ ���̇= ��h i: ð6Þ

Here, 2���̇ is the relative angular acceleration of the crust and
superfluid. Importantly, glitch data allow � to be measured di-
rectly in principle (Wong et al. 2001). However, there is a serious
question as to whether stationarity is achieved in practice, during
the 40 yr that a typical pulsar has been observed. We discuss this
issue further below.

To test the above ideas, we compare the observed cumulative
waiting-time distributions of the same nine pulsars as in x 4, with
Ng > 5, against the theoretical cumulative distribution. In order
to make the comparison fairly, we must first adjust for observa-
tional selection effects. Any given observation can detect waiting
times in a range�tmin � �t � �tmax. The upper limit�tmax is
set by the total data span available for that pulsar, i.e., �tmax ¼
tmax � tmin. The lower limit�tmin is different at different epochs.
It is set by the gap between data spans in which a glitch is lo-
calized. For small glitches, the glitch epoch is determined by
requiring continuity of pulse phase across the glitch. For larger
glitches, where the phase winding number is ambiguous, the epoch
is taken to be halfway between the bounding observations (Wang
et al. 2000). Either way,�tmin is different for each glitch, and is
twice the absolute value of the epochal uncertainty quoted in
Table 1 (Lyne et al. 2000;Wang et al. 2000; Janssen & Stappers
2006; Middleditch et al. 2006). Let f (�tmin)d(�tmin) be the

observing-time-weighted probability that, when a glitch occurs,
�tmin lies in the range �tmin;�tmin þ d(�tmin)½ �, and let the
smallest and largest values of �tmin be �t

(<)

min and �t
(>)
min, re-

spectively, as recorded in Table 5 for the nine pulsars withNg > 5.
Then the cumulative waiting-time distribution is given by

P k;�tð Þ ¼
Z �t

(>)
min

�t
(<)
min

d �t 0min

� �
f �t 0min

� �

;

Z �tmax

�t 0
min

d �t 0ð Þ p k;�t 0ð Þ ð7Þ

¼ 1

Ng

X�t
(>)
min

�tmin¼�t
(<)
min

exp �k�tminð Þ � exp �k�tð Þ
exp �k�tminð Þ � exp �k�tmaxð Þ ;

ð8Þ

where each glitch is weighted equally in the sum in equation (8)
as a first approximation.

In Figure 4, we plot as cumulative histograms the measured
waiting-time distributions of the nine pulsars in Figure 1. The
theoretical curves (eq. [8]) are overlaid, with �tmin and �tmax

chosen according to the second through fourth columns inTable 5.
For each object, we choose k to minimize the K-S statisticD. The
fitting parameters are displayed in the fifth through eighth col-
umns in Table 5. As in x 4, the goodness of the fit is characterized
by the K-S probability PK-S, with PK-S > 0:32 in the interval
k�; kþ½ �.
For all nine pulsars in Figure 4 and Table 5, the null hypothesis

that the waiting-time distribution is described by Poisson statis-
tics is not ruled out at the 1 � level. The data are therefore con-
sistent with an avalanche process. An exponential waiting-time
distribution was first postulated by Wong et al. (2001) for PSR
J0534+2200, based on timing data up to and including the glitch
onMJD51,452. These authors obtained k ¼ 0:53 yr�1 andPK-S ¼
0:7, which is marginally outside the 1 � range in Table 5. The
data analyzed here confirm that waiting times are consistent with
Poisson statistics in several glitching pulsars, affording a key in-
sight into the physics of the glitch mechanism. The implications
of this result are discussed further in x 6.

5.2. Quasi-Periodicity

For seven pulsars in Figure 4, the Poisson distribution affords
an excellent fit, both formally and by eye. However, for PSR
J0537�6910 and PSR J0835�4510, the fits are marginal at the
1 � level. ( Indeed, in an earlier analysis of PSR J0835�4510,

TABLE 5

Poissonian Waiting-Time Distribution Parameters for Pulsars with Ng > 5

PSR J

�t
(<)
min

(days)

�t
(>)
min

(days)

�tmax

(days)

k�
( yr�1)

k
( yr�1)

kþ
( yr�1) PK-S

0358+5413 ................. 4 30 11739 0.21 0.57 1.3 0.999960

0534+2200 ................. 2 18 13010 0.57 0.91 1.3 0.982

0537�6910 ................ 3 19 2755 n /a 2.6 n /a 0.31

0631+1036 ................. 2 16 3435 0.55 0.95 1.9 0.9970

0835�4510 ................ 2 24 13820 0.33 0.35 0.42 0.45

1341�6220 ................ 4 260 3107 1.2 1.8 5.6 0.980

1740�3015 ................ 4 100 6330 1.2 1.5 2.5 0.928

1801�2304 ................ 4 200 6659 0.35 0.55 0.88 0.962

1825�0935 ................ 4 16 4503 0.48 0.91 1.8 0.9989

Note.—n /a: not applicable, as the best fit yields PK-S < 0:32.

9 It is tempting to assume that k is constant over decades, because the ther-
modynamic variables that control storage capacity (e.g., temperature) are nearly
constant on such a timescale. Yet the Sun provides a cautionary counterexample:
the dynamics of subphotospheric turbulence, and hence the rate of solar flaring,
vary with the 11 yr solar cycle (Wheatland 2000).
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Wong et al. [2001] excluded a Poisson distribution with 96%
confidence, on the basis of fewer data.) These are the same two
objects whose size distributions are exceptional, and which are
observed to glitch quasi-periodically.

Taking the same approach as in x 4, we model the quasi-
periodicity crudely by adding a periodic component to equation (5),
viz.,

p(k;�t) ¼ C 0
sk exp (�k�t)þ C 0

p�(�t ��tc): ð9Þ

In equation (9), C 0
s and C 0

p are the normalized relative weights
of the Poisson and periodic components, respectively, and�tc is
the characteristic period. The associated cumulative distribution,

weighted by�tmin, is obtained by substituting equation (9) into
equation (7), yielding

P k;�tð Þ ¼ 1

Ng

X�t
(>)
min

�tmin¼�t
(<)
min

(
C 0
pH(�t ��tc)

þ
(1� C 0

p) exp �k�tminð Þ � exp �k�tð Þ½ �
exp �k�tminð Þ � exp �k�tmaxð Þ

)
: ð10Þ

The two-component model (eq. [9]) yields improved fits to the
data, with C 0

p � 0:25 for both objects. The fits are graphed with

Fig. 4.—Cumulative distribution of glitch waiting times �t (measured in yr) for the nine pulsars that have glitched more than five times. The observational data
(histograms) are plotted together with the best Poisson fits (solid curves) given by eq. (8), where�tmin is taken from Table 1 (twice the epochal uncertainty),�tmax from
Table 2, and k from Table 6.
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the data in Figure 5, and the best-fit parameters are recorded in
Table 6.We obtain�tc ¼ (0:3� 0:1) yr and�tc ¼ (2:8� 0:1) yr
for PSR J0537�6910 and PSR J0835�4510, respectively, in ac-
cord with previous authors (Lyne et al. 1996; Middleditch et al.
2006). Significantly, the data implyCp � C 0

p. In other words, the
delta-distributed component accounts for the same fraction of the
size and waiting-time distributions, even though the sizes and
waiting times are statistically independent. This raises confidence
in the model, and suggests that a quasi-periodic component is
indeed present and distinct. It also suggests that the quasi-periodic
component coexists with the Poisson component, instead of com-
pletely displacing it. Vela, for example, is likely to possess an
extensively connected network of capacitive elements, but it also
contains smaller subnetworks that are disconnected from themain
network; cf. Alpar et al. (1996). This is natural for an avalanche
process, as noted in x 4.2 (Rosendahl et al. 1993; Jensen 1998).

5.3. Mean Rate

Stationarity of the avalanche model over long time intervals
implies a relation between the Poisson rate, driving rate, and
mean glitch size, given by equation (6). Unfortunately, for a < 2,
h��i is dominated by large glitches near the upper cutoff of
P(�� /�):10

��h i ¼ a� 1

a� 2

����
����

�� lower; a > 2;

��upper
�� lower

� �a�1

��upper; 1 < a < 2;

��upper; a < 1:

8>>><
>>>:

ð11Þ

In equation (11),�� lower and��upper are the physical lower and
upper cutoffs of the probability distribution function (eq. [1]). As
large glitches are rare, stationarity is not achieved during the
40 yr interval over which a typical pulsar is observed; the largest

observed size, (�� /�)max, cannot be equated reliably with the
maximum size allowed physically. Likewise, h��i is approxi-
mated poorly by the mean of the observed glitches. In practice,
therefore, it is impossible to estimate h��i without much lon-
ger monitoring.

Physically, ��̇ is the rate at which differential rotation builds up
between the crust and superfluid. Hence, in the vortex-unpinning
model, � gives the time-averaged fraction of pinned vortices
or capacitive elements. We can use equation (11) to place limits
on �, at least in principle.11 For example, the inequalities
�� lower < ��min and ��max < ��upper < � must always be
satisfied. For PSR J0358+5413, assuming that a ¼ 2:4, we find
h��i/� � 1:1 ; 10�10, and hence � � 7 ; 10�5. This is lower than
previous estimates of the pinned fraction for objects of that age,
but in line with previous estimates of the pinned fraction in young
objects such as the Crab (Lyne et al. 2000; Wong et al. 2001). For
the remaining eight objects, the above inequalities lead to upper
limits on � that are greater than unity, and hence not useful. As a
crude experiment, we check the result of setting ��upper ¼ 2 ;
10�4, the largest glitch observed in any pulsar over the last
40 years, for every pulsar. We obtain five slightly more useful
upper limits (� � 0:04, 0.2, 0.8, 0.8, and 0.7 for PSR J0534+2200,
PSR J0631+1036, PSR J0835�4510, PSR J1341�6220, and
PSR J1740�3015, respectively). However, we emphasize that
these values are still problematic, because there is no guarantee
that a total effective observation interval of 40 yr ; 101 pulsars
is long enough in aggregate for stationarity to be observed. More-
over, these values are based on the assumption that all pulsars
have the same physical��upper, which is not necessarily the case.

Figure 6 displays the cumulative histogram of Poisson rates
derived from the best-fit waiting-time distributions in Figures 4
and 5. Let q(k) denote the rate probability density function, such
that q(k)dk is the probability that the mean rate lies in the interval
½k; kþ dk� in a given pulsar. There is no obvious theoretical rea-
son to prefer a particular analytic form of q(k), which is controlled

Fig. 5.—Cumulative distribution of glitch waiting times �t (measured in yr) for the two pulsars that have a quasi-periodic component. The observational data
(histograms) are plotted together with the best two-component fit (solid curves), given by eq. (10), where�tmin is taken from Table 1 (twice the epochal uncertainty),
�tmax from Table 2, and k, C 0

p, and �tc from Table 6.

TABLE 6

Two-Component Waiting-Time Distribution Parameters for Quasi-periodic Glitchers

PSR J

k�
( yr�1)

k
( yr�1)

kþ
( yr�1) C 0

p

�tc
( yr) PK-S

0537�6910 ................ 2.0 2.6 3.3 0:25� 0:05 0:3� 0:1 0.80

0835�4510 ................ 0.27 0.43 0.62 0:25� 0:05 2:8� 0:1 0.968

10 For 1 < a < 2, h��i is dominated by the upper cutoff, but the normaliza-
tion of p(�� /�) is dominated by the lower cutoff. 11 The error in �� is dh��i=da multiplied by the error in a.
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by the physics of the global driver, not the scale-invariant ava-
lanche dynamics. In addition, the data in Figure 6 are insufficient
to specify the analytic form of q(k) uniquely. However, motivated
by the rate distribution observed in solar flares, which is mea-
sured reliably to be exponential (Wheatland 2000), we find that a
distribution of the form

q(k) ¼ kh i�1
exp �k= kh ið Þ ð12Þ

fits the data satisfactorily, with hki ¼ 1:3þ0:7
�0:6 yr

�1 including quasi-
periodic glitchers (Fig. 6, left) or hki ¼ 1:2þ0:5

�0:4 yr
�1 excluding

quasi-periodic glitchers (Fig. 6, right). Formally, the K-S prob-
abilities are PK-S ¼ 0:9946 and 0.82, respectively.

The distribution is incompletely sampled below an effective
minimum rate kmin, which is set by�tmax. To illustrate, if we pro-
claim five glitches (arbitrarily) to be theminimum number needed
for a reliable determination of k, we obtain kmin ¼ 5�t�1

max �
0:2 yr�1. Careful modeling of this observational bias is deferred
to a future paper. We describe a first attempt in x 5.4.

5.4. Aggregate Distribution

The nine pulsars in Figure 4 account for only 108 out of a to-
tal of 285 observed glitches. Most glitching pulsars have only
glitched once or twice, but they still contribute statistical infor-
mation regarding waiting times, the former via lower limits on

�t. While these data cannot usefully constrain P(k;�t) in indi-
vidual pulsars, they feed into the aggregate waiting-time distri-
bution, and hence constrain q(k) more tightly than in x 5.3.
In Figure 7, we present the aggregate waiting-time distribution

Pagg(�t) including (left panel ) and excluding (right panel ) the
quasi-periodic glitchers PSR J0537�6910 and PSR J0835�4510.
The histogram is constructed to include all 182 waiting times in
those objects that have glitched more than once. The K-S test
confirms that the aggregate distribution is fitted poorly by a sin-
gle, constant-rate, Poisson distribution of the form of equation (5).
Furthermore, whenweweight equation (5) by the exponential rate
distribution (eq. [12]),12 viz.,

Pagg �tð Þ ¼
Z �t

0

d �t 0ð Þ
Z 1

0

dk0 q k0ð Þp k0;�t 0ð Þ; ð13Þ

the fit remains poor. For example, the dotted curves in Figure 7
are computed by evaluating equation (13) with the mean val-
ues hki ¼ 1:3þ0:7

�0:6 yr
�1 (left panel ) and hki ¼ 1:2þ0:5

�0:4 yr
�1 (right

panel ) extracted from Figure 6. They yield PK-S ¼ 4:3 ; 10�2

Fig. 7.—Aggregate cumulative waiting-time distribution Pagg(�t) for all pulsars withNg � 2, including (left ) and excluding (right) the two quasi-periodic glitchers.
The histograms represent the observational data. The dotted curves are obtained by evaluating eq. (13) with eq. (12), using hki ¼ 1:3þ0:7

�0:6
yr�1 (left) and hki ¼ 1:2þ0:5

�0:4 yr
�1

(right) as extracted from Fig. 6. The dashed curves are obtained by evaluating eq. (13) with eq. (12) and adjusting hki to maximize PK-S when fitting Pagg(�t). The solid
curves are obtained from eq. (15), with hki ¼ 0:54 yr�1 and kmin ¼ 0:25 yr�1 (left), and hki ¼ 0:43 yr�1 and kmin ¼ 0:25 (right).

Fig. 6.—Cumulative distribution of mean glitching rate k (measured in yr�1) for the nine pulsars that have glitched more than five times (left ), and excluding the two
quasi-periodic glitchers (right), showing the observational data (histograms) and the best fits obtained from eq. (12) (solid curves), where hki ¼ 1:3þ0:7

�0:6 yr
�1 (left ) and

hki ¼ 1:2þ0:5
�0:4 yr

�1 (right).

12 We compute Pagg(�t) theoretically as a weighted sum of independent
Poisson processes. In the same way, the waiting-time distribution for decays ob-
served from a mixture of radioactive isotopes is a sum of constant-rate Poisson
distributions, one per isotope, weighted by isotopic abundance.
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and 2:4 ; 10�2, respectively. If, instead, we adjust hki to max-
imize PK-S while fitting equations (12) and (13) to the observed
Pagg(�t), as shown by the dashed curves in Figure 7, we obtain
hki ¼ 1:1 yr�1, PK-S ¼ 0:18 (left panel ) and hki ¼ 0:92 yr�1,
PK-S ¼ 0:31 (right panel ), respectively.

We can exploit the extra information in Figure 7 from objects
with 2 � Ng � 5 to determine q(k) more accurately. To do this,
we assume a rate probability density function of the form

qk ¼ kh i�1
H k� kminð Þ exp � k� kminð Þ= kh i½ �; ð14Þ

normalize P(k;�t) over the range ½�tmin;�tmax�, and evaluate
equation (13) to obtain

Pagg(�t) ¼ hki�1

Z 1

kmin

dk0 exp � k0 � kminð Þ= kh i½ �

;
1� exp �k0�tð Þ

1� exp �k0�tmaxð Þ : ð15Þ

In equation (15), we neglect for simplicity the observational bias
introduced by uncertainties in glitch epoch discussed in x 5.1; lack-
ing fuller information, we take�tmin ¼ 0 and�tmax ¼ 28:03 yr
for all pulsars.

Excellent fits are obtained using equation (15). We find hki ¼
0:54 yr�1, kmin ¼ 0:25 yr�1, andPK-S ¼ 0:76 for all nine pulsars
withNg > 5, and hki ¼ 0:43 yr�1, kmin ¼ 0:25 yr�1, and PK-S ¼
0:98 when the quasi-periodic glitchers are excluded. The fits are
plotted as solid curves in Figure 7 (left and right, respectively).
We verify the results by referring back to the measured q(k) dis-
tribution. Substituting the fitted values of hki and kmin into equa-
tion (14), we obtain the solid curves in Figure 8, withPK-S ¼ 0:52
(left panel ) and 0.25 (right panel ), respectively. Alternatively,
the previous fits hki ¼ 1:1 yr�1, kmin ¼ 0, and hki ¼ 0:54 yr�1,
kmin ¼ 0 yield PK-S ¼ 0:72 (left panel, dashed curve) and 0.52
(right panel, dashed curve).

In all cases, Pagg(�t) points to the existence of more low-rate
objects than theNg > 5 sample in Figure 6 predicts. Specifically,
up to �30 % of the population of glitching pulsars can have
k < 0:25 yr�1 while still reproducing Pagg(�t). We emphasize
again that Figure 7 constrains q(k) more tightly than Figure 6,
because it contains information about�t from 1.3 times as many
glitches, as well as useful information from pulsars that have
glitched twice.

Undetectable microglitches probably occur between detected
glitches without our knowledge, given that p(�� /�) is scale in-

variant. This effect subtracts from the lower end of the �t dis-
tribution and adds to the upper end. We do not correct for it here,
because it is hard to quantify without better statistics. On two oc-
casions, a pair of glitches occurred on the same date: once in the
same pulsar, and once in different pulsars (M. Kramer &A. Lyne
2005, private communication). We take �t ¼ 0 for these pairs.
Phase-connected timing mitigates duty cycle biases, but it does
not eliminate them.

5.5. Fluctuation Spectrum

The temporal fluctuations in a stochastic signal x(t) carry in-
dependent statistical information about the underlying physical
process. The power spectrum S( f ), where f denotes the Fourier
frequency, is related to the temporal autocorrelation function
G(�) ¼ hx(t)x (t þ �)i � hx(t)i2 (where the average h: : :i is per-
formed over t for a stationary process) through the cosine
transform

S( f ) ¼ 2

Z 1

0

d� G(�) cos (2�f �): ð16Þ

In general, for an avalanche process, the power spectrum de-
pends jointly on the size, waiting-time, and lifetime distributions
of the avalanches (Jensen 1998). For glitches, however, the life-
times are too short to measure with current technology (see x 6).
If, furthermore, we restrict attention to the unit-impulse signal
x(t) ¼

P
i �(t � ti), where ti denotes the epoch of the ith glitch,

then the sizes drop out of the problem too. The power spectrum
then carries exactly the same information as the waiting-time
distributions P(k;�t) and Pagg(�t), with

S( f ) / k

k2 þ (2�f )2
ð17Þ

for any individual pulsar, and

S( f ) /
Z 1

kmin

dk0 k0q k0ð Þ
k02 þ (2�f ) 2

ð18Þ

for the pulsar population in aggregate.
At high frequencies f 3 hki, equations (17) and (18) [with

q(k) givenby eq. (12)] scale as f �2,withO( f �4) andO( f �4 sin 2f )
corrections. These scalings are modified if the delta function in
x(t) is replaced by a nonsingular window function that embodies

Fig. 8.—Cumulative distribution of mean glitching rate k (measured in yr�1) for the nine pulsars that have glitched more than five times (left ), and excluding the two
quasi-periodic glitchers (right), showing the observational data (histograms) and the theoretical rate distribution (eq. [14]) corresponding to the dashed and solid curves
in Fig. 7.
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the shape of the signal from an individual avalanche. It will be
instructive to revisit this question when it becomes possible to
resolve the lifetimes of individual avalanches, e.g., in single- or
giant-pulse timing experiments.

6. DISCUSSION

In this paper, we analyze the size and waiting-time distribu-
tions of pulsar glitches, taking advantage of the enlarged data set
produced by the Parkes Multibeam Survey.We conclude that the
data are consistent with the hypothesis that pulsar glitches arise
from an avalanche process. In each of seven pulsars withNg > 5,
the size distribution is consistent with being scale invariant across
the observed range of�� (up to four decades), and the waiting-
time distribution is consistent with being Poissonian. These fea-
tures are natural if the system is driven globally at a constant rate
(as the pulsar spins down), and each glitch corresponds to a lo-
cally collective, threshold-activated relaxation of one of the many
spatially independent, metastable stress reservoirs in the system
(e.g., via a vortex-unpinning or crust-cracking avalanche). In two
pulsars, PSR J0537�6910 and PSR J0835�4510, the dynam-
ics may include a second, quasi-periodic component, comprising
�20% of the events. The size and waiting-time distributions of
the quasi-periodic component are narrowly peaked, as expected
for rare, system-spanning avalanches, which relax a large fraction
of the total stress accumulated in the system. This two-component
behavior is observed widely in self-organized critical systems,
including experiments on magnetic flux vortices in type II super-
conductors, which are closely analogous to neutron star super-
fluids (Field et al. 1995).

The power-law exponent of the size probability density func-
tion differs from pulsar to pulsar, spanning the range �0:13 �
a � 2:4. Calculating a theoretically from first principles is a deep
problem that has not yet been solved for other self-organized
critical systems, let alone glitching pulsars, although some pro-
gress has been made on two-dimensional sandpiles using renor-
malization group techniques (Pietronero et al. 1994; Jensen 1998).
In the mean field approximation, which is exact in four or more
dimensions, theoretical calculations on sandpiles (and other sys-
tems in their universality class) yield a ¼ 1:5, whereas three-
dimensional cellular automata output a ¼ 1:3 (Jensen 1998).

The size distribution transmits two important lessons concern-
ing the microphysics of glitches. First, the fact that a differs from
pulsar to pulsar implies that the strength and level of conserva-
tion of the local (e.g., pinning and intervortex) forces also differs
(Olami et al. 1992; Field et al. 1995). By contrast, in equilibrium
critical systems such as ferromagnets, a depends only on the
dimensionality of the system and its order parameter, and is
therefore universal. Second, except for the two pulsars that show
quasi-periodicity, a appears to vary smoothlywith spin-down age,
with a � 1:2 for the youngest pulsars (e.g., the Crab). Figure 9
depicts the trend between a and �c. It is suggestive; after all, local
pinning forces do depend on temperature, and hence on �c. Inter-
estingly, however, there is no clear trend between a and �, even
though the mean vortex spacing (and hence intervortex force) is
proportional to �1=2. It will pay to study these trends more thor-
oughly as more glitch data are collected.

An avalanche process predicts a specific relation between the
distributions of glitch sizes �� and lifetimes T (as opposed to
waiting times �t). Specifically, in a self-organized critical state,
the lifetime probability density function is also a power law,
p(T ) / T�b, with

b ¼ 1þ (a� 1)�2=�3: ð19Þ

The constants �2 and �3 are defined such that the cardinality of an
avalanche scales with its linear extent (L) as L�2 and its lifetime
(i.e., duration) scales as L�3 (Jensen 1998). Both �2 and �3 depend
on the effective dimensionality of the local forces, and can be cal-
culated numerically using a cellular automaton. In two dimen-
sions, avalanches are compact, not fractal, and one has �2 ¼ 2; in
three dimensions, one has 2 < �2 < 3. At present, radio timing
experiments cannot measure T; most glitches are detected as un-
resolved, discontinuous, spin-up eventswithT < 120 s (McCulloch
et al. 1990).13 In the future, however, single- and /or giant-pulse
timing experiments with more sensitive instruments (e.g., the
Square Kilometer Array) will test this prediction. If confirmed,
it will independently corroborate the avalanche hypothesis.
The mean glitching rates of the nine pulsars studied here are

fairly narrowlydistributed, spanning the range0:35 � k � 2:6 yr�1.
The probability density function for k is adequately fitted by an
exponential, as for solar flare avalanches (Wheatland 2000), with
hki ¼ 1:3þ0:7

�0:6 yr
�1, or by an exponential with a lower cutoff, at

kmin � 0:25 yr�1. A theoretical derivation of hki from first prin-
ciples is currently lacking, although estimates of how long it takes
to crack the crust locally predict reasonable rates, if the critical
strain angle approaches that of imperfect terrestrial metals (Alpar
et al. 1996; Middleditch et al. 2006).
Figure 10 plots k versus �c for the nine pulsars examined in-

dividually in this paper. There is no significant trend. The data
are consistent with the notion that old pulsars glitch less fre-
quently than young pulsars (Shemar & Lyne 1996), but they are
equally consistent with the notion that the glitching rate is in-
dependent of age.
Many authors have searched for a correlation between waiting

time and the size of the next glitch. Such a correlation appears to

Fig. 9.—Spin-down age �c (in kyr) vs. power-law exponent a for the glitch
size distribution. The error bars indicate the 1 � range of allowable fits according
to the K-S test. Systematic differences between �c and true age are not quantified
here. Triangles show quasi-periodic glitchers with Ng > 5, to which we fit a two-
component ( filled triangles) and one-component (open triangles) P(�� /�), as in
Tables 4 and 3, respectively. Squares show aperiodic glitchers with Ng > 5, to
which we fit a power law P(�� /�), as in Table 3.

13 In the Crab, some spin-up events seem to be resolved, e.g., at epochs MJD
50,260 (T � 0:5 days) andMJD 50,489 (secondary spin up, T � 2 days) (Wong
et al. 2001). If these are rare but otherwise standard glitches originating from the
long- T tail of the lifetime distribution, it is puzzling that other shorter but still
resolved (and presumably more common) spin-up events are not observed, e.g.,
with T � 0:1 or 0.01 days. Alternatively, the events at MJD 50,620 and MJD
50,489 may have been triggered by a different physical mechanism.
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be absent from the data, e.g., Figure 17 inWang et al. (2000) and
Figure 10 in Wong et al. (2001). At first blush, this is surprising:
the vortex-unpinning and crust fracture paradigms, which are
driven by the accumulation of differential rotation and mechani-
cal stress, respectively, seem to be natural candidates for a ‘‘reser-
voir effect.’’ Avalanche dynamics resolves this apparent paradox.
The reservoir effect does operate locally, but the star contains
many reservoirs, insulated from each other by relaxed zones, whose
storage capacities evolve stochastically in response to the slow
driver and avalanche history. During a glitch, a single reservoir
(often small, but sometimes large) relaxes at random via an ava-
lanche, releasing its stored �� (and destabilizing neighboring
reservoirs in preparation for the next glitch). Some of the ��
has accumulated since the previous glitch, but the remainder is
‘‘borrowed’’ from earlier epochs, when some other reservoir re-
laxed instead. All self-organized critical systems share these dy-
namics; the waiting time is uncorrelated with the size of the next
avalanche (Jensen 1998). The only exceptions are large, system-
spanning avalanches, which always have roughly the same sizes
and waiting times, and which account for �20% of the glitches
in PSR J0537�6910 and PSR J0835�4510.

A corollary of the previous paragraph is that the total ��
released in glitches up to some epoch is less than the total crust-
superfluid differential rotation accumulated since that epoch,
viz.,

XNg

i¼1

��i � � �̇j j
XNg

i¼1

�ti; ð20Þ

where ��̇ is the relative angular acceleration of the crust and
superfluid due to electromagnetic spin down. The ‘‘staircase’’ de-
scribed by equation (20) has been noted previously (Shemar &
Lyne 1996; Lyne et al. 2000), both in quasi-periodic glitchers such
as PSR J0537�6910 (e.g., Figure 8 in Middleditch et al. 2006),
where the reservoir effect is obvious, and in Poisson glitchers such
as PSR J0534+2200, (e.g., Figure 12 inWong et al. 2001), where

the trend is more subtle because it reverts to the mean over long
times, not after every glitch. On dividing equation (20) by Ng ,
and averaging over long times, the inequality becomes an equal-
ity (provided there is no secular accumulation of differential ro-
tation in the system), and we recover equation (6).

It is fundamentally impossible to measure � for individual
pulsars with current data, because h��i is dominated by large
(and therefore rare) glitches for a < 2. It is therefore wrong to
assume stationarity over a typical, 40 yr observation interval. Con-
sequently, we are prompted to reassess the familiar correlation
between activity and spin-down age (Shemar & Lyne 1996). Our
definition of ��̇ is identical to �̇glitch in Lyne et al. (2000) (but for
individual objects, not in aggregate) and Ag inWong et al. (2001).
It is closely related to the original activity parameter defined
by McKenna & Lyne (1990), which equals Ng�

�1� �̇j j. For PSR
J0358+5413, we measure � � 7 ; 10�5, lower than the aggre-
gate value 0:017� 0:002 measured by Lyne et al. (2000) for
objects with �c > 10 kyr (binned by semidecades in �̇).14 Inter-
preted in terms of the vortex-unpinning model, this result sug-
gests that 0.007% Y2% of the angular momentum outflow during
spin downmay be stored in metastable reservoirs on average over
time. On the other hand, five other objects have 0:04 � �max �
0:8, under the questionable assumption that the maximum phys-
ical size is ��upper ¼ 2 ; 10�4 in all pulsars. Our data are there-
fore inadequate to update usefully the value Ag / �̇j j ¼ 1 ; 10�5

measured by Wong et al. (2001) for PSR J0534+2200.
In the context of vortex unpinning, it has been argued that the

aggregated � measured by Lyne et al. (2000) partly corroborates
the hypothesis that younger pulsars are still in the process of
forming their capacitive elements, e.g., by creating pinning cen-
ters through crust fracture, while older pulsars have mostly com-
pleted the task (Alpar et al. 1996; Wong et al. 2001). However,
the full picture is more complicated. Vela’s quasi-periodic ava-
lanches point to a richly connected network of reservoirs (Alpar
et al. 1996), yet its aggregated value �̇glitch is relatively low. On
the other hand, the other quasi-periodic glitcher, PSR J0537�
6910, is relatively young (�c ¼ 4:9 kyr); how did it form a richly
connected reservoir network so quickly? And, if its network is
so richly connected, why is its aggregated �̇glitch value so low?
Likewise, PSR J0358+5413 is the oldest object in the sample
(�c ¼ 560 kyr), yet its � value arguably points to a dearth of ca-
pacitive elements, characteristic of a young object. There are no
obvious grounds (e.g., quasi-periodicity) on which to treat PSR
J0358+5413 as exceptional.

Do all pulsars glitch eventually? It has been speculated in the
past that there is something special physically about the minority
of pulsars that do glitch. While it is impossible to reject this hy-
pothesis unequivocally with the data at hand, the results presented
here suggest that all pulsars are capable of glitching. However,
most do so infrequently (low k) and hence have not been detected
during the last four decades of timing experiments. We find that
up to �30% of the pulsar population can glitch at rates lower
than kmin ¼ 0:25 yr�1 and still conform with the measured ag-
gregate waiting-time distribution.

Once verified, the claimed Poissonian nature of the glitch
mechanism can be invoked to exclude broad classes of glitch
theories, e.g., those that rely on ‘‘defects’’ or ‘‘turbulence’’ at spe-
cial locations (such as the pole), or that involve a pair of dependent

14 The aggregate value �̇glitch (Lyne et al. 2000), binned over semidecades in
�̇, effectively averages together different pulsars.While this approach reduces the
formal error bar on �̇glitch, its physical interpretation is less straightforward, given
the likelihood that � is different in different pulsars.

Fig. 10.—Mean glitching rate k (in yr�1) vs. spin-down age �c (in kyr). The
error bars indicate the 1 � range of allowable fits according to the K-S test. Sys-
tematic differences between �c and true age are not quantified here. Triangles show
quasi-periodic glitchers with Ng > 5, to which we fit a two-component (solid
triangles) and one-component (open triangles) P(k;�t), as in Tables 6 and 5,
respectively. Squares show aperiodic glitchers with Ng > 5, to which we fit a
Poissonian P(k;�t) as in Table 5.
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events (A. Martin 2007, private communication). It is important
to interpret aftershocks carefully in this light (Wong et al. 2001).
In self-organized critical systems, the excess number of avalanches
following a large avalanche (over and above the Poissonian base-
line following a small avalanche) scales inversely with the time
elapsed, a property known asOmori’s law for earthquakes (Jensen
1998).

In this paper, we do not analyze postglitch relaxation times
and glitch-activated changes in �̇ in the context of avalanche pro-
cesses, e.g., the correlation between ��̇ and the transient com-
ponent of�� (Wong et al. 2001). We also assume implicitly that
the quantized superfluid vortices in the vortex-unpinning model
are organized in a rectilinear array, even though recent work sug-
gests that meridional circulation destabilizes the array and con-

verts it into a turbulent tangle (Peralta et al. 2005, 2006). Further
study of these matters is deferred to future work.
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National Facility Pulsar Catalogue (Manchester et al. 2005), which
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