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Abstract
Extending the results of Friedrich (2008 Class. Quantum Grav. 25 065012)
we give a complete description of the asymptotically flat, conformally non-flat,
static vacuum data which admit non-trivial, asymptotically smooth conformal
mappings onto other such data. These data form a 3-parameter family which
decomposes into 1-parameter families of data which are conformal to each
other. The data and the associated static vacuum solutions are given explicitly
in terms of elliptic and, in a special case, elementary functions.

PACS numbers: 04.20.Ex, 04.20.Ha, 04.20.Jb

1. Introduction

Asymptotically flat vacuum data which behave at spacelike infinity up to a certain order
like static or conformally static vacuum data play a preferred role in the discussion of the
asymptotic behaviour of vacuum solutions at null infinity (cf [2] for details and references).
To analyse these relations further and to get control on the various asymptotic regimes a
complete characterization of static vacuum data has been given in [3]. We expect that a certain
characterization of data which are conformal to static vacuum data near spacelike infinity will
allow us to derive necessary and sufficient conditions under which time reflection symmetric,
asymptotically flat vacuum data develop into spacetimes which admit a smooth structure at
null infinity.

As a first step towards obtaining the desired characterization we analysed in [4] the
conditions under which time reflection symmetric, asymptotically flat, conformally non-flat,
static vacuum data can be mapped onto other such data by conformal maps which extend
smoothly to spacelike infinity. It turned out that in a certain conformal representation the
Ricci tensor must be of a very specific form, the data must have a non-vanishing quadrupole
moment, be axi-symmetric, and admit a non-vanishing, hypersurface orthogonal, conformal
Killing field near spacelike infinity. Moreover, it was shown that there exists a 3-parameter
family of data admitting conformal maps. This family exhausts the set of all such data with the
possible exception of data corresponding to borderline cases which were difficult to analyse
with the methods of [4].
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To close this gap the existence problem is analysed in this paper by a different method.
The axial Killing field and the conformal Killing field are used to define an orthonormal frame
field for the suitably rescaled metric and we study the problem in the frame formalism. The
properties of the metrics found in [4] then allow the conformal static field equations to be
reduced to three ODEs which depend on three parameters. The solutions to these equations
can be given in terms of elliptic and, in a particular case, in terms of elementary functions.
Their dependence on the parameters (which are different from those considered in [4]) is such
that solutions corresponding to different parameters are non-isometric.

The 3-parameter class of solutions is ruled by curves which correspond to data that are
conformal to each other. The 1-parameter families of conformal factors relating these data
to each other are obtained by solving an ODE of the type considered before. In the new
representation the borderline cases left open in [4] are easily discussed. They do not supply
new solutions. With the results of [4] it follows that the solutions are of Petrov type N on the
axis and of type I on an open set surrounding the axis.

Explicit expressions for some of the data and the conformal factors are given and some
properties of these solutions are discussed. It turns out that the analytic extensions of data,
which are related by conformal diffeomorphisms near spacelike infinity, can have different
global properties. The corresponding four-dimensional static vacuum solutions are also given
explicitly.

2. Some results on static vacuum data

In the following we recall results obtained in [4]. We refer the reader to [3] and [4] for more
details. A static vacuum data set is given by a triplet (S̃, h̃, v), where S̃ denotes a smooth
three-dimensional manifold, h̃ a (negative definite) metric field and v > 0 a function so that
the static vacuum field equations

Rab[h̃] = 1

v
D̃aD̃bv, �h̃v = 0 (2.1)

hold on S̃ where D̃ denotes the covariant derivative and Rab[h̃] the Ricci tensor of h̃. We
assume that these data are asymptotically flat so that there exist coordinates x̃a , mapping S̃

onto the complement of a closed ball in R
3, in which

h̃ac = −(1 + 2m|x̃|−1)δac + O(|x̃|−(1+ε)),

v = 1 − m|x̃|−1 + O(|x̃|−(1+ε)) as |x̃| → ∞,

with some ε > 0. Here |·| denotes the standard Euclidean norm. The coefficient m represents
the ADM mass of the data. Without loss of generality we can assume that m > 0.

The set S = S̃ ∪ {i}, obtained by adjoining to S̃ a point i representing spacelike infinity,
can be given a real analytic differentiable structure for which i is an inner point. The fields,

� =
(

1 − v

m

)2

, h = �2h̃, ρ =
(

1 − v

1 + v

)2

, (2.2)

can be extended to i so that � ∈ C2(S) while h is a real analytic metric and ρ a real analytic
function on S which satisfy

ρ = 0, Daρ = 0, DaDbρ = −2µhab at i,
(2.3)

ρ > 0 on S̃, µ = m2/4,

where D denotes the covariant derivative defined by h. The fields h̃ and v are obtained from h
and ρ by
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v = 1 − √
ρ

1 +
√

ρ
, h̃ = �−2h with � = ρ

µ(1 +
√

ρ)2
. (2.4)

The Ricci scalar and the trace free part sab of the Ricci tensor of h satisfy in the conformal
gauge (2.2)

R[h] = 0, sab = Rab[h]. (2.5)

Observing (2.3), the static vacuum equations (2.1) can be written in terms of h and ρ in the
form

0 = �ab ≡ DaDbρ − shab + ρ(1 − ρ)sab, (2.6)

2ρs = DaρDaρ with s = 1
3�hρ. (2.7)

Equation (2.7) is implied by (2.3) and (2.6) so that (2.1) with the asymptotic behaviour of h̃

and v given above is in fact equivalent to (2.3) and (2.6).
Let (S̃, h̃, v) be a static vacuum data set with ADM mass m > 0 and (S, h, ρ) the

corresponding conformal data. Suppose γ , m′ are positive constants, ν ≡ (m/(m′γ 2))2, µ′ =
m′2/4, and u is a smooth, positive function on S used to rescale h. For

h̃′ = �′−2h′, v′ = 1 − √
ρ ′

1 +
√

ρ ′ with �′ = ρ ′

µ′(1 +
√

ρ ′)2
,

to define near i a static vacuum data set with ADM mass m′, the conformal rescaling of h must
be complemented by a rescaling of ρ,

h′ =
(

γ 2ν

u

)2

h, ρ ′ = 1

u
ρ. (2.8)

The fields so obtained do define a static vacuum set if and only if the function u satisfies
(possibly after shrinking S) the conditions

u(i) = ν, (2.9)

0 = 	ab ≡ DaDbu − thab + u(1 − u)sab, (2.10)

0 = 	 ≡ 2ut − DcuDcu with t = 1
3�hu. (2.11)

If these conditions are satisfied with a function u with du �≡ 0 we say that (S̃, h̃, v) (or
(S, h, ρ)) admits a non-trivial conformal rescaling extending smoothly to spacelike infinity.

It has also been shown that these conditions can be satisfied non-trivially if du(i) �= 0
(which implies that sab(i) �= 0) and cannot be satisfied in a non-trivial way with du(i) = 0
and sab(i) = 0 or with du(i) = 0 and ν = 1. Whether they can be satisfied with
du(i) = 0, sab(i) �= 0, and ν �= 1 was left open. In the following it will only be assumed
that sab(i) �= 0. This implies in our gauge that h is conformally non-flat [2]. If u satisfies
(2.10) and (2.11) a calculation shows that the general transformation law of Ricci tensors
under conformal rescalings reduces to the simple relation

sab[h′] = usab[h]. (2.12)

Suppose (S, h, ρ) is conformally non-flat and admits a non-trivial conformal rescaling
extending smoothly to spacelike infinity. Let U be an i-centered, convex h-normal
neighbourhood so that 0 < ρ < 1,Daρ �= 0 on U\{i}. For the subsequent statements
to be true the set U needs to (and can) be chosen small enough. Set

ρa = Daρ, ua = Dau, w = 1 − u

1 − ρ
,

wa = Daw, U∗ = {wa �= 0} ⊂ U,

so that i ∈ U∗ if and only if ua(i) �= 0. The following results have been derived in [4].
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The set U∗ is dense in U and there exists a smooth function β on U∗ so that

sab = β
(
wawb − 1

3habwcw
c
)
. (2.13)

If V ⊂ U∗ is a connected, simply connected neighbourhood of a point x∗ ∈ U∗, there exist a
constant β∗ �= 0 and a function H = H(w) defined on V with H(w(x∗)) = 0 so that

sab = β∗
1 − ρ

eH

(
wawb − 1

3
habwcw

c

)
. (2.14)

V can be chosen so that εabcubρc �= 0 on V . Then there exists a function l = l(w) > 0 on V

so that the vector field

Xa = lεabcubρc (2.15)

extends to an analytic, hypersurface orthogonal Killing field X on U which satisfies

Xaρa = 0, Xaua = 0, (2.16)

and defines a Killing field for h̃ on U\{i}. The field X vanishes but DaXb �= 0 along a
certain geodesic γ (τ) with γ (0) = i and h(γ̇ , γ̇ ) = −1 along which γ̇ aDaXb = 0. This
geodesic defines the axis of the axi-symmetry defined by the flow of X. If du(i) �= 0 then
γ̇ a(0) ∼ Dau(i). The integral curves of X are closed near γ (τ). The field

Y a = f wa with f = l

l∗
(1 − ρ)2, l∗ = l(w(x∗)) > 0 (2.17)

extends to an analytic, hypersurface orthogonal conformal Killing field Y satisfying

DaYb = ωhab +
1

l∗
εabcX

c, h(X, Y ) = 0, [X, Y ] = 0 on U. (2.18)

It is neither homothetic nor a Killing field for h̃. It is tangential to the geodesic γ . If S is
chosen small enough, Y �= 0 while X vanishes only along γ .

It follows that f is smooth and �= 0 on U∗ while |f | → ∞ where wa = 0. By (2.13) we
can write

sab = α
(
YaYb − 1

3habYcY
c
)

on U, (2.19)

where α = 3
2

sabY
aY b

(YcY c)2 is a non-vanishing smooth function because Y a �= 0 and it is assumed
that sab(i) �= 0.

3. The frame field and the coordinates

Given a conformally non-flat data set (S, h, ρ) which admits a non-trivial conformal rescaling
we use the properties discussed above to construct coordinates and an h-orthonormal frame
field. By the properties of X and Y the vector field

Za = εa
bcX

bY c

is hypersurface orthogonal, vanishes on the axis and satisfies

[X,Z] = 0, [Y,Z] = ωZ. (3.1)

A direct calculation gives on U∗\γ
〈Z, dρ〉 = εabcρaXbYc = − f

1 − ρ
εabcρaXbuc = − 1

l∗
(1 − ρ)XcX

c > 0.

This relation extends to U\γ because both sides are analytic. It follows that Z does not vanish
on U\γ and points away from the axis. We set

p =
√

−XcXc, q =
√

−YcY c > 0, n =
√

−ZcZc =
√

−XcXc
√

−YcY c = pq.
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Because Y does not vanish on U the set U is smoothly foliated by hypersurfaces (the ‘Y⊥-
foliation’) which are orthogonal to Y and thus in particular to the axis. Away from the axis
these hypersurfaces are ruled by the integral curves of the unit vector field 1

n
Z, which approach

the axis from different directions.
If du(i) �= 0 we can assume that dw �= 0 on U and the Y⊥-foliation coincides with that

given by the hypersurfaces {w = const.}. If du(i) = 0, ν �= 1, then dw(i) = 0 but we get
with the expression for DaDbw given in [4]

(Y aDa)
2w(i) = 2(1 − ν)µq2 �= 0, (3.2)

and for wbw
b along the integral curves of 1

n
Z the ODE

1

n
Z(wbw

b) = − 1

1 − ρ

〈
1

n
Z, dρ

〉
wbw

b. (3.3)

By (3.2) we can assume that wa(γ (τ)) �= 0 for τ �= 0 so that by (3.3) wa �= 0 on the sets
{w = const. �= 1−ν} which thus represent a subset of the smooth Y⊥-foliation. The remaining
leave of this foliation, which contains i, then coincides with the set {w = w(i) = 1 − ν}. It
follows from (3.3) that wa = 0 on this set and from (3.2) that the restriction of w to an integral
curve of Y near i assumes on {w = w(i)} a minimum if 1−ν > 0 resp. a maximum if 1−ν < 0.
Thus we can assume that U∗ = U and f > 0 on U if du(i) �= 0 and U∗ = U\{w = w(i)} if
du(i) = 0.

The value of l∗ and thus the scaling of X can and will be assumed such that there exists
on the complement of the axis a smooth function φ which coincides with a natural parameter
on the integral curves of X and takes values in [0, 2π ], where 2π defines the smallest period on
the integral curves (this does not fix the sense of rotation because we left the sign of εabc open).
Then DaXb = εabcη

c with ηaη
a = −1 at i and this relation is preserved along γ because the

integrability condition for the Killing field X implies

Dγ̇ (ηcη
c) = −1/2Dγ̇ (DaXbD

aXb) = −DaXbγ̇ dXcRcdab = 0 along γ.

We define coordinates z and r near i so that

〈Y, dz〉 = 1, z = 0 on {w = w(i)}, 〈Z, dr〉 = p, r → 0 at the axis.

Then

q = O(1), p = O(r), n = pq = O(r) whence〈
1

n
Z, dr

〉
= 1

q
= O(1) as r → 0.

Since LY 〈X, dz〉 = 〈LY X, dz〉 + 〈X,LY dz〉 = 〈X, (d ◦ iY + iY ◦ d) dz〉 = 0 and LY 〈Z, dz〉 =
〈LY Z, dz〉 + 〈Z,LY dz〉 = ω〈Z, dz〉, it follows that 〈X, dz〉 = 0 and 〈Z, dz〉 = 0 because X
and Z are tangent to {w = w(i)} where z = 0. Thus z = z(w) resp. w = w(z). Moreover,
we have LZ〈X, dr〉 = 〈LZX, dr〉 + 〈X,LZ dr〉 = 〈X, dp〉 = 0 and, by the Killing and the
conformal Killing equation,

LZ〈Y, dr〉 = −〈ωZ, dr〉 + 〈Y, dp〉
= −ωp +

1

p
(KaXbDbXa) = −ωp +

1

p
(−XaXbDbKa) = 0.

Because 〈X, dr〉 → 0 and 〈Y, dr〉 → 0 at the axis, it follows that 〈X, dr〉 = 0 and 〈Y, dr〉 = 0.
Away from the axis a smooth frame field {ek}k=1,2,3 satisfying hij ≡ h(ei, ej ) = −δij is thus
given by

e1 = 1

q
Y = 1

q
∂z, e2 = 1

n
Z = p

n
∂r = 1

q
∂r, e3 = 1

p
X = 1

p
∂φ. (3.4)
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In this frame the ε-tensor εijk = ea
ie

b
j e

b
kεabc satisfies εijk = ε[ijk], ε123 = −1. All formulae

will be given from now on in terms of the coordinates z, r , φ and the frame ek so that
i, j, k = 1, 2, 3 denote the frame indices. Moreover, for any function f (with the exception
of the function l for which l∗ has be introduced earlier) we set f∗ = f (i).

The unit vector field e1 extends smoothly to the axis and coincides there with the tangent
vector of the geodesic γ defining the axis. It holds

Y i = qδi
1, −qδ1

i = Yi = h(Y, ei) =
〈
f dw,

1

q
∂z

〉
δ1
i = f

q
w,zδ

1
i ,

which gives

q2 = −f w,z, (3.5)

whence

w,z < 0 if du(i) �= 0,
(3.6)

w,z → 0 at {w = w(i)} = {z = 0} if du(i) = 0.

Since, by (3.2),

w,zz(i) = 2(1 − ν)µq2 �= 0 if du(i) = 0, ν �= 1, (3.7)

it follows that f and w,z must satisfy sign(f ) = −sign(w,z) and change sign on {z = 0}.
The properties of X, Y and Z imply

l∗e2(q) = l∗
1

n
DZq = −p, (3.8)

e1(q) = 1

q
DY q = ω, e1(p) = 1

q
DY p = ωp

q
, (3.9)

whence

e1

(
p

q

)
= 0 so that ψ ≡ p

q
depends only on r. (3.10)

With the 1-forms

σ 1 = q dz, σ 2 = q dr, σ 3 = p dφ,

dual to the frame fields ek the metric can thus be written as

h = −δikσ
iσ k = −q2{dz2 + dr2 + ψ2 dφ2}. (3.11)

Using the invariance of the static field equations under rescalings of the metric with constant
conformal factors we assume in the following, without losing generality, that

q∗ = 1,

and thus also that γ = 1 in (2.8), (2.9).
Since q is independent of φ, X = ∂φ is clearly a Killing field. The form of the metric

implies that Y = ∂z is a conformal Killing field for h because it is a Killing field for the metric
in curly brackets conformal to h. The function ψ behaves at the axis as follows. Since X = 0
there, the fields ρk, uk, wk and ηk must all be tangent to the axis and thus ηk = εδk

1 with
|ε| = 1. This implies that ei(p) = − 1

p
XkDiXk → −εεi31 = εδ2

i as r → 0 along an integral
curve of e2. Because e2 is pointing away from the axis and p = 0 on the axis while p > 0
away from it we must have ε = 1. It follows that

ψ = r + O(r2) near the axis. (3.12)
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The Ricci tensor assumes by (2.19) the form

sij = ζpij with ζ∗ �= 0, pij = δ1
iδ

1
j + 1

3hij , (3.13)

where ζ denotes a smooth function. The expression of the dualized Coton tensor (cf [4])

Bij ≡ 1

2
Dk

(
Rli − 1

4
Rhli

)
εj

kl = 1

l∗
ζψδ1

(iδ
3
j), (3.14)

will be used in the discussion of the explicit solutions in section 5.
The connection coefficients in the frame (3.4), defined by Dek

ej = �k
l
j el and satisfying

�ijk = −�ikj with �ijk = �i
l
khlj , are given by

�l
i
j = 0 if l �= i �= j �= i, �1

1
3 = 0, �2

2
3 = 0,

(3.15)
�1

1
2 = A, �2

2
1 = B, �3

3
1 = C, �3

3
2 = D,

with

A = e2(q)

q
, B = e1(q)

q
, C = e1(p)

p
, D = e2(p)

p
.

The Bianchi identity for (3.13) thus reads in our frame

0 = Dkskj = −e1(ζ )δ1
j +

1

3
ej (ζ ) + ζ

(
�1

1
j − hik�i

1
kδ

1
j

)
= ζ

3

{
δ1

j e1(log(ζ 2p3q3)) + δ2
j e1(log(|ζ |q3))

}
.

In view of (3.10) this is equivalent to

ζq3 = ζ∗ with ζ∗ �= 0. (3.16)

The Ricci tensor is given by

Rjl = (−e1(B) − e2(A) − e1(C) − A2 − B2 − C2 − AD)δ1
j δ

1
l

+(−e1(B) − e2(A) − e2(D) − A2 − B2 − D2 − BC)δ2
j δ

2
l

+(−e2(D) − e1(C) − C2 − D2 − AD − BC)δ3
j δ

3
l + U

(
δ2
j δ

1
l + δ1

j δ
2
l

)
,

with U ≡ −e1(D) + AC − CD = −e2(C) + BD − CD.

4. The static field equations

With (3.10) and the form of the Ricci tensor above, we find (3.13) to be equivalent to

−2

3
ζ = 1

2
(−s11 + s22 + s33) = −e2(D) − D2 − BC = −e2(e2(p))

p
− e1(q)e1(q)

q2
, (4.1)

1

3
ζ = 1

2
(s11 − s22 + s33) = −e1(C) − C2 − AD = −e1(e1(q))

q
− e2(q)e2(p)

pq
, (4.2)

1

3
ζ = 1

2
(s11 + s22 − s33) = −e1(B) − e2(A) − A2 − B2 = −e1(e1(q))

q
− e2(e2(q))

q
, (4.3)

0 = U = −e2(C) + BD − CD = −e2

(
e1(q)

q

)
= 1

q

(
1

q

)
,zr

. (4.4)
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This hyperbolic equation is somewhat surprising in the present context. It does not fix the
solution but implies an important structural property, namely

1

q
= ξ(z) + λ(r), ξ∗ + λ∗ = 1, (4.5)

with certain functions ξ(z) and λ(r). Subtracting (4.3) from (4.2) gives with (3.10)

0 = e2(e2(q)) − e2(q)

(
e2(ψ)

ψ
+

e2(q)

q

)
= −

(
1

q

)
,rr

+

(
1

q

)
,r

ψ,r

ψ
,

and thus with (4.5)(
1

ψ

(
1

m

)
,r

)
,r

=
(

1

ψ
λ,r

)
,r

= 0.

This is essentially (3.8), which allows us, with (3.10), (4.5), to write

ψ = −l∗
e2(q)

q
= l∗λ,r . (4.6)

It follows that

pe2(e2(q)) = e2(q)e2(p), (4.7)

and equations (4.2) and (4.3) are seen to be identical. We will ensure later that (4.1)–(4.3)
will be satisfied.

The relations 〈X, dw〉 = 0, 〈Z, dw〉 = 0 imply that w = w(z) and thus

u = 1 − w(z)(1 − ρ). (4.8)

With (2.17) and the last of equations (3.5) we get q = (1 − ρ)
√

− l
l∗w,z

. Because l = l(w) this

can be written with functions Q = Q(z) and τ = τ(z) satisfying Q = ξ − τ in the form

ρ = 1 − Qq = 1 − (ξ − τ)q = τ + λ

ξ + λ
. (4.9)

We now study (2.6). The relations q,φ = 0 and (4.4) imply that �ij = 0 for i �= j . The
equations which remain to be considered read

0 = 3�jj = 3ej (ej (ρ)) − e1(e1(ρ)) − e2(e2(ρ)) + 3ρ(1 − ρ)sjj

− (
3�j

1
j − �2

1
2 − �3

1
3
)
e1(ρ) +

(
�1

2
1 + �3

2
3 − 3�j

2
j

)
e2(ρ).

Observing here the connection coefficients given above, (4.7), and the first of expressions
(4.9), which implies

e1(ρ) = −Q,z − Qe1(q), e1(e1(ρ)) = −e1(Q,z) − e1(Q)e1(q) − Qe1(e1(q)),

e2(ρ) = −Qe2(q), e2(e2(ρ)) = −Qe2(e2(q)),

whence by (4.7) also
e2(p)

p
e2(ρ) = e2(e2(ρ)),

one finds that �11 = −2�22 = −2�33 with

3�33 = −e1(e1(ρ)) + e2(e2(ρ)) +
e1(q)

q
e1(ρ) − e2(q)

q
e2(ρ) − ρ(1 − ρ)ζ

= 1

q
Q,zz + Q

(
e1(e1(q)) − e1(q)

q
e1(q) − e2(e2(q)) +

e2(q)

q
e2(q)

)

− (1 − Qq)Qq
ζ∗
q3

= −ξτ,zz + τξ,zz − ζ∗ξ 2τ + ζ∗ξτ 2

+ λ(ξ,zz − τ,zz − ζ∗ξ 2 + ζ∗τ 2) + (ξ − τ)(λ,rr − ζ∗λ2),
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where the second of the representations (4.9) has been used in the last step. Since z and r are
independent variables, the equation �33 = 0 can hold with non-constant functions ξ , τ , Q, λ

if and only if there exist constants κ , κ1 so that

ξ,zz − ζ∗ξ 2 − κξ = κ1, (4.10)

τ,zz − ζ∗τ 2 − κτ = κ1, (4.11)

λ,rr − ζ∗λ2 + κλ = κ1. (4.12)

The initial data for the functions ξ , τ and λ, and the values of the constants κ , κ1, l∗ are
determined as follows. The functions q = 1

ξ+λ
and ρ = 1− ξ−τ

ξ+λ
are not affected by transitions

ξ → ξ −a, τ → τ −a, λ → λ+a with a ∈ R. The new fields will again satisfy the equations
above (and below) if the constants κ , κ1 (and the constants of integrations entering the first
integrals below) are transformed appropriately. This leaves the freedom to specify ξ∗. Since
nothing is gained by keeping this freedom while the following choice renders the equations in
a concise form, we set

ξ∗ = 1 and thus λ∗ = 0. (4.13)

By (3.12), (4.6) we must assume

(λ,r )∗ = 0, (λ,rr )∗ = 1/l∗. (4.14)

Conditions (2.3) are then satisfied iff

τ∗ = 0, (τ,z)∗ = 0, (τ,zz)∗ = (λrr )∗ = 2µ > 0. (4.15)

These relations imply with (4.11) resp. (4.12)

l∗ = 1/(2µ), κ1 = 2µ. (4.16)

Since (4.15) imply that τ,z �≡ 0, λ,r �≡ 0 we get the first integrals

λ2
,r − 2

3ζ∗λ3 + κλ2 − 4µλ = 0, (4.17)

τ 2
,z − 2

3ζ∗τ 3 − κτ 2 − 4µτ = 0. (4.18)

If ξ,z �≡ 0, we get the further first integral

ξ 2
,z − 2

3ζ∗ξ 3 − κξ 2 − 4µξ = κ2. (4.19)

The value of κ2 is determined as follows. With (4.6) and the equations above a direct calculation
gives

e2(e2(p))

p
+

e1(q)e1(q)

q2
= 2

3
ζ + (εξ − 1)

(
2

3
ζ∗ξ 3 + κξ 2 + 4µξ

)
+ εξκ2,

e1(e1(q))

q
+

e2(p)e2(q)

pq
= −1

3
ζ + (εξ − 1)

(
2

3
ζ∗ξ 3 + κξ 2 + 4µξ

)
+ εξκ2,

where εξ = 0 if ξ = const. = 1 and εξ = 1 otherwise. To satisfy equations (4.1), (4.2),
whence also (4.3), and to be able to solve (4.10) and (4.19), we have to assume

κ2 = 0, 2
3ζ∗ + κ + 4µ � 0 if ξ,z �≡ 0, (4.20)

ζ∗ + κ + 2µ = 0, 2
3ζ∗ + κ + 4µ = 0 if ξ ≡ 1. (4.21)

As seen in the following, equations (4.17)–(4.19) can be explicitly integrated in terms
of elliptic and, in a limiting case, of elementary functions. Given the solutions λ, τ and ξ

satisfying the above initial conditions, we can determine q, ψ and ρ by (4.5), (4.6), (4.9), and
obtain with µ = m2/4 the function v, the metric h and the metric h̃ by (3.11) and (2.4). These
provide us with a 3-parameter family of static vacuum data.

9
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4.1. The 1-parameter classes of conformal data

We study now whether equations (2.9)–(2.11) can be solved in non-trivial ways on the vacuum
data obtained above. With (4.8) and (4.9) we can write

u = 1 + χq with χ(z) = w(z)(τ (z) − ξ(z)). (4.22)

A direct calculation involving (4.5) and equations (4.10)–(4.12), (4.17)–(4.19) gives, whether
ξ,z vanishes identically or not,

	jk = 1

q
{(χ + ξ),zz − ζ∗(χ + ξ)2 − κ(χ + ξ) − 2µ}pjk, (4.23)

	 = −2

3
(χ + ξ + λ){(χ + ξ),zz − ζ∗(χ + ξ)2 − κ(χ + ξ) − 2µ}

+ (χ + ξ)2
,z − 2

3
ζ∗(χ + ξ)3 − κ(χ + ξ)2 − 4µ(χ + ξ). (4.24)

The non-trivial solutions to (2.9)–(2.11) are thus given by (4.22) with χ = χ̄ − ξ where ξ is
given by the background and χ̄ solves

χ̄,zz − ζ∗χ̄2 − κχ̄ = 2µ, χ̄∗ = ν, (4.25)

χ̄2
,z − 2

3ζ∗χ̄3 − κχ̄2 − 4µχ̄ = 0, (4.26)

with a given constant ν > 0.
The set of ν > 0 satisfying 2

3ζ∗ν3 + κν2 + 4µν � 0 contains besides ν = 1 certainly all
sufficiently small values ν > 0 because µ > 0. For ν in this set we use (4.26) to determine
(χ̄,z)∗ (with some choice of the sign). This determines a unique solution χ̄ to (4.25). If
χ̄,z �≡ 0, the third equation represents a first integral. If χ̄ = const., we must have had
(χ̄,z)∗ = 0 and the third equation will be satisfied because it holds at z = 0.

It can be seen now that the basic properties of the metric coefficients and of the function
ρ are preserved under the rescalings with the conformal factors u = uν . Denoting the solution
χ̄ satisfying χ̄∗ = ν by χ̄ν , the transformed fields can be written as

hν =
(

ν

uν

)2

h = −q2
ν (dz2 + dr2 + ψ2

ν dφ2), ρν = 1

uν

ρ = τν + λν

ξν + λν

,

with

qν = ν

uν

q = 1

ξν + λν

, ψν = ψ,

where the functions

ξν = 1

ν
χ̄, τν = 1

ν
τ, λν = 1

ν
λ

satisfy the initial conditions and the equations above with the constants

ζ∗ν = ζ∗ν, κν = κ, µν = µ/ν, l∗ν = 1/(2µν) = νl∗. (4.27)

The first of these relations reflects (2.12), the third one has been discussed in [4], and the
last one justifies with (4.6) that we set ψν = ψ . The corresponding four-dimensional static
vacuum solutions are given by

g̃ν =
(

1 − √
ρν

1 +
√

ρν

)2

dt2 − µ2(1 +
√

ρν)
4

ρ2
ν

q2
ν (dz2 + dr2 + ψ2 dφ2), vν = 1 − √

ρν

1 +
√

ρν

.

10
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To understand the effect of choosing the sign of (χ̄,z)∗ in the above discussion, we note
that the function τ is an even function of z, because the ODE of second order and the initial data
for τ are invariant under the coordinate reflection z → −z. The transformed fields obtained
for different signs of (χ̄,z)∗ are thus isometric because they are related by this reflection. It
follows that up to this reflection the rescaling reproduces the original metric if ν = 1.

The borderline cases in which the quadrupole moment m
2 sjk(i) does not vanish but the

differential of the conformal factor u vanishes at i represented singular cases and remained
untouched in [4]. In the present setting they are easy to discuss and it turns out that different
situations can occur. By (4.22) the condition Dku(i) = 0 is equivalent to (χ̄,z)∗ = ν(ξ,z)∗. If
ξ ≡ 1, this requirement implies that (χ̄,z)∗ = 0 and (4.21) implies ζ∗ = 6µ and κ = −8µ.
Equation (4.26) can then only be satisfied at z = 0 in the trivial case ν = 1. If ξ,z �≡ 0
the requirement (χ̄,z)∗ = ν(ξ,z)∗ is seen with equations (4.19) and (4.26) to be equivalent to
ζ∗ν = 6µ. This excludes the case where ζ∗ < 0. Given ζ∗, κ , µ satisfying the inequality
in (4.20) and 6µ �= ζ∗ > 0, the condition will be met non-trivially with ν = 6µ/ζ∗ and the
appropriate choice of sign in solving (4.26). Because the condition will not be met with the
‘inappropriate’ sign it follows that up to isometries the solutions found in this paper agree with
those discussed in [4].

4.1.1. The independence and interpretation of the parameters. Any static initial data set is
characterized near spacelike infinity uniquely (up to rotations of the frame at i) by its mass
and null data [3], which are given in the present gauge by the trace-free symmetric parts of
the covariant derivatives of skl at i. While the latter provide in general 2p + 5 independent
coefficients at order p, in the case of axi-symmetry there is only one coefficient free at each
order. In the present case we have the mass m, and the first two null data are given by
skl(i) = ζ∗pkl (apart from a factor the quadrupole moment, the dipole moment vanishes in the
given conformal gauge) and

(D(isjk))(i) = ζ∗

√
2

3
ζ∗ + κ + 4µ

{
2δ1

iδ
1
j δ

1
k − 3δ1

(iδ
2
j δ

2
k) − 3δ1

(iδ
3
j δ

3
k)

}
,

(essentially the octopole moment). While µ > 0, ζ∗ �= 0, and κ are restricted by inequalities,
the solutions are genuinely dependent on these parameters. This 3-parameter set decomposes
into 1-parameter classes of data which are conformally related to each other by the conformal
factors uν . The relations (4.27) show that the rescalings considered above yield in general
metrics which are not isometric to the original ones. The examples discussed below show that
the rescaled and unrescaled spaces can differ substantially.

5. Some explicit solutions

In the following we integrate some of the solutions, and discuss some of their properties.

The case ζ∗ > 0, 9κ2 = 96µζ∗. The solutions are obtained in terms of elementary functions.
Denoting derivatives by a dot, equations (4.17)–(4.19), (4.26) read

ẋ2 = 2

3
ζ∗x(x + δA)2, A = 3|κ|/(4ζ∗) =

√
6µ/ζ∗, δ = εsign(κ), (5.1)

where

ε = 1 if x = ξ, τ or χ̄ , ε = −1 if x = λ. (5.2)

With y = √
x/A one obtains (with a choice of sign) the easily integrated equation

ẏ = c(y2 + δ) with c =
√

ζ∗A/6 =
√

|κ|/8.

11
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We only consider the case κ < 0. Then

ξ = A

(√
A tanh(cz) − 1

tanh(cz) − √
A

)2

, τ = A tanh2(cz), λ = A tan2(cr),

χ̄ν = A

(√
A tanh(cz) − √

ν√
ν tanh(cz) − √

A

)2

.

There is no restriction on ν. The metrics hν = −q2
ν (dz2 + dr2 +ψ2 dφ2) in the conformal class

are given by

qν = ν

A
(√

A tanh(cz)−√
ν√

ν tanh(cz)−√
A

)2
+ A tan2(cr)

, ψ = 1

c

sin(cr)

cos3(cr)
,

while the metrics h̃ν = �−2
ν hν and the potentials vν can be calculated with

ρν = tanh2(cz) + tan2(cr)(√
A tanh(cz)−√

ν√
ν tanh(cz)−√

A

)2
+ tan2(cr)

.

With the particular choice ν = A the functions qν and ρν reduce to

q = qA = cos2(cr), ρ = ρA = 1 − cos2(cr)

cosh2(cz)
.

This is the one and only case in which ξ,z ≡ 0. It follows that Y is a Killing field for h ≡ hA

(but not for h̃ ≡ h̃A or for hν, ν �= A).
The metric h is smooth and non-degenerate on M = {z ∈ R, 0 � cr < π/2}, the function

ρ is smooth on M, vanishes only at the point i given by z = 0, r = 0, and ρ → 1 as cr → π/2.
The fields v, � are smooth and positive and the ‘physical’ 3-metric h̃ = �−2h is smooth and
non-degenerate on M\{i}. But

q → 0, ψ → ∞, v|{z=0} → 0 as cr → π/2,

and the invariant |B[h]|2h ≡ Bij [h]Bij [h] = ζ 2ψ2/(2l2
∗), obtained from (3.14), is strongly

divergent as cr → π/2. Since � assumes a finite positive limit as cr → π/2 and |B[h]|h is a
conformal density, it follows that |B[h̃]|h̃ also diverges as cr → π/2.

The behaviour of hν, ν �= A, is not much different as cr → π/2. The regions where
z → ±∞ do not define asymptotically flat ends for any ν > 0 because outside the axis {r = 0},
along which Bij [h̃ν] = 0, the invariant |B[h̃ν]|h̃ν

approaches positive values as z → ±∞.
For ν > A, consider the hypersurface H = {z = ẑ} with tanh(cẑ) = √

A/ν. The fields
qν and ρν vanish on H, the function vν assumes the value 1 and the tensor fields sab[hν] and
Bij [hν] diverge there. The fields h̃ν and vν extend, however, analytically across H and vν

grows unboundedly as z → ∞.
The case ν < A is more interesting. The point iν with coordinates r = 0 and z = zν with

tanh(czν) = √
ν/A is of particular interest because χ̄(iν) = 0. It follows

qν → ∞, ρν → ∞, vν → −1,

�ν → 1/µν as (z, r) → (zν, 0),

so that neither hν nor h̃ν extends smoothly to iν . Rescaling h̃ν with the function

�̄ν = ((1 + vν)/mν)
2 = (

√
µν(1 +

√
ρν))

−2,

we get the metric

�̄2
ν h̃ν = −

(
ν

tanh2(cz) + tan2(cr)

)2

{dz2 + dr2 + ψ2 dφ2},

12
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which extends smoothly to iν . The function �̄ν vanishes quadratically at iν but its Hessian
with respect to the metric in curly brackets does not vanish and it is in fact proportional to
that metric. It follows that iν represents a further spacelike infinity for the metric h̃ν . On the
hypersurfaces H± = {z = z±}, tanh(cz±) = √

A/ν ± √
A/ν − 1, holds v = 0 and dv �= 0.

Since then Hess hν
v = 0 on H± by the static field equations, it follows that these hypersurfaces

are totally geodesic. Since 0 < z− < zν < z+, they separate the infinities i and iν . We note
that iν and H± are shifted to ‘z = ∞’ as ν → A and do not exist for h̃A while they are shifted
to i and {z = 0} respectively as ν → 0.

It follows in particular that the manifolds underlying the analytic extensions of the rescaled
and the original solutions need not be diffeomorphic.

The case ζ∗ > 0, 9κ2 > 96µζ∗. In the following we shall need results on Jacobi’s elliptic
functions sn(z, k), cn(z, k), dn(z, k) with (fixed) ‘modulus’ k and ‘complementary modulus’
k′, satisfying k2 + k′2 = 1 and 0 � k < 1, 0 < k′ � 1. Being considered as functions on the
real line the functions above have periods 4K, 4K and 2K respectively, where K = K(k) > 0
is given by the ‘complete elliptic integral of the first kind’. The reader is referred to [5] for the
properties of elliptic functions used in the following.

We choose now a = R + iI ∈ C with real numbers R = Rε and I = Iε such that
a2 = −(3εκ − i

√
96µζ∗ − 9κ2)/(4ζ∗). Denoting derivatives by a dot, the independent

variable by s, and assuming again (5.2), equations (4.17)–(4.19) and (4.26) then read

ẋ2 = 2
3ζ∗x(x − a2)(x − ā2).

It follows that we must have x � 0. With y = √
x and a choice of sign the equations read

ẏ =
√

ζ∗/6
√

S+S− with

S± = M ± R

2M
(y + M)2 +

M ∓ R

2M
(y − M)2, M =

√
R2 + I 2.

Setting κ = (
√

ζ∗/6(M + R))−1, we find that the function

f (s) =
√

M + R

M − R

y(κs) − M

y(κs) + M
,

satisfies

ḟ =
√

(1 + k′2f 2)(1 + f 2) with k′ = k′
ε = M − R

M + R
.

This is the equation satisfied by Jacobi’s elliptic function

sc(u, k) = sn(u, k)

cn(u, k)
with modulus k = kε = 2

√
MR

M + R
,

so that f (s) = sc(±s + s0, k) with some constant s0. From this one gets

x(s) = M2

⎛
⎝ 1 +

√
M−R
M+R

sc(
√

ζ∗/6(M + R)(±s + s0), k)

1 −
√

M−R
M+R

sc(
√

ζ∗/6(M + R)(±s + s0), k)

⎞
⎠

2

.

Adjusting the constant s0 so as to satisfy the respective initial conditions, the functions ξ , τ , λ

and χ̄ν (with no restriction on ν) and thus the functions ψ , qν, ρν and the field hν, h̃ν, vν can be
determined. It turns out that these solutions also have curvature singularities. The properties
of these solutions will not be analysed any further here. The case ζ∗ > 0, 9κ2 < 96µζ∗ can
be discussed similarly.

The case ζ∗ < 0. This case is somewhat more interesting because the curvature of the
solutions remains bounded. We write equations (4.17)–(4.19) and (4.26) in the form

ẋ2 = − 2
3ζ∗x(x + a2)(b2 − x), (5.3)

13
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with real constants a, b > 0 satisfying

a2 = −3εκ +
√

9κ2 − 96µζ∗
−4ζ∗

, b2 = 3εκ +
√

9κ2 − 96µζ∗
−4ζ∗

,

where again (5.2) is assumed. The right-hand side of (5.1) is non-negative and consistent with
the initial conditions only if b � 1, which is equivalent to the inequality required in (4.20),
and if x � 0. Assuming this, we set

c =
√

−ζ∗/6, e =
√

a2 + b2

ab
=

(
3κ2 − 32µζ∗

48µ2

)1/4

, so that abc = √
µ,

kε = b√
a2 + b2

, k′
ε = a√

a2 + b2
, k ≡ k+ = k′

−, k′ ≡ k− = k′
+.

Consider the cases x = ξ, τorχ̄ . If the function f satisfies f (
√

µe(z + z0)) = e
√

x(z)

with a number z0 to be determined later, equation (5.1) transforms into

ḟ =
√

(1 + k2f 2)(1 − k′2f 2).

This is the differential equation satisfied by Jacobi’s elliptic function

sd(z, k) = sn(z, k)

dn(z, k)
.

It is analytic on the real line, has period 4K , and satisfies sd(z + 2K(k), k) = −sd(z, k).
Observing the initial conditions, it follows that

τ = 1

e2
sd2(

√
µez, k), χ̄ν = 1

e2
sd2(

√
µe(z + zν), k).

The numbers zν are chosen so that sd(
√

µezν, k) = √
νe, where it is assumed that

1, ν ∈ ]0, b2], zν is a continuous function of ν, and, for definiteness, that 0 < zν � K/(
√

µe).
The numbers are then determined uniquely because (4.20) ensures that b � 1 and sd is
strictly increasing on the interval [0,K(k)] with minimum sd(0, k) = 0 and maximum
sd(K(k), k) = 1/k′ = be. We note that zν is a strictly increasing function of ν with zν → 0
as ν → 0 and zb2 = K/(

√
µe). The function ξ is given by χ̄1. In a similar way one gets

λ = 1

e2
sd2(

√
µer, k′).

The metrics hν, h̃ν and the function vν are obtained from

qν = νe2

sd2(
√

µe(z + zν), k) + sd2(
√

µer, k′)
,

ψ = l∗λ,r = 1√
µe

sn(
√

µer, k′)cn(
√

µer, k′)
dn3(

√
µer, k′)

,

ρν = sd2(
√

µez, k) + sd2(
√

µer, k′)
sd2(

√
µe(z + zν), k) + sd2(

√
µer, k′)

,

which reduce for ν = 1 to the functions q, ψ , ρ defining h, h̃ and v.
Some properties of these solutions
The functions ξ , τ , χ̄ν , λ, qν , ψ and ρν are periodic in z and r with periods 2K(k)/(

√
µe)

and 2K(k′)/(
√

µe), respectively. Since ψ = 0 at r = 2K(k′)/(
√

µe), the coordinate circle
r = 2K(k′)/(

√
µe) for given z must be identified to a point and r be restricted to the range

0 � r � 2K(k′)/(
√

µe). The resulting manifold is diffeomeorphic to R × S2.

14
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On the curve r = 2K(k′)/(
√

µe) so obtained the vector field X vanishes and the
curve represents a second axis for the flow of X with neighbourhoods isometric to suitable
neighbourhoods of the axis through i. The periodicity in r implies that ρν = 0 at the point
i� on this axis at which z = 0. It thus represents another spacelike infinity. The periodicity
in z implies that ρν = 0 at the points with z = 2K(k)j/(

√
µe), j ∈ Z, and r = 0

or r = 2K(k′)/(
√

µe). They represent spacelike infinities whose coordinate location is
independent of ν.

At the points with z = 2K(k)j/(
√

µe) − zν, j ∈ Z , and r = 0 or r = 2K(k′)/(
√

µe)

the functions qν and ρν have poles. The conformal factor �ν has positive limits there while
vν → −1. If the conformal factor �̄ν = ((1 + vν)/mν)

2 = µ−1
ν (1 +

√
ρν)

−2, which vanishes
quadratically at these points, is used to rescale h̃ν , we get the metric �̄2

ν h̃ν = ρ−2
ν hν , which

extends smoothly to these points. These points thus represent further spatial infinities, whose
location depends on ν.

The sets Hj = {z = Kj/(
√

µe) − zν/2}, defined by the equations sd(
√

µe(z + zν), k) =
±sd(

√
µez, k), separate the domains of positive and negative vν . Since vν = 0, dvν �= 0 on

the hypersurfaces Hj , they are totally geodesic. The hypersurfaces closest to i, i� are H0 and
H1. No infinities except i and i� are lying in between H0 and H1. The poles of qν and ρν

closest to i, i� respectively have coordinates z− = −zν and z+ = 2K(k)/(
√

µe) − zν .
As v → b2 the sets H0,H1 approach the sets {z = ∓K(k)/(2

√
µe)}, respectively. In the

limit they are located symmetrically with respect to i, i� and so are the poles at z = z∓. If
ν → 0, the set H1 approaches {z = K(k)/(

√
µe)} and z+ → 2K(k)/(

√
µe). The set H0 and

the poles at z = z− approach, however, the infinities i and i�. It is clear that there does not
exist a regular limit.

Unfortunately, the apparent regularity of the solution is spoiled by a further identification
which needs to be made. The function ψ also vanishes at r = K(k′)/(

√
µe). For a

given value of z the coordinate circle r = K(k′)/(
√

µe) thus represents metrically one
point. If the corresponding identification resulted in a smooth Riemannian metric on
M = {0 � r � K(k′)/(

√
µe)}, the set {r = K(k′)/(

√
µe)} would represent another axis for

the flow of X. The geodesics starting at a point x◦ of this axis orthogonally to it in the direction
of decreasing r would then generate a set �◦ which represented a smooth 2-surface ruled by
the circles tangent to X. Let x• be a point on one of these geodesics and denote by s• the length
of the geodesic arc connecting x◦ with x•. The length of the circle through x• generated by
X = ∂φ is then given by L• = ∫ √

h(X,X) dφ = 2πp(x•) and thus

lim
x•→x◦

L•/s• = −2πe2(p)|x◦ = −2π∂rψ(x◦) = 2πsd2(K(k′), k′) = 2π/k2 > 2π.

It follows that �◦ has a conical singularity at x◦ so that the space (h,M) violates the requirement
of elementary flatness along the line {r = K(k′)/(

√
µe)}.

6. Concluding remarks

It has been shown in [4] that the relation between the set of asymptotically flat static vacuum
data and the set of their conformal classes is not bijective. There exists a 3-parameter family of
conformally non-flat data which admit non-trivial rescalings. The present paper shows that the
family discussed in [4] in fact exhausts the set of such data, and it provides the desired complete
description of the conformal classes. They either consist of a point or of a 1-parameter family
of static vacuum data.

That the data which do admit non-trivial rescalings as well as the corresponding vacuum
spacetimes can be calculated explicitly is an unexpected bonus. It allows us to conveniently
study the behaviour of the data and the effects of the conformal rescalings also on regions
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beyond immediate neighbourhoods of spacelike infinity. It turns out that most of the data have
several asymptotically flat ends. These can be shifted relative to each other or can even be
generated by conformal rescalings. The different ends are separated from each other by sets on
which the potential v vanishes. i.e. by totally geodesic hypersurfaces. Since the Schwarzschild
solution has been excluded from our discussion it is not surprising that neither of these sets
forms a smooth compact hypersurface (cf [1]), they approach curvature singularities if ζ∗ > 0
and run into conical singularities if ζ∗ < 0.
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