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Excited state soliton stars are studied numerically for the first time. The stability of spherically
symmetric S-branch excited state oscillatons under radial perturbations is investigated using a 1D
code. We find that these stars are inherently unstable either migrating to the ground state or collapsing
to black holes. Higher excited state configurations are observed to cascade through intermediate excited
states during their migration to the ground state. This is similar to excited state boson stars [J. Balakrishna,
E. Seidel, and W.-M. Suen, Phys. Rev. D 58, 104004 (1998).]. Ground state oscillatons are then studied in
full 3D numerical relativity. Finding the appropriate gauge condition for the dynamic oscillatons is much
more challenging than in the case of boson stars. Different slicing conditions are explored, and a
customized gauge condition that approximates polar slicing in spherical symmetry is implemented.
Comparisons with 1D results and convergence tests are performed. The behavior of these stars under small
axisymmetric perturbations is studied and gravitational waveforms are extracted. We find that the
gravitational waves damp out on a short time scale, enabling us to obtain the complete waveform. This
work is a starting point for the evolution of real scalar field systems with arbitrary symmetries.
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I. INTRODUCTION

Real scalar fields play an important role in many models
in particle physics and cosmology. The axion is described
by a real field as is the inflaton. Scalar particles are im-
portant dark matter candidates. Models of real scalar field
dark matter have given good fits for the velocity profile of
spiral galaxies [1]. Recently there has been widely publi-
cized observational evidence by NASA for the existence of
dark matter with both the Hubble telescope [2] and the
Chandra X-ray observatory [3]. These particles could come
together through some kind of Jeans instability mechanism
to form gravitationally bounded objects such as oscillating
soliton stars (also called oscillatons) [4].

Soliton stars possess a spectrum of states: ground state
and excited states. The ground state scalar field has no
nodes, a first excited state has one node and so on. The
stability of spherically symmetric ground state oscillatons
has been studied numerically [5,6]. In this paper we extend
this study to the case of excited states. Studying the stabil-
ity of excited states is important because they may be
intermediate states during the formation of these stars.

In this work we also begin an exploratory investigation
of ground state soliton stars in three-dimensional numeri-
cal relativity with the goal of performing stable evolutions
and extracting gravitational waveforms. Numerical relativ-
ity has made major progress in the past few years. It is now
possible to evolve binary black hole inspirals stably for
many orbits [7,8]. Gravitational waveforms from black
hole simulations have been extracted and match accurately
against post-Newtonian estimates [9]. Gravitational wave

detectors have reached their design sensitivity and wave-
form templates are required to analyze data produced by
the science runs [10,11]. Generating numerical waveforms
from other compact objects predicted by general relativity
such as soliton stars (comprised from real scalar fields) and
boson stars (made up from complex scalar fields) is a
timely and necessary effort. Gravitational waveforms
from two colliding boson stars [12–14] as well as from
single distorted boson stars [15] have been extracted. To
our knowledge this is the first soliton star study in 3D
numerical relativity.

Numerous authors have studied soliton stars numerically
in spherical symmetry [5,6,16,17]. Mathematically, oscil-
lating soliton stars are nonsingular solutions to the
Einstein-Klein-Gordon (EKG) equations represented by a
massive real scalar field for which both the metric and the
scalar field are periodic in time [5]. The absence of static
equilibrium configurations contrasts oscillatons with the
case of boson stars, which are complex scalar field solu-
tions to the EKG equations that have equilibrium configu-
rations characterized by static metric components (the
scalar field has an ��r; t� � ��r�ei!t time dependence
but the metric and energy itself are time independent),
and makes their evolution more challenging numerically.
Similar to boson stars and neutron stars, the mass profile of
ground state soliton stars has a stable (S-branch) and an
unstable branch (U-branch) [5,6]. The mass profile has a
maximum atMc ground st: � 0:607M2

Pl=m corresponding to a
central density �1�0� � 0:48 [6] (here m is the mass of the
scalar field.) The configurations to the left (lower central
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density) of this critical mass are stable, while those to the
right (greater central density) are unstable.

In this paper we study the stability of excited state
oscillatons under radial perturbations and find that all
excited configurations are inherently unstable. They either
migrate to the ground state or collapse to black holes. We
present simulations for both scenarios for configurations in
the first excited state. We find the mass profile of first
excited state configurations as a function of central density
�1�0� (see Fig. 1.) It has a maximum at a similar critical
density as for ground state stars, but in this case it corre-
sponds to a higher critical mass of Mc 1st excited st: �
1:33M2

Pl=m. We evolve S-branch one-node stars when no
explicit perturbation is applied other than that induced by
the numerical grid (we covered the 95% mass radius of the
star with the same number of grid points �187 to make
meaningful comparisons) and find that stars that are unable
to migrate to the ground state collapse to black holes. The
migration can occur only if the star can lose enough mass
through scalar radiation to become an S-branch ground
state configuration with M<Mc ground st: � 0:607M2

Pl=m.
A first excited state star of mass M< 0:84M2

Pl=m succeeds
in losing its excess mass and migrates to the ground state.
We study the relative times of collapse to black holes of
different configurations for S-branch stars with mass M>
0:84M2

Pl=m. The collapse times that we tabulate are ap-
proximate because polar slicing does not penetrate black
hole horizons. We find that this time decreases as the
central density increases. We also present a simulation of
the migration of a one-node star to the ground state and find
the ground state configuration that it migrated to. We then
simulate the migration of a 5-node configuration to the
ground state. During the migration process the star cas-

cades through a superposition of lower excited state con-
figurations. We are able to determine an approximate 4-
node intermediate state and then follow the evolution until
the star settles into a ground state configuration. The
simulations are performed using the polar slicing condition
K�
� � K

�
� � 0, which is a natural choice for spherically

symmetric spacetimes [18].
In the second part of the paper we focus on 3D simula-

tions of ground state soliton stars. We use the Cactus
Computational Toolkit [19] with the scalar field evolution
of Guzman [20] and the BSSN implementation [21,22] of
the Einstein equations. Soliton stars retain some of the
properties of boson star systems that made them a good
test bed for numerical relativity in that the space-time is
singularity free and the star has a smooth outer boundary.
However, the evolutions are challenging because the sys-
tem is highly dynamic, i.e., the metric functions, extrinsic
curvature components, and gauge functions are always
rapidly oscillating in time. In particular, finding an appro-
priate slicing condition and implementing it accurately to
obtain stable evolutions is a challenge for such dynamic
spacetimes. We introduce a customized slicing condition
based on the features of an eigenstate of a stable branch
oscillaton in spherical symmetry and we refer to it as
truncated Fourier slicing. Instead of enforcing that K be
zero as in the case of dynamic boson star evolutions [15],
for this system we drive K to the time dependent K�jmax��t�,
which is the trace of extrinsic curvature appropriate for a
spherically symmetric oscillaton eigenstate expanded to
finite order in a Fourier series. While this condition is
based on an eigenstate, we find that it is effective in
simulations with small nonspherical perturbations applied
to the star. With this choice of gauge we are able to
reproduce results from 1D codes within the 3D context,
and we are able to perform stable simulations of sufficient
duration to extract gravitational waveforms.

We then study soliton stars under small nonradial per-
turbations and the emitted gravitational waves. We use two
types of perturbations. The first type was previously ap-
plied to boson stars by Guzman [20]. It consists of an
imposed asymmetry in the grid resolution �x � �y �

�z, while choosing the number of points nx � ny � nz
such that the distance from the origin to the boundary of the
grid is kept the same. In this case the resolution itself is the
perturbation. Consequently, the amplitude of the ‘ � 2,
m � 0 Zerilli waveform [23] is expected to be zero in the
limit of infinite resolution and is observed numerically to
converge away with resolution at approximately second
order. We next study an oscillaton under a perturbation
proportional to the ‘ � 2, m � 0 spherical harmonic that
perturbs the metric of the eigenstate nonradially. This
perturbation is more physical as it could mimic a distur-
bance in the gravitational field of the star due to the
presence of another object. The Zerilli and Newman-
Penrose �4 [24] gravitational waveforms are extracted

FIG. 1. The mass is shown as a function of central density for
stars in their first excited state. The mass increases monotoni-
cally until it reaches a critical point at �1c � 0:45, and Mc �
1:33M2

Pl=m after which it starts decreasing. This point marks the
end of the S-branch, and the beginning of the U-branch. These
stars are more massive than ground state stars.
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and compared at different detectors. The waveforms damp
out on a short time scale. This is consistent with the
expectation that, similar to boson stars, soliton stars have
only strongly damped modes because the scalar field ex-
tends to infinity and this allows energy to be radiated away
rapidly [25–27]. We also calculate the energy radiated in
gravitational waves from the Zerilli function. By the end of
our simulations the energy as a function of time is seen to
flatten out, suggesting that the full gravitational waveform
has been extracted.

In Sec. II A we describe the equations for spherically
symmetric oscillatons. The eigenvalue problem and bound-
ary conditions are then discussed in Sec. II B. In Sec. II C
our results for the excited state evolutions are presented.
Sec. III A discusses the evolution equations for the 3D
code. The gauge conditions are presented next in
Sec. III B with convergence tests and comparison to 1D
results. Sec. III C details the application of small nonradial
perturbations to ground state soliton stars and discusses the
extracted gravitational waveforms for different perturba-
tions. The results are summarized in the conclusion.

II. SPHERICALLY SYMMETRIC
CONFIGURATIONS

A. Mathematical background

The action describing a self-gravitating real scalar field
in a curved spacetime is given by

 I �
Z
d4x

�������
�g
p

�
1

16�G
R�

1

2
�g��@��@��� V���	

�
;

(1)

where R is the Ricci scalar, g�� is the metric of the space-
time, g is the determinant of the metric, � is the scalar
field, V its potential of self-interaction, and units with @ �
c � 1 have been used. Greek indices take values between 0
and 3 and the Einstein summation convention is used. The
variation of this action with respect to the scalar field leads
to the Klein-Gordon equation, which can be written as

 �;�
;� �

1

2

dV
d�
� 0: (2)

When the variation of Eq. (1) is made with respect to the
metric g��, the Einstein’s equationsG�� � 8�GT�� arise,
and the resulting stress-energy tensor reads

 T�� � @��@��� 1
2g����

;��;� � V����	: (3)

In the present manuscript we focus on the free-field case,
for which the potential is V��� � m2�2, where m is
interpreted as the mass of the field.

The spherically symmetric line element is

 ds2 � �N2dt2 � g2dr2 � r2�d�2 � sin2�d�2�; (4)

where N�r; t� is the lapse function and g2�r; t� is the radial
metric function. We use a polar slicing condition and this

ensures that the line element retains the above form
throughout the evolution [5,6]. We follow Refs. [6,17]
and write the coupled Einstein-Klein-Gordon equations as

 A0 � 4�GrA�C _�2 ��02 � Am2�2� �
A
r
�1� A�; (5)

 C0 �
2C
r
�1� A�4�Gr2�2 � 1�	; (6)

 C �� � �
1

2
_C _���00 ��0

�
2

r
�
C0

2C

�
� Am2�; (7)

 

_A � 8�GrA _��0; (8)

where A�r; t� � g2, C�r; t� � �g�r; t�=N�t; r�	2 and ��r; t�
is the real scalar field. These equations have no equilibrium
solutions with static metric components [5]. The simplest
solutions are periodic expansions of the form

 ��t; r� �
Xjmax

j�1

�2j�1 cos��2j� 1�!t�; (9)

 A�t; r� �
Xjmax

j�0

A2j�r� cos�2j!t�; (10)

 C�t; r� �
Xjmax

j�0

C2j�r� cos�2j!t�; (11)

where ! is the fundamental frequency and jmax represents
the value of j at which the series is truncated for numerical
computations. The actual solution is an infinite Fourier
expansion of the above form that is convergent [5,6].

For numerical convenience in the code we use dimen-
sionless variables

 �!
����������
8�G
p

�; r! r=m; C!Cm2=!2; t!!t:

(12)

B. Boundary conditions and eigenvalue problem

The system is asymptotically flat: A�r � 1; t� � 1 and
��r � 1; t� � 0. Thus the coefficients A0�1� � 1,
Aj�1� � 0 for j � 0, �j�1� � 0 for all j, and Cj�1� �
0 for j � 0. The series is truncated at jmax � 2 and the
coefficients of sin�jt� and cos�jt� are matched in Eqs. (5)–
(7). Equation (8) is used as an algebraic relation to deter-
mine A0 only. The system of equations is solved as an
eigenvalue problem for Cj after specifying the central field
�1�0�. The lapse at the boundary gives the value of !. See
Ref. [17] for further details. One sets t � 0 in Eq. (8) to
determine the initial metric components grr�t � 0� �
A0 � A2 � A4, gtt�t � 0� � ��A0 � A2 � A4�=�C0 �
C2 � C4�.

NUMERICAL SIMULATIONS OF OSCILLATING SOLITON . . . PHYSICAL REVIEW D 77, 024028 (2008)

024028-3



The configurations we consider are excited states. The
fields �2j�1 with j � 1; 2; . . . have nodes. The first excited
state field configurations have 1 node, the second have 2
and so on.

After determining the initial configuration, the evolution
of the system is studied using the 1D boson star evolution
code of Refs. [18,28] with the field and its derivative
having one component (real field) instead of two (complex
field). The mass of the star is determined by the value of
grr � A�t; r� at the edge of the grid

 M � lim
r!1

r
2

�
1�

1

A�t; r�

�
M2

Pl

m
: (13)

C. Stability of excited states

The mass profile of ground state soliton stars have been
described in Refs. [6,17]. In Fig. 1 we show the mass of
first excited state oscillatons as a function of �1�0�. These
stars have two branches similar to the ground state con-
figurations with the mass increasing to a maximum mass of
Mc � 1:3M2

Pl=m. This is higher than the maximum mass of
a ground state star. In general, excited configurations of a
given central field density �1�0� are larger and more
massive than ground state configurations with the same
central density. The branch to the left of the maximum is
traditionally called the S-branch and the branch to the right
is called the U-branch.

In the case of ground state stars the S-branch is found to
be stable to radial perturbations [6]. Stability here means
that stars on this branch move to new lower mass configu-
rations on the same branch under small perturbations.
U-branch stars are inherently unstable to small perturba-
tions and collapse to black holes. Under large perturbations
that reduce their mass sufficiently they can migrate to the
S-branch [6].

In this work we study the stability of excited state
S-branch oscillaton stars. In Fig. 2 the evolution of the
radial metric grr of an S-branch first excited state star is
shown. The central density of this configuration is�1�0� �
0:2828 and no explicit perturbation has been applied. The
numerical grid (�r � 0:1) is the only source of perturba-
tion. As can be seen from the sharp rise in the radial metric
[Fig. 2(a)] and collapse of the lapse [Fig. 2(b)] the star is
going to form a black hole. The polar slicing condition
causes the lapse to collapse and the radial metric to rise
sharply when an apparent horizon is approached [18].
Clearly, the star is unstable although this configuration
lies on the S-branch.

We next study the time of collapse of one node S-branch
oscillaton configurations to black holes as a function of
central density. Excited states are inherently unstable and
the discretization error due to the numerical grid is suffi-
cient to make them collapse to black holes or migrate to the
ground state. To compare the effects of radial perturbations
on stars with different central densities, we use the discre-

tization of the grid as a perturbation with the stars covered
by the same numbers of grid points. The stars need to be
resolved differently because of their different central den-
sities. In the following simulations the 95% mass radius
R95 was considered to be the radius of the star.

The first configuration considered is close to the critical
mass and has �1�0� � 0:41 and a radius of R95 � 14:9=m.
This was covered by 187 grid points with a resolution
�r � 0:08. The second configuration has �1�0� �
0:2828 star with R95 � 18:7=m and was covered by the
same number of grid points with �r � 0:1. This star
collapsed in a longer time. We took the time of collapse
(polar slicing does not allow us to find the actual time of
formation of a black hole horizon [18]) to be the beginning
of the sharp rise in the metric. Coordinate grid stretching
[29] (due to the differential rates that test particles on
geodesic curves fall into the black hole) causes the metric
function grr to rise and form a sharp peak. The formation of
the peak signals the approach of horizon formation on a
short time scale.
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FIG. 2. (a) The lapse and (b) the radial metric are shown at
different times as a star with a central density of �1�0� � 0:2828
collapses to a black hole. The polar slicing condition causes the
lapse to collapse and the metric to rise sharply as an apparent
horizon is approached.
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In Table I we show the time of collapse to a black hole
for different S-branch configurations. The table shows the
central field density, mass, and radius of each configura-
tion. The time of collapse to a black hole increases as the
central density decreases until a central density of about
�1�0� � 0:075. For central densities of 0.075 and lower the
stars did not collapse but migrated to configurations in the
ground state. Although a first excited state star of central
density �1 � 0:075 is more massive than any ground state
star (maximum mass of ground state configurations is
about 0:61M2

Pl=m) it lost the excess mass through scalar
radiation and settled in the ground state. Excited state
S-branch stars are clearly inherently unstable and either
collapse to black holes or migrate to the ground state.

In Fig. 3 and 4 we show a first excited state star with
�1�0� � 0:041 of mass 0:655M2

Pl=m migrating to the
ground state. No explicit perturbation was applied. In
Fig. 3(a) the initial (one node) and final (no nodes) field
configurations are displayed. In Fig. 3(b) the initial and
final radial metric grr are shown. The initial radial metric
has two maxima, which is characteristic of a first excited
state configuration. The final radial metric (t �
218 998�=m) has one maximum indicating the star has
gone to the ground state. The final configuration shown
corresponds to a time which is an integral multiple of �.
This is to ensure that we get the same phase as the t � 0
configuration to facilitate comparison. In Fig. 3(c) the
radial metric of the star at the end of the run is plotted
together with the radial metric of a ground state star of
central density �1�0� � 0:11. The final radial metric of the
migrating star is very close, to this ground state configu-
ration. For comparison the mass of the star at the end of the
run was about M � 0:44M2

Pl=m as compared to a mass of
M � 0:43M2

Pl=m for a �1�0� � 0:11 star. The migrating
star is settling to a configuration close to the �1�0� � 0:11
ground state star.

The mass loss is calculated using Eq. (13) for the above
configuration and is plotted as a function of time in
Fig. 4(a). The star loses more than 30% of its mass through
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Excited State: t = 688, 002.5 
Ground State with φ

1
(0) = 0.11: t=0

FIG. 3. In (a) the scalar field � and (b) metric component grr
are plotted against radius at t � 0 and t � 690 000=m. The
initial grr has two maxima (first excited state star; �1�0� �
0:041 and R95 � 51:35=m). By t � 690 000=m the star has
migrated to a denser ground state configuration of R95 � 16=m
with lower mass. (c) The final metric grr is compared to that of a
ground state t � 0, �1�0� � 0:11 star. Although the ground state
grr in slightly lower because the star has not fully settled, the
overall agreement is very good.

TABLE I. Physical characteristics of S-branch soliton stars in
the first excited state are listed together with the collapse time to
black holes. Each star is covered by the same number of grid
points (� 187) to facilitate the comparison. The radius of the
star is taken to be the radius within which 95% of the mass of the
star is contained. Configurations with a mass below 0:84M2

Pl=m
lose enough mass through scalar radiation to migrate to the
ground state.

S-branch Soliton Stars collapse times
�1�0� M(M2

Pl=m) R95�1=m� collapse time

0.41 1.32 14.9 250
0.2828 1.26 18.7 445
0.1414 1.07 27.0 1280
0.10 0.92 33.7 2250
0.08 0.84 38.0 4160
0.075 0.82 39.5 goes to gr. state
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scalar radiation. The amount of mass loss decreases in time
as the star settles to its final ground state configuration. In
Fig. 4(b) the maximum of the metric function grr of a
perturbed excited state star is plotted against time. As the
star settles into its new ground state configuration, it oscil-
lates at two different frequencies. One is approximately the
fundamental unperturbed oscillation of period �=!
(tcode � �). The second has much higher period that
changes as the star goes through different intermediate
configurations and eventually settles into the quasinormal
mode of the ground state configuration [6].

We next simulate the migration of an oscillaton in the
5th excited state to the ground state. The initial configura-
tion is that of a five-node excited state S-branch star of
central density �1�0� � 0:006 and mass M �

0:792M2
Pl=m. As usual, no explicit has been applied per-

turbation other than that due to the discretization of the
numerical grid (resolution �r � 0:1). In Fig. 5(a) we show
the radial metric grr of the star at t � 0, and t �
172 000=m. The initial configuration (t � 0) has six max-
ima in the radial metric. By the end of the simulation the
radial metric has just one maximum indicating the star has
gone to the ground state (the mass at this stage is M �
0:463M2

Pl=m.) During the evolution the star appears to pass
through an intermediate four-node state. This can be seen
in Fig. 5(b). In the figure �= cos�2t� (� is the density of the
star and the division by cos�2t� is in order to facilitate
comparison as it helps avoid phase differences) is plotted at
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FIG. 5. (a) The radial metric grr of a migrating five-node
soliton star configuration (�1�0� � 0:006; M � 0:79M2

Pl=m) is
displayed as a function of radius on two time slices. The t � 0
radial metric has 6 maxima, which is characteristic to 5th excited
state configurations. By t � 172 000=m the star has migrated to
the ground state. Although, the migration process is not yet
complete by this stage, the star has lost 29% of its mass through
scalar radiation and the radial metric has only one maximum.
(b) The central density of the same star is shown at t � 0 and in a
intermediate state at t � 102 000=m. In this intermediate state
the star has four nodes (central density has five maxima). We plot
the density of a four-node star with �1�0� � 0:007 for compari-
son.
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FIG. 4. (a) The mass of the same �1�0� � 0:041 star is shown
as the star migrates to the ground state. The mass flattens out as
the star is settling towards a final ground state configuration. The
oscillations in the metric also settle down to an approximately
constant oscillation. The mass of the star at the end of the run is
M � 0:44M2

Pl=m, and is within 2% of the ground state configu-
ration (�1�0� � 0:11 and M � 0:43M2

Pl=m) that the star is
estimated to migrate to. (b) The maximum of grr is shown as
a function of time. The star loses more than 30% of its mass
during the migration.
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t � 0 and t � 102 000=m against the t � 0 density of a
four-node �1�0� � 0:007 star. The evolving star initially
had a density � with six maxima characteristic of a five-
node star. By time t � 102; 000=m it has lost one of these
maxima and appears to be in an intermediate four-node
state. We have plotted the density of a four-node �1�0� �
0:007 star to compare the positions of the peaks and profile
of �. The positions of the peaks are close to each other
(especially the first three) but the sizes of the peaks are not.
The star probably cascades through superpositions of lower
excited configurations due to the inherent nonlinearity of
the system.

III. NUMERICAL SIMULATIONS OF GROUND
STATE SOLITON STARS IN 3D

A. 3D Evolution equations

In order to find solutions to the Einstein-Klein-Gordon
system of equations we use the 3� 1 decomposition of
Einstein’s equations, for which the line element can be
written as

 ds2 � ��2dt2 � 	ab�dx
a � 
adt��dxb � 
bdt�; (14)

where 	ab is the three-dimensional metric; from now on
latin indices label the three spatial coordinates. The func-
tions � and 
a in Eq. (14) are freely specifiable gauge
parameters, known as the lapse function and the shift
vector, respectively, and 	 is the determinant of the 3-
metric. Throughout the rest of the paper the standard
general relativity notation is used. The Greek indices run
from 0 to 3 and the Latin indices run from 1 to 3. In this
section we use geometric units with G � c � 1.

The Klein-Gordon equation can be written as a first-
order evolution system by defining two new variables in
terms of combinations of their derivatives: � � �

����
	
p

=��

�@t�� 
c@c�� and  a � @a�. With this notation the
evolution equations become
 

@t� �
�

	1=2
�� 
a a; @t a � @a

�
�

	1=2
�� 
b b

�
;

@t� � @a��
����
	
p

�a� �
1

4
�

����
	
p @V

@�
: (15)

On the other hand, the geometry of the spacetime is
evolved using the BSSN formulation of the 3� 1 decom-
position. According to this formulation, the variables to be
evolved are � � ln	=12, ~	ab � e�4�	ab, K � 	abKab,
~Aab � e�4��Kab � 	abK=3� and the contracted
Christoffel symbols ~�a � ~	bc�abc, instead of the usual
ADM variables 	ab and Kab. The evolution equations for
these new variables are described in Refs. [21,22]:

 @t� � �
1
6�K; (16)

 @t ~	ab � �2� ~Aab; (17)

 @tK � �	abDaDb�� �� ~Aab ~Aab � 1
3K

2 � 1
2��T

t
t � T�	;

(18)

 

@t ~Aab � e�4���DaDb�� ��Rab � Tab�	
TF

� ��K ~Aab � 2 ~Aac ~Acb�; (19)

 

@
@t

~�a � �2 ~Aab�;b � 2�
�

~�abc ~Acb �
2

3
~	abK;b

� ~	abTbt � 6 ~Aab�;b

�

�
@

@xb

�

c ~	ab;c � 2~	c�b
a�;c �

2

3
~	ab
c;c

�
; (20)

where Da is the covariant derivative in the spatial hyper-
surface, T is the trace of the stress-energy tensor (3) and the
label TF indicates the trace-free part of the quantity in
brackets. The coupling between the evolution of the BSSN
variables and the variables describing the evolution of the
scalar field is first order. That is, Eqs. (15) are solved using
the method of lines with a modified version of the second
order iterative Crank-Nicholson (ICN) integrator (see
Ref. [30]). After a full time step the stress-energy tensor
in Eq. (3) is calculated and used to solve the BSSN evolu-
tion equations with an independent evolution loop based on
the standard second order ICN [31].

In order to set up the correct scaled quantities to be
evolved we use dimensionless variables. For an equilib-
rium configuration the real scalar field can be expanded in
a Fourier series of the form ��r; t� �

Pjmax
j�1 �2j�1�r�


cos��2j� 1�!t�, where the total central density is ��0� �Pjmax
j�1 �2j�1�0�. This implies that the stress-energy compo-

nents given in Eq. (3) also have a periodic time depen-
dence. The characteristic frequency ! together with the
mass of the boson m provide the natural dimensionless
units,

 rcode � mr=M2
Pl; tcode � !t;

�code �

�������
4�
p

MPl
�; �code � �

m

M2
Pl!

;
(21)

which are the ones used within the present analysis. For
further code details refer to Ref. [20].

B. Slicing condition and convergence tests

In this section we introduce the slicing condition used
for our 3D simulations. We base it on the observed dynam-
ics of the trace of the extrinsic curvature tensor K for
oscillaton eigenstates, and find that the slicing is accurate
for evolving spherically symmetric oscillatons with small
nonradial perturbations. For soliton star eigenstates K�t �
0� � Krr�t � 0� � 0. However, as time evolves the metric
function grr changes with time and consequently K oscil-
lates periodically, given by
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 K �
	ij _	ij
�2�

�
	rr _	rr
�2�

�
X1
j�1

K2j sin�2jt�: (22)

We denote K expanded to order jmax as

 K�jmax� �
Xjmax

j�1

K2j sin�2jt�: (23)

In the case of spherical symmetry with the gauge condition
provided by polar slicing one can determine K2j by using

the Fourier expansion of 	rr and � �
����������
A=C

p
from

Eqs. (10) and (11) in the expression for K [Eq. (22)].
One can match the coefficients of sin�2jt� for each j and
obtain K2j in terms of a combination of A2j and C2j. The
first two coefficients K2 andK4 are approximately given by

 K2 � A2

�
C0

A3
0

�
1=2
; (24)

 K4 �
A2C2

4C1=2
0 A3=2

0

�
2A4C

1=2
0

A3=2
0

�
3A2

2C
1=2
0

4A5=2
0

: (25)

For 3D simulations we propose to enforce that K take the
value K�jmax� of Eq. (23), and do so in stable manner.
Various authors [32] have noted that one can enforce
maximal slicing _K � 0 � K in a stable manner by solving

 

@K
@t
� �cK; (26)

where c is a positive constant. Analogously, we drive K to
the expanded K�jmax� for an eigenstate using

 

@
@t
�K � K�jmax�� � �c�K � K�jmax��: (27)

Using the identity

 r2�� KabK
ab�� 4��S� ��� � �

@K
@t
; (28)

where � is the energy density and S is the trace of the
spatial stress tensor, we rewrite Eq. (27) as an elliptic
equation to solve for the lapse

 r2�� KabK
ab�� 4��S� ���

� �
@K�jmax�

@t
� c�K � K�jmax��: (29)

We refer to the slicing obtained from this gauge condition
[Eqs. (27) and (29)] as truncated Fourier slicing.

For the 3D simulations described in this section and the
subsequent section, we use a ground state oscillating soli-
ton star with

 �1�0� � 0:20; ! � 0:91
m

M2
Pl

;

M � 0:57
M2

Pl

m
; R95 � 8:8

M2
Pl

m
;

(30)

and we label this as the model S1 oscillaton for future
reference. For initial data within the 3D simulations we

take high resolution 1D spherical data for this model and
interpolate it onto the 3D Cartesian grid using bspline
interpolation. All our 3D simulations are performed in
octant symmetry.

Figure 6 shows K as a function of r on different time
slices for a model S1 soliton star simulated on a 1923 three-
dimensional grid with a resolution of �x � �y � �z �
0:15. This is compared with the 1D result for a �r � 0:01
resolution. The spherically symmetric 1D evolution of K
for a soliton star eigenstate is a periodic oscillation be-
tween an upper bounding profile at approximately t � �=4
and a lower bounding profile at t � 3�=4. The oscillations
of K are observed to match the expected time dependence
of Eq. (23) and the agreement between the 1D and 3D
results is good, indicating the truncated Fourier slicing
condition is enforced accurately.

In order to demonstrate the advantages of applying this
gauge condition, we simulate the same model S1 star on a
963 grid with �x � �y � �z � 0:30 with truncated
Fourier slicing and two widely used slicing conditions:
maximal slicing (K � 0) and 1� log slicing (@t� �
�2�K). Figure 7 compares the L2-norm of the
Hamiltonian constraint for these three simulations. It can
be seen that the Hamiltonian for the truncated Fourier
slicing is by far the lowest (smaller by approximately a
factor of 2 than 1� log and maximal slicing) and behaves
is a stable manner. These three test runs are carried out to a
time of 4�; for longer simulations that study perturbed
soliton stars we find that the use of the truncated Fourier
slicing condition is necessary to control the coordinate
drifting of metric functions to an acceptable tolerance
and to perform the gravitational wave extraction
accurately.

60 2 4 8 10 12 14
r

-8

-6

-4

-2

0

2

4

6

8

K
 [

x 
10

-3
]

1D data, ∆r = 0.01
t = 3π/4
t = 7π/8
t = 5π/8
t = 3π/8
t = π/8
t = π/4

FIG. 6. The extrinsic curvature K is shown for a model S1 star
on different time slices as a function of r. The solid lines
represent the results obtained from a 1D spherically symmetric
simulation, while the symbols (filled and empty circles, squares,
and triangles) are 3D data on the same time slices from a model
S1 star simulation on a 1923 grid with �x � �y � �z � 0:15
resolution. Good agreement is observed.
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A further test of the accuracy of the evolution code using
the truncated Fourier slicing condition is the convergence
test shown in Fig. 8. Figure 8(a) displays the first oscilla-
tion of the maximum of the density � of the model S1 star
converging to the 1D result as the 3D resolution is im-
proved. We take three different resolutions: 483 grid with
�x � �y � �z � 0:60 resolution, 963 grid with �x �
�y � �z � 0:30 and 1923 grid with �x � �y � �z �
0:15 resolution. These are compared to a high resolution
spherically symmetric simulation (�r � 0:01) with the 1D
code. Figure 8(b) shows the convergence of the
Hamiltonian constraint, which is observed to be approxi-
mately second order.

C. Nonradial perturbations of soliton stars and
waveform extraction

The focus of this section is the study of small non-
spherical perturbations applied to spherically symmetric
soliton stars and the extraction of gravitational waveforms
for such systems. We first perturb the star by imposing an
asymmetry in the grid resolution. We simulate the model
S1 star using a different resolution in the z-direction than in
the x and y directions, while keeping the distance from the
origin to the boundary on each axis the same. Figure 9
shows the Zerilli waveform extracted at r � 43M2

Pl=m for
three different resolutions labeled as (1) high resolution for
�x � �y � 0:196, �z � 0:201 with nx � ny � 244,
nz � 238, (2) medium resolution for �x � �y � 0:294,
�z � 0:3015 with nx � ny � 164, nz � 160, and (3) low
resolution for �x � �y � 0:392, �z � 0:402 with nx �
ny � 122, nz � 119. The waveforms are observed to have
the same frequency but different amplitudes. For this series
of simulations the uneven resolution is itself the perturba-
tion, and thus the waveform should converge away as the
resolution is improved. We observe the appropriate second
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FIG. 8. (a) The maximum density � of the model S1 soliton
star is shown converging to the spherically symmetric 1D result.
(b) The L2-norm of the Hamiltonian constraint is displayed for
the three different resolutions. The code is observed to exhibit
roughly second order convergence.
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FIG. 9. The ‘ � 2, m � 0 Zerilli function extracted at r � 43
is shown for a perturbed model S1 soliton star at different
resolutions labeled as: High for �x � �y � 0:196, �z �
0:201 with nx � ny � 244, nz � 238, Medium for �x � �y �
0:294, �z � 0:3015 with nx � ny � 164, nz � 160, and low
resolution for �x � �y � 0:392, �z � 0:402 with nx � ny �
122, nz � 119. The perturbation in this case is the asymmetric
resolution itself and amplitude of the waveform is seen to
converge away. The convergence rate is roughly second order.
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FIG. 7. The L2-norm of the Hamiltonian is displayed as a
function of time for three slicing conditions: (1) 1� log slicing,
(2) maximal slicing, and (3) truncated Fourier slicing. The latter
is clearly smaller and leads to more stable simulations.
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order converge rate, with a factor of 4 difference between
the waveform amplitudes of the high resolution and the low
resolution case. Each of the simulations is performed using
the truncated Fourier slicing condition and is run up to a
time t � 60.

We next study an oscillating soliton star with a pertur-
bation applied to the radial metric component grr of the
form

 �grr�r; �; �� � �20f�r=R�Y20��;��grr�r� (31)

where �20 is a constant much less than unity and the
function f�r=R� � �r=Rp�2 exp��cr2�. The constants c
and Rp are chosen to localize the perturbation on the star
and also not perturb the metric functions at the origin. This
perturbation does not significantly alter the mass of the
star. We expect that physical perturbations of soliton stars
can be easily described as linear combinations of spherical
harmonics. This type of perturbation in the metric may
mimic the effect that gravitation of another star has on the
oscillaton. In the current study we simply apply the per-
turbation of Eq. (31) without resolving the initial data
problem. This procedure causes the constraints to no lon-
ger be obeyed and hence makes the perturbation nonphys-
ical. A more complete treatment that incorporates an initial
value problem solver that couples a scalar field and metric
perturbation is the subject of future work.

We study the effects of a perturbation with �20 � 10�4,
c � 1=16 and Rp � 5 on a model S1 soliton star. In
Fig. 10(a) the ‘ � 2, m � 0 Zerilli functions extracted at
a detector radius of r � 45M2

Pl=m are shown for three
different resolutions. The waveforms oscillate through a
couple of nodes and then damp to zero on a fairly short
time scale. This is similar to the case of boson stars [15,25]
and consistent with the expectation that a star with a scalar
field extending to infinity would have only rapidly damped
modes [25,26]. The energy emitted in gravitational waves
[see Fig. 10(b)] is calculated and found to flatten out at
about 5
 10�5M2

Pl=m. This suggests that the whole gravi-
tational waveform has been extracted.

We now investigate gravitational waveforms using the
Newman-Penrose scalar �4 for the simulation described
above. Figure 11 shows r�4 at three different detectors.
The waveforms are time shifted by the distance in flat
space between each detector and the last detector to facili-
tate comparison. The frequencies and amplitudes of the
waveforms at the three detectors are in good agreement.
This is consistent with the expected behavior of �4 / 1=r
in the far wave zone [24]. High frequency oscillations
appear at late times. They are likely an artifact of the
numerical discretization. The frequency and amplitude of
these oscillations are resolution dependent (see inset);
these data show the amplitude to converge away to second
order. A more advanced technique such as adaptive mesh
refinement that provides higher resolution would enable us
to extend the convergence test to finer grid resolutions.
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FIG. 10. (a) The ‘ � 2, m � 0 Zerilli function extracted at
r � 45 is shown for a model S1 soliton star under a Y20

perturbation at three different resolutions: High for �x � �y �
�z � 0:196 with nx � ny � nz � 244, Medium for �x �
�y � �z � 0:294 with nx � ny � nz � 164, and low resolu-
tion for �x � �y � �z � 0:392 with nx � ny � nz � 122.
The waveforms have roughly the same frequency and amplitude.
(b) The Zerilli energy is displayed and is observed to flatted out
on the same time scale as the gravitational wave signal.

FIG. 11. The Newman-Penrose scalar �4 multiplied by the
radius at the detector is shown at three different detectors. The
signals have been time shifted by the distance in flat space
between detectors to match the last detector. The agreement in
both frequency and amplitude is good. The inset shows that the
high frequency oscillations are noise and converge away with
resolution.
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Within all our 3D simulations we use the L2-norm of the
Hamiltonian constant as a measure of the error. This is
typically of the order of a few 
10�5 and below 1
 10�4

for all the simulations in this section.

IV. CONCLUSIONS

For the first time excited state soliton stars have been
studied. Excited state configurations have field configura-
tions characterized by nodes. For a given central field
density �1�0�, these stars are typically larger (greater
radius) and more massive than corresponding ground state
stars. We find that their mass profile is similar to that of
ground state configurations; they have two branches sepa-
rated at the maximum mass. The branch to the left of this
maximum is traditionally called the S-branch because
ground state configurations on this branch are stable to
radial perturbations in the sense that they migrate to new
configurations on the same branch. In spite of this similar-
ity in the mass profile, we find that all excited state con-
figurations are inherently unstable. Unlike ground state
configurations, excite state stars on the S-branch do not
migrate to new configurations on the excited state S-branch
when perturbed. They can either migrate to the ground
state if they lose enough mass through scalar radiation or
collapse to black holes.

Higher excited state configurations migrate to the
ground state sometimes cascading through intermediate
excited states. We show one such migration for a five-
node excited state star and find the four-node intermediate
state that it is nearest to during the migration process.
Studying the stability of excited states is very important
because they may be intermediate states during the for-
mation process of soliton stars.

Also, for the first time, the numerical evolution of
ground state oscillaton stars is conducted on a full 3D
grid, allowing the study of nonradial perturbations with
gravitation waveform extraction. These simulations are
challenging because soliton stars are very dynamic, with
no equilibrium configurations having static metric compo-
nents. In this paper we compare slicing conditions previ-
ously used for 3D boson star simulations with a new slicing
condition specifically designed for soliton stars. We find
that the latter is more accurate and more stable. We see the
energy density in 3D converging with resolution to that in
1D for the spherically symmetric case and the highest
resolution 3D simulation matching the 1D result very
accurately.

In 3D we explore two types of nonradial axisymmetric
perturbations. First, the spherically symmetric 1D eigen-
state data is interpolated on the 3D grid with an imposed
asymmetry in the grid resolution �x � �y � �z. No ex-
plicit perturbation is applied. This has the advantage that

the initial data automatically satisfies the Einstein-Klein-
Gordon equations. However, this perturbation is not easy to
interpret physically. We successfully extract the Zerilli
gravitational waveforms for a series of simulations at
different resolutions and observe the amplitude of the
signal due to this resolution-based perturbation to converge
away with improved resolution. The convergence rate is
approximately second order as expected. A second pertur-
bation is applied explicitly to the metric function grr and is
proportional to the Y20 spherical harmonic. Both the ‘ � 2,
m � 0 Zerilli function and the Newman-Penrose scalar �4

are extracted. This perturbation more closely represents a
physical disturbance of the star and leads to a finite signal
that does not converge away as in the previous case. The
waveforms damp rapidly and thus the complete gravita-
tional waveform could be extracted on a relatively short
time scale. This is consistent with expectations from per-
turbation theory for stars that have a scalar field extending
to infinity such as soliton stars and boson stars [25]. We
also measure the energy radiated in gravitational waves as
a function of time and find that it flattens as the signal
damps out.

This is an exploratory investigation that is meant as a
starting point for future work. Possible improvements in-
clude using an adaptive mesh refinement technique for
better resolution and finding a more general gauge condi-
tion that would be applicable to strongly perturbed soliton
stars. These would enable the study of more advanced
scenarios involving real fields such as soliton star
collisions.
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