AstroGrid-D

Deliverable 3.3 AJ

Distributed File Management

Tests of the Data- and Replica-Management Software
for Selected Use Cases!

Deliverable D3.3

Authors Ralf Wahner, Thomas Briisemeister, Mikael Hégqvist, Jiirgen Stein-
acker, Rainer Spurzem, Frank Breitling, Art Carlson, Robert Engel,
Harry Enke, lliya Nickelt, Thomas Radke

Editors

Date March 24", 2008

Document Version 1.0.0

Current Version 1.0.0

Previous Versions 0.7.0, 0.6.1, 0.6.0, 0.5.1, 0.5.0-0.2.0, 0.1.7-0.1.0

A: Status of this Document

Deliverable 3 of working group 3.

B: Reference to project plan

! This work is part of the AstroGrid-D project and D-Grid.The project is funded by the German Federal Ministry
of Education and Resarch (BMBF).

Tests of the Data- and Replica-Management Software Version 1.0.0

This is the third deliverable of the working group Distributed File Management. The work refers to
task I11-5 Software test by adapting community applications and to Milestone M24.

C: Abstract

The first chapter of this document summarizes the requirements for distributed file management in
AstroGrid-D, based on both, the aforementioned questionaire and Deliverable 3.2; see appendix
A or [7], respectively. The second chapter documents to which extent the requirements have been
implemented in the current operation of three selected use cases, namely Dynamo, NBody6+-+
and GEOG600. Finally, the appendix presents the questionaire to its whole extent.

AstroGrid-D -2- Deliverable 3.3

Tests of the Data- and Replica-Management Software

Version 1.0.0

D: Changes History

‘ Version ‘ Date

‘ Name ‘

Brief summary

0.1.0 Oct. 4" 2007 Jiirgen Steinacker | Working Draft Creation

0.1.1 Oct. 23" 2007 | Ralf Wahner Contribution about handling dead links

0.1.2 Oct. 24", 2007 | Ralf Wahner Figure illustrating the solution for the dead
link problem. Document structure revised.

0.1.3 Dec. 3¢, 2007 | Ralf Wahner Section On the purpose of this deliverable

0.1.4 Dec. 6, 2007 Ralf Wahner Section Alternative Approach: AstroGrid
Data Management (Draft created)

0.1.5 Dec. 11%%, 2007 | Ralf Wahner Section Alternative Approach: AstroGrid
Data Management (Draft finished)

0.1.6 Dec. 13™" 2007 | Ralf Wahner Section Discussion: RLS versus ADM (Draft
created). Figure illustrating the database
used for the AstroGrid-D Data Management.

0.1.7 Dec. 14" 2007 | Ralf Wahner Section Discussion: RLS versus ADM (Draft
revised)

0.2.0 Dec. 15", 2007 | Ralf Wahner Draft version of Deliverable 3.3 published
as requested for deadline on December 15",

0.3.0 Dec. 19", 2007 | Ralf Wahner Document structure has been revised.

0.4.0 Jan. 10*", 2008 | Ralf Wahner Section Approach 1: AstroGrid-D Data Ma-
nagement. Draft version revised.

0.5.0 Jan. 215%, 2008 | Harry Enke Restructuring the document.

0.5.1 Jan. 25" 2008 | Ralf Wahner Subsection Dynamo: Markup for xml source
and file- and directory names.

0.6.0 Feb. 6" 2008 Ralf Wahner Preview of new draft version published.

0.6.1 Feb. 8, 2008 Ralf Wahner New Draft version published due to refusal
of previous draft (0.2.0, on Dec. 15, 2007)
for discussion in workgroup 3 and architecture
group until Feb. 25, 2008 (phase one).

0.7.0 Feb. 25, 2008 | Ralf Wahner New Draft version published due to refusal
of previous draft (0.2.0, on Dec. 15t 2007),
for discussion in the AstroGrid-D community
until Mar. 17*", 2008 (phase two).

1.0.0 Mar. 247¢ 2008 | Ralf Wahner Typos fixed. Example for globus-url-copy.
Autorship indicated by means of footnotes.

AstroGrid-D

Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

Contents
A: Status of this Document 1
B: Reference to project plan 1
C: Abstract 2
D: Changes History 3
1 Testing requirements due to the previous Deliverable 3.2 5
1.1 File staging and cleanup 5
1.2 Replica management 7
1.2.1 Understanding logical and physical filenames and mappings 7
1.2.2 Initial mapping and insertion of replica 8
1.2.3 Wildcard search 10
1.2.4 File attributes 12
1.3 Drawbacks of RLS and Outlook 15
2 Test of Use Cases Scenarios 16
2.1 Dynamo e 16
2.2 NBOYB++ . o o o o 18
2.2.1 Race conditions 18
2.2.2 Implementation 18
2.2.3 Future considerations 19
2.3 GEO600 19
2.3.1 Distributed data management 19
2.3.2 Storage locations 20
2.3.3 Replica management 20
2.3.4 Statistics 20
235 Summary 21
A Questionaire and Input from Selected AstroGrid-D Use Cases about Distributed File
Management 21

AstroGrid-D -4 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

References 23

1 Testing requirements due to the previous Deliverable 3.2

The purpose of this deliverable, abbreviated by D3.3, is to describe and evaluate technical approaches
specified by the previous deliverable, [7], in order to meet certain situations common to scientific
computing within AstroGrid-D, e.g. staging of input and output data between execution host and
storage location, cleaning up the execution host as well as replica management. The following two
sections describe staging/cleanup and replica management from a general perspective, i.e. without
referring to a certain use case. The application of the methods specified in [7] to use cases and the
implications are presented in chapter 2 Test of Use Cases Scenarios.

1.1 File staging and cleanup

Staging and cleanup are supposed to utilize the Globus Resource Specification Language (RSL)
while replica management is supposed to implement the Globus Replica Location Service (RLS).
Carefully distinguish RLS from RSL: Whereas the former one, RLS, cares for the maintenance of
file replica, i.e. identical copies of a file on different storage locations, the latter one, RSL, is used
to specify file staging, cleanup and command line arguments for job submission. Therefore *.rs/
files are also known as job descriptions. The following code is a sample job decription:

<job>

<!-- specify executable on execution host -->
<executable>my_program</executable>
<argument>ARGUMENT_VALUE_1</argument>
<argument>ARGUMENT_VALUE_2</argument>
<stdout>my_program.out</stdout>
<stderr>my_program.err</stderr>

<!-- transport a file from submission host to execution host -->
<fileStageln>
<transfer>
<sourceUrl>gsiftp://[hostname]/[path] /my_program</sourceUrl>
<destinationUrl>file:///${GLOBUS_USER_HOME}/my_program</destinationUrl>
</transfer>
</fileStageIn>

<!-- transport files back from execution host to submission host -->
<fileStageQOut>
<transfer>
<sourceUrl>file:///${GLOBUS_USER_HOME}/my_program.out</sourceUrl>
<destinationUrl>gsiftp://[hostname] /[path]/my_program.out</destinationUrl>
</transfer>
<transfer>
<sourceUrl>file:///${GLOBUS_USER_HOME}/my_program.err</sourceUrl>
<destinationUrl>gsiftp://[hostname] /[path]/my_program.err</destinationUrl>
</transfer>

2Contributed by: Ralf Wahner (rwahner@ari.uni-heidelberg.de)

AstroGrid-D -5- Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

</fileStageQut>

<!-- clean up files and directories on the execution host -->
<fileCleanUp>
<deletion>
<file>file:///${GLOBUS_USER_HOME}/my_program.out</file>
</deletion>
<deletion>
<file>file:///${GLOBUS_USER_HOME}/my_program.err</file>
</deletion>
<deletion>
<file>file:///${GLOBUS_USER_HOME}/my_program</file>
</deletion>
</fileCleanUp>

</job>

First off, the job description resides permanently on the submission host but runs temporarily on
the execution host. The above job description specifies by means of the <executable>-Tag, that
my_program is to be handed over to the shell on the execution host together with two command
line parameters, namely ARGUMENT _VALUE_1 and ARGUMENT_VALUE_2. Furthermore, the output and
error channel of my_program is redirected to the files my program.out and my program.err.

A common cycle of scientific computing begins on the submission host, where the sourcecode or
binary version of the program and its input data reside permanently. By contrast the data is usually
volatile on the execution host, because after the program terminates the outcome is transferred
back to the submission host and the hard disk space on the execution host is released. The first
section of the job description, namely <fileStageIn>, specifies the file transfer from submission
host to execution host. For each file transferred, the <fileStageIn>-Tag contains a <trans-
fer>-Tag inside of which source and target location are declared by means of <sourceUrl> or
<destinationUrl>, respectively. Again, the job description executes on the execution host, so the
remote source file path is prefixed with a protocol name, namely gsiftp://, while the local copy
of the source file uses the file:// prefix, where "remote” and "local” are understood with respect
to the execution host. Finally, ${GLOBUS_USER_HOME} is a user specific environment variable that
points to the users home directory on the respective grid resource.

The meaning of the second section of the job description, namely <fileStageOut> is supposed to
be self-explanatory, since the files are merely transported in reverse direction, i.e. from execution
host to submission host, after the programm has terminated. The <fileCleanUp> section cares for
tidying up the execution host after the output has been transferred back to the submission host.
Each file to delete has a <deletion>/<file>-Tag on its own. Since the job description executes
on the execution host all files to be deleted are local files with respect to the execution host and
are therefore prefixed by file://. The cycle completes after cleaning up the files on the execution
host.

Let the above job description be written to the file job description.rsl. During job submission via
globusrun-ws the job description is included and transferred by means of the -f switch:

globusrun-ws -submit -F <factory> -S -Ft <factory type> -f job_description.rsl

(A description of the operation mode and the switches of globusrun-ws is beyond the scope of
this text. See http://www.globus.org/toolkit/docs/4.0/execution/wsgram/rn01re01.html for de-

AstroGrid-D -6 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

tails about globusrun-ws.)

Remarks: (1) Even though the RSL syntax resembles the eXtensible Markup Language (XML),
RSL actually is not XML compliant, since RSL allows to let away the XML declaration which is
mandatory, due to the XML specification of the W3C; see http://www.w3.org/XML.

(2) According to [7], directory staging does not work whith GridGateWay. Due to the current
recherche status, GridGateWay is still unable to stage directories.

1.2 Replica management

A replica is a copy of one file on a different storage location. Replica are needed for backup as
well as for reducing the traffic load across the network between the storage facility and the actual
resource that carries out the scientific computation on that data. Replica management is supposed
to implement the Globus Replica Location Service (RLS). According to [7], RLS is basically a
bidirectional look-up table, i.e. RLS allows to query for all values associated with a given key as
well as to query for all keys associated with a given value, by means of indexing both, the keys and
the values. In this context a "key” is an abstract identifier merely representing a physical file and
the "value” associated with that key is a list of strings, each of which is a fully qualified path to
an actual copy of the file on a real-life storage location. RLS maintains those meta data only, i.e.
RLS does not care for file transfer and for the consistency of its data content with the actual file
storage locations. Assume, that the aforementioned job description contains the abstract identifier
instead of a fully qualified path, then the identifier must be resolved to a physical file name before
job submission. The following subsections describe the key concepts behind RLS as well as the
usage of the command line client program globus-rls-cli in a tutorial like manner.

1.2.1 Understanding logical and physical filenames and mappings

Regarding file administration by means of RLS there are two essential terms to understand. Given
a file in an arbitrary location, say the user-defined bash configuration file .bashrc, the physical
filename (PFN) of .bashrc is compiled from a protocol identifier, the hostname of the location
where the filesystem resides and the fully-qualified name of the file, i.e. its path and basename, for
example:

Physical filename (PFN)
gsiftp://alnitak.ari.uni-heidelberg.de/home/Agrid/agrid064/.bashrc

Here, the protocol identifier is gsiftp. Other valid identifiers are gsiscp, ftp or http, to name
just a few. The hostname and fully-qualified filename are considered to be self-explanatory. Contrary
to the PFN, the logical filename (LFN) represents .bashrc from the perspective of RLS. The LFN
must be unique with respect to RLS and can be choosen arbitrarily by the user, e.g. agrid064-
dotbashrc in order to identify .bashrc owned by grid user agrid064:

Logical filename (LFN) for the above PFN
agrid064-dotbashrc

Putting a file under RLS control is a two-step-process, namely registering the file with RLS and
transporting the file to its desired location within the grid. In order to get a clear picture of what

AstroGrid-D -7 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

RLS does and how it operates, the next issue to understand is the 1:n-mapping of one LFN (with
respect to RLS) to one or more PFNs (with respect to files in the real world).

The official website of RLS, http://www.globus.org/toolkit/data/rls, declares, that RLS "maintains
and provides access to mapping information from logical names for data items to target names”.
Assume, that "data items” are just files like the above .bashrc, in order to simplify the consideration
for this text. Straightly speaking, under RLS an LFN behaves like a reference pointing to an "array”
of actual filenames; set more formally:

gsiftp://alnitak/home/Agrid/agrid064/.bashrc,

gsiftp://mintaka/home/Agrid/agrid064/.bashrc,
LRC : agrid064-dotbashrc —) ,

gsiftp://eridanus/home/Agrid/agrid064/.bashrc

where alnitak is shorthand for alnitak.ari.uni-heidelberg.de to save space (likewise for
mintaka and eridanus). The above "formula” represents a mapping from agrid064-dotbashrc
(LFN) to a set of PFNs. The notion of the so-called local resource catalogue (LRC) allows to
group mappings that have one or more properties in common.

1.2.2 Initial mapping and insertion of replica

We are now prepared to tell RLS about the file we want to check in. First off, we are going to
announce the .bashrc file, or more precisely gsiftp://alnitak/home/Agrid/agrid064/.bashrc, to RLS
and afterwards register a handful of replica (i.e. copies of a file on different locations) of .bashrc.
As a general rule, the first step is to create an initial mapping within the RLS "repository”:

Create an initial mapping (RLS)
Command: create <1lfn> <pfn> <rls://server-name>
globus-rls-cli

create agrid064-dotbashrc # logical filename (LFN)
gsiftp://alnitak/home/Agrid/agrid064/.bashrc # physical filename (PFN)
rls://hydra.ari.uni—heidelberg.de # RLS server hostname

The globus-rls-cli commands are multilined to improve readability and not in order to make
them look unnecessarily complex. ;-) The client programm globus-rls-cli accepts up to four
subcommands as well as up to five arguments; see RLS command reference in figure 1 on page 11.
The above subcommand create expects three arguments, namely the user-defined unique logical
filename (LFN) and the uniform resource locator (URL) pointing to the actual file on the hard disk.
The last argument is the domain name of the host accomodating the RLS server. Note, that the
server host must always be specified (no exception).

Let's immediately verify that the entry has been created:

List all PFNs ’behind’’ agrid064-dotbashrc (LFN)
Command: query lrc 1fn <1fn> <rls://server-name>
globus-rls-cli
query lrc 1fn agrid064-dotbashrc
rls://hydra.ari.uni-heidelberg.de

Output
agrid064-dotbashrc: gsiftp://alnitak/home/Agrid/agrid064/.bashrc

AstroGrid-D -8- Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

The RLS on rls://hydra.ari.uni-heidelberg.de contains one entry for agrid064-dotbashrc
as we would expect. By the way, if we tried to query for agrid064-dotbashrc before the initial
mapping was defined, the client would have answered:

RLS error message: unknown LFN (query for undefined LFN)
globus_rls_client: LFN doesn’t exist: agridO64-dotbashrc

Since RLS already knows that it's supposed to administer a couple of replica behind agrid064-dot-
bashre, it's sufficient to just add (instead of create) new entries:

Register two replicas with RLS

Command: add <1fn> <pfn> <rls://server-name>

globus-rls-cli
add agrid064-dotbashrc
gsiftp://mintaka/home/Agrid/agrid064/.bashrc
rls://hydra.ari.uni-heidelberg.de

globus-rls-cli
add agrid064-dotbashrc
gsiftp://eridanus/home/Agrid/agrid064/.bashrc
rls://hydra.ari.uni-heidelberg.de

As an intermediate result we currently have three entries for our .bashrc file in our RLS:

List again all PFNs ’’behind’’ agrid064-dotbashrc (LFN)
Command: query lrc 1fn <1fn> <rls://server-name>
globus-rls-cli
query lrc 1fn agrid064-dotbashrc
rls://hydra.ari.uni-heidelberg.de

Output

agrid064-dotbashrc: gsiftp://alnitak/home/Agrid/agrid064/.bashrc
agrid064-dotbashrc: gsiftp://eridanus/home/Agrid/agrid064/.bashrc
agrid064-dotbashrc: gsiftp://mintaka/home/Agrid/agrid064/.bashrc

Remark: Note, that until now, no file or replica has been transported to a storage location. All we
did so far, was registering a file and two replica with RLS. In a Globus-based grid environment, file
transfer is usually accomplished by means of globus-url-copy:

File transfer by means of globus-url-copy
SOURCE=gsiftp://alnitak.uni-heidelberg.de/home/Agrid/agrid064/.bashrc
TARGET=gsiftp://storage.uni-heidelberg.de/home/Agrid/agrid064/.bashrc-copy

globus-url-copy $SOURCE $TARGET
According to the current status of knowledge, there is no globus-url-move in order to modify the
file name or location and no globus-url-delete to wipe out files on the storage location.

Mappings, i.e. entries for replica locations, are removed from the "array” of actual filenames by
means of the delete command:

Delete a mapping
Command: delete <1fn> <pfn> <rls://server-name>

AstroGrid-D -9- Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

globus-rls-cli
delete agridO64-dotbashrc
gsiftp://mintaka/home/Agrid/agrid064/.bashrc
rls://hydra.ari.uni-heidelberg.de

Finally, after all replica mappings and the initial mapping have been deleted the LFN disappears
from the RLS memory.

That said, we must not disesteem, that RLS is meant to be more than a mere file administration
tool. Basically, RLS has been designed to administer any abstract data item that somehow belongs
to the grid, among those, e.g. architecture and hardware equipment of individual grid resources.
Now that we know how to set up mappings and add replica to RLS, let's find out how to comb
through what RLS knows about our files. See table 1 on page 12 for a brief description of the
placeholders used in globus-rls-cli -help or the full documentation under [8].

1.2.3 Wildcard search

As time passes users often feel uncertain about the identifiers they took for their files. There-
fore RLS has a rudimentary support of searching with wildcards. Assume, grid user agrid064 is
quite disciplined and strictly takes agrid064 to prefix his LFNs. Then the following command dis-
plays all LFNs starting with this substring as well as all URLs associated with those LFNs (output
abbreviated):

Search for all LFNs starting with ’agrid064’’ (wildcard search)
Command: query wildcard lrc 1fn <lfn-pattern> <rls://server-name>
globus-rls-cli

query wildcard lrc 1fn

agrid064x*

rls://hydra.ari.uni-heidelberg.de

Output
agrid064-dotbashrc: gsiftp://alnitak/home/Agrid/agrid064/.bashrc
agrid064-dotbashrc: gsiftp://eridanus/home/Agrid/agrid064/.bashrc

agrid064-dotemacs: gsiftp://vulpecula/home/Agrid/agrid064/.emacs

Similarly, RLS allows for wildcard searching with a given PFN substring (reverse lookup). Let's see
who else registered his .bashrc with RLS (output abbreviated):

Search for all »’.bashrc” files registered with RLS (reverse 1ookup)
Command: query wildcard lrc pfn <pfn-pattern> <rls://server-name>
globus-rls-cli

query wildcard lrc pfn

*bashrc

rls://hydra.ari.uni-heidelberg.de

Output
agrid042-dotbashrc: gsiftp://alnitak/home/Agrid/agrid042/.bashrc

AstroGrid-D - 10 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0
Usage: globus-rls-cli [-c] [-h] [-1 result-limit] [-s] [-t timeout]
[-u] [-v] [command] rls-url
add <lfn> <pfn>
attribute add <object> <attr> <obj type> <attr type> <val>
attribute bulk add <object> <attr> <obj type> <attr type> <val>
attribute bulk delete <object> <attr> <obj type>
attribute bulk query <attr> <obj type> <object>
attribute define <attr> <obj type> <attr type>
attribute delete <object> <attr> <obj type>
attribute modify <object> <attr> <obj type> <attr type> <val>
attribute query <object> <attr> <obj type>
attribute search <attr> <obj type> <op> <attr type> <val>
attribute show <attr> <obj type>
attribute undefine <attr> <obj type>
bulk add <lfn> <pfn> ...
bulk create <1lfn> <pfn>
bulk delete <1fn> <pfn> ...
bulk exists lrc 1lfn <val> <lfns...>
bulk exists lrc pfn <val> <pfns...>
bulk exists rli 1lfn <val> <lfns...>
bulk query lrc 1lfn <lfns...>
bulk query lrc pfn <pfns...>
bulk query rli 1lfn <lfns...>
bulk rename 1fn <lfn> <lfn>
bulk rename pfn <pfn> <pfn>...
clear
create <1lfn> <pfn>
delete <1lfn> <pfn>
exists lrc <obj type> <val>
exists rli 1fn <1lfn>
exit
help
query lrc 1fn <1fn>
query 1lrc pfn <pfn>
query rli 1fn <1lfn>
query wildcard lrc 1lfn <lfn-pattern>
query wildcard lrc pfn <pfn-pattern>
query wildcard rli 1fn <lfn-pattern>
rename lfn <1lfn> <1fn>
rename pfn <pfn> <pfn>

set clearvalues
set reslimit
set timeout

true|false
reslimit

timeout

Figure 1: Reference card for the command line interface globus-rls-cli to the Globus Replica Location

Service (RLS).

agrid064-dotbashrc:

gsiftp://alnitak/home/Agrid/agrid064/.bashrc

Obviously, grid user agrid042 also decided to put his .bashrc under the control of RLS. Just
a second, ... grid user agrid042?7 How can user agrid064 view what belongs exclusively to
user agrid0427 This brings up an interesting question. What about user permissions with RLS?
According to the current state of knowledge, RLS has no permission concept by default, but we
can emulate access permissions with respect to user names by means of RLS attributes (see next

section).

AstroGrid-D

- 11 -

Deliverable 3.3

Tests of the Data- and Replica-Management Software

Version 1.0.0

‘ Placeholder ‘ represents
<1lfn> an LFN, e.g. agrid064-dotbashrc
<pfn> a PFN (URL), e.g. gsiftp://alnitak/home/Agrid/agrid064/.bashrc
<attr> an attribute name, e.g. file_owner

<attr type>

an attribute type; valid are date, float, int and string

<val>

the attribute value

<object>

an "object” (LFN or PFN) that has the considered attribute

<obj type>

the object type and is either 1fn or pfn

<1lfn-pattern>

a wildcard pattern to search for LFNs

<pfn-pattern>

a wildcard pattern to search for PFNs

<op> a relational operator; valid are =, 1=, >, >= < or <=
<lfns...> [no description in the command reference]
<pfns...> [no description in the command reference]

Table 1: Placeholders used in globus-rls-cli -help, taken from [8]. The order of rows respects, that a
notion is introduced before it is used.

1.2.4 File attributes

Traditional file systems provide meta data about their files and directories, e.g. ownership, per-
missions and timestamps concerning initial creation or recent access for each entry. Since RLS
is not primarily an abstract file system these meta data are not present by default. RLS rather

allows for maintaining a kind of data dictionary, i.e.

a stock of independent properties which

can be assigned to LFNs and PFNs. We want to create two attributes, namely file_owner and
file_creation_timestamp and attach them to our replica:

Create two attributes ’’file_owner” for string values and
’file_creation_timestamp’ for date values (format yyyy-mm-dd hh:mm:ss)

Command:

globus-rls-cli
attribute define file_owner pfn string
rls://hydra.ari.uni-heidelberg.de

globus-rls-cli

attribute define file_creation_timestamp pfn date

rls://hydra.ari.uni-heidelberg.de

attribute define <attr> <obj type> <attr type> <rls://server-name>

RLS now knows about two attributes that may be referenced by PFNs. Note, that file_owner
(type string) and file_creation_timestamp (type date) are defined as PFN-attributes, only,
i.e. they cannot be assigned to LFNs. Put reverse, attributes are deleted from the "data dictionary”
by just replacing define in the above command with undefine. Attributes are assigned to PFNs
and initialized at the same time by means of:

Assign two attributes to a PFN

Command:

#

globus-rls-cli

attribute add

<rls://server-name>

attribute add <object> <attr> <obj type> <attr type> <val>

assign an attribute

AstroGrid-D

- 12 -

Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

gsiftp://alnitak/home/Agrid/agrid064/.bashrc # to this PFN (replicate)

file_owner # attribute name
pfn # entry (object) type
string # attribute type
P’agrid064”’ # attribute value

rls://hydra.ari.uni-heidelberg.de

globus-rls-cli
attribute add
gsiftp://alnitak/home/Agrid/agrid064/.bashrc
file_creation_timestamp
pfn
date
7’2007-12-12 14:00:00”’
rls://hydra.ari.uni-heidelberg.de

The binding between an LFN or PFN and an attribute is dissolved by means of the delete sub-
command. Assume, there were a redundant attribute erroneously_assigned and it contained the
string "attribute does not belong here™:

Display the properties of an assigned attribute
Command: attribute query <object> <attr> <obj type> <rls://server-name>
globus-rls-cli
attribute query
gsiftp://alnitak/home/Agrid/agrid064/.bashrc # this attribute has been
erroneously_assigned # accidentally referenced
pfn # from this entry (object)
rls://hydra.ari.uni-heidelberg.de

Output
erroneously_assigned: string: attribute does not belong here

This output verifies, that PFN gsiftp://alnitak/home/Agrid/agrid064/.bashrc owns an attribute
erroneously_assigned. Unbind the odd one out attribute from the PFN:

Delete an attribute from a PFN
Command: attribute delete <object> <attr> <obj type> <rls://server-name>
globus-rls-cli

attribute delete

gsiftp://alnitak/home/Agrid/agrid064/.bashrc

erroneously_assigned

pfn

rls://hydra.ari.uni-heidelberg.de

And verify, that the attribute has disappeared:

Try to display properties for a nonexistent attribute
Command: attribute query <object> <attr> <obj type> <rls://server-name>
globus-rls-cli

attribute query

gsiftp://alnitak/home/Agrid/agrid064/.bashrc

erroneously_assigned

AstroGrid-D - 13- Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

pfn
rls://hydra.ari.uni-heidelberg.de

Output
globus_rls_client: Attribute doesn’t exist: gsiftp://alnitak/home/Agrid-
/agrid064/.bashrc

Now that we know how to create attributes in and remove them from the "data dictionary”, how
to bind and unbind attributes to/from PFNs (similar for LFNs) and how to access attribute values,
the last example shows how to change an already existing attribute value:

Current value of attribute file_owner
globus-rls-cli
attribute query
gsiftp://alnitak/home/Agrid/agrid064/.bashrc
file_owner
pfn
rls://hydra.ari.uni-heidelberg.de

Output
file_owner: string: agrid064

Change attribute value from agrid064 to agrid042
Command: attribute modify <object> <attr> <obj type> <attr type>
<rls://server-name>
globus-rls-cli
attribute modify
gsiftp://alnitak/home/Agrid/agrid064/.bashrc
file_owner
pfn
string
’agrid042’
rls://hydra.ari.uni-heidelberg.de

New value value of attribute file_owner
globus-rls-cli
attribute query
gsiftp://alnitak/home/Agrid/agrid064/.bashrc
file_owner
pfn
rls://hydra.ari.uni-heidelberg.de

Output
file_owner: string: agrid042

We are now prepared to give an answer to the question at the end of the previous section (Wildcard
search), namely, how to filter the query output in order to display just the entries, that belong to a
certain attribute value. The following command looks up all LFNs, where the file_owner attribute
is set to agrid064 (output abbreviated):

Search for all LFNs where the file_owner attribute equals ’’agrid04”
Command: globus-rls-cli attribute search <attr> <obj type>
<rls://server-name>
globus-rls-cli
attribute search file_owner 1lfn = string ’agrid064’

AstroGrid-D - 14 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

rls://hydra.ari.uni-heidelberg.de

Output
agrid064-dotbashrc: gsiftp://alnitak/home/Agrid/agrid064/.bashrc

agrid064-dotbashrc: gsiftp://eridanus/home/Agrid/agrid064/.bashrc
agrid064-dotbashrc: gsiftp://mintaka/home/Agrid/agrid064/.bashrc

Note, that agrid064 is not a wildcard prefix in order to match LFNs beginning with that string,
but an attribute value. According to the current state of knowledge, it seems to be impossible to
combine wildcard search for LFNs or PFNs and filtering with respect to a certain attribute value, so
that postprocessing of the query output is required, to meet the users needs. Furthermore it seems
to be impossible to specify alternative values or patterns for attribute names, like

xxx Careful! The following does NOT work! %
globus-rls-cli
attribute search file_owner 1fn = string ’agrid064|agrid042’
rls://hydra.ari.uni-heidelberg.de

Output
globus_rls_client: Attribute with specified value doesn’t exist: file_owner

1.3 Drawbacks of RLS and Outlook

D3.3 is intended to subject the data management specified in [7], to thorough testing by means
of selected use cases. The notion of data management concerns the supply of the software that
is supposed to run on a grid resource together with the input data it might need (stage-in), the
return transport of the output data after the program terminates (stage-out) as well as cleaning
up the disk space on the grid resource afterwards. While several use cases implement the Glo-
bus Resource Specification Language (RSL) for job submission, apparently no use case has
successfully implemented the Globus Replica Location Service (RLS) for replica management.
The recent past provided evidence, that replica management by means of RLS for mapping logical file
names (LFN) to physical file names (PFN) and globus-url-copy for file transfer is unsatisfactory
for long-term file handling in AstroGrid-D for several causes.

RLS is not primarily intended to emulate a file system. Therefore, communication between RLS and
the storage facilities is not mandatory. Because of that missing connection, there is no guarantee
that a file under RLS control is really accessible, moreover, there is actually no guarantee at all,
that the file even exists. Merely deleting a physical file without changing the corresponding RLS
entry leads to a "dead link” from the users/jobs point of view, because RLS pretends that there is a
file as long as its memory is refreshed. The bottom line is, that since RLS and the storage facilities
don't talk to each other, RLS has no clue about presence or absence of the actual file. Hence,
users/jobs should (at least) not exclusively rely on RLS.

The previous section demonstrates, that the RLS command line client globus-rls-cli is difficult
to handle and hence not suited for common use. The client has about 40 combinations of commands,
subcommands and command options, where up to five arguments are not yet counted; see figure
1 on page 11. Unfortunately, the client has no command line switches that would allow users to
supply the arguments in a more intuitive order than the current version forces, e.g.

AstroGrid-D - 15 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

<object> <attr> <object type> <attr type> <value>

instead of more self-documenting

<object type> <object> <attr type> <attr> <value>.

The parameter list has been taken from attribute modify. Experience has tought, that the mere
multitude of commands, subcommands and options on the one hand as well as the partial cryptic form
of appearance on the other hand complicates working with globus-rls-cli and causes increased
error-proneness. Tentatively spoken, globus-rls-cli is not a good example for user-friendliness.

Despite the above critique concerning RLS, replica management is important for AstroGrid-D in
the near future, due to several reasons. Obviously, the presence of replica is beneficial at storage
location or network connection failures, since users can simply switch to a different copy of the
data they need. Moreover, replica are expected to reduce the traffic volume between distant grid
resources. Jobs with a low ratio between CPU time and transfer time might benefit from shorter
transfer durations and job descriptions are more reusable, if they rely on LFNs rather than on PFNs.
Regarding the situation, it might be worthwhile, to abandon RLS and vote for a different approach
instead.

2 Test of Use Cases Scenarios

2.1 Dynamo®

Dynamo is an application for solving the induction equation with turbulent electromotive force
modeling the turbulent Dynamo in planets, stars and galaxies. Further details about this use case
are given in [6]. As grid application Dynamo is run in task farming mode, where atomic binaries
are submitted to compute resources. An input data file of 0.1 to 1 GB with initial parameters is
provided for each job. At runtime the program generates output files with a total size of 0.1 to
10 GB at predefined time steps. Data analysis and visualization is done after the simulation has
been completed and the output files have been retrieved. For long running simulations the latest
output files are periodically retrieved for intermediate analysis. Status and progress of the program
is written to stdout/stderr in ASCII format to allow monitoring.

The necessary transaction for each job is specified by means of the Job Submission Description
Language (JSDL) which is converted before submission into the Globus Resource Specification
Language (RSL) via the eXtensible Stylesheet Language (for) Transformations (XSLT).

For organizing the staging process, parameter files and executable files are located in a tree of
directories: one directory contains a set consisting of the binary and parameter files for one run.
This way, a whole suite of jobs can be prepared on some host, from where the staging is being done.
The results could go into another directory tree. In the case described below, the stage in and stage
out are done on the same host.

The first transaction is stage in of the executable file (Dynamo.x) and the initial parameter files
(ener and FFELD). The corresponding RSL description is:

3Contributed by: Harry Enke (henke@aip.de)

AstroGrid-D - 16 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

<fileStageln>

<transfer>
<sourceUrl>gsiftp://HOST/DEMO_HOME/uploadX/Dynamo.x</sourcelUrl>
<destinationUrl>
file:///${GLOBUS_USER_HOME}/Dynamo/Dynamo.x
</destinationUrl>
</transfer>

<transfer>
<sourceUrl>gsiftp://HOST/DEMO_HOME/uploadX/input</sourceUrl>
<destinationUrl>
file:///${GLOBUS_USER_HOME}/Dynamo/input
</destinationUrl>
</transfer>

<transfer>
<sourceUrl>gsiftp://HOST/DEMO_HOME/uploadX/ener</sourceUrl>
<destinationUrl>
file:///${GLOBUS_USER_HOME}/Dynamo/ener
</destinationUrl>
</transfer>

<transfer>
<sourceUrl>gsiftp://HOST/DEMO_HOME/uploadX/FFELD</sourceUrl>
<destinationUrl>
file:///${GLOBUS_USER_HOME}/Dynamo/FFELD
</destinationUrl>
</transfer>

</fileStagelIn>

Next the Dynamo binary is executed and the output data is produced. When the run is finished
the output data folder (resultsX) is staged out as follows:

<fileStageOut>
<transfer>
<sourceUrl>file:///${GLOBUS_USER_HOME}/Dynamo/</sourceUrl>
<destinationUrl>gsiftp://HOST//DEMO_HOME/resultsX/</destinationUrl>
</transfer>
</fileStageOut>

Finally the input files (ener and FFELD) are removed from the execution host:

<fileCleanUp>
<deletion>
<file>file:///${GLOBUS_USER_HOME}/Dynamo/ener</file>
</deletion>
<deletion>
<file>file:///${GLOBUS_USER_HOME}/Dynamo/FFELD</file>
</deletion>
</fileCleanUp>

In a simple scenario the Dynamo application only uses Globus Staging capabilities, including the
third-party-transfer feature. In an elaborated scenario, e.g. for the demo run with Dynamo, addi-
tional features of Globus are used:

AstroGrid-D - 17 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

- Job monitoring data (start/run/end) is being uploaded to Stellaris from the submission host
for each job, making use of the Globus monitoring feature via epr.

- The job monitoring information stored in Stellaris is shown via the timeline and the grid
resource map

- if the Interface Definition Language (IDL) backend is employed to show actual runtime status
of calculated data, a gsissh channel is opened up to pass the data back to the submission
host.

Since Dynamo currently serves mainly as a demo application, the intended scientific use as a means
to scrutinize in parallel a vast range of parameters is not fully implemented. For this purpose, a
suitable distributed file management with automatic generation of metadata would be convenient.

2.2 NBody6++*

NBody6++ is a member of a family of high accuracy direct N-body integrators used for simulations
of dense star clusters, galactic nuclei, and problems of planet formation. A more detailed description
of that use case can be found in nbody.pdf; available either in the 3 3/misc SVN directory or at
http://www.gac-grid.org/project-documents/UseCases/nbody.pdf .

The application is not very disc or data expensive. The input and output files vary between 100MB
and a few GB per run. For a new run the simulation requires a parameter input file and an optional
file for initial data of mass m, radius r and velocity v, depending on the settings in the parameter
input file (KZ(22)). Another option is to use the integrated particle generator whereas in this case
the only file required is the parameter file.

When using the restart (checkpointing) facility of NBody6++ a so called common block file needs
to be transferred to the execution host which in principle is a shapshot of a previous run. These
binary files are usually the biggest files produced by the application.

The number of output files generated by NBody6++ depends on the settings in the parameter input
file. This implies that the Job Submission Description Language (JSDL) or Globus Resource
Specification Language (RSL) job description should be generated dynamically to minimize the
effort for the user.

2.2.1 Race conditions
When submitting more than one simulation to a Globus resource race conditions can occur since

input and output files are not protected against mutual overwriting. This can be avoided by creating
a sandbox for every job on the grid resource.

2.2.2 Implementation

At the time of this writing the current approach is to transfer the files via GRAM-WS/RFT/Grid-
FTP (or globus-url-copy/GridFTP when using GridWay) by means of a job description. A

*Contributed by: Thomas Briisemeister (tbruese@ari.uni-heidelberg.de)

AstroGrid-D - 18 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

deployment package has been developed to perform a hot deployment of NBody6++ and to
submit the job using a job description generated by a script. It is also possible to submit jobs
(transparently) to GridWay through GridGateWay which is primarily a RSL to job template (JT)
translator. Unfortunately using GridGate\Way works not completely transparent. When deploying
applications one has to be aware of the side effects occuring due to the fact that Grid\Way creates
its own sandbox and that files are treated differently depending on whether the file is specified as
an absolute path or relative path in the job template.

=== The NBody6++ deployment package ===
$./submit.sh
Submits NBody6++ jobs to Globus nodes.

Usage: ./submit.sh [options] <parameter-file>
Options:
-d Delegate full credential. [no]
-g host Submits the job to <host>. [hydra.ari.uni-heidelberg.de]
-h Print this help.
-m Enable MPI. (Experimental).
-n Disable batch mode.
-q queue Use queue <queue>.
-s Enable job statistics (Experimental).
-t job-manager Use <job-manager> as Globus Job Manager. [GW]

Stage-in Options:

-fr file Stage-in a common-block file for restart.
-fd file Stage-in a file for initial data of m,r,v.
Example: ./submit.sh -d var/in1000.comment

(Option -d must be used to provide a proxy for GridWay.)

NBody6++ deployment package for AstroGrid-D, v0.2.0-pre ($Revision: 35 §)

2.2.3 Future considerations

The deployment package will be extended to support the Open Grid Forum (OGF) standard
JSDL. Furthermore, it is planned to use a replication management system to reduce the network
costs (transfer time) and to improve reliability. When submitting GridWay jobs through GridGa-
teWay the unnecessary overhead due to the two-hop filestaging will also be eliminated.

2.3 GEO600°
2.3.1 Distributed data management

Each GEOG600 task requires a single CPU core and has its own working directory of approximately
100MB in size. This directory is archived after each run has finished and staged-out to a storage
location. Upon restart of the task, the working directory is again staged-in to the grid resource.

Contributed by: Robert Engel (engro@aei.mpg.de)

AstroGrid-D - 19 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

2.3.2 Storage locations

In August 2007 we started production runs of GEO600 on 32 different grid resources, 14 of these
were large clusters. Our initial storage location was gsiftp://buran.aei.mpg.de/store/GEO600/tasks
where all task archives were located. Staging in and out of data is specified entirely in the Globus
RSL provided for each run and carried out by the GRAM-WS on each resource which relies on
GridFTP.

We soon realized that the simultaneous start of more than a few (~10) tasks would not be possible
due to network limitations (100MBit/s) and hard disk 10 rate (~20MB/s) of the GridFTP server
buran. These limitations were directed against scaling the use case to more than just a few runs a
day.

It was therefore decided to move all archives to the astrodata storage location, which just be-
came available at the time. Our initial assumption was, that the ten machines astrodata-
0l.gac-grid.org ... astrodatal0.gac-grid.org would be able to load balance the stage-in
and stage-out load and allow us to further scale up the use case by a factor 10. This goal could not
be met, since the network 10 of these 10 machines did not accumulate and that even though fast
hard disk 10 was available, network 10 seemed to be as limited as on buran. Several problems due
to availability of the astrodata storage location, made us soon look for a different solution.

The present solution is, that each large resource (cluster) usually provides sufficient storage space
either in $HOME or at some Network Attached Storage (NAS) solution, that we use to keep our task
archives on side. Further more these storage locations located at 14 different clusters accumulate in
terms of network 10, hard disk 10 and availability and can therefore be used by other grid resources
as storage locations. In this way the german grid is in fact our distributed storage location, providing
high availability and high 10 rates.

2.3.3 Replica management

Each task we run on the grid is associated with an entry in our MySQL database running at
buran.aei.mpg.de:24999. The information in the database keeps track of all our job submissions,
collects statistics and further more acts as a simple service, storing the actual URI location of stdout,
stderr, log and the archive for each task. If the task is running, the URI will point to the actual
location of the stdout, stderr and log file. Otherwise it will point to the URI of the storage location.

2.3.4 Statistics

We are currently running 1500 jobs simultaneously on D-Grid resources. Each job runs for about 10
hours, which means that we submit 3000 jobs in average per day. Each job transfers stdout, stderr,
log to gsiftp://buran.aei.mpg.de/store/GEO600/tasks. This equals a network stage-out load of
360MB per day to buran originating at the grid resources we use.

Each task acts on about 100MB of data. We currently have 6000 tasks in our database, which
together accumulate 600GB of distributed storage space on the grid resources we use.

Only 100 of these tasks run on smaller grid resources every day and actively stage-in and stage-out
their archives from and to gsiftp://astrodata09.gac-grid.org/store/01/aei/GEO600 where we use

AstroGrid-D - 20 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

4GB of space and create an 10 of no more than 20GB per day.

2.3.5 Summary

GEQOGO0O0 requires not a huge amount of storage space to operate in D-Grid (~500GB). Due to the
large number of jobs we run, GEO600 creates a high 10 load during stage-in and stage-out of data
at the various grid resources. This 10 load if directed to one storage location would create an 10
rate of 600GB per day. Unfortunately this happens not to be a continuous rate, but happens to
be in chunks of ~10GB at a time, which of course can not be handled by a single storage location
without receiving network connection timeouts. For this reason GEO600 combines a number of grid
resources to form a distributed storage location serving the GEO600 use case. A simple MySQL
database is keeping track of the various files at the various grid locations. Ever since we were able
to scale up our use case from a few runs par day to 3000 job submissions per day at the present
time. For all data transfers we use GridF TP through GRAM-WS/RSL.

A Questionaire and Input from Selected AstroGrid-D Use Cases
about Distributed File Management®

A questionaire was sent to the users running the selected applications with the following questions.

1. Question: How are you currently transferring input and output data?
. GridFTP
. Hypertext Transfer Protocol (HTTP)
. File Transfer Protocol (FTP)
. Replica Location Service (RLS)
globus-url-copy
: one hop mode of GridGateWay
: two hop mode of GridGateWay
: Other? In that case how?

TIOTMMoOOm>

2. Question: Are you using logical file names that is given by a namespace with a Uniform
Resource Identifier (URI)-prefix? If no, do you have any plans on implementing support for
this before the end of the project?

3. Question: What automated staging methods are you using?
A. Input staging
B. Output staging
C. Input and output staging
D. Input and output staging with intermediary storage
E. If not any of the above, then why?

4. Question: Are you using Stellaris to store and query meta data? If not, how are you currently
organizing your meta data?

®Contributed by: Jiirgen Steinacker (stein@mpia-hd.mpg.de), Mikael Hégqvist (hoegqvist@zib.de), Rainer Spur-
zem (spurzem@ari.uni-heidelberg.de), Frank Breitling (fbreitling@aip.de), Art Carlson (awc@mpe.mpg.de), Robert
Engel (engro@aei.mpg.de), Harry Enke (henke@aip.de), lliya Nickelt (inickelt@aip.de) and Thomas Radke (trad-
ke@aei.mpg.de)

AstroGrid-D -21 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

5. Question: Are you using the core Resource Description Framework (RDF) vocabulary
suggested in D3.27 If not, are you describing your data-sets and how are you describing
them?

6. Question: Do you have general comments or wishes concerning the data transfer or data
management within your use case?

The feedback to questionaire is summarized in the following.

e GridFTP/globus-url-copy are basic tools used by all use cases to do input/output staging.
Therefore, it will be important to guarantee that a submission by GridWay/Globus in the
next step is working properly. Furthermore, it will have to be ensured that entire directories
can be staged in and out without problems.

e Most use cases do not need logical file names (LFN). The advantage of removing the physical
file location is more useful for output files that may be large and that will be re-used or that
are stored at multiple locations for reliability. There is no guarantee that a file "hiding” behind
an LFN will actually be stored at the system creating inconsistencies. One way of dealing with
this is to create a separate service that "scrubs” the LFNs by checking if the files still exist.

e Stellaris is not used for metadata about files, more focus seems to be on how to record
metadata on jobs. This may be useful from a monitoring perspective and also to find the data
produced by a job. However, describing jobs can be generalized while the metadata for the
produced data is more specific.

e Most use cases rely on a hierarchical naming structure which is sufficient for a low number of
output-data. For a large number of executions on more sites, Stellaris or any way to search
within the metadata becomes necessary.

e The use cases are in very different stages concerning the perspectives to the usage of a more
general file management for their application. This will aggravate the implementation of the
steps beyond the current usage of LFNs and GridFTP+globus-url-copy.

e Concerning XML-files, an interesting procedure for the file management is to store the files
in the filesystem hierarchy and automatically index metadata from them into Stellaris. The
files are then uploaded and retrieved via a service interface.

AstroGrid-D - 22 - Deliverable 3.3

Tests of the Data- and Replica-Management Software Version 1.0.0

References

[1] AstroGrid-D Data Management (ADM) build-in documentation, accessible by means of adm
help (general information) or adm help <subcommand> (manual page for individual subcom-
mand).

[2] Cai, Min et al.: A Peer-to-Peer Replica Location Service Based on A Distributed Hash Table,
see file sc2004v15.pdf located in directory 3 3/misc.

[3] Chervenak, Ann L. et al.: Performance and Scalability of a Replica Location Service, see file
chervenakhpdc13.pdf located in directory 3 3/misc.

[4] Chervenak, Ann L. et al.: Giggle: A Framework for Constructing Scalable Replica Location
Services, see file giggle.pdf located in directory 3 3/misc.

[5] Collins-Sussman, Ben; Fitzpatrick, Brian W. and Pilato, C. Michael: Version Control with
Subversion, for Subversion 1.4 (Compiled from r2866), see http://svnbook.red-bean.com or
file svn-book.pdf located in directory 3 3/misc.

[6] Deliverable 3.1: AstroGrid-D Distributed File Management, Requirements Specification and
Architectural Design, (Version 1.0.0, changes according to feedback from the project).

[7] Deliverable 3.2: Distributed File Management, Data- and Replica-management in AstroGrid-
D, (Version 1.0.0, public release with comments incorporated).

[8] The official RLS website: GT Data Management: Replica Location Service (RLS) at http://-
www.globus.org/toolkit/data/rls. (Consider that the former website http://www.globus.org/-
rls/ is no longer valid.)

AstroGrid-D - 23 - Deliverable 3.3

