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Abstract
While the inspiral and ring-down stages of the binary black-hole coalescence
are well modelled by analytical approximation methods in general relativity,
the recent progress in numerical relativity has enabled us to compute accurate
waveforms from the merger stage also. This has an important impact on the
search for gravitational waves from binary black holes. ‘Complete’ binary
black-hole waveforms can now be produced by matching post-Newtonian
waveforms with those computed by numerical relativity, which can be
parametrized to produce analytical waveform templates. The ‘complete’
waveforms can also be used to estimate the efficiency of different search
methods aiming to detect signals from black-hole coalescences. This paper
summarizes some recent efforts in this direction.

PACS numbers: 04.25.D, 04.30.−w, 04.25.dg, 29.85.Fj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Coalescing black-hole binaries are among the most promising sources of gravitational waves
for ground-based detectors like LIGO and Virgo, and the planned space-borne detector LISA.
The evolution of binary black holes is conventionally split into three stages: inspiral, merger
and ring down. In the inspiral stage, the two compact objects, driven by radiation reaction,
move in quasi-circular orbits. Eventually approaching the ultra-relativistic regime, the two
bodies merge to form a single excited Kerr black hole. In the ring-down stage, the excited
black hole loses its energy by gravitational-wave emission and settles into a Kerr black hole.
Gravitational waveforms from the inspiral and ring-down stages can be accurately computed
by approximation/perturbation techniques in general relativity [1–3]. The recent progress in
numerical relativity [4–6] has enabled us to model also the non-perturbative merger phase of
the coalescence of binary black holes [7–17].
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While the current gravitational-wave searches look for each stage of the binary black-hole
coalescence separately (see, for example, [18, 19]), combining the results from analytical
and numerical relativity enables us to coherently search for all the three stages using a single
template family. This coherent search is significantly more sensitive than the current searches
over certain mass ranges (see section 4). This search has added advantages: including all the
three stages adds more ‘structure’ to the template waveform, resulting in a potential reduction
of false alarms. The additional structure and the improved signal-to-noise ratio also results
in an improved estimation of the parameters of the binary, which is particularly important for
LISA data analysis. As LISA data will contain a ‘cocktail’ of many strong binary signals,
these will have to be subtracted from the data in order to analyse other signals. Improved
parameter estimation can also have a tremendous impact in cosmology. Since many of the
supermassive black-hole mergers are likely to have electromagnetic counterparts, it is possible
to constrain the values of cosmological parameters by combining the gravitational-wave and
electromagnetic observations [20]. In particular, using the distance–redshift relation from
many binary black-hole ‘standard sirens’, LISA might be able to put interesting constraints on
the equation of state of the dark energy [21]. The error bars on this depend on how accurately
the ‘red-shifted’ mass of the source and the luminosity distance are estimated, and how well
the host galaxy of the electromagnetic counterpart is identified. The improved parameter
estimation might help to tighten these constraints.

Several authors have proposed different ways of computing gravitational-wave templates
containing all the three stages of the binary black-hole coalescence [22–26]. In particular,
[25] proposed a phenomenological parametrization for non-spinning binary black-hole
waveforms. These waveforms are explicit functions of the physical parameters of the
system and exhibited very high overlaps with the ‘target signals’. The target signals were
constructed by matching numerical-relativity waveforms with post-Newtonian waveforms in
appropriate matching regions. These waveforms contain all the three stages of the binary
black-hole coalescence. Hence, they can also be used to estimate the efficiency of different
(template-based and other) search methods used to detect signals from binary black-hole
coalescences.

This paper provides an overview of the application of the results from analytical
and numerical calculations of binary black-hole waveforms into gravitational-wave data
analysis. Section 2 describes how ‘complete’ binary black-hole coalescence waveforms
(so-called hybrid waveforms) from non-spinning binaries can be constructed by matching
post-Newtonian and numerical-relativity waveforms. Here we also investigate the robustness
of the matching procedure by studying the mismatch between hybrid waveforms constructed
using different matching regions. Section 3 introduces an analytical two-parameter family of
non-spinning waveforms having very good overlaps with the hybrid waveforms. Section 4
shows how the hybrid waveforms can be used to estimate the sensitivity of different searches.
Here we compare the fitting factor and faithfulness of different template-based searches using
the hybrid waveforms as target signals. Finally, section 5 provides a summary and future
plans.

2. Constructing ‘complete’ binary black-hole coalescence signals

Although numerical relativity (NR) is able to compute gravitational waveforms containing all
the three stages of the binary black-hole coalescence, the numerical simulations are heavily
limited by the computational resources. But, the post-Newtonian (PN) formalism is known to
work very well in the early inspiral. Thus, complete binary black-hole coalescence waveforms
(hybrid waveforms) can be constructed by matching PN and NR waveforms in an appropriate
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matching region. Different authors have studied the consistency of the non-spinning PN
waveforms with NR waveforms. See [24–31] for some of the recent work.

The time-domain waveform h+,×(t, µ) from a particular system is parametrized by a set
of ‘extrinsic parameters’ µ = {ϕ0, t0}, where ϕ0 is the initial phase and t0 is the start time of
the waveform. The PN and NR waveforms are matched by minimizing the integrated squared
difference, δ, between them in the matching region t1 � t � t2:

δ ≡
∑

i=+,×

∫ t2

t1

[
hPN

i (t, µ) − ahNR
i (t, µ)

]2
dt. (1)

The minimization is carried out over the extrinsic parameters µ of the PN waveform and
an amplitude scaling factor a,1 while keeping the ‘intrinsic parameters’ (the two component
masses) of both the PN and NR waveforms the same. The hybrid waveforms are then produced
by combining the ‘best-matched’ PN waveforms with the NR waveforms in the following way:

h
hyb
+,×(t, µ) ≡ a0τ(t)hNR

+,×(t, µ) + (1 − τ(t))hPN
+,×(t, µ0), (2)

where µ0 and a0 denote the values of µ and a for which δ is minimized, and τ is a weighting
function, defined as

τ(t) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t < t1

t − t1

t2 − t1
if t1 � t < t2

1 if t2 � t .

(3)

It is expected that the early inspiral is better modelled by PN waveforms, as the early
inspiral part of the NR waveforms is prone to larger errors. But the PN waveforms become
less accurate at the late inspiral. Thus, it is important to choose a matching region where both
waveforms are accurate. This also means that the hybrid waveforms constructed using two
very different matching regions can potentially be quite different. If, on the other hand, we are
able to show that these differences are not very significant for data-analysis purpose, this is an
indication that our analysis is not heavily dependent on the choice of the matching region.

As a test of the robustness of the matching procedure, we compute the mismatch between
two hybrid waveforms hn and hn−1, defined as

MM(hn, hn−1) ≡ 1 − maxt0

[
4 Re

∫ ∞

0

hn(f )h∗
n−1(f ) ei2πf t0 df

Sh(f )

]
, (4)

where Sh(f ) is the one-sided power spectral density of the detector noise. The subscript n on
the hybrid waveform h means that the hybrid waveform is constructed by matching PN and
NR waveforms at the nth cycle of the NR waveform.

The top-left panel of figure 1 shows an example set of the PN, NR and the hybrid
waveforms. The hybrid waveform is constructed by matching an equal-mass NR waveform
computed by the Jena group, reported in [30], with a restricted 3.5PN TaylorT1 [32] waveform.
Other panels in figure 1 show the mismatch between the hybrid waveforms hn and hn−1,
computed using three different noise spectra. If we take 3% as the maximum allowed
mismatch between hybrid waveforms hn and hn−1, this preliminary exercise suggests that
any matching region before t1 = −150M is robust for constructing hybrid waveforms using
the equal-mass NR waveforms considered here. This will be studied in detail in a forthcoming
work [33].
1 The NR waveforms used for this work contain only the l = 2, m = ±2 modes, and the PN waveforms are computed
in the restricted PN approximation. Since the PN corrections to the amplitude of the PN waveforms are ignored, this
will introduce an error of ∼8% in the amplitude of the hybrid waveforms, and hence in the horizon distances reported
in figure 3; but not in the calculation of fitting factor and faithfulness.
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Figure 1. The top-left panel shows an example hybrid waveform (green) constructed by
matching an equal-mass NR waveform (red) computed by the Jena group with a 3.5PN restricted
PN waveform (black dashed). The two black vertical lines indicate the matching region
(−280M � t � −206M) employed. The rest of the panels show the mismatch between hybrid
waveforms hn and hn−1, where a subscript n means that the hybrid waveform is constructed by
matching the NR and PN waveforms at the nth cycle of the NR waveform. The horizontal axis
reports the start time, t1, of the nth cycle (in units of M). The mismatch is computed using initial
LIGO (top-right), advanced LIGO (bottom-right) and Virgo (bottom-left) noise spectra. Total mass
of the waveforms (in units of M�) is shown in the legends. A mismatch of 3% is marked with a
dashed horizontal line.

3. Templates for binary black-hole coalescence

The hybrid waveforms constructed in the previous section can be parametrized in terms of the
two physical parameters of the binary, thus producing analytical waveform templates. These
analytical waveforms can be used to construct template banks for matched-filter searches;
thus avoiding the computational cost of generating hybrid waveforms at each grid point in the
parameter space. [25] proposed a family of Fourier domain templates of the form

u(f ) ≡ Aeff(f ) ei�eff(f ), (5)

where the effective amplitude and phase are expressed as

Aeff(f ) ≡ C

⎧⎪⎨
⎪⎩

(f/fmerg)
−7/6 if f < fmerg

(f/fmerg)
−2/3 if fmerg � f < fring

wL(f, fring, σ ) if fring � f < fcut,

�eff(f ) ≡ 2πf t0 + ϕ0 +
1

η

7∑
k=0

(xkη
2 + ykη + zk)(πMf )(k−5)/3.

(6)
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Table 1. Coefficients describing the amplitude and phase of the phenomenological waveforms.
See equations (6) and (7).

Parameter ak bk ck

fmerg 6.6389 × 10−1 −1.0321 × 10−1 1.0979 × 10−1

fring 1.3278 −2.0642 × 10−1 2.1957 × 10−1

σ 1.1383 −1.7700 × 10−1 4.6834 × 10−2

fcut 1.7086 −2.6592 × 10−1 2.8236 × 10−1

Parameter xk yk zk

ψ0 −1.5829 × 10−1 8.7016 × 10−2 −3.3382 × 10−2

ψ2 3.2967 × 101 −1.9000 × 101 2.1345
ψ3 −3.0849 × 102 1.8211 × 102 −2.1727 × 101

ψ4 1.1525 × 103 −7.1477 × 102 9.9692 × 101

ψ6 1.2057 × 103 −8.4233 × 102 1.8046 × 102

ψ7 0 0 0

In the above expressions, C is a numerical constant whose value depends on the sky-location
and orientation of the binary as well as its physical parameters. For optimally located and

oriented binaries, C = M5/6f
−7/6
merg

dπ2/3

√
5η

24 . t0 is the time of arrival of the signal at the detector,

ϕ0 the initial phase, L(f, fring, σ ) ≡ (
1

2π

)
σ

(f −fring)2+σ 2/4 a Lorentzian function with width σ

centred around the frequency fring, w a normalization constant chosen so as to make Aeff(f )

continuous across the ‘transition’ frequency fring, and fmerg is the frequency at which the
power law changes from f −7/6 to f −2/3. The phenomenological parameters fmerg, fring, σ

and fcut are written in terms of the total mass M and symmetric mass ratio η of the binary as

πMfmerg = a0η
2 + b0η + c0,

πMfring = a1η
2 + b1η + c1,

πMσ = a2η
2 + b2η + c2,

πMfcut = a3η
2 + b3η + c3.

(7)

The coefficients aj , bj , cj , j = 0, . . . , 3 and xk, yk, zk, k = 0, 2, 3, 4, 6, 7 are unique for a
given family of hybrid waveforms. The coefficients corresponding to the hybrid waveforms
considered here are tabulated in table 1. These are computed from seven hybrid waveforms
in the range 0.25 � η � 0.16 produced by matching the numerical waveforms (referred to as
the ‘long NR waveforms’ in [25]) produced by the Jena group with restricted 3.5PN TaylorT1
waveforms.

4. Assessing the efficiency of different searches

The hybrid waveforms constructed in section 2 can be used to estimate the efficiency of
different searches (including that proposed in the previous section) in detecting signals from
binary black-hole coalescences2. Ideally, this should be done by injecting a large number of
hybrid waveforms from different binaries into the detector data and by estimating the fraction of
the injections detected by each search. Different search groups have already started work in this
direction [34]. This section presents a simple strategy to estimate the efficiency of different

2 The obvious assumption involved is that the hybrid waveforms are sufficiently close to the signals produced by
nature. This is greatly dependent on the systematic errors in the hybrid waveforms.
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Figure 2. Fitting factors (left plots) and faithfulness (right plots) of the PN inspiral, ring-down
and coalescence templates. Dots correspond to PN inspiral templates, triangles to ring-down
templates, and squares to coalescence templates. The overlaps are computed using three different
noise spectra—initial LIGO (thin lines), Virgo (thicker lines) and advanced LIGO (thickest lines).
Horizontal axes report the total mass of the binary.

template families in detecting signals from binary black-hole coalescences. The template
families being considered here are (i) restricted 3.5PN TaylorT1 inspiral templates truncated at
the maximum binding-energy circular orbit [35] (ii) black-hole ring-down templates proposed
in [36] and (iii) black-hole coalescence templates described in the previous section.

We compute the fitting factors [37] and faithfulness [38] of different template families
with the hybrid waveforms. Fitting factor is the overlap of a template waveform with the target
signal maximized over both the intrinsic (M and η) and the extrinsic (t0 and ϕ0) parameters
of the template waveform, while faithfulness is the overlap maximized over only the extrinsic
parameters of the template. Faithfulness is a measure of how good the template waveform is
in both detecting a signal and estimating its parameters. However, the fitting factor is aimed at
finding whether or not a template family is good enough in detecting a signal without reference
to its use in estimating the parameters.

The fitting factors and faithfulness of three different template families, using the hybrid
waveforms as target signals, are plotted in figure 2. Maximization over the intrinsic parameters
is performed with the aid of the Nelder–Mead downhill simplex algorithm. Low frequency
cutoff is chosen to be equal to 40 Hz for initial LIGO and 20 Hz for Virgo and advanced LIGO.
As expected, PN inspiral templates produce very good overlaps with the target signals in the
low-mass regime (where inspiral is the dominant part), and ring-down templates produce good
overlaps in the high-mass regime (where ring down is the dominant part). The black-hole
coalescence templates continue to produce very good overlaps over the entire mass range.
Note that, if we assume homogeneous and isotropic distribution of sources, the fraction of
sources detectable by a template family is proportional to the cube of the fitting factor [39].
The ‘event loss’ due to mismatch between the template and the true signal is larger than the
canonical 10% when the fitting factor is less than 0.965.3 This figure suggests that the template

3 It should be noted that the fitting factor is not the only consideration in an actual search strategy. Other factors such
as computational cost and false alarm rate also play a decisive role in the choice of a template family. However such
a detailed study is beyond the scope of this paper.
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Figure 3. The left plots show the horizon distances of PN inspiral, ring-down and coalescence
templates in the case of initial LIGO (thin lines) and Virgo (thick lines) noise spectra. The right
plots show the same for advanced LIGO. Dots correspond to PN inspiral templates, triangles to
ring-down templates, and squares to coalescence templates. Horizontal axes report the total mass
of the binary, and the vertical axes report the effective distance to optimally oriented equal-mass
binaries producing a sub-optimal SNR of 8 at the detector output. The sharp drop in the PN horizon
distance is a result of the (different) lower cutoff frequencies of the detectors.

family proposed in section 3 can be used to search for binary black-hole coalescences over
almost the entire mass range considered here losing not more than 10% of the events that
are detectable by optimal filtering. Binaries with total mass �15 M� are detectable using PN
inspiral templates with <10% event loss, while the binaries in the mass range considered here
cannot be detected with <10% event loss using black-hole ring-down templates4. Faithfulness
of the coalescence templates is also almost always greater than 0.965 (comparable to the fitting
factors), while that of the other templates is considerably smaller in general. This also means
that the parameters estimated by the PN and ring-down templates will be biased significantly.
This will be studied in detail in a forthcoming work [33].

We can also calculate the ‘distance reach’ of these searches. Since the template waveforms
described in equations (5) and (6) are shown to be very close (fitting factors > 0.95) to the
hybrid waveforms, the effective distance dopt to binaries producing a certain optimal signal-
to-noise ratio (SNR) ρ at the detector can be computed analytically using these template
waveforms, as

dopt = 2

ρ

[∫ fcut

flow

Aeff(f ) df

Sh(f )

]1/2

. (8)

Since the fitting factor (FF) is the fraction of the optimal SNR that can be achieved using a
sub-optimal filter, the effective distance dsubopt to the (optimally oriented) binaries producing
a sub-optimal SNR ρ by a template family is given by dsubopt = doptFF. Figure 3 compares
the effective distance to optimally located and oriented binaries producing a sub-optimal SNR
of 8 at the detector output using the three different template families discussed above. For
the black-hole coalescence templates, the horizon distance reaches peak values of around
760 Mpc (at 150 M�), 950 Mpc (325 M�) and 13.3 Gpc (225 M�) for initial LIGO, Virgo

4 Note that the overlaps are maximized over the initial phase ϕ0 of the ring down also, unlike what is proposed in
[36].
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and advanced LIGO, respectively. For PN inspiral templates, the peak values are 630 Mpc
(160 M�), 770 Mpc (325 M�) and 9.2 Gpc (250 M�), while for the ring-down templates, the
corresponding values are 640 Mpc (150 M�), 780 Mpc (325 M�) and 10.6 Gpc (225 M�). It
may be noted that, since the event rate is proportional to the cube of the distance reach, a 20%
loss in the distance reach means a 50% loss in the event rate.

5. Summary and future work

Recent progress in the theoretical modelling of coalescing binary black holes has important
applications in the search for gravitational waves from binary black-hole coalescences.
‘Complete’ gravitational waveforms can be constructed by combining results from analytical
and numerical calculations. These waveforms can be parametrized to produce analytical
waveform templates which can be used to densely cover the parameter space of the binary
that will be searched over by matched-filtering techniques. This template family will allow us
to coherently search over all the three stages of the binary. The advantages of this ‘coherent
search’ include improved SNR, and hence improved distance reach for the search, potential
reduction of the false-alarm rate and improved parameter estimation. The application of the
complete waveforms is not limited to template-based searches. For example, these waveforms
can also be used in the burst searches, customized for detection of signals from coalescing
black-hole binaries. In this case, a small bank of representative waveforms can be used to
survey the parameter space of the binary [40]. The complete waveforms can also be used
to estimate the efficiency of different search methods. A preliminary comparison of three
different template-based searches is presented in this paper. More robust ways of comparing
the efficiency of different searches is an ongoing effort [34].
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