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ABSTRACT

Binary black hole systems with spins aligned with the orbital angular momentum are of special interest, as they
may be the preferred end state of the inspiral of generic supermassive binary black hole systems. In view of this, we
have computed the inspiral and merger of a large set of binary systems of equal-mass black holes with spins aligned
with the orbital angular momentum but otherwise arbitrary. By least-square fitting the results of these simulations, we
have constructed two ‘‘spin diagrams’’ which provide straightforward information about the recoil velocity jvkickj and
the final black hole spin aBn in terms of the dimensionless spins a1 and a2 of the two initial black holes. Overall, they
suggest a maximum recoil velocity of jvkickj ’ 441:94 km s�1, andminimum andmaximumfinal spins aBn ’ 0:3471
and aBn ¼ 0:9591, respectively.

Subject headinggs: black hole physics — gravitational waves — relativity — stars: statistics

Online material: color figures

1. INTRODUCTION

A number of recent developments in numerical relativity have
allowed for stable evolution of binary black holes and opened
the door to extended and systematic studies of these systems. Of
particular interest to astrophysics are the calculations of the re-
coil velocity and of the spin of the final black hole produced by
the merger. It is well known that a binary with unequal masses or
spins will radiate gravitational energy asymmetrically. This re-
sults in an uneven flux of momentum, providing a net linear ve-
locity to the final black hole. The knowledge of both the ‘‘kick’’
velocity and the final spin could have a direct impact on stud-
ies of the evolution of supermassive black holes and on statis-
tical studies on the dynamics of compact objects in dense stellar
systems.

Over the past year, a number of simulations have been carried
out to determine the recoil velocities for a variety of binary black
hole systems. Nonspinning but unequal-mass binaries were the
first systems to be studied, and several works have now provided
an accurate mapping of the unequal-mass space of parameters
(Herrmann et al. 2007a; Baker et al. 2006b; Gonzalez et al.
2007b). More recently, the recoils from binaries with spinning
black holes have also been considered by investigating equal-
mass binaries in which the spins of the black holes are either
aligned with the orbital angular momentum (Herrmann et al.
2007b; Koppitz et al. 2007), or not. In the first case, a system-
atic investigation has shown that the largest recoil possible from
such systems is of the order of 450 km s�1 (Pollney et al. 2007).
In the second case, instead, specific configurations with spins
orthogonal to the orbital one have been shown to lead to recoils
as high as 2500 km s�1 (Campanelli et al. 2007a; Gonzalez et al.
2007a), suggesting a maximum kick of about 4000 km s�1 for
maximally spinning black holes (Campanelli et al. 2007b). Re-
coil velocities of this magnitude could lead to the ejection of

massive black holes from the hosting galaxies, with important
consequences for their cosmological evolution.
Here, we extend the analysis carried out in Pollney et al.

(2007) of binary black hole systems with equal mass and spins
aligned with the orbital one. Our interest in this type of binary
stems from the fact that systems of this type may represent a
preferred end state of binary evolution. Post-Newtonian studies
have shown that in vacuum the gravitational spin-orbit coupl-
ing has a tendency to align the spins when they are initially close
to the orbital one (Schnittman 2004). Furthermore, if the binary
evolves in a disk, as expected for supermassive black holes, the
matter can exert a torque tending to align the spins (Bogdanovic
et al. 2007). Finally, a recoiling supermassive black hole could
retain the inner part of its accretion disk and thus the fuel for
a continuing QSO phase lasting millions of years as it moves
away from the galactic nucleus (Loeb 2007). Yet, the analysis
of QSOs from the Sloan Digital Sky Survey shows no evidence
for black holes carrying an accretion disk and hence for very
large recoiling velocities (Bonning et al. 2007).

2. NUMERICAL SETUP AND INITIAL DATA

The numerical simulations have been carried out using the
CCATIE code, a three-dimensional finite-differences code using the
Cactus Computational Toolkit4 and the Carpet mesh-refinement
infrastructure (Schnetter et al. 2004). The main features of the
code have been recently reviewed in Pollney et al. (2007), where
the code has been employed using the so-called ‘‘moving-
punctures’’ technique (Baker et al. 2006a; Campanelli et al.
2006a). The initial data consists of five sequences with constant
orbital angular momentum, which is however different from se-
quence to sequence. In the r and ra-sequences, the initial spin of
one of the black holes, S2, is held fixed along the z-axis, and the
spin of the other black hole is varied so that the spin ratio a1/a2
takes the values between �1 and +1, with ai � Si/M

2
i . In the

t-sequence, instead, the spin with a negative z-component is
held fixed, while in the s and u-sequences a1/a2 ¼ 1 and �1,
respectively. In all cases, the masses are Mi ¼ M /2 ¼ 1/2. For
the orbital initial data parameters, we use the effective-potential
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method, which allows one to choose the initial data parameters
such that the resulting physical parameters (e.g., masses and
spins) describe a binary black hole system on a quasi-circular or-
bit. The free parameters are: the coordinate locationsCi, themass
parameters mi, the linear momenta pi, and the spins Si. Quasi-
circular orbits are then selected by setting p1 ¼ �p2 to be orthog-
onal to C2 � C1, so that L � C1 ; p1 þ C2 ; p2 is the orbital
angular momentum. The initial parameters are collected in the
left part of Table 1, while the right part reports the results of
simulations. For all of them we have employed 8 levels of re-
finement and a minimum resolution 0.024M, which has been
reduced to 0.018M for binaries r5 and r6. Note that our results for
the u-sequence differ slightly from those reported by Herrmann
et al. (2007b), probably because of our accounting of the integra-
tion constant in jv kickj (Pollney et al. 2007).

3. SPIN DIAGRAMS AND FITS

Clearly, the recoil velocity and the spin of the final black hole
are among the most important pieces of information to be ex-
tracted from the inspiral and coalescence of binary black holes.
For binaries with equal masses and aligned but otherwise arbi-
trary spins, this information depends uniquely on the dimension-
less spins of the two black holes a1 and a2, and can therefore be
summarized in the portion of the (a1; a2) plane in which the two
spins vary. It is therefore convenient to think in terms of ‘‘spin
diagrams,’’ which summarize in a simple way all of the relevant
information. In addition, since the labeling ‘‘1’’ and ‘‘2’’ is arbi-
trary, the line a1 ¼ a2 in the spin diagram has important sym-
metries: the recoil velocity vector undergoes a �-rotation, i.e.,
vkick(a1; a2)¼�vkick(a2; a1), but jvkick(a1; a2)j ¼ jvkick(a2; a1)j,

TABLE 1

Binary Sequences for which Numerical Simulations Have Been Carried Out

Sequence

(1)

�x/M

(2)

�p/M

(3)

m1/M

(4)

m2/M

(5)

a1
(6)

a2
(7)

M̃ADM

(8)

J̃ADM
(9)

jvkickj
(10)

jvBtkickj
(11)

Error

(%)

(12)

aBn
(13)

aBtBn
(14)

Error

(%)

(15)

r0........................ 3.0205 0.1366 0.4011 0.4009 �0.584 0.584 0.9856 0.825 261.75 258.09 1.40 0.6891 0.6883 0.12

r1........................ 3.1264 0.1319 0.4380 0.4016 �0.438 0.584 0.9855 0.861 221.38 219.04 1.06 0.7109 0.7105 0.06

r2........................ 3.2198 0.1281 0.4615 0.4022 �0.292 0.584 0.9856 0.898 186.18 181.93 2.28 0.7314 0.7322 0.11

r3........................ 3.3190 0.1243 0.4749 0.4028 �0.146 0.584 0.9857 0.935 144.02 146.75 1.90 0.7516 0.7536 0.27

r4........................ 3.4100 0.1210 0.4796 0.4034 0.000 0.584 0.9859 0.971 106.11 113.52 6.98 0.7740 0.7747 0.08

r5........................ 3.5063 0.1176 0.4761 0.4040 0.146 0.584 0.9862 1.007 81.42 82.23 1.00 0.7948 0.7953 0.06

r6........................ 3.5988 0.1146 0.4638 0.4044 0.292 0.584 0.9864 1.044 45.90 52.88 15.21 0.8150 0.8156 0.07

r7........................ 3.6841 0.1120 0.4412 0.4048 0.438 0.584 0.9867 1.081 20.59 25.47 23.70 0.8364 0.8355 0.11

r8........................ 3.7705 0.1094 0.4052 0.4052 0.584 0.584 0.9872 1.117 0.00 0.00 0.00 0.8550 0.855 0.00

ra0...................... 2.9654 0.1391 0.4585 0.4584 �0.300 0.300 0.9845 0.8250 131.34 132.58 0.95 0.6894 0.6883 0.16

ra1...................... 3.0046 0.1373 0.4645 0.4587 �0.250 0.300 0.9846 0.8376 118.10 120.28 1.85 0.6971 0.6959 0.17

ra2...................... 3.0438 0.1355 0.4692 0.4591 �0.200 0.300 0.9847 0.8499 106.33 108.21 1.77 0.7047 0.7035 0.17

ra3...................... 3.0816 0.1339 0.4730 0.4594 �0.150 0.300 0.9848 0.8628 94.98 96.36 1.46 0.7120 0.7111 0.13

ra4...................... 3.1215 0.1321 0.4757 0.4597 �0.100 0.300 0.9849 0.8747 84.74 84.75 0.01 0.7192 0.7185 0.09

ra6...................... 3.1988 0.1290 0.4782 0.4602 0.000 0.300 0.9850 0.9003 63.43 62.19 1.95 0.7331 0.7334 0.04

ra8...................... 3.2705 0.1261 0.4768 0.4608 0.100 0.300 0.9852 0.9248 41.29 40.55 1.79 0.7471 0.7481 0.13

ra10.................... 3.3434 0.1234 0.4714 0.4612 0.200 0.300 0.9853 0.9502 19.11 19.82 3.72 0.7618 0.7626 0.11

ra12.................... 3.4120 0.1209 0.4617 0.4617 0.300 0.300 0.9855 0.9750 0.00 0.00 0.00 0.7772 0.7769 0.03

s0........................ 2.9447 0.1401 0.4761 0.4761 0.000 0.000 0.9844 0.8251 0.00 0.00 0.00 0.6892 0.6883 0.13

s1........................ 3.1106 0.1326 0.4756 0.4756 0.100 0.100 0.9848 0.8749 0.00 0.00 0.00 0.7192 0.7185 0.09

s2........................ 3.2718 0.1261 0.4709 0.4709 0.200 0.200 0.9851 0.9251 0.00 0.00 0.00 0.7471 0.7481 0.13

s3........................ 3.4098 0.1210 0.4617 0.4617 0.300 0.300 0.9855 0.9751 0.00 0.00 0.00 0.7772 0.7769 0.03

s4........................ 3.5521 0.1161 0.4476 0.4476 0.400 0.400 0.9859 1.0250 0.00 0.00 0.00 0.8077 0.8051 0.33

s5........................ 3.6721 0.1123 0.4276 0.4276 0.500 0.500 0.9865 1.0748 0.00 0.00 0.00 0.8340 0.8325 0.18

s6........................ 3.7896 0.1088 0.4002 0.4002 0.600 0.600 0.9874 1.1246 0.00 0.00 0.00 0.8583 0.8592 0.11

t0 ........................ 4.1910 0.1074 0.4066 0.4064 �0.584 0.584 0.9889 0.9002 259.49 258.09 0.54 0.6868 0.6883 0.22

t1 ........................ 4.0812 0.1103 0.4062 0.4426 �0.584 0.438 0.9884 0.8638 238.37 232.62 2.41 0.6640 0.6658 0.27

t2 ........................ 3.9767 0.1131 0.4057 0.4652 �0.584 0.292 0.9881 0.8265 200.25 205.21 2.48 0.6400 0.6429 0.45

t3 ........................ 3.8632 0.1165 0.4053 0.4775 �0.584 0.146 0.9879 0.7906 174.58 175.86 0.73 0.6180 0.6196 0.26

t4 ........................ 3.7387 0.1204 0.4047 0.4810 �0.584 0.000 0.9878 0.7543 142.62 144.57 1.37 0.5965 0.5959 0.09

t5 ........................ 3.6102 0.1246 0.4041 0.4761 �0.584 �0.146 0.9876 0.7172 106.36 111.34 4.68 0.5738 0.5719 0.33

t6 ........................ 3.4765 0.1294 0.4033 0.4625 �0.584 �0.292 0.9874 0.6807 71.35 76.17 6.75 0.5493 0.5475 0.32

t7 ........................ 3.3391 0.1348 0.4025 0.4387 �0.584 �0.438 0.9873 0.6447 35.36 39.05 10.45 0.5233 0.5227 0.11

t8 ........................ 3.1712 0.1419 0.4015 0.4015 �0.584 �0.584 0.9875 0.6080 0.00 0.00 0.00 0.4955 0.4976 0.42

u1........................ 2.9500 0.1398 0.4683 0.4685 �0.200 0.200 0.9845 0.8248 87.34 88.39 1.20 0.6893 0.6883 0.15

u2........................ 2.9800 0.1384 0.4436 0.4438 �0.400 0.400 0.9846 0.8249 175.39 176.78 0.79 0.6895 0.6883 0.17

u3........................ 3.0500 0.1355 0.3951 0.3953 �0.600 0.600 0.9847 0.8266 266.39 265.16 0.46 0.6884 0.6883 0.01

u4........................ 3.1500 0.1310 0.2968 0.2970 �0.800 0.800 0.9850 0.8253 356.87 353.55 0.93 0.6884 0.6883 0.01

Note.—Cols. (2)Y(9) give the puncture initial location �x/M , the linear momenta �p/M , the mass parametersmi/M , the dimensionless spins ai, the normalized ADM
mass M̃ADM � MADM/M measured at infinity, and the normalized ADMangular momentum J̃ADM � JADM/M

2. Cols. (10)Y(15) contain the numerical and fitted values for
jvkickj (in km s�1), afin, and the corresponding errors.
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while no change is expected for the final spin, i.e., aBn(a1; a2) ¼
aBn(a2; a1). These symmetries not only allow us to consider only
one portion of the (a1; a2) space (cf. Fig. 1), thus halving the
computational costs (or doubling the statistical sample), but they
will also be exploited later on to improve our fits. The position of
the five sequences within the (a1; a2) space is shown in Figure 1.

Overall, the data sample computed numerically consists of
38 values for jvkickj and for aBn, which, for simplicity, we have
considered to have constant error bars of 8 km s�1 and 0.01,
which represent the largest errors reported in Pollney et al. (2007).
In both cases we have modeled the data with generic quadratic
functions in a1 and a2 so that, in the case of the recoil velocity,
the fitting function is

vkickj j ¼ c0 þ c1a1 þ c2a
2
1 þ d0a1a2 þ d1a2 þ d2a

2
2

�
�

�
�: ð1Þ

Note that the fitting function on the right-hand side of equa-
tion (1) is smooth everywhere but that its absolute value is not
smooth along the diagonal a1 ¼ a2. Using equation (1) and a blind
least-square fit of the data, we obtained the coefficients (in km s�1)

c0 ¼ 0:67 � 1:12; d0 ¼ �18:56 � 5:34;

c1 ¼ �212:85 � 2:96; d1 ¼ 213:69 � 3:57;

c2 ¼ 50:85 � 3:48; d2 ¼ �40:99 � 4:25; ð2Þ

with a reduced �2 ¼ 0:09. Clearly, the errors in the coefficients
can be extremely large; this is simply the result of small-number
statistics. However, the fit can be improved by exploiting some
knowledge of the physics of the process to simplify the fitting
expressions. In particular, we can use the constraint that no re-
coil velocity should be produced for binaries having the same
spin, i.e., that jvkickj ¼ 0 for a1 ¼ a2, or the symmetry condition
across the line a1 ¼ a2. Enforcing both constraints yields

c0 ¼ 0; c1 ¼ �d1; c2 ¼ �d2; d0 ¼ 0; ð3Þ

thus reducing the fitting function of equation (1) to the simpler
expression

vkickj j ¼ c1(a1 � a2)þ c2(a
2
1 � a2

2 )
�
�

�
�: ð4Þ

Performing a least-square fit using equation (4), we then obtain

c1 ¼ �220:97 � 0:78; c2 ¼ 45:52 � 2:99; ð5Þ

with a comparable reduced �2 ¼ 0:14, but with error bars that
are much smaller on average. Because of this, we consider
equation (4) as the best description of the data at second-order
in the spin parameters. Using equations (4) and (5), we have built
the contour plots shown in Figure 2.
A few remarks are worth making. First, we recall that post-

Newtonian calculations have so far derived only the linear con-
tribution in the spin to the recoil velocity (see Favata et al. 2004,
and references therein). However, the size of the quadratic co-
efficient (eq. [5]) is not small when compared to the linear one,
and it can lead to rather sizeable corrections. These are maxi-
mized when a1 ¼ 0 and a2 ¼ �1, or when a1 ¼ �1 and a2 ¼ 0,
and can be as large as�20%; while these corrections are smaller
than those induced by asymmetries in the mass, they are in-
structive in pointing out the relative importance of spin-spin and
spin-orbit effects during the merger, and can be used as a guide
in further refinements of the post-Newtonian treatments. Second,
equation (4) clearly suggests that the maximum recoil velocity
should be found when the asymmetry is largest and the spins
are antiparallel, i.e., a1 ¼ �a2. Third, when a2 ¼ const:, equa-
tion (4) confirms the quadratic scaling proposed in Pollney
et al. (2007) with a smaller data set (cf. their eq. [42]). Fourth,
for a1 ¼ �a2, equation (4) is only linear and reproduces the
scaling suggested by Herrmann et al. (2007b). Finally, using
equation (4) the maximum recoil velocity is found to be jvkickj ¼
441:94 � 1:56 km s�1, in very good agreement with the results
of Herrmann et al. (2007b) and Pollney et al. (2007).

Fig. 1.—Position in the (a1; a2) space of the five sequences r, ra, s, t, and u for
which the inspiral and merger has been computed. [See the electronic edition of
the Journal for a color version of this figure.] Fig. 2.—Contour plots of jvkickj as a function of the spin parameters a1 and a2.

The diagram has been computed using eqs. (4) and (5). [See the electronic edition
of the Journal for a color version of this figure.]

REZZOLLA ET AL.1424 Vol. 679



In the same way, we have first fitted the data for aBn, with a
function

aBn ¼ p0 þ p1a1 þ p2a
2
1 þ q0a1a2 þ q1a2 þ q2a

2
2 ; ð6Þ

and found coefficients with very large error bars. As a result, for
aBn as well we resort to physical considerations to constrain the
coefficients p0 : : : q2. More specifically, we expect that, at least
at lowest order, binaries with equal and opposite spins will not
contribute to the final spin, and thus behave essentially as non-
spinning binaries. Stated differently, we assume that aBn ¼ p0 for
binaries with a1 ¼ �a2. In addition, enforcing the symmetry
condition across the line a1 ¼ a2, we obtain

p1 ¼ q1; p2 ¼ q2 ¼ q0=2; ð7Þ

so that the fitting function given by equation (6) effectively re-
duces to

aBn ¼ p0 þ p1(a1 þ a2)þ p2(a1 þ a2)
2: ð8Þ

Performing a least-square fit using equation (8), we then obtain

p0 ¼ 0:6883 � 0:0003; p1 ¼ 0:1530 � 0:0004;

p2 ¼ �0:0088 � 0:0005; ð9Þ

with a reduced �2 ¼ 0:02.
It should be noted that the coefficient of the quadratic term in

equation (9) is much smaller then the linear one and with much
larger error bars. Given the small statistics, it is hard to assess
whether a quadratic dependence is necessary or if a linear one is
correct (however, see also the comment below on a possible inter-
pretation of eq. [8]). In view of this, we have repeated the least-
square fit of the data enforcing the conditions of equation (7)

together with p2 ¼ 0 (i.e., adopting a linear fitting function) and
obtained p0 ¼ 0:6855 � 0:0007 and p1 ¼ 0:1518 � 0:0012, with
a worse reduced �2 ¼ 0:16. Because the coefficients of the lowest
order terms are so similar, both the linear and the quadratic fits are
well within the error bars of the numerical simulations. Neverthe-
less, since a quadratic scaling yields smaller residuals, we consider
it to be the best representation of the data and have therefore com-
puted the contour plots in Figure 3 using equations (8) and (9).

Here too, a few remarks are worth making. First, the fitted
value for the coefficient p0 agrees very well with the values re-
ported by several groups (Gonzalez et al. 2007b; Berti et al. 2007)
when studying the inspiral of unequal-mass nonspinning binaries.
Second, equation (8) has maximum values for a1 ¼ a2, suggest-
ing that the maximum and minimum spins are aBn ¼ 0:9591�
0:0022 and aBn ¼ 0:3471 � 0:0224, respectively. Third, the qua-
dratic scaling for aBn substantially confirms the suggestions of
Campanelli et al. (2006b), but provides more accurate coeffi-
cients. Finally, although very simple, equation (9) lends itself to
an interesting interpretation. Being effectively a power series in
terms of the initial spins of the two black holes, its zeroth-order
term can be seen as the orbital angular momentum not radiated in
gravitational waves and which amounts, at most, to�70% of the
final spin. The first-order term, on the other hand, can be seen as
the contribution to the final spin coming from the initial spins of
the two black holes, and this contribution, together with the one
coming from the spin-orbit coupling, amounts at most to �30%
of the final spin. Then the second-order term, which is natural
to expect as nonzero in this view, can be related to the spin-spin
coupling, with a contribution to the final spin that is �4% at
most.

As a side remark, we also note that the monotonic behavior
expressed by equation (9) does not show the presence of a local
maximum of aBn ’ 0:87 for a1 ¼ a2 � 0:34 as suggested by
Damour (2001) in the effective one-body (EOB) approxima-
tion. Because the latter has been shown to be in good agreement
with numerical-relativity simulations of nonspinning black holes
(Damour &Nagar 2007; Damour et al. 2007), additional simu-
lations will be necessary to refute these results or to improve the
EOB approximation for spinning black holes.

Reported in the right part of Table 1 are also the fitted values
for aBn and jvkickj obtained through the fitting functions (4) and
(8), and the corresponding errors. The latter are of few percent
for most cases and increase up to �20% only for those binaries
with very small kicks andwhich are intrinsically more difficult to
calculate. As a concluding remark, we note that the fitting coef-
ficients computed here have been constructed using overall mod-
erate values of the initial spin; the only exception is the binary
u4, which has the largest spin and which is nevertheless fitted
with very small errors (cf. Table 1). In addition, since the submis-
sion of this work, another group has reported results from equal-
mass binaries with spins as high as a1 ¼ a2 ¼ �0:9 (Marronetti
et al. 2008). Although for these very high-spin binaries the error
in the predicted values is also of 1% at most, a larger sample of
high-spin binaries is necessary to validate that the fitting expres-
sions (4) and (8) are robust also at very large spins.

4. CONCLUSIONS

We have performed least-square fits to a large set of numerical-
relativity data. These fits, combined with symmetry arguments,
yield analytic expressions for the recoil velocity and final black
hole spin resulting from the inspiral and merger of equal-mass
black holes whose spins are parallel or antiparallel to the orbital
angular momentum. Such configurations represent a small por-
tion of the parameter space, but may be the preferred ones if

Fig. 3.—Contour plots of aBn as a function of the spin parameters a1 and a2.
The diagram has been computed using eqs. (8) and (9). [See the electronic edition
of the Journal for a color version of this figure.]
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torques are present during the evolution. Using the analytic ex-
pressions we have constructed two spin diagrams that sum-
marize this information simply and predict a maximum recoil
velocity of jvkickj ¼ 441:94 � 1:56 km s�1 for systemswith a1 ¼
�a2 ¼ 1 and maximum (minimum) final spin aBn ¼ 0:9591�
0:0022 (0:3471 � 0:0224) for systems with a1 ¼ a2 ¼ 1 (�1).

Note added in manuscript.—Since the publication of this
analysis on the preprint archive, our work on the modelling of
the final spin has progressed rapidly, yielding new results that
complement and complete the ones presented here. In particular,

the work published in Rezzolla et al. (2008b) complements the
analysis carried here to unequal-mass, equal-spin aligned bina-
ries, while the work reported in Rezzolla et al. (2008a) extends it
to generic binaries.

It is a pleasure to thank Thibault Damour andAlessandroNagar
for interesting discussions. The computations were performed
on the supercomputing clusters of the AEI. This work was sup-
ported in part by the DFG grant SFB/Transregio 7.
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