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Abstract

On his way to General Relativity, Einstein gave several arguments as to why a special-relativistic

theory of gravity based on a massless scalar field could be ruled out merely on grounds of theoretical

considerations. We re-investigate his two main arguments, which relate to energy conservation and

some form of the principle of the universality of free fall. We find such a theory-based a priori

abandonment not to be justified. Rather, the theory seems formally perfectly viable, though in clear

contradiction with (later) experiments.
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1. Introduction

General Relativity (henceforth ‘GR’) differs markedly in many structural aspects from
all other theories of fundamental interactions, which are all formulated as Poincaré
invariant theories in the framework of Special Relativity (henceforth ‘SR’). The
characterisation of this difference has been a central theme not only for physicists, but
also for philosophers and historians of science. Einstein himself emphasised in later (1933)
see front matter r 2007 Elsevier Ltd. All rights reserved.
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recollections the importance of his failure to formulate a viable special-relativistic theory of
gravity for the understanding of the genesis of GR.

Any attempt to give such a characterisation should clearly include a precise description
of the constraints that prevent gravity from also fitting into the framework of SR. In
modern terminology, a natural way to proceed would be to consider fields according to
mass and spin,1 discuss their possible equations, the inner consistency of the mathematical
schemes so obtained, and finally their experimental consequences. Since gravity is a
classical, macroscopically observable, and long-ranged field, one usually assumes right at
the beginning the spin to be integral and the mass parameter to be zero. The first thing to
consider would therefore be a massless scalar field. What goes wrong with such a theory?

When one investigates this question, anticipating that something does indeed go wrong,
one should clearly distinguish between the following two types of reasoning:
1.
1

irre
The theory is internally inconsistent. In a trivial sense this may mean that it is
mathematically contradictory, in which case this is the end of the story. On a more
sophisticated level it might also mean that the theory violates accepted fundamental
physical principles, like, e.g., that of energy conservation, without being plainly
mathematically contradictory.
2.
 The theory is formally consistent and in accord with basic physical principles. However,
it is refuted by experiments.

Note that, generically, it does not make much sense to claim both shortcomings
simultaneously, since ‘predictions’ of inconsistent theories should not be trusted. The
question to be addressed here is whether special-relativistic theories of scalar gravity fall
under the first category, i.e. whether they can be refuted on the basis of formal arguments
alone without reference to specific experiments.

Many people think that it can, following A. Einstein who accused scalar theories to
(a)
M

d

violate some form of the principle of universality of free fall,

(b)
 violate energy conservation.
The purpose of this paper is to investigate these statements in detail. We will proceed by
the standard (Lagrangian) methods of modern field theory and take what we perceive as
the obvious route when working from first principles.

2. Historical background

As already stressed, the abandonment of scalar theories of gravity by Einstein is
intimately linked with the birth of GR, in particular with his conviction that general
covariance must replace the principle of relativity as used in SR.

I will focus on two historical sources in which Einstein complains about scalar gravity
not being adequate. One is his joint paper with Marcel Grossman on the so-called ‘Entwurf
Theory’ (Klein et al., 1995, Doc. 13, henceforth called the ‘Entwurf Paper’), of which
Grossmann wrote the ‘mathematical part’ and Einstein the ‘physical part’. Einstein
ass and spin are the eigenvalues of the so-called Casimir operators of the Poincaré group, that label its

ucible representations.
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finished with Section 7, whose title asks: ‘Can the gravitational field be reduced to a
scalar?’ (German original: ‘Kann das Gravitationsfeld auf einen Skalar zurückgeführt
werden?’). In this paragraph he presented a Gedankenexperiment-based argument which
allegedly shows that any special-relativistic scalar theory of gravity, in which the
gravitational field couples exclusively to the matter via the trace of its energy–momentum
tensor, necessarily violates energy conservation and is hence physically inconsistent. This
he presented as plausibility argument why gravity has to be described by a more complex
quantity, like the gmn of the Entwurf Paper, where he and Grossmann consider ‘generally
covariant’ equations for the first time. After having presented his argument, he ends
Section 7 (and his contribution) with the following sentences, expressing his conviction in
the validity of the principle of general covariance:

Einstein Quote 1. Ich muX freilich zugeben, daX für mich das wirksamste Argument dafür,

daX eine derartige Theorie [eine skalare Gravitationstheorie] zu verwerfen sei, auf der

Überzeugung beruht, daX die Relativität nicht nur orthogonalen linearen Substitutionen

gegenüber besteht, sondern einer viel weitere Substitutionsgruppe gegenüber. Aber wir sind

schon desshalb nicht berechtigt, dieses Argument geltend zu machen, weil wir nicht imstande

waren, die (allgemeinste) Substitutionsgruppe ausfindig zu machen, welche zu unseren

Gravitationsgleichungen gehört.2 (Klein et al., 1995, Doc. 13, p. 323)

The other source where Einstein reports in more detail on his earlier experiences with
scalar gravity is his manuscript entitled ‘Einiges über die Entstehung der Allgemeinen
Relativitätstheorie’, dated June 20th 1933, reprinted in (Einstein, 2005, pp. 176–193).
There he describes in words (no formulae are given) how the ‘obvious’ special-relativistic
generalisation of the Poisson equation,

DF ¼ 4pGr, (1a)

together with a (slightly less obvious) special-relativistic generalisation of the equation of
motion,

d2~xðtÞ

dt2
¼ �~rFð~xðtÞÞ, (1b)

lead to a theory in which the vertical acceleration of a test particle in a static homogeneous
vertical gravitational field depends on its initial horizontal velocity and also on its internal
energy content. In his own words:

Einstein Quote 2. Solche Untersuchungen führten aber zu einem Ergebnis, das mich in hohem

MaX miXtrauisch machte. GemäX der klassischen Mechanik ist nämlich die Vertikalbes-

chleunigung eines Körpers im vertikalen Schwerefeld von der Horizontalkomponente der

Geschwindigkeit unabhängig. Hiermit hängt es zusammmen, daX die Vertikalbeschleunigung

eines mechanischen Systems bzw. dessen Schwerpunktes in einem solchen Schwerefeld

unabhängig herauskommt von dessen innerer kinetischer Energie. Nach der von mir

versuchten Theorie war aber die Unabhängigkeit der Fallbeschleunigung von der
2To be sure, I have to admit that in my opinion the most effective argument for why such a theory [a scalar theory of

gravity]has to be abandoned rests on the conviction that relativity holds with respect to a much wider group of

substitutions than just the linear-orthogonal ones. However, we are not justified to push this argument since we were

not able to determine the (most general) group of substitutions which belongs to our gravitational equations.
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Horizontalgeschwindigkeit bzw. der inneren Energie eines Systems nicht vorhanden. Dies

paXte nicht zu der alten Erfahrung, daX die Körper alle dieselbe Beschleunigung in einem

Gravitationsfeld erfahren. Dieser Satz, der auch als Satz über die Gleichheit der trägen und

schweren Masse formuliert werden kann, leuchtete mir nun in seiner tiefen Bedeutung ein. Ich

wunderte mich im höchsten Grade über sein Bestehen und vermutete, daX in ihm der Schlüssel

für ein tieferes Verständnis der Trägheit und Gravitation liegen müsse. An seiner strengen

Gültigkeit habe ich auch ohne Kenntnis des Resultates der schönen Versuche von Eötvös, die

mir—wenn ich mich richtig erinnere—erst später bekannt wurden, nicht ernsthaft gezweifelt.

Nun verwarf ich den Versuch der oben angedeuteten Behandlung des Gravitationsproblems im

Rahmer der speziellen Relativitätstheorie als inadäquat. Er wurde offenbar gerade der

fundamentalsten Eigenschaft der Gravitation nicht gerecht. ½. . .�Wichtig war zunächst nur die

Erkenntnis, daX eine vernünftige Theorie der Gravitation nur von einer Erweiterung des

Relativitätsprinzips zu erwarten war.3(Einstein, 2005, pp. 178–179)

Einstein’s belief, that scalar theories of gravity are ruled out, placed him—in this respect—in
opposition to most of his colleagues, like Nordström, Abraham, Mie, and Laue, who took
part in the search for a (special-) relativistic theory of gravity. (Concerning Nordströms theory
and the Einstein–Nordström interaction, compare the beautiful discussions by Norton (1992,
1993)). Some of them were not convinced, it seems, by Einstein’s inconsistency argument. For
example, even after GR was completed, Laue wrote a comprehensive review paper on
Nordströms theory, thereby at least implicitly claiming inner consistency (Laue, 1917).
Remarkably, this paper of Laue’s is not contained in his collected writings.

On the other hand, modern commentators seem to be content with a discussion of the
key rôle that Einstein’s arguments undoubtedly played in the development of GR and, in
particular, the requirement of general covariance. In fact, already in his famous Vienna
lecture (Klein et al., 1995, Doc. 17) held on September 23rd 1913, less than half a year after
the submission of the Entwurf Paper, Einstein admits the possibility to sidestep the energy-
violation argument given in the latter, if one drops the relation between space-time
distances as given by the Minkowski metric on one hand, and physically measured times
and lengths on the other. Einstein distinguishes between ‘coordinate distances’ (German
original: ‘Koordinatenabstand’), measured by the Minkowski metric, and ‘natural
distances’ (German original: ‘natürliche Abstände’), as measured by rods and clocks
(Klein et al., 1995, Doc. 17, p. 490). The relation between these two notions of distance is
that of a conformal equivalence for the underlying metrics, where the ‘natural’ metric is
obtained from the Minkowski metric by multiplying it with a factor that is proportional to
3These investigations, however, led to a result which raised my strong suspicion. According to classical mechanics,

the vertical acceleration of a body in a vertical gravitational field is independent of the horizontal component of its

velocity. Hence in such a gravitational field the vertical acceleration of a mechanical system, or of its centre of

gravity, comes out independently of its internal kinetic energy. But in the theory I advanced, the acceleration of a

falling body was not independent of its horizontal velocity or the internal energy of the system. This did not fit with the

old experience that all bodies experience the same acceleration in a gravitational field. This statement, which can be

formulated as theorem on the equality of inertial and gravitational mass, became clear to me in all its deeper meaning.

I wondered to the highest degree as to why it should hold and conjectured that it be the key for a deeper understanding

of inertia and gravitation. I did not question its rigorous validity, even without knowing about the beautiful

experiments by Eötvös, of which—if I remember correctly—I became aware only later. I now abandoned my attempt

as inadequate to address the problem of gravitation along the lines outlined above. It obviously could not account for

the most fundamental property of gravitation. ½. . .� The important insight at this stage was that a reasonable theory of

gravitation could only be expected from an extension of the principle of relativity.
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the square of the scalar gravitational potential. Accordingly, the re-publication in January
1914 of the Entwurf Paper includes additional comments, the last one of which
acknowledges this possibility to sidestep the original argument against special-relativistic
scalar theories of gravity (Klein et al., 1995, Doc. 26, p. 581). This is sometimes interpreted
as a ‘retraction’ by Einstein of his earlier argument (Klein et al., 1995, Doc. 13, p. 342,
editors comment [42]) though Einstein himself speaks more appropriately of ‘evading’ or
‘sidestepping’ (German original: ‘entgehen’). In fact, Einstein does not say that his original
argument was erroneous, but rather points out an escape route that effectively changes the
hypotheses on which it was based. Indeed, Einstein’s re-interpretation of space-time
distances prevents the Poincaré transformations from being isometries of space-time, though
they formally remain symmetries of the field equations. The new interpretation therefore
pushes the theory outside the realm of SR. Hence Einstein’s original claim, that a special-
relativistic scalar theory of gravity is inconsistent, is not withdrawn by that re-interpretation.
Unfortunately, Einstein’s recollections do not provide sufficient details to point towards a
unique theory against which his original claim may be tested. But guided by Einstein’s
remarks and simple first principles one can write down a special-relativistic scalar theory and
check whether it really suffers from the shortcomings of the type mentioned by Einstein. This
we shall do in the main body of this paper. We shall find that, as far as its formal consistency
is concerned, the theory is much better behaved than suggested by Einstein. We end by
suggesting another rationale (than violation of energy conservation), which is also purely
intrinsic to the theory discussed here, for going beyond Minkowski geometry.

3. Scalar gravity

In this section we show how to construct a special-relativistic theory for a scalar
gravitational field, F, coupled to matter. Before we will do so in a systematic manner, using
variational methods in form of a principle of stationary action, we will mention the
obvious first and naive guesses for a Poincaré invariant generalisation of formulae (1) and
point out their deficiencies.
Our conventions for the Minkowski metric are ‘mostly minus’, that is,

Zmn ¼ diagð1;�1;�1;�1Þ. Given a worldline, xmðlÞ, where l is some arbitrary parameter,
its derivative with respect to its eigentime, t, is written by an overdot, _xm:¼dxm=dt, where

dt:¼c�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zmnðdxm=dlÞðdxn=dlÞ

q
dl. c denotes the velocity of light in vacuum (which we do

not set equal to unity).

3.1. First guesses and a naive theory

There is an obvious way to generalise the left hand side of (1a), namely to replace the
Laplace operator by minus (due to our ‘mostly minus’ convention) the d’Alembert operator:

D:¼
q2

qx2
þ

q2

qy2
þ

q2

qz2
,

7! �&:¼
q2

qx2
þ

q2

qy2
þ

q2

qz2
�

1

c2
q2

qt2
¼ �Zmn

q2

qxmqxn . ð2Þ

This is precisely what Einstein reported:
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Einstein Quote 3. Das einfachste war natürlich, das Laplacesche skalare Potential der

Gravitation beizubehalten und die Poisson Gleichung durch ein nach der Zeit differenziertes

Glied in naheliegender Weise so zu ergänzen, daX der speziellen Relativitätstheorie Genüge

geleistet wurde.4 (Einstein, 2005, p. 177)

Also, the right hand side of (1a) need to be replaced by a suitable scalar quantity (r is
not a scalar). In SR the energy density is the 00-component of the energy–momentum
tensor Tmn, which corresponds to a mass density T00=c2. Hence a sensible replacement for
the right-hand side of (1a) is

r 7! T=c2:¼ZmnTmn=c2, (3)

so that (1a) translates to

&F ¼ �kT ; where k:¼4pG=c2. (4)

The replacement (3) is not discussed in Einstein’s 1933 recollections, but mentioned
explicitly as the most natural one for scalar gravity in Einstein’s part of the Entwurf
Paper (Klein et al., 1995, Doc. 13, p. 322) and also in his Vienna lecture (Klein et al.,
1995, Doc. 17, p. 491). In both cases he acknowledges Laue as being the one to
draw his attention to T=c2 as being a natural choice for the scalar potential’s
source.

The next step is to generalise (1b). With respect to this problem Einstein remarks:

Einstein Quote 4. Auch muXte das Bewegungsgesetz des Massenpunktes im Gravitationsfeld

der speziellen Relativitätstheorie angepaXt werden. Der Weg hierfür war weniger eindeutig

vorgeschrieben, weil ja die träge Masse eines Körpers vom Gravitationspotential abhängen

konnte. Dies war sogar wegen des Satzes von der Trägheit der Energie zu erwarten.5

(Einstein, 2005, p. 177)

It should be clear that the structurally obvious choice,6

€xm
ðtÞ ¼ ZmnrnFðxðtÞÞ, (5)

cannot work. Four-velocities are normed,

Zmn _x
m _xn ¼ c2 _t2 � _x2 � _y2 � _z2 ¼ c2, (6)

so that

Zmn _x
m €xn
¼ 0. (7)
4The most simple thing to do was to retain the Laplacian scalar potential and to amend the Poisson equation by a

term with time derivative, so as to comply with special relativity.
5Also, the law of motion of a mass point in a gravitational field had to be adjusted to special relativity. Here the

route was less uniquely mapped out, since the inertial mass of a body could depend on the gravitational potential.

Indeed, this had to be expected on grounds of the law of inertia of energy.
6Throughout we write rm for q=qxm.



ARTICLE IN PRESS
D. Giulini / Studies in History and Philosophy of Modern Physics 39 (2008) 154–180160
Hence (5) implies the integrability condition _xmðtÞrmFðxðtÞÞ ¼ dFðxðtÞÞ=dt ¼ 0, saying
that F must stay constant along the worldline of the particle, with renders (5) physically
totally useless. The reason for this failure lies in the fact that we replaced the three
independent equations (1b) by four equations. This leads to an over-determination, since
the four-velocity still represents only three independent functions, due to the kinematical
constraint (6). More specifically, it is the component parallel to the four-velocity _x of the
four-vector equation (5) that leads to the unwanted restriction. The obvious way out it to
just retain the part of (5) perpendicular to _x:

€xmðtÞ ¼ PmnðtÞrnFðxðtÞÞ, (8a)

where

PmnðtÞ ¼ ZnlPm
lðtÞ and Pm

n ðtÞ:¼d
m
n � _xmðtÞ _xnðtÞ=c2 (8b)

is the one-parameter family of projectors orthogonal to the four-velocity _xðtÞ, one at each
point of the particle’s worldline. Hence, by construction, this modified equation of motion
avoids the difficulty just mentioned. We will call the theory based on (4) and (8) the naive

theory. We also note that (8) is equivalent to

d

dt
ðmðxðtÞÞ _xmðtÞÞ ¼ mðxðtÞÞ ZmnrnFðxðtÞÞ, (9)

where m is a spacetime dependent mass, given by

m ¼ m0 expððF� F0Þ=c2Þ. (10)

Here m0 is a constant, corresponding to the value of m at gravitational potential F0, e.g.,
F0 ¼ 0.
We could now work out consequences of this theory. However, before doing this, we

would rather put the reasoning employed so far on a more systematic basis as provided by
variational principles. This also allows us to discuss general matter couplings and check
whether the matter coupling that the field equation (4) expresses is consistent with the
coupling to the point particle, represented by the equation of motion (8). This has to be
asked for if we wish to implement the equivalence principle in the following form:

Requirement 1 (Principle of universal coupling). All forms of matter (including test
particles) couple to the gravitational field in a universal fashion.

We will see that in this respect the naive theory is not quite correct. We stress the
importance of coupling schemes, without which there is no logical relation between the
field equation and the equation of motion for (test-) bodies. This is often not sufficiently
taken into account in discussions of scalar theories of gravity; compare (Bergmann, 1956;
Dowker, 1965; Harvey, 1965; Wellner & Sandri, 1964).
3.2. A consistent model-theory for scalar gravity

Let us now employ standard variational techniques to establish Poincaré-invariant
equations for the scalar gravitational field, F, and for the motion of a test particle, so that
the principle of universal coupling is duly taken care of. We start by assuming the field
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equation (4). An action whose Euler–Lagrange equation is (4) is easy to guess7:

Sfield þ Sint ¼
1

kc3

Z
d4x

1

2
qmFq

mF� kFT

� �
, (11)

where Sfield, given by the first term, is the action for the gravitational field and Sint, given
by the second term, accounts for the interaction with matter.

To this we have to add the action for the matter, Smatter, which we only specify insofar as
we assume that the matter consists of a point particle of rest-mass8 m and a ‘rest’ of matter
that needs not be specified further for our purposes here. Hence Smatter ¼ Sparticle þ Srom

(rom ¼ rest of matter), where

Sparticle ¼ �mc2
Z

dt. (12)

We now invoke the principle of universal coupling to find the particle’s interaction with the
gravitational field. It must be of the form FTp, where Tp is the trace of the particle’s
energy–momentum tensor. The latter is given by

Tmn
p ðxÞ ¼ mc

Z
_xmðtÞ _xnðtÞ dð4Þðx� xðtÞÞdt, (13)

so that the particle’s contribution to the interaction term in (11) is

Sint2particle ¼ �m

Z
FðxðtÞÞdt. (14)

Hence the total action can be written in the following form:

Stot ¼ �mc2
Z
ð1þ FðxðtÞÞ=c2Þdt

þ
1

kc3

Z
d4x

1

2
qmFq

mF� kFT rom

� �
þ Srom. ð15Þ

By construction, the field equation that follows from this action is (4), where the
energy–momentum–tensor refers to the matter without the test particle (the self-
gravitational field of a test particle is always neglected). The equations of motion for the
test particle then turn out to be

€xmðtÞ ¼ PmnðtÞqnfðxðtÞÞ, ð16aÞ

where PmnðtÞ ¼ Zmn � _xmðtÞ _xnðtÞ=c2 ð16bÞ

and f:¼c2 lnð1þ F=c2Þ. ð16cÞ

Three things are worth remarking at this point:
�

7

giv

gen
8

dis
The projector Pmn now appears naturally.

�
 The difference between (8) and (16) is that in the latter it is f rather than F that drives

the four acceleration. This (only) difference with the naive theory was imposed upon us
Note that F has the physical dimension of a squared velocity, k that of length-over-mass. The pre-factor 1=kc3

es the right-hand side of (11) the physical dimension of an action. The overall signs are chosen according to the

eral scheme for Lagrangians: kinetic minus potential energy.

We do not need to indicate the rest mass by an additional subscript 0, since in the sequel we never need to

tinguish between rest- and dynamical mass. From now on m will always refer to rest mass.
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by the principle of universal coupling, which, as we have just seen, determined the
motion of the test particle. This difference is small for small F=c2, since, according
to (16c), f � Fð1þ F=c2 þ � � �Þ. But it becomes essential if F gets close to �c2, where f
diverges and the equations of motion become singular. We will see below that
the existence of the critical value F ¼ �c2 is not necessarily a deficiency and that
it is, in fact, the naive theory which displays an unexpected singular behaviour
(cf. Section 4.2).

�
 The universal coupling of the gravitational field to matter only involves the trace

of energy–momentum tensor of the latter. As a consequence of the tracelessness of
the pure electromagnetic energy–momentum tensor, there is no coupling of gravity
to the free electromagnetic field, like, e.g., a light wave in otherwise empty space.
A travelling electromagnetic wave will not be influenced by gravitational fields. Hence
this theory predicts no deflection of light-rays that pass the neighbourhoods of
stars of other massive objects, in disagreement with experimental observations. Note
however that the interaction of the electromagnetic field with other matter will
change the trace of the energy–momentum tensor of the latter. For example,
electromagnetic waves trapped in a material box with mirrored walls will induce
additional stresses in the box’s walls due to radiation pressure. This will increase
the weight of the box corresponding to an additional mass Dm ¼ Erad=c2, where Erad

is the energy of the radiation field. In this sense bound electromagnetic fields do

carry weight.

Let us now focus on the equations of motion specialised to static situations. That is, we
assume that there exists some inertial coordinate system xm with respect to which F and
hence f are static, i.e., r0F ¼ r0f ¼ 0. We have

Proposition 1. For static potentials (16) is equivalent to

~x00ðtÞ ¼ �ð1� b2ðtÞÞ~rfð~xðtÞÞ, (17)

where here and below we write a prime for d=dt and use the standard shorthands ~v ¼ ~x0,

~b ¼ ~v=c, b ¼ k~bk, and g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
.

Proof. We write in the usual four-vector component notation: _xm ¼ cgð1;~bÞ. Using d=dt ¼
gd=dt and dg=dt ¼ g3ð~a �~v=c2Þ, we have on one side

€xm ¼ g4ð~a �~b;~ak þ g�2~a?Þ, (18a)

with ~a:¼d~v=dt. ~ak:¼b
�2~bð~b �~aÞ and ~a?:¼~a�~ak are, respectively, the spatial projections of ~a

parallel and perpendicular to the velocity ~v. On the other hand, we have

� _xm _xnrnf=c2 ¼ �g2ð~b � ~rfÞð1;~bÞ, (18b)

Zmnrnf ¼ ð0;�~rfÞ, (18c)

so that

ðZmn � _xm _xn=c2Þrnf ¼ �g2ðb � rf; ~rkfþ g�2~r?fÞ, (18d)
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where ~rk:¼b
�2~bð~b � ~rÞ and ~r?:¼~r � ~rk are the projections of the gradient parallel and

perpendicular to ~v respectively. Equating (18a) and (18d) results in

~a �~b ¼ �g�2~b � ~rf, (18e)

~a ¼ �g�2~rf. (18f)

Since (18e) is trivially implied by (18f), (18f) alone is equivalent to (16) in the static case, as
was to be shown. &

Einstein’s second quote suggests that he also arrived at an equation like (17), which
clearly displays the dependence of the acceleration in the direction of the gravitational field
on the transversal velocity. We will come back to this in the discussion section.

We can still reformulate (17) so as to look perfectly Newtonian (i.e. m~a equals a gradient
field). This will later be convenient for calculating the periapsis precession (cf. Sections 5.1
and 5.2).

Proposition 2. Let m be the rest-mass of the point particle. Then (17) implies

m~a ¼ �~r ~fð~xðtÞÞ with ~f:¼ðmc2=2Þg�20 expð2f=c2Þ, (19)

where g0 is an integration constant.

Proof. Scalar multiplication of (17) with ~v leads to

ðln gþ f=c2Þ0 ¼ 0, (20)

which integrates to

g ¼ g0 expð�f=c2Þ, (21)

where g0 is a constant. Using this equation to eliminate the g�2 on the right-hand side of
(17) the latter assumes the form (19). &

4. Free-fall in static homogeneous fields

We recall that in Quote 2 scalar gravity was accused of violating a particular form of the
principle of the universality of free fall, which Einstein called ‘the most fundamental
property of gravitation’. In this section we will investigate the meaning and correctness of
this claim in some detail. It will be instructive to compare the results for the scalar theory
with that of a vector theory in order to highlight the special behaviour of the former,
which, in a sense explained below, is just opposite to what Einstein accuses it of. We also
deal with the naive scalar theory for comparison and also to show aspects of its singular
behaviour that we already mentioned above.

4.1. The scalar model-theory

Suppose that with respect to some inertial reference frame with coordinates ðct; x; y; zÞ
the gravitational potential f depends only on z. Let at time t ¼ 0 a body be released at the
origin, x ¼ y ¼ z ¼ 0, with proper velocity _y0 ¼ _z0 ¼ 0, _x0 ¼ cbg, and _t0 ¼ g (so as to

obey (6)). As usual cb ¼ v ¼ _x0=_t0 is the ordinary velocity and g:¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
. We take the
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gravitational field to point into the negative z direction so that f is a function of z with
positive derivative f0. Note that _zðf0 � zÞ ¼ dðf � zÞ=dt for which we simply write _f with
the usual abuse of notion (i.e. taking f to mean f � z). Finally, we normalise f such that
fðz ¼ 0Þ ¼ 0.
The equations of motion (16a) now simply read

€t ¼ �_t _f=c2, ð22aÞ

€x ¼ � _x _f=c2, ð22bÞ

€y ¼ � _y _f=c2, ð22cÞ

€z ¼ �ð1þ _z2=c2Þf0. ð22dÞ

The first integrals of the first three equations, keeping in mind the initial conditions, are

ð_tðtÞ; _xðtÞ; _yðtÞÞ ¼ ð1; cb; 0Þg expð�fðzðtÞÞ=c2Þ. (23)

Further integration requires the knowledge of zðtÞ, that is, the horizontal motion couples
to the vertical one if expressed in proper time.9 Fortunately, the vertical motion does not

likewise couple to the horizontal one, that is, the right-hand side of (22d) just depends on
zðtÞ. Writing it in the form

€z_z=c2

1þ _z2=c2
¼ � _f=c2 (24)

immediately allows integration. For _zðt ¼ 0Þ ¼ 0 and fðz ¼ hÞ ¼ 0 (so that fðzohÞo0) we get

_z ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð�2f=c2Þ � 1

q
. (25)

From this the eigentime th for dropping from z ¼ 0 to z ¼ �h with h40 follows by one further
integration, showing already at this point its independence of the initial horizontal velocity.
Here we wish to be more explicit and solve the equations of motion for the one-

parameter family of solutions to (4) for T ¼ 0 and a F that just depends on z, namely
F ¼ gz, for some constant g that has the physical dimension of an acceleration. As already
announced we normalise F such that Fðz ¼ 0Þ ¼ 0. These solutions correspond to what
one would call a ‘homogeneous gravitational field’. But note that these solutions are not

globally regular since f ¼ c2 lnð1þ F=c2Þ ¼ c2 lnð1þ gz=c2Þ exists only for z4� c2=g and
it is the quantity f rather than F that corresponds to the Newtonian potential (i.e. whose
negative gradient gives the local acceleration).
Upon insertion of F ¼ gz, (25) can be integrated to give zðtÞ. Likewise, from (25) and

(23) we can form dz=dt ¼ _z=_t and dz=dx ¼ _z= _x which integrate to zðtÞ and zðxÞ,
respectively. The results are

zðtÞ ¼ �
c2

g
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðtg=cÞ2

q� �
, ð26aÞ

zðtÞ ¼ �
2c2

g
sin2ðgt=2gcÞ, ð26bÞ

zðxÞ ¼ �
2c2

g
sin2ðgx=2bgc2Þ. ð26cÞ
9In terms of coordinate time the horizontal motion decouples: dx=dt ¼ _x=_t ¼ cb) xðtÞ ¼ cbt.
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For completeness we mention that direct integration of (23) gives for the other component
functions, taking into account the initial conditions tð0Þ ¼ xð0Þ ¼ yð0Þ ¼ 0:

ðtðtÞ;xðtÞ; yðtÞÞ ¼ ð1; cb; 0Þðgc=gÞ sin�1ðgt=cÞ. (27)

The relation between t and t is

t ¼ ðc=gÞ sinðgt=gcÞ. (28)

Inversion of (26a) and (26b) leads, respectively, to the proper time, th, and coordinate time,
th, that it takes the body to drop from z ¼ 0 to z ¼ �h:

th ¼
c

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� gh=c2Þ2

q
�

ffiffiffiffiffiffiffiffiffiffi
2h=g

p
, ð29aÞ

th ¼ g
2c

g
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh=2c2

q� �
� g

ffiffiffiffiffiffiffiffiffiffi
2h=g

p
. ð29bÞ

The approximations indicated by � refer to the leading order contributions for small
values of gh=c2 (and any value of g). The appearance of g in (29b) signifies the quadratic
dependence on the initial horizontal velocity: the greater the inertial horizontal velocity,
the longer the span in inertial time for dropping from z ¼ 0 to z ¼ �h. This seems to be
Einstein’s point (cf. Quote 2). In contrast, there is no such dependence in (29a), showing
the independence of the span in eigentime from the initial horizontal velocity.

The eigentime for dropping into the singularity at z ¼ �h ¼ �c2=g is t� ¼ c=g. In
particular, it is finite, so that a freely falling observer experiences the singularity of the
gravitational field �~rf in finite proper time. We note that this singularity is also present in
the static spherically symmetric vacuum solution FðrÞ ¼ �Gm=r to (4), for which fðrÞ ¼
c2 lnð1þ F=c2Þ exists only for F4c2, i.e. r4Gm=c2. The Newtonian acceleration
diverges as r approaches this value from above, which means that stars of radius
smaller than that critical value cannot exist because no internal pressure can support
the infinite inward pointing gravitational pull. Knowing GR, this type of behaviour
does not seem too surprising after all. Note that we are here dealing with a non-linear
theory, since the field equations (4) become non-linear if expressed in terms of f according
to (16c).

4.2. The naive scalar theory

Let us for the moment return to the naive theory, given by (4) and (8). Its equations off
motion in a static and homogeneous vertical field are obtained from (22) by setting f ¼ gz.
Insertion into (25) leads to zðtÞ. The expressions zðtÞ and zðxÞ are best determined directly
by integrating dz=dt ¼ _z=_t using (25) and (27). One obtains

zðtÞ ¼ �
c2

g
lnðcosðgt=cÞÞ, ð30aÞ

zðtÞ ¼ �
c2

g
lnðcoshðgt=gcÞÞ, ð30bÞ

zðxÞ ¼ �
c2

g
lnðcoshðgx=bgc2ÞÞ. ð30cÞ
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The proper time and coordinate time for dropping from z ¼ 0 to z ¼ �h are therefore
given by

th ¼
c

g
cos�1ðexpð�hg=c2ÞÞ �

ffiffiffiffiffiffiffiffiffiffi
2h=g

p
, ð31aÞ

th ¼
c

g
g cosh�1ðexpðhg=c2ÞÞ � g

ffiffiffiffiffiffiffiffiffiffi
2h=g

p
, ð31bÞ

where � gives again the leading order contributions for small gh=c2.10 The general
relation between t and t is obtained by inserting (30a) into the expression (23) for _t and
integration:

t ¼
2c

g
ftan�1ðexpðgt=gcÞÞ � p=4g. (32)

Note that (31a) is again independent of the initial horizontal velocity, whereas
(31b) again is not. Moreover, the really surprising feature of (31a) is that th stays finite
for h!1. In fact, t1 ¼ cp=2g. So even though the solution fðzÞ is globally regular,
the solution to the equations of motion is in a certain sense not, since the freely falling
particle reaches the ‘end of spacetime’ in finite proper time. This is akin to ‘timelike
geodesic incompleteness’, which indicates singular space-times in GR. Note that it need
not be associated with a singularity of the gravitational field itself, except perhaps for the
fact that the very notion of an infinitely extended homogeneous field is itself regarded as
unphysical.

4.3. Vector theory

For comparison it is instructive to look at the corresponding problem in a vector (spin 1)
theory, which we here do not wish to discuss in detail. It is essentially given by Maxwell’s
equations with appropriate sign changes to account for the attractivity of like ‘charges’
(here masses). This causes problems, like that of runaway solutions, due to the possibility
to radiate away negative energy. But the problem of free fall in a homogeneous
gravitoelectric field can be addressed, which is formally identical to that of free fall of a
charge e and mass m in a static and homogeneous electric field ~E ¼ �E~ez. So let us first
look at the electrodynamical problem.
The equations of motion (the Lorentz force law) are

m €zm ¼ eZmnF nl _z
l, (33)

where F03 ¼ �F 30 ¼ �E=c and all other components vanish. Hence, writing

E:¼eE=mc, (34)

we have

c€t ¼ �E_z, ð35aÞ

€x ¼ 0, ð35bÞ

€y ¼ 0, ð35cÞ

€z ¼ �Ec_t. ð35dÞ
10To see this use the identity cos�1ðxÞ ¼ tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�2 � 1
p

Þ.
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With the same initial conditions as in the scalar case we immediately have

xðtÞ ¼ cbgt; yðtÞ ¼ 0. (36)

Eqs. (35a) and (35d) are equivalent to

ðc€t	 €zÞ ¼ 
Eðc_t	 _zÞ, (37)

which twice integrated lead to

ctðtÞ 	 zðtÞ ¼ A	 expð
EtÞ þ B	, (38)

where Aþ;A�;Bþ, and B� are four constants of integration. They are determined by
zð0Þ ¼ _zð0Þ ¼ tðtÞ ¼ 0 and c_t2 � _x2 � _y2 � _z2 ¼ c2, leading to

tðtÞ ¼ ðg=EÞ sinhðEtÞ (39)

and also

zðtÞ ¼ � ð2cg=EÞ sinh2ðEt=2Þ. (40a)

Using (39) and (36) to eliminate t in favour of t or x respectively in (40a) gives

zðtÞ ¼ �
gc

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðtE=gÞ2

q
� 1

� �
, (40b)

zðxÞ ¼ �
2gc

E
sinh2ðxE=2bgcÞ. (40c)

Inverting (40a) and (40b) gives the expressions for the spans of eigentime and inertial time,
respectively, that it takes for the body to drop from z ¼ 0 to z ¼ �h:

th ¼ ð2=EÞ sinh
�1
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh=2gc

p
Þ � g�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2h=Ec

p
, ð41aÞ

th ¼ ðg=EÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Eh=gcÞ2 � 1

q
� gþ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2h=Ec

p
. ð41bÞ

This is the full solution to our problem in electrodynamics, of which we basically just used
the Lorentz force law. It is literally the same in a vector theory of gravity, we just have to
keep in mind that the ‘charge’ e is now interpreted as gravitational mass, which is to be set
equal to the inertial mass m, so that e=m ¼ 1. Then Ec becomes equal to the
‘gravitoelectric’ field strength E, which directly corresponds to the strength g of the scalar
gravitational field. Having said this, we can directly compare (41) with (29). For small field
strength we see that in both cases th is larger by a factor of g than th, which just reflects
ordinary time dilation. However, unlike in the scalar case, the eigentime span th also
depends on g in the vector case. The independence of th on the initial horizontal velocity is
therefore a special feature of the scalar theory.

4.4. Discussion

Let us reconsider Einstein’s statements in Quote 2, in which he dismisses scalar gravity
for it predicting an unwanted dependence on the vertical acceleration on the initial
horizontal velocity. As already noted, we do not know exactly in which formal context
Einstein derived this result (i.e. what the ‘von mir versuchten Theorie’ mentioned in
Quote 2 actually was), but is seems most likely that he arrived at an equation like (17),
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which clearly displays the alleged behaviour. In any case, the diminishing effect of
horizontal velocity onto vertical acceleration is at most of quadratic order in v=c.

Remark 1. How could Einstein be so convinced that such an effect did not exist? Certainly
there were no experiments at the time to support this. And yet he asserted that such a
prediction ‘did not fit with the old experience [my italics] that all bodies experience the same
acceleration in a gravitational field’ (cf. Quote 2). What was it based on?

One way to rephrase/interpret Einstein’s requirement is this: the time it takes for a body
in free fall to drop from a height h to the ground should be independent of its initial
horizontal velocity. More precisely, if you drop two otherwise identical bodies in a static
homogeneous vertical gravitational field at the same time from the same location, one
body with vanishing initial velocity, the other with purely horizontal initial velocity, they
should hit the ground simultaneously.
But that is clearly impossible to fulfil in any special-relativistic theory of gravity,

independent of whether it is based on a scalar (or vector) field. The reason is this: suppose
�rmf ¼ ð0; 0; 0;�gÞ is the gravitational field in one inertial frame. Then it takes exactly the
same form in any other inertial frame which differs form the first one by (1) spacetime
translations, (2) rotations about the z-axis, (3) boosts in any direction within the xy-plane.
So consider a situation where with respect to an inertial frame, F, body 1 and body 2 are
simultaneously released at time t ¼ 0 from the origin, x ¼ y ¼ z ¼ 0, with initial velocities
~v1 ¼ ð0; 0; 0Þ and ~v2 ¼ ðv; 0; 0Þ, respectively. One is interested whether the bodies hit the
ground simultaneously. The ‘ground’ is represented in spacetime by the hyperplane z ¼ �h

and ‘hitting the ground’ is taken to mean that the word-line of the particle in question
intersects this hyperplane. Let another inertial frame, F 0, move with respect to F at speed v

along the x axis. With respect to F 0 both bodies are likewise simultaneously released at
time t0 ¼ 0 from the origin, x0 ¼ y0 ¼ z0 ¼ 0, with initial velocities ~v01 ¼ ð�v; 0; 0Þ and
~v02 ¼ ð0; 0; 0Þ, respectively, according to the relativistic law of velocity addition. The field is
still static, homogeneous, and vertical with respect to F 0.11 In F 0 the ‘ground’ is defined by
z0 ¼ �h, which defines the same hyperplane in spacetime as z ¼ �h. This is true since F and
F 0 merely differ by a boost in x-direction, so that the z and z0 coordinates coincide. Hence
‘hitting the ground’ has an invariant meaning in the class of inertial systems considered
here. However, if ‘hitting the ground’ are simultaneous events in F they cannot be
simultaneous in F 0 and vice versa, since these events differ in their x coordinates. This leads
us to the following

Remark 2. Due to the usual relativity of simultaneity, the requirement of ‘hitting the
ground simultaneously’ cannot be fulfilled in any Poincaré invariant theory of gravity.

But there is an obvious reinterpretation of ‘hitting the ground simultaneously’, which
makes perfect invariant sense in SR, namely the condition of ‘hitting the ground after the
same lapse of eigentime’. As we have discussed in detail above, the scalar theory does
indeed fulfil this requirement (independence of (29a) from g) whereas the vector theory
does not (dependence of (41a) on g).
11This is true for gravitational fields that derive from a scalar potential as well as vector potentials. In the scalar

case even the strength, k~rfk, of the field is the same in F and F 0, whereas in the vector case the strength in F 0 is

enhanced by a factor g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
. For our argument to work we just need that the field is again static,

homogeneous, and vertical. It therefore applies to the scalar as well as the vector case.
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Remark 3. The scalar theory is distinguished by its property that the eigentime for free fall
from a given altitude does not depend on the initial horizontal velocity.

In general, with regard to this requirement, the following should be mentioned:

Remark 4. Einstein’s requirement is (for good reasons) not implied by any of the modern
formulations of the (weak) equivalence principle, according to which the world-line of a
freely falling test-body (without higher mass-multipole-moments and without charge and
spin) is determined by its initial spacetime point and four velocity, i.e. independent of the
further constitution of the test body. In contrast, Einstein’s requirement relates two
motions with different initial velocities.

Finally we comment on Einstein’s additional claim in Quote 2, that there is also a similar
dependence on the vertical acceleration on the internal energy. This claim, too, does not
survive closer scrutiny. Indeed, one might think at first that (17) also predicts that, for
example, the gravitational acceleration of a box filled with a gas decreases as temperature
increases, due to the increasing velocities of the gas molecules. But this arguments
incorrectly neglects the walls of the box which gain in stress due to the rising gas pressure.
According to (4) more stress means more weight. In fact, a general argument due to Laue
(1911) shows that these effects precisely cancel. This has been lucidly discussed by Norton
(1993) and need not be repeated here.
5. Periapsis precession

We already mentioned that the scalar theory does not predict any deflection of light in a
gravitational field, in violation to experimental results. But in order to stay self contained it
is also of interest to see directly that the system given by the field equation (4) and the
equation of motion for a test particle (16) violates experimental data. This is the case if
applied to planetary motion, more precisely to the precession of the perihelion.

Recall that the Newtonian laws of motion predict that the line of apsides remains fixed
relative to absolute space for the motion of a body in a potential with 1=r-falloff. Any
deviation from the latter causes a rotation of the line of apsides within the orbital plane.
This may also be referred to as precession of the periapsis, the orbital point of closest
approach to the centre of force, which is called the perihelion if the central body happens
to be the Sun. Again we compare the result of our scalar theory with that of the naive
scalar theory and also with that of the vector theory.12

There exist comprehensive treatments of periapsis precession in various theories of
gravity, like (Whitrow & Morduch, 1965). But rather than trying to figure out which (if
any) of these (rather complicated) calculations apply to our theory, at least in a leading
order approximation, it turns out to be easier, more instructive, and mathematically more
transparent to do these calculations from scratch. A convenient way to compute the
periapsis precession in perturbed 1=r-potentials is provided by the following proposition,
which establishes a convenient and powerful technique for calculating the periapsis
precession in a large variety of cases.
12The scalar theory discussed by Dowker (1965) was just devised to give the correct (i.e. GR-) value for the

precession of the periapsis. Since the coupling to matter is not discussed, it makes no statements about light

deflection, redshift, etc.
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Proposition 3. Consider the Newtonian equations of motion for a test particle of mass m in a

perturbed Newtonian potential

UðrÞ ¼ �
a
r
þ DUðrÞ, (42)

where a40 and DUðrÞ is the perturbation. The potential is normalised so that it tends to zero at

infinity, i.e. DUðr!1Þ! 0. Let 2pþ Dj denote the increase of the polar angle between two

successive occurrences of periapsis. Hence Dj represents the excess over a full turn, also called

the ‘periapsis shift per revolution’. Then the first-order contribution of DU to Dj is given by

Dj ¼
q
qL

2m

L

Z p

0

r2�ðj;L;EÞ DUðr�ðj;L;EÞÞdj
� �

. (43)

Here j7!r�ðj;L;EÞ is the solution of the unperturbed problem (Kepler orbit) with angular

momentum L and energy E. (As we are interested in bound orbits, we have Eo0.) It is

given by

r�ðj;L;EÞ ¼
p

1þ e cosj
, (44a)

where

p :¼
L2

ma
, (44b)

e :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2EL2

ma2

s
. (44c)

Note that the expression in curly brackets on the right-hand side of (43) is understood as function

of L and E, so that the partial differentiation is to be taken at constant E.

Proof. In the Newtonian setting, the conserved quantities of energy and angular
momentum for the motion in a plane coordinatised by polar coordinates, are given by

E ¼ 1
2
mðr0

2
þ r2j02Þ þUðrÞ, (45)

L ¼ mr2j0, (46)

where a prime represents a t-derivative. Eliminating j0 in (45) via (46) and also using (46)
to re-express t-derivatives in terms of j-derivatives, we get

L2

m2r4
ððdr=djÞ2 þ r2Þ ¼ 2

E �U

m
. (47)

This can also be written in differential form,

dj ¼
	dr L=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE �UðrÞÞ � L2=r2
q , (48)

whose integral is just given by (44).



ARTICLE IN PRESS
D. Giulini / Studies in History and Philosophy of Modern Physics 39 (2008) 154–180 171
Now, the angular change between two successive occurrences of periapsis is twice the
angular change between periapsis, rmin, and apoapsis, rmax:

Djþ 2p ¼ 2

Z rmax

rmin

dr L=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE �UðrÞÞ � L2=r2

q
¼ � 2

q
qL

Z rmax

rmin

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE �UðrÞÞ � L2=r2

q� �
, ð49Þ

where the term in curly brackets is considered as function of L and E and the partial
derivative is for constant E.

Formula (49) is exact. Its sought-after approximation is obtained by writing UðrÞ ¼

�a=rþ DUðrÞ and expanding the integrand to linear order in DU . Taking into account
that the zeroth order term just cancels the 2p on the left hand side, we get:

Dj �
q
qL

2m

Z rmax

rmin

DUðrÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE þ a=rÞ � L2=r2

q
8><
>:

9>=
>;

�
q
qL

2m

L

Z p

0

r2�ðj;L;EÞDUðr�ðj;L;EÞÞdj
� �

. ð50Þ

In the second step we converted the r–integration into an integration over the azimuthal
angle j. This we achieved by making use of the identity that one obtains from (48) with
UðrÞ ¼ �a=r and r set equal to the Keplerian solution curve r�ðj;L;MÞ for the given
parameters L and E. Accordingly, we replaced the integral limits rmin and rmax by the
corresponding angles j ¼ 0 and j ¼ pþ Dj=2, respectively. Since the integrand is already
of order DU , we were allowed to replace the upper limit by j ¼ p, so that the integral
limits now correspond to the angles for the minimal and maximal radius of the
unperturbed Kepler orbit r�ðj;L;EÞ given by (44a). &

Let us apply this proposition to the general class of cases where DU ¼ D2U þ D3U with

D2UðrÞ ¼ d2=r2, ð51aÞ

D3UðrÞ ¼ d3=r3. ð51bÞ

In the present linear approximation in DU the effects of both perturbations to Dj simply
add, so that Dj ¼ D2jþ D3j. The contributions D2j and D3j are very easy to calculate
from (43). The integrals are trivial and give pd2 and pd3=p, respectively. Using (44b) in the
second case to express p as function of L, then doing the L-differentiation, and finally
eliminating L again in favour of p using (44b), we get

D2j ¼ �2p
d2=a

p

� �
¼ �2p

d2=a
að1� e2Þ

� �
, ð52aÞ

D3j ¼ �6p
d3=a

p2

� �
¼ �6p

d3=a

a2ð1� e2Þ2

� �
, ð52bÞ

where we also expressed p in terms of the semi-major axis a and the eccentricity e via
p ¼ að1� e2Þ, as it is usually done. Clearly this method allows to calculate in a straightforward
manner the periapsis shifts for general perturbations DnU ¼ dn=rn. For example, the case
n ¼ 3 is related to the contribution from the quadrupole moment of the central body.
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5.1. Scalar model-theory

All this applies directly to the scalar theory if its equation of motion is written in the
Newtonian form (19). The static and rotationally symmetric solution to (4) outside the
point source is FðrÞ ¼ �GM=r, so that

~fðrÞ ¼ ðmc2=2Þg�20 1�
GM

rc2

� �2

. (53)

In order to normalize the potential so that it assumes the value zero at spatial infinity we
just need to drop the constant term. This leads to

a ¼ g�20 GMm, ð54aÞ

d2 ¼ a
GM

2c2
, ð54bÞ

so that

Dj ¼ D2j ¼ �p
GM=c2

að1� e2Þ

� �
¼ �1

6DGRj, (55)

where DGRj is the value predicted by GR. Hence scalar gravity leads to a retrograde

periapsis precession.

5.2. Naive scalar theory

In the naive scalar theory we have fðrÞ ¼ �GM=r in (19) and therefore

~fðrÞ ¼ ðmc2=2Þg�20 expð�2GM=c2rÞ

¼ ðmc2=2Þg�20 1� 2
GM

c2r

� �
þ 2

GM

c2r

� �2

�
4

3

GM

c2r

� �3

þ � � �

( )
. ð56Þ

Again we subtract the constant term to normalize the potential so as to assume the value 0
at infinity. Then we simply read off the coefficients a; d2, and d3:

a ¼ 2ðGM=c2Þ ðmc2=2Þg�20 , ð57aÞ

d2 ¼ 2ðGM=c2Þ2 ðmc2=2Þg�20 , ð57bÞ

d3 ¼ �
4

3
ðGM=c2Þ3 ðmc2=2Þg�20 . ð57cÞ

Hence we have

Dj ¼ D2jþ D3j, (58a)

where

D2j ¼ �2p
GM=c2

að1� e2Þ

� �
, (58b)

D3j ¼ þ4p
GM=c2

að1� e2Þ

� �2
. (58c)
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Recall that (52) neglects quadratic and higher order terms in DU . If we expand DU in
powers of GM=c2r, as done in (56), it would be inconsistent to go further than to third
order because DU starts with the quadratic term so that the neglected corrections of order
ðDUÞ2 start with fourth powers in GM=c2r. Hence (58) gives the optimal accuracy
obtainable with (43). For solar-system applications GM=c2a is of the order of 10�8 so that
the quadratic term (58c) can be safely neglected. Comparison of (58b) with (55) shows that
the naive scalar theory gives a value twice as large as that of the consistent model-theory,
that is, �1=3 times the correct value (predicted by GR).

5.3. Vector theory

We start from the following

Proposition 4. The equations of motion (33) for a purely ‘electric’ field, where F0i ¼ �F i0 ¼

Ei=c and all other components of Fmn vanish, is equivalent to

ðgðtÞ~x0ðtÞÞ0 ¼ c~Eð~xðtÞÞ, (59)

where again the prime 0 denotes d=dt, gðtÞ:¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k~x0ðtÞk2=c2

q
, and ~E:¼e~E=mc.

Proof. We have d=ds ¼ gd=dt, dg=dt ¼ g3ð~b �~b
0
Þ. Now,

€zm ¼ cg ðg0; ðg~bÞ0Þ and ðe=mÞFm
n _z

n ¼ cg ð~E � b; ~EÞ, (60)

so that (33) is equivalent to

~E �~b ¼ g0 ¼ g3ð~b �~b
0
Þ, ð61aÞ

~E ¼ ðg~bÞ0 ¼ g3~b
0

k þ g~b
0

?, ð61bÞ

where k and ? refer to the projections parallel and perpendicular to ~b, respectively. Since
(61b) implies (61a), (33) is equivalent to the former. &

We apply this to a spherically symmetric field, where c~E ¼ �~rf with fðrÞ ¼ �GM=r.
This implies conservation of angular momentum, the modulus of which is now
given by

L ¼ gmr2j0. (62)

Note the explicit appearance of g, which, e.g., is not present in the scalar case, as one
immediately infers from (17). This fact makes Proposition 3 not immediately applicable.
We proceed as follows: scalar multiplication of (59) with ~v ¼ ~x0 and m leads to the
following expression for the conserved energy:

E ¼ mc2ðg� 1Þ þU , (63)

where U ¼ mf. This we write in the form

g2 ¼ 1þ
E �U

mc2

� �2

. (64a)

On the other hand, we have

g2 � 1þ ðbgÞ2 ¼ 1þ ðg=cÞ2ðr0
2
þ r2j02Þ ¼ 1þ

L2

m2c2r4
ðdr=djÞ2 þ r2
	 


, (64b)



ARTICLE IN PRESS
D. Giulini / Studies in History and Philosophy of Modern Physics 39 (2008) 154–180174
where we used (62) to eliminate j0 and convert r0 into dr=dj, which also led to a
cancellation of the factors of g. Equating (64a) and (64b), we get

L2

m2r4
ðdr=djÞ2 þ r2
	 


¼ 2
~E � ~U

m
, (65)

where

~E:¼Eð1þ E=2mc2Þ, ð66aÞ

~U :¼Uð1þ E=mc2Þ �U2=2mc2. ð66bÞ

Eq. (65) is just of the form (47) with ~E and ~U replacing E and U. In particular we have for
U ¼ mf ¼ �GMm=r:

~UðrÞ ¼ �
a
r
þ

d2
r2

, (67)

with

a ¼ GMmð1þ E=mc2Þ, ð68aÞ

d2 ¼ �
G2M2m

2c2
. ð68bÞ

In leading approximation for small E=mc2 we have d2=a � �GM=2c2. The advance of the
periapsis per revolution can now be simply read off (52a):

Dj ¼ p
GM=c2

að1� e2Þ

� �
¼

1

6
DGRj. (69)

This is the same amount as in the scalar model-theory (compare (55)) but of opposite sign,
corresponding to a prograde periapsis precession of 1/6 the value predicted by GR.

6. Energy conservation

In this section we finally turn to Einsteins argument of the Entwurf Paper concerning
energy conservation. From a modern viewpoint, Einstein’s claim of the violation of energy
conservation seems to fly in the face of the very concept of Poincaré invariance. After all,
time translations are among the symmetries of the Poincaré group, thus giving rise to a
corresponding conserved Noether charge. Its conservation is a theorem and cannot be
questioned. The only thing that seems logically questionable is whether this quantity does
indeed represent physical energy. So how could Einstein arrive at his conclusion?

6.1. Einstein’s argument

Einstein first pointed out that the source for the gravitational field must be a scalar built
from the matter quantities alone, and that the only such scalar is the trace Tm

m of the
energy–momentum tensor (as pointed out to Einstein by Laue, as Einstein acknowledges,
calling Tm

m the ‘Laue Scalar’). Moreover, for closed stationary systems, the so-called Laue-
Theorem (Laue, 1911) for static systems (later slightly generalised to stationary ones) states
that the space integral of Tmn must vanish, except for m ¼ 0 ¼ n; hence the space integral of
Tm

m equals that of T00, which means that the total (active and passive) gravitational mass of
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a closed stationary system equals its inertial mass. However, if the system is not closed, the
weight depends on the stresses (the spatial components Tij).

His argument proper is then as follows (compare Fig. 1): consider a box, B, filled with
electromagnetic radiation of total energy E. We idealise the walls of the box to be inwardly
perfectly mirrored and of infinite stiffness, so as to be able to support normal stresses
(pressure) without suffering any deformation. The box has an additional vertical strut in the
middle, connecting top and bottom walls, which supports all the vertical material stresses
that counterbalance the radiation pressure, so that the side walls merely sustain normal and
no tangential stresses. The box can slide without friction along a vertical shaft whose cross
section corresponds exactly to that of the box. The walls of the shaft are likewise idealised to
be inwardly perfectly mirrored and of infinite stiffness. The whole system of shaft and box is
finally placed in a homogeneous static gravitational field, ~g, which points vertically
downward. Now we perform the following process. We start with the box being placed in the
shaft in the upper position. Then we slide it down to the lower position; see Fig. 2. There we
remove the side walls of the box—without any radiation leaking out—such that the sideways
pointing pressures are now provided by the shaft walls. The strut in the middle is left in
position to further support all the vertical stresses, as before. Then the box together with the
detached side walls are pulled up to their original positions; see Fig. 3. Finally the system is
reassembled so that it assumes its initial state. Einstein’s claim is now that in a very general
class of imaginable scalar theories the process of pulling up the parts needs less work than
what is gained in energy in letting the box (with side walls attached) down. Hence, he
concluded that such theories necessarily violate energy conservation.

Indeed, radiation-plus-box is a closed stationary system in Laue’s sense. Hence, the
weight of the total system is proportional to its total energy, E, which we may pretend to be
given by the radiation energy alone since the contributions from the rest masses of the
walls will cancel in the final energy balance, so that we may formally set them to zero at
this point. Lowering this box by an amount h in a static homogeneous gravitational field of
strength g results in an energy gain of DE ¼ hgE=c2. So despite the fact that radiation has a
traceless energy–momentum tensor, trapped radiation has a weight given by E=c2. This is
due to the radiation pressure which puts the walls of the trapping box under tension. For
each parallel pair of side-walls the tension is just the radiation pressure, which is one-third
Fig. 1. Sliding box filled with radiation in a gravitational field ~g.
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Fig. 3. Raising the box in the gravitational field with side walls taken off.

Fig. 2. Lowering the box in the gravitational field with side walls attached.
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of the energy density. So each pair of side-walls contribute E=3c2 to the (passive)
gravitational mass (over and above their rest mass, which we set to zero) in the lowering
process when stressed, and zero in the raising process when unstressed. Hence, Einstein
concluded, there is a net gain in energy of 2E=3c3 (there are two pairs of side walls).
But it seems that Einstein neglects a crucial contribution to the energy balance. In

contrast to the lowering process, the state of the shaft is changed during the lifting process,
and it is this additional contribution which just renders Einstein’s argument inconclusive.
Indeed, when the side walls are first removed in the lower position, the walls of the shaft
necessarily come under stress because they now need to provide the horizontal balancing
pressures. In the raising process that stress distribution of the shaft is translated upwards.



ARTICLE IN PRESS
D. Giulini / Studies in History and Philosophy of Modern Physics 39 (2008) 154–180 177
But that does cost energy in the theory discussed here, even though it is not associated with
any proper transport of the material the shaft is made from. As already pointed out,
stresses make their own contribution to weight, independent of the nature of the material
that supports them. In particular, a redistribution of stresses in a material immersed in a
gravitational field generally makes a non-vanishing contribution to the energy balance,
even if the material does not move. This will be seen explicitly below. There seems to be
only one paper which explicitly expresses some uneasiness with Einstein’s argument, due to
the negligence of ‘edge effects’ (Wellner & Sandri, 1964, p. 37), however without going into
any details, letting alone establishing energy expressions and corresponding balance
equations.

6.2. Energy conservation in the scalar model-theory

There are 10 conserved currents corresponding to Poincaré-invariance. In particular, the
total energy E relative to an inertial system is conserved. For a particle coupled to gravity it
is easily calculated and consists of three contributions corresponding to the gravitational
field, the particle, and the interaction-energy shared by the particle and the field:

Egravity ¼
1

2kc2

Z
d3x ððqctFÞ

2
þ ð~rFÞ2Þ, ð70aÞ

Eparticle ¼ mc2gðvÞ, ð70bÞ

Einteraction ¼ mgðvÞFð~zðtÞ; tÞ. ð70cÞ

Let us return to general matter models and let T
mn
total be the total stress–energy tensor of

the gravity-matter-system. It is the sum of three contributions:

T
mn
total ¼ T

mn
gravity þ T

mn
matter þ T

mn
interaction, (71)

where13

T
mn
gravity ¼

1

kc2
ðqmFqnF� 1

2
ZmnqlFq

lFÞ, ð72aÞ

T
mn
matter ¼ depending on matter model, ð72bÞ

T
mn
interaction ¼ ZmnðF=c2ÞTmatter. ð72cÞ

Energy–momentum-conservation is expressed by

qmT
mn
total ¼ F n

external, (73)

where F n
external is the four-force of a possible external agent. The 0-component of it (i.e.

energy conservation) can be rewritten in the form

external power supplied ¼
d

dt

Z
D

d3x T00
total þ

Z
qD

T0k
totalnk dO, (74)

for any bounded spatial region D. If the matter system is itself of finite spatial extent,
meaning that outside some bounded spatial region, D, T

mn
matter vanishes identically, and if

we further assume that no gravitational radiation escapes to infinity, the surface integral in
13We simply use the standard expression for the canonical energy–momentum tensor, which is good enough in

the present case. If S ¼
R

Ldtd3x, it is given by Tm
n :¼ðqL=qF;mÞF;n � dmnL, which here (generally for scalar fields)

gives rise to a symmetric tensor, Tmn ¼ T nm.
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(74) vanishes identically. Integrating (74) over time we then get

external energy supplied ¼ DEgravity þ DEmatter þ DEinteraction, (75)

with

Einteraction ¼

Z
D

d3x ðF=c2ÞTmatter, (76)

and where DðsomethingÞ denotes the difference between the initial and final value of
‘something’. If we apply this to a process that leaves the internal energies of the
gravitational field and the matter system unchanged, for example a processes where the
matter system, or at least the relevant parts of it, are rigidly moved in the gravitational
field, like in Einstein’s Gedankenexperiment of the ‘radiation-shaft-system’, we get

external energy supplied ¼ D
Z

D

d3x ðF=c2ÞTmatter

� �
. (77)

Now, my understanding of what a valid claim of energy non-conservation in the present
context would be is to show that this equation can be violated. But this is not what Einstein
did (compare Conclusions).
If the matter system stretches out to infinity and conducts energy and momentum to infinity,

then the surface term that was neglected above gives a non-zero contribution that must be
included in (77). Then a proof of violation of energy conservation must disprove this modified
equation. (Energy conduction to infinity as such is not in any disagreement with energy
conservation; you have to prove that they do not balance in the form predicted by the theory.)

6.3. Discussion

For the discussion of Einstein’s Gedankenexperiment the term (76) is the relevant one. It
accounts for the weight of stress. Pulling up a radiation-filled box inside a shaft also moves
up the stresses in the shaft walls that must act sideways to balance the radiation pressure.
This lifting of stresses to higher gravitational potential costs energy, according to the
theory presented here. This energy was neglected by Einstein, apparently because it is not
associated with a transport of matter. He included it in the lowering phase, where the side-
walls of the box are attached to the box and move with it, but neglected them in the raising
phase, where the side walls are replaced by the shaft, which does not move. But as far as
the ‘weight of stresses’ is concerned, this difference is irrelevant. What (76) tells us is that
raising stresses in an ambient gravitational potential costs energy, irrespectively of whether
it is associated with an actual transport of the stressed matter or not. This would be just the
same for the transport of heat in a heat-conducting material. Raising the heat distribution
against the gravitational field costs energy, even if the material itself does not move.

7. Conclusion

From the foregoing I conclude that, taken on face value, neither of Einstein’s reasonings
that led him to dismiss scalar theories of gravity prior to being checked against experiments
are convincing. First, energy—as defined by Noether’s theorem—is conserved in our
model-theory. Note also that the energy of the free gravitational field is positive definite in
this theory. Second, the eigentime for free fall in a homogeneous static gravitational field is
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independent of the initial horizontal velocity. Hence our model-theory serves as an
example of an internally consistent theory which, however, is experimentally ruled out. As
we have seen, it predicts �1=6 times the right perihelion advance of Mercury and also no
light deflection (not to mention Shapiro time-delay, gravitational red-shift, as well as other
accurately measured effects which are correctly described by GR).

The situation is slightly different in a special-relativistic vector theory of gravity (Spin 1,
mass 0). Here the energy is clearly still conserved (as in any Poincaré invariant theory), but
the energy of the radiation field is negative definite due to a sign change in Maxwell’s
equations which is necessary to make like charges (i.e. masses) attract rather than repel
each other. Hence there exist runaway solutions in which a massive particle self-accelerates
unboundedly by radiating negative gravitational radiation. Also, the free-fall eigentime
now does depend on the horizontal velocity, as we have seen. Hence, concerning these
theoretical aspects, scalar gravity is much better behaved.

This leaves the question unanswered why Einstein thought it necessary to give up the
identification of Minkowski geometry with the physical geometry, as directly measured
with physical clocks and rods (cf. the discussion at the end of Section 2). Einstein made it
sound as if this was the only way to save energy conservation. This, as we have seen, is not
true. But there may well be other reasons to contemplate more general geometries than
that of Minkowski space from considerations of scalar gravity as presented here, merely by
looking at the gravitational interaction of models for ‘clocks’ and ‘rods’. A simple such
model would be given by an electromagnetically bound system, like an atom, where
(classically speaking) an electron orbits a charged nucleus (both modelled as point masses).
Place this system in a gravitational field that varies negligibly over the spatial extent of the
atom and over the time of observation. The electromagnetic field produced by the charges
will be unaffected by the gravitational field (due to its traceless energy–momentum tensor).
However, (15) tells us that the dynamics of the particle is influenced by the gravitational
field. The effect can be conveniently summarised by saying that the masses of point
particles scale by a factor of 1þ F=c2 ¼ expðf=c2Þ when placed in the potential f. This
carries over to quantum mechanics so that atomic length scales, like the Bohr radius
(in MKSA units)

a0:¼
e0 h2

mpe2
(78)

and time scales, like the Rydberg period (inverse Rydberg frequency)

TR:¼
8e20h

3

me4
, (79)

change by a factor expð�f=c2Þ due to their inverse proportionality to the electron mass m

(h is Planck’s constant, e the electron charge, and e0 the vacuum permittivity). This means
that, relative to the units on which the Minkowski metric is based, atomic units of length
and time vary in a way depending on the potential. Transporting the atom to a spacetime
position in which the gravitational potential differs by an amount Df results in a
diminishment (if Df40) or enlargement (if Dfo0) of its size and period relative to

Minkowskian units. This effect is universal for all atoms.
The question then arises as to the physical significance of the Minkowski metric. Should

we not rather define spacetime lengths by what is measured using atoms? After all, as
Einstein repeatedly remarked, physical notions of spatial lengths and times should be
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based on physically constructed rods and clocks which are consistent with our dynamical
equations. The Minkowski metric would then merely turn into a redundant structure with
no direct observational significance.14 From that perspective one may indeed criticise
special-relativistic scalar gravity for making essential use of dispensable absolute
structures, which eventually should be eliminated, just like in the ‘flat-spacetime-approach’
to GR; compare (Thirring, 1961) and Section 5.2 in (Giulini & Straumann, 2006). In view
of Quote 1 one might conjecture that this more sophisticated point was behind Einstein’s
criticism. If so, it is well taken. But physically it should be clearly separated from the other
explicit accusations which we discussed here.
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