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O’ mighty ocean!

Thou singeth tale of tangled waves

Waves thee maketh of all scales

Thou maketh wave of snail’s pace

Thou maketh wave of rapid pace

Speaketh but, O’ mighty ocean!

In thy wavy world of fast and slow

How doth thee split up fast from slow?





Zusammenfassung

Diese Arbeit zielt darauf ab, interne Schwerewellen von balancierten Strömungen zu tren-
nen, um ihre Rolle für den Energietransfer zu kleineren Skalen zu untersuchen. Dafür
werden zwei konzeptionell verschiedene diagnostische Methoden verwendet: eine modale
Zerlegung nach Machenhauer (1977) sowie eine neuartige Methode, genannt quasi-geostro-
phischer Filter. Weiterhin untersucht die Arbeit mittels eines idealisierten numerischen
Modells für baroklin-instabile Strömung in verschiedenen dynamischen Szenarien sowohl
die Stärke der Erzeugung interner Schwerewellen als auch ihre Rolle für die Energiedissi-
pation auf kleinen Skalen.

Interne Schwerewellen (ISW) werden zunächst mittels der von Machenhauer (1977)
vorgeschlagenen nichtlinearen Initialisationstechnik diagnostiziert und in verschiedenen dy-
namischen Regimen, die von ageostrophisch bis quasi-geostrophisch reichen, untersucht.
Aufgrund der komplexen Kopplung zwischen ISW und balancierten Strömungen, beson-
ders im ageostrophischen Regime, eignen sich Frequenz-Wellenzahl-Spektren nicht für den
präzisen Nachweis von ISW-Signalen. Um diese Komplikation zu umgehen, wird das
gesamte Strömungsfeld mithilfe linearer sowie nichtlinearer modaler Zerlegung in seine
balancierten und unbalancierten Komponenten aufgeteilt. Die lineare Zerlegung funk-
tioniert relativ gut, bezieht aber the Nichtlinearität der Strömung nicht mit ein, was zu
Ungenauigkeiten führt. Diese können jedoch in der nichtlinearen Zerlegung basierend auf
Machenhauers Ansatz, die sich als eine effizientere und robustere diagnostische Methode
zum Nachweis von ISW herausstellt, vermieden werden. Eine Untersuchung der diagnos-
tizierten ISW in verschiedenen dynamischen Regimes zeigt eine deutlich gesteigerte Ak-
tivität der Wellen im ageostrophischen Regime im Vergleich zum Quasi-geostrophischen.
Außerdem dissipieren ISW vorzugsweise durch kleinskalige Dissipation und nehmen daher
eine bedeutende Rolle im ozeanischen Energietransfer zu kleineren Skalen ein.

Eine neuartige Gleichgewichtsmethode, quasi-geostrophischer (QG) Filter genannt, wird
zur Diagnose von ISW eingeführt. Im Gegensatz zu früheren auf Inversion der poten-
tiellen Wirbelstärke beruhenden Methoden ermöglicht diese zusätzlich die Bestimmung
ageostrophischer horizontaler Geschwindigkeiten. Der QG-Filter ist in einer auf dem
diskreten Gitter konsistenten Version implementiert und kann sowohl als Gleichgewicht-
sprozedur als auch als diagnostisches Werkzeug verwendet werden. Die Ergebnisse zeigen,
dass der QG-Filter eine effiziente Methode zum Erreichen des Gleichgewichts ist, allerdings
schneidet eine umformulierte diskrete Version des Machenhauer’schen Ansatzes noch besser
ab. Ferner werden die mittels QG-Filter identifizierten ISW genutzt, um die Erzeugung von
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Schwerewellen im Ozean aus balancierten Strömungen durch verschiedene Mechanismen zu
untersuchen: spontane Emission, konvektive Instabilität durch Frontogenese und laterale
Grenzschicht-Instabilität. Dabei ergibt sich im Fall von konvektiver Instabilität eine höhere
ISW-Aktivität als bei den anderen beiden Prozessen. Die Ergebnisse etablieren ISW als
eine potentielle Energiesenke von balancierten Strömungen, was wesentliche Auswirkungen
auf den Energiehaushalt des Ozeans hat.
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Abstract

This thesis aims to disentangle internal gravity waves from balanced flow to investigate
their role in the downscale transfer of energy in the ocean by using two conceptually
different diagnostic procedures—a modal decomposition based on Machenhauer (1977)
and a novel balance procedure called the quasi-geostrophic filter. Furthermore, using an
idealized numerical model for baroclinically unstable flow in various dynamical scenarios,
this thesis investigates both the strength of internal gravity wave generation and its role
in the energy dissipation at small scales.

Internal gravity waves (IGWs) are first diagnosed using the non-linear initialization
technique proposed by Machenhauer (1977) and are assessed in different dynamical regimes
ranging from ageostrophic to quasi-geostrophic. The complex coupling between IGWs and
balanced flow, in particular for an ageostrophic regime, renders frequency-wavenumber
spectra inefficient for a precise detection of IGW signals. To tackle this complexity the
full flow field is decomposed into its balanced and unbalanced components using linear
and non-linear modal decompositions. The linear decomposition performs reasonably well
but does not include the non-linearity of the flow leading to discrepancies. To account
for this, a non-linear decomposition based on Machenhauer’s technique is applied which
turns out to be more efficient and a robust diagnostic tool to obtain IGWs. An assessment
of the diagnosed IGWs in different dynamical regimes reveals that IGW activity is much
higher in the ageostrophic than the quasi-geostrophic regime. Furthermore, IGWs dissipate
predominantly through small-scale dissipation, and therefore play a significant role in the
downscale transfer of energy in the ocean.

A new balance procedure called the quasi-geostrophic (QG) filter is introduced to diag-
nose IGWs, which additionally provides the ageostrophic horizontal velocities unavailable
from previous potential vorticity inversion methods. The QG filter is implemented in a
version consistent at the discrete grid level and can be used as a balance procedure or as
a diagnostic tool. Results show that the QG filter is an efficient tool to obtain balance,
however a reformulated discrete version of the Machenhauer’s technique performs even
better. Further, IGWs diagnosed from the QG filter are used to examine IGW emission
from balanced flow in the ocean by different mechanisms: spontaneous emission, convective
instability by frontogenesis, and lateral boundary instability, where convective instability
shows more IGW activity than the other two processes. The results establish IGWs as a
potential sink of balanced flow energy which has key implications for the ocean’s energy
budget.
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Chapter 1

Introduction

"Dead water" is a phenomenon wherein the slow sailing vessels refuse to move forward
owing to a mysterious resistance from the water below. Ancient mariners blamed the be-
witched drowned or remora, the suckerfish, for holding their ships on the water and deceived
by the water’s calm demeanour at the surface, they called it ‘dead water’ (Nansen, 1897).
With time, the expanding horizons of our cognizance and deeper dives into the mysteries
of ocean dynamics have been revealing phenomena of boundless spectacles, therewith that
cursed phenomenon has been given a lively new term: internal gravity waves.

Internal gravity waves (IGWs) are omnipresent in the Earth’s atmosphere and ocean.
These waves occur naturally and profoundly impact the atmospheric and oceanic flows
as well as the Earth’s climate. Contrary to IGWs which evolve at fast timescales, the
motions which dictate the atmospheric and oceanic dynamics —and consequently weather
and climatic patterns— manifest themselves at a lot longer timescales and evolve at a much
slower pace, such as the mesoscale motions. Mesoscale motions and IGWs are the respective
examples of balanced and unbalanced components of the geophysical flows. The definition
of balanced and unbalanced is tricky as well as crucial for a precise depiction of the flow
dynamics and is specified in Section 1.1. These balanced and unbalanced components
interact and exchange momentum and hence influence the energy and momentum cycle.

But the tale has just begun, and hither comes the twist: the unbalanced motions are
interlinked with the balanced motions in an intricate fashion such that their segregation
becomes a challenging task. This intricacy is an obstacle in understanding the interaction
mechanisms between these motions and their sources and sinks of energy, which have
potential implications for the energy cycle of the atmospheric and oceanic flows and hence
their overall dynamics. It is therefore of prime importance to disentangle the unbalanced

1



Chapter 1. Introduction

motions from the balanced ones to get a picture of the underlying dynamics and energetics
of the geophysical flows.

The commonly used methods to separate balanced and unbalanced dynamics assign
the extracted signals to unbalanced dynamics imprecisely leading to an ambiguous inter-
pretation of the unbalanced dynamics. An inconsistent interpretation can have misleading
consequences for the parameterization of unbalanced dynamics such as IGWs which are
often parameterized in the models. This thesis aims at a more precise separation of the
unbalanced and balanced motions by implementing two distinct procedures with dual ca-
pabilities: as a diagnostic tool to diagnose IGWs as well as a balance procedure to eliminate
unbalanced IGW dynamics. An efficient extraction of IGWs is important in the under-
standing of the energy transfers between balanced and unbalanced dynamics, such as the
downscale energy transfer from balanced motions, which is a key energy pathway of the
ocean’s energy cycle.

This thesis addresses the disentangling of the IGWs from balanced flows in idealized
stratified and rotating flows and investigates the role of IGWs in the downscale transfer
of energy. This separation is achieved by applying two different procedures: first, a non-
linear initialization technique that makes adjustments to initial conditions such that the
generation of unbalanced motions is minimized; second, a novel balance procedure which
constrains the flow dynamics under suitable approximations and as a result filters out
unbalanced motions by construction. Both the procedures are designed to extract balanced
motions from the flow, but they can also be employed as diagnostic tools to obtain the
unbalanced IGW signals. The extraction of IGWs using these two diagnostic tools forms
the theme of this thesis. Further, the results are evaluated in different dynamical scenarios
which portray the interactions between unbalanced and balanced dynamics. For this,
the IGW activity is assessed in different dynamical regimes ranging from ageostrophic to
quasi-geostrophic (Chapter 2), as well as in different mechanisms of IGW emission in the
ocean such as spontaneous emission, convective instability, and lateral boundary instability
(Chapter 3).

This chapter unfolds with a brief characterization of the unbalanced and balanced dy-
namics. Then comes a description of the generation, dissipation, and the role of unbalanced
and balanced motions in the ocean, such as IGWs and mesoscale eddies respectively. Next,
specific research questions addressed in this thesis in relation to the downscale energy
transfer in the ocean are laid out. The last section of this chapter contains an outline of
the forthcoming chapters of the thesis.
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1.1. Balanced and unbalanced dynamics

1.1 Balanced and unbalanced dynamics

A stratified fluid, i.e. a fluid in which density varies with depth along the axis of gravity,
when subject to rotation generates a variety of flow phenomena of geophysical interest.
Geophysical flows, such as the Earth’s ocean and atmosphere, are examples of such a
stratified rotating system. In the ocean and atmosphere, their own stratification and the
Earth’s rotation shape the dynamics of the flow and generate motions of varied scales
which primarily determine the weather and climate of the Earth. The characteristics of
these motions can thus be described by the associated rotation and stratification which are
measured respectively by the Coriolis frequency f and the Brunt-Väisälä (or stratification)
frequency N :

f = 2Ω sinϕ , N =
[
− g

ρ0

dρ

dz

]1/2

(1.1)

where, Ω is the rotation rate of the Earth, ϕ is the geographic latitude, g is acceleration
due to gravity, ρ0 is a reference or mean value of density, and dρ/dz indicates density (ρ)
variation with depth z. The time period associated with f is called inertial period and that
with N is called stability period. The stability period 2π/N ranges between 20 minutes in
the upper ocean to about a few hours in the ocean interior and the inertial period 2π/f is
about 12 hours, changing with the geographic latitude as in Eq. (1.1) (e.g. Olbers et al.,
2012).

The motions which are strongly influenced by rotation and stratification are approxi-
mately ‘balanced’ in the sense that they exhibit a balance of forces and are hence called
balanced motions. The most common of these balances are the geostrophic balance and
hydrostatic balance. A geostrophic balance results when the pressure gradient is ‘nearly’
balanced by the Coriolis acceleration in the horizontal:

fu¬ = − 1

ρ0

∇hp (1.2)

where u¬ denotes the anticlockwise rotation of u by 90◦, and ∇hp denotes the horizontal
pressure gradient of the flow. Since the forces ‘nearly’ balance each other, such a nearly
balance state is called quasi-geostrophic balance. In the vertical, the pressure gradient
balances the buoyancy force resulting in a hydrostatic balance:

−bρ0 = gρ = −∂p
∂z

(1.3)
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Chapter 1. Introduction

where b = −g(ρ/ρ0) is the buoyancy, ρ and ρ0 refer to density perturbation and a reference
density as stated above. These balance approximations result in flows which are in a state of
approximate balance and are thus called quasi-geostrophic flows, or simply balanced flows.
Departures from this state of balance can occur, for instance in regions near boundaries
where other factors such as turbulent friction become important and these balance of
forces no longer hold. However, such departures can also occur in the interior of the fluid
and generate unbalanced motions. Flows with such departures constitute the unbalanced
flows. The balanced and unbalanced motions can be further characterized by dimensionless
parameters that estimate the strength of rotation and stratification: Rossby number and
Richardson number.

The Rossby number (Ro) can be defined as the ratio of frequencies (or time periods) of
the given flow and the Coriolis (or inertial) frequency and thus it estimates the timescale
separation between the balanced and unbalanced motions.

Ro =
1

fT
=
ωflow

f
(1.4)

where T = L/U is the relevant timescale of the flow under consideration, with U
and L as the relevant horizontal velocity and horizontal length scales of the flow. Here
ωflow = 1/T refers to the frequency of the flow under consideration. So, a balanced flow
with timescales much longer than the inertial period is a low frequency motion w.r.t. the
Earth’s rotation, and so represents a Ro � 1 regime. On the other hand, an unbalanced
flow with equal or shorter timescales than the inertial period is a high frequency motion
w.r.t. the Earth’s rotation, and is indicated by a relatively large Ro.

Accordingly, a smaller Ro implies a large separation between balanced and unbalanced
timescales with the consequence that the balanced and unbalanced motions are weakly
coupled; on the contrary, for a large Ro, the balanced and unbalanced motions interact
more strongly and so the separation of their timescales is poorly defined (Zeitlin, 2008;
Vanneste, 2013). For the typical scales of large-scale oceanic flows, with L∼ 105 m and
U∼ 0.1 m/s, the typical Rossby number is Ro = 0.01 or smaller (e.g. Vallis, 2006).
An increasing Ro indicates an increasing degree of imbalance and hence more notable
unbalanced motions. In the ocean, high Ro can occur in regions such as the mixed layer,
weakly stratified regions, and near the equator. The notion of coupling between balanced
and unbalanced motions is further elaborated in Section 1.1.1 and illustrated in Fig. 1.1.

The Richardson number (Ri) can be defined as the ratio of the vertical density gradient
to the vertical gradient of horizontal velocity and thus measures the relative importance
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1.1. Balanced and unbalanced dynamics

of stratification and shear effects in a fluid column. For a given stratification and shear of
velocity u, Ri can be estimated as:

Ri =
N2

(du/dz)2
(1.5)

For a large Ri, the stratification dominates the effects of shear and the flow is strongly
stratified. Balanced flows are characterized by a large Ri, typically Ri� 1, indicating the
dominant effect of stratification. Unbalanced flows on the other hand show a typical Ri of
order unity, Ri = O(1), indicating that stratification effects are no longer dominant. For
Ri ≤ O(1) other kinds of instabilities emerge, such as shear and symmetric instabilities.

Accordingly, balanced and unbalanced flows can be described by Ri and Ro values
of the flow. Balanced flows are characterized by Ro � 1 and Ri � 1, in contrast the
unbalanced flows are characterized by finite Ro and smaller Ri, but still Ro < 1 and Ri > 1.
Further, the linear dynamics of a flow can be described by Rossby waves and gravity waves
respectively. Rossby waves have a zonal phase propagation only in one direction (negative)
i.e. to the west w.r.t. the mean flow, whereas gravity waves can propagate in all directions
(positive and negative). This distinction can be readily seen from the dispersion relation
of the waves, which has two solutions for gravity waves and only one for Rossby waves (cf.
Olbers et al., 2012). On the other hand, non-linear dynamics of the flow results in motions
like mesoscale eddies and unbalanced turbulence arising from the non-linear interactions
of Rossby waves and gravity waves.

The characteristics, generation, and dissipation mechanisms of IGWs (unbalanced mo-
tions) in the ocean are elaborated in Sections 1.2 and that of mesoscale eddies (balanced
motions) in Section 1.3.

1.1.1 The ‘slow’ manifold and the swinging pendulum

Balanced flows dominate geophysical flows and evolve at much slower timescales relative
to the period of Earth’s rotation. This slowly varying nature of balanced flows led to the
hypothetical concept of the "slow manifold" (Leith, 1980; Lorenz, 1980, 1986) to describe
geophysical flow systems. A slow manifold refers to a subspace of the phase space where
unbalanced dynamics are absent. The slow manifold thus imposes a strictly "invariant"
state on the flow system implying that a balanced flow on a slow manifold would continue
to remain balanced.

5



Chapter 1. Introduction

Figure 1.1: A sketch of the swinging pendulum system. (a) The spring-pendulum system at
rest. (b) The system in motion. The oscillations in the spring have much higher frequency
than the frequency of pendulum motion. In this way, the pendulum motion is analogous to the
low frequency balanced motions that is accompanied by the oscillations in the spring which are
analogous to the high frequency unbalanced motions (IGWs) in geophysical flows. The sketch is
inspired from Lynch (2001) and Vanneste (2013).

Departures occur, however, from the balanced state leading to the generation of unbal-
anced motions like IGWs. Such departures contradict the slow manifold theory implying
that a strictly invariant slow manifold does not exist. Several authors (e.g. Lorenz and
Krishnamurthy, 1987; Lorenz, 1992; Ford et al., 2000; Vanneste and Yavneh, 2004) have
discussed the existence –or rather the non-existence– of a strict slow manifold, leading to
the notion that such a manifold is "fuzzy" rather than strict (e.g Warn, 1997; Ford et al.,
2000). The ‘fuzziness’ of the slow manifold means that the balanced motion co-exists with
unbalanced motion with different degrees of interaction determining the extent of ‘fuzzi-
ness’. According to that, the flow dynamics can be thought of as a phase space with two
interacting subspaces or manifolds: a balanced and an unbalanced fuzzy manifold, or in
other words, a Rossby manifold and a gravity manifold (e.g. Leith, 1980; Theiss and Mo-
hebalhojeh, 2009). Because it is fuzzy and not strict manifold, the balanced motion would
inevitably generate unbalanced motions, for instance via spontaneous emission (Vanneste,
2013; also discussed in Chapters 2 and 3). The extent to which the unbalanced dynamics
are generated depends upon certain flow parameters, such as the Rossby number described
previously.

A useful piece of imagery to illustrate the concept of slow manifold with regard to bal-
anced and unbalanced dynamics is by a simple mechanical system of a swinging pendulum
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1.1. Balanced and unbalanced dynamics

(e.g. Lynch, 2001; Vanneste, 2013). Consider a pendulum consisting of a heavy bob sus-
pended from one end of a spring of lighter mass in which stretching is allowed but bending
is not. The spring is fixed on the other end to complete the spring-pendulum system, as
illustrated in Fig. 1.1(a). When the bob is displaced to a certain angle from its equilibrium
position, as shown in Fig. 1.1(b), the bob is acted upon by restoring forces which set the
pendulum into motion. The restoring for the bob comes from the force of gravity acting
downward1. The oscillation of the pendulum is accompanied by another motion— that
of the spring, subject to the restoring of the oscillating pendulum. The spring oscillates
at a much higher frequency than the pendulum. The oscillations of the pendulum will
induce spring oscillations related to the stretching and contracting of the spring. But the
two types of motion are coupled by non-linear interactions due to the non-linear equations
of motions that describes the dynamics of this system. As a consequence, the separation
of these low and high frequency motions is not straightforward and becomes increasingly
complex with a stronger coupling between these motions.

The ratio ε of frequencies of the fast and slow oscillations tells us the timescale sep-
aration between the two types of oscillations, just as the Rossby number estimates the
timescale separation of the slow balanced and the fast unbalanced motions in geophysical
flows (Eq. (1.4)). For a small ε, the spring oscillates at a much higher frequency than the
pendulum and the timescales of these oscillations are well distinguished. The case of a
larger ε implies that the two motions have comparable frequencies, and when ε becomes
even larger the distinction between fast and slow oscillations is no longer feasible. In other
words, this situation resembles a fuzzy manifold with a large extent of ‘fuzziness’.

The scenario of the swinging pendulum system is analogous to geophysical flow systems
where balanced motion coexists with the unbalanced IGWs. For a regime with Ro� 1, the
balanced and unbalanced timescales are well separated, which also means that the IGW
generation in this regime is weak and consequently hard to detect. On the other hand, as
the Rossby number approaches unity the distinction between the two timescales becomes
less and less such that the balanced and unbalanced motions have comparable timescales
and their separation becomes even more daunting.

This complication poses challenges to disentangle unbalanced motions from balanced
motions and makes it difficult to obtain IGWs by conventional methods, such as the hori-
zontal velocity divergence (e.g. Plougonven et al., 2005; Plougonven and Snyder, 2007) or
small-scale vertical velocity obtained from spatial filtering (e.g. Sugimoto and Plougonven,

1An additional restoring force is provided by the tension force of the spring that acts to pull the bob upwards, thus
introducing a non-linear coupling between the bob and the spring.
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2016). To address this complication, two conceptually different methods are implemented
to diagnose IGWs: the non-linear initialization technique by Machenhauer (1977) and a
variant of the quasi-geostrophic balanced model. The methods are described in short in
the next sections and are elaborated in detail in Chapters 2 and 3 respectively.

1.1.2 Modal decomposition

Modal decomposition is based on the non-linear normal mode initialization technique (NL-
NMI) developed by Machenhauer (1977). The decomposition is a non-linear projection of
the raw data onto the balanced manifold and by choosing appropriate initial conditions,
the generation of high frequency motions can be minimized. The method proposed by
Machenhauer (1977) is an iterative procedure which works by eliminating more and more
of the high frequency motions with every iteration until an approximately balanced state
is reached. Leith (1980) has shown that this method generates the quasi-geostrophic equa-
tions with the first iteration. Relating these initialization procedures to quasi-geostrophic
balance, Leith (1980) derived decomposed modes for the hydrostatic Boussinesq equations,
which was later generalised to the non-hydrostatic set of equations by Bartello (1995).

In this thesis, instead of initializing the model with this method, it is used to decompose
the given full field into its balanced and unbalanced counterparts. Chapter 2 describes the
details and implementation of the modal decomposition to diagnose unbalanced IGWs.
The diagnosed IGWs are used to assess IGW activity in different dynamical regimes: from
Ro� 1 to Ri = O(1) and to analyze the role of IGWs in the downscale transfer of energy.

1.1.3 Quasi-geostrophic filter

A balanced model is a model based on balance approximations such that the unbalanced
dynamics are excluded. Such a model is helpful in understanding the balanced dynamics
and a suite of balanced models have been developed (e.g. Gent and McWilliams, 1983).
The most prominent of these is the quasi-geostrophic model (e.g. Vallis, 2006) which is
a reasonable approximation to describe the flow dynamics of geophysical flows which are
largely dominated by quasi-geostrophically balanced flows. The traditional methods based
on quasi-geostrophic model diagnose IGWs by the inversion of potential vorticity (Vallis,
1996 and references therein). One such diagnostic tool is the quasi-geostrophic omega
equation (e.g. Holton and Hakim, 2012) that extracts only the vertical velocity component
to provide estimates of the unbalanced motions. But, the unbalanced motions are also
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1.2. Energetics of internal gravity waves

associated with the horizontal components of the velocity field which are not captured by
the traditional methods. Consequently, the interpretation of the extracted IGW signals is
ambiguous.

To tackle this issue, a variant of the quasi-geostrophic model that is better suited to
diagnose the unbalanced IGW dynamics is introduced in Chapter 3. This quasi-geostrophic
model variant is called the quasi-geostrophic filter (QG filter) and has the additional ca-
pacity to diagnose the unbalanced components associated with the horizontal velocities
of the flow field. The method is explained in detail in Chapter 3. The IGWs diagnosed
from the QG filter are explored in different scenarios in the ocean that generate IGWs:
spontaneous emission, convective instability, and lateral boundary instability.

1.2 Energetics of internal gravity waves

IGWs are oscillations that occur in the interior of a density stratified fluid owing to the
restoring force of the buoyancy. The interplay between buoyancy and gravity forces on
a displaced fluid parcel sets the fluid parcel into an oscillatory wave motion. The wave
motion is also influenced by the Coriolis force and because these oscillations occur in the
interior of the fluid they are called ‘internal’ gravity waves, or simply internal waves.

The characteristics of IGWs are influenced by both the stratification N and by the
Earth’s rotation (contained in f) at large scales. The frequency ω of IGWs is bounded
by N and f which set the upper and lower bounds for ω. In the ocean, generally N > f

and so f < ω < N . Accordingly, the time period of IGWs ranges between the stability
period 2π/N and the inertial period 2π/f . However, the frequency can be affected by the
background flow, resulting in a Doppler shift. Thus, the frequency of encounter can be
different from the intrinsic frequency.

The dispersion relation for IGWs relates the frequency ω and wavenumber k, with kh
and m as the horizontal and vertical wavenumbers respectively and takes the following
form:

ω2 =
N2kh

2 + f 2m2

kh
2 +m2

(1.6)

Another form of dispersion relation is in terms of the angle θ between the wave vector and
the horizontal: ω2 = N2 cos2 θ + f 2 sin2 θ. Here, cos2 θ = kh

2/k2 and sin2 θ = m2/k2 (for a
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detailed discussion see Olbers et al., 2012). An example of the IGWs in the ocean and an
illustration of IGW properties are shown in Fig. 1.22.

Figure 1.2: (a) IGWs in the Strait of Messina captured from space. Strait of Messina is a
narrow and shallow channel about 80 m deep, and lies between the island of Sicily and the Italian
peninsula. Strong tidal currents occur in the Strait, which interact with the shallow sill and
generate energetic internal wave trains. The dreaded conditions of the Strait, because of these
energetic waves, are long known to have posed problems for sailors and has motivated the Greek
myth of the sea monsters Scylla and Charybdis, who plagued Odysseus during his journey. IGWs
show up as sea surface manifestations since they are associated with surface currents that modify
the surface roughness which is seen by the satellite. Note that this is not related to sea surface
elevations. The horizontal white line at the bottom indicates a scale of 5 km. Image courtesy of
NASA. (b) Schematic illustrating IGW properties in a stably stratified fluid. IGW propagation
for different values of the angle (θ) between the wave vector (K) and the horizontal (x) is shown
according to the dispersion relation in Eq. (1.6). Note that the direction of phase velocity (cp), in
the direction of wavevector the K) is perpendicular to the direction of group velocity (cg, shorter
arrows). Schematic from Talley (2011).

Thus, the frequency ω of IGWs depends only on the angle θ of the wave vector i.e. the
direction of wave propagation. The frequency, ω ≈ N for an angle which is nearly horizontal
(θ ≈ 0), whereas for a case with a nearly vertical angle (θ ≈ ±π/2) the IGWs have
frequency ω ≈ f , which are then called near-inertial waves. The direction of propagation

2The image in Fig. 1.2(a) is a courtesy of NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science
Team and is taken from: https://asterweb.jpl.nasa.gov/gallery-detail.asp?name=messina-wave
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of energy (group velocity) is perpendicular to the direction of propagation of wave crests
and troughs (phase velocity). In a continuously stratified fluid, such as the ocean, the
IGWs can propagate vertically as well as horizontally and exhibit large vertical amplitudes
typically of the order of ten meters and wavelengths of up to a kilometer. IGW propagation
seen from a tank experiment is shown in Fig. 1.3.

Figure 1.3: IGWs seen in a tank experiment using the synthetic Schlieren technique used to study
the distribution of density gradients within a fluid as first demonstrated by Görtler (1943). The
presence of density gradients leads to the deviation of light rays passing through these gradients.
The interaction of the deflected light with an obstacle, such as the wavemaker in the tank, deflects
the light rays to different degrees and leading to variations in the light distribution, which when
illuminated makes these patterns visible. (a) The setup of the tank experiment. The water-filled
tank is connected to a source of saline (denser) water which injects salty water at the bottom, and
thus makes the water increasingly more denser and generates a linear density stratification. In the
middle of the tank a wavemaker moves up and down with different frequencies to generate IGWs.
Images of dots of different sizes and different dot densities are fixed behind the tank. The dots
in the images appear to shift due to the deviation of light rays by density gradients, made visible
by an illumination screen at the back and recorded by a camera. Removing the picture recorded
at a state of rest from the subsequent frames with moving wavemaker makes the light refraction
visible, similar to the classical Schlieren technique used e.g. Görtler (1943). The experiment was
performed in the laboratory of Universität Hamburg by Prof. Carsten Eden, Lars Czeschel, Phlipp
Jurgenowski, and Manita Chouksey and the setup was arranged by Ulrich Drübbisch. The hands
in the picture belong to Philipp. (b) An image of IGW propagation obtained from the synthetic
Schlieren technique. IGWs are clearly seen propagating in all directions away from the wavemaker
(in the middle). The image was kindly provided by Prof. Carsten Eden.
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1.2.1 Generation mechanisms

IGWs in the ocean are well known to be mainly forced by winds and tides. Wind stress
fluctuations excite IGWs close to the inertial frequency f by inertial pumping (e.g. Gill,
1984) causing waves to radiate below the mixed layer (e.g. Alford et al (2016)). The tides
generate IGWs at tidal frequencies, called internal tides3, when the tidal flow oscillates
over topographic obstacles at the bottom of the ocean, a process similar to the generation
of lee waves (Bell, 1975; Nikurashin and Ferrari, 2011). Numerous studies related to these
processes have contributed to global estimates of IGW conversion rates from winds (e.g.,
Alford 2001, Rimac et al. 2013) and tides (e.g. Arbic et al. (2004), Nycander (2005),
Falahat et al. (2014)).

However, other sources of IGW generation, such as surface wave interactions and bal-
anced flows, remain poorly understood. Surface wave interactions can generate IGWs
through spontaneous creation (e.g. Olbers and Eden, 2016) in which two surface waves in-
teract to produce an IGW by non-linear resonant interactions. Balanced oceanic flows, such
as mesoscale eddies, generate IGWs by two broad mechanisms—(i) internal mechanisms of
generation without any external interaction and (ii) external mechanisms of generation by
interaction with external factors such as topography, wind, and waves.

Internal mechanisms of IGW generation by balanced flows include spontaneous emis-
sion, frontogenesis, and loss of balance. Spontaneous emission (e.g. review by Vanneste,
2013) refers to the emission of IGWs from a balanced flow without any external factor and
is a well known mechanism of IGW generation from observations, numerical and labora-
tory experiments (e.g. review by Plougonven and Zhang, 2014). Spontaneous emission can
also lead to IGW emission by frontogenesis in regions of strong strains (Shakespeare and
Taylor, 2015, 2016). Loss of balance (e.g. Molemaker et al., 2005) is a related mechanism
where the balance of the flow can break down and transfer energy into unbalanced motions.
Geostrophic adjustment (e.g. Rossby, 1938, Blumen, 1972, Bartello, 1995) is linear mecha-
nism of wave generation, where an arbitrary initial condition applied to the flow forces the
flow away from its balanced state, and by generating IGWs the flow then ‘adjusts’ to its
balanced state. Note that geostrophic adjustment is different from spontaneous generation,
in which the already balanced flow generates IGWs.

External mechanisms of IGW generation by balanced flows involve processes such as
stimulated loss of balance, topographic interaction, and direct extraction. Externally forced

3Internal tides can be barotropic or baroclinic. Barotropic tidal currents, i.e. periodic water motions accompanying the
tidal changes in sea level resemble barotropic tides.
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waves can ‘stimulate’ the emission of IGWs from a balanced flow by stimulated loss of
balance (e.g. Gertz and Straub, 2009; Xie and Vanneste, 2015). Upon interaction with
topography, balanced flow can emit unbalanced IGWs in the form of arrested Kelvin waves
(e.g. Dewar and Hogg, 2010) or internal lee waves (Bell, 1975; Nikurashin and Ferrari, 2011)
when balanced eddy encounters a topographic obstacle. The presence of winds can also
cause the balanced motions to transfer their energy directly to IGWs by direct extraction
(Barkan et al., 2017).

While an understanding of IGW generation by balanced flows and wave interactions
has expanded, the global estimates have been developed only for a few processes, such as
internal lee wave generation (Nikurashin and Ferrari, 2011) and IGWs generated by surface
wave interactions (Olbers and Eden, 2016). A full fledged picture of IGW generation
remains missing and this is partly associated with the complex interactions of IGWs with
motions of different scales (e.g. mesoscales, waves, small-scale turbulence), that render it
hard to specify the sources of IGWs.

1.2.2 Dissipation and energy transfers

The dissipation of IGWs can occur by wave drag and wave breaking. Wave drag involves an
exchange of energy wherein IGWs transfer their energy to the mean flow by gravity wave
drag (Eden and Olbers, 2017). Wave breaking involves transfer of energy to small-scale
turbulence and thereby contribute to diapycnal4 (across isopycnal) mixing. The main
mechanisms for IGW breaking are convective and shear instability (e.g. Thorpe, 2007;
Alford and Pinkel, 2000; Staquet and Sommeria, 2002).

Convective instability can occur when IGWs with large amplitudes relative to their ver-
tical and horizontal wavelengths, carry denser water over lighter water as they propagate.
The denser water being heavier pushes the isopycnals downwards generating an overturn
of isopycnals. This overturning eventually causes the IGWs to break and in the breaking
process IGWs mix the fluid patch in its vicinity. Shear instability occurs when shear ef-
fects dominate stratification effects, characterized by Ri < 1/4, and can thus destabilize
the stratification. The shear associated with IGWs can result in the release of kinetic en-
ergy (KE) which causes the waves to disintegrate and break. Another mechanism of wave
breaking is overturning by self acceleration, which is similar to convective instability but it

4The isopycnals in the ocean are fairly horizontal and so across isopycnal mixing is considered analogous
to vertical mixing.
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is the wave induced mean flow that advects dense fluid over light resulting in overturning,
rather than the wave itself (Sutherland, 2010).

Wave-wave interactions as a consequence of resonant coupling can lead to energy ex-
change between waves as well as between waves and smaller scales. Two waves can interact
to form a third wave and if the frequency of the new wave matches the natural frequency
of the wave resulting from the combination of original waves, resonance occurs and the
three waves are said to form a resonant triad (e.g. Gill, 1982; Pedlosky, 1987; Olbers
et al., 2012). Many such combinations of interacting triads can occur, which can be largely
explained by three mechanisms suggested by McComas and Bretherton (1977): induced
diffusion, elastic scattering, parametric subharmonic instability (see also Gill, 1982; Olbers
et al., 2012). Some of these triads can transfer energy to smaller scales, such as by induced
diffusion (e.g. Müller et al., 1986 review) and by parametric subharmonic instability (e.g.
Sutherland, 2010). However, energy transfer through wave-wave triadic interactions is a
complex process and therefore much more complicated to identify and quantify.

1.2.3 Role of internal gravity waves in mixing, ocean circulation,

and climate

IGWs influence processes and systems stretching far beyond their own scales. Their sphere
of influence encompasses markedly diverse physical, chemical, and biological systems and
a broad range of processes from small-scale turbulence to the long climatic scales.

Ocean mixing: biological, chemical, and physical impacts

Breaking IGWs play a leading role in driving diapycnal mixing in the ocean interior,
as is well known from theory, models, observations, and laboratory experiments (e.g. re-
view by MacKinnon et al., 2017). This diapycnal mixing is significantly important for the
transfer and redistribution of heat and salt in the ocean interior. Furthermore, this mixing
contributes to the vertical transport of nutrients, dissolved carbon-dioxide (CO2), carbon-
ates, and other components of the oceanic carbon system as well as other chemical species,
that are important for the marine life, ocean circulation, as well as the global climate. In
particular, IGW induced vertical mixing aids in the upward transport of nutrients into
the upper ocean and thereby influences the biological productivity. IGWs have also been
found to aid in coral health recovery by causing mixing which reduces the coral’s thermal
stress under increasing global temperatures (Schmidt et al., 2016). By mixing, IGWs lead

14



1.2. Energetics of internal gravity waves

to dispersion of pollutants (e.g. Gregg, 1987) as well as other dissolved material in the
ocean (e.g. James, 2002). In addition, breaking of IGWs can modify sediment transport
rates (e.g. Heathershaw, 1985) over long timescales.

Figure 1.4: Schematic of the global meridional overturning circulation (MOC) from a Southern
Ocean (SO) perspective (the cylinder in the middle). The SO connects all the major oceanic
divisions: the Pacific, Atlantic, and Indian. The Atlantic meridional overturning circulation
(AMOC) consists of two two overturning cells: a deep North Atlantic Deep Water (NADW)
(green lines) and an abyssal Antarctic Bottom Water (AABW) (blue lines). The NADW, fresher
and lighter than AABW, sinks in the North Atlantic and is upwelled by the action of the wind
stress over the SO. A part of the upwelled NADW converts to AABW in the abyssal ocean close
to Antarctica (blue cylinder). This AABW undergoes a mixing driven overturning spanning over
the three basins of the global ocean as indicated in the figure. The shallower cell of NADW which
upwells in the SO is largely controlled by mesoscale eddies. In the figure, thermocline waters
are indicated by purple lines (cf. Talley, 2013 for details of other water masses). The schematic
originally by Gordon (1986a,b) and Schmitz Jr (1996) has undergone several modifications. This
schematic version is taken from Talley (2013).
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The Meridional Overturning Circulation and the climate

IGW driven diapycnal mixing has been identified as one of the pivotal factors in the
ocean’s meridional overturning circulation (MOC) (Stommel, 1961; Munk and Wunsch,
1998; Staquet and Sommeria, 2002; Wunsch and Ferrari, 2004; Kuhlbrodt et al., 2007) (the
other factor being wind-driven upwelling). The MOC refers to the circulation of oceanic
water masses in the meridional-vertical plane as shown in Fig. 1.4.

A simplistic view of the mixing-driven branch of the MOC is as follows: wind-driven
surface currents, such as the Gulf Stream, transport warmer and lighter surface waters
polewards where the waters become denser due to cooling and sink into the ocean interior
and the resulting deeper watermasses are subject to mixing during their return in the
MOC loop; this mixing lightens the deep water masses and causes them to eventually rise
at low latitudes to wind up the meridional loop. The other major branch of the MOC
is the wind-driven upwelling in the Southern Ocean (e.g. Toggweiler and Samuels, 1993,
1995, 1998; Kuhlbrodt et al., 2007; Marshall and Speer, 2012). The strong westerly winds
result in a substantial northward transport of surface waters by Ekman transport, and the
associated horizontal divergence results in an upwelling in the vicinity of the Drake passage
(e.g. Toggweiler and Samuels, 1995; Kuhlbrodt et al., 2007). Subsequently, the MOC
predominantly dictates the heat and salt transport by the ocean, the ocean stratification,
as well as the storage and recirculation of several chemical species such as carbon. These
processes actively impact the weather and climatic patterns bringing the MOC to the
forefront of the climate framework, underpinned by the actions of IGWs.

However, the understanding of this mixing-driven branch of the MOC presents difficul-
ties since the mixing processes and estimates of mixing rates in the ocean remain poorly
understood. Mixing is highly localized in space and time and the MOC might respond dif-
ferently with the use of localized mixing rates than the uniform ones (e.g. Saenko, 2006).
The effects of unresolved IGW dissipation in the ocean general circulation models are pa-
rameterized using prescribed values of mixing diffusivities which are sometimes arbitrarily
chosen. In some models these diffusivities are related to resolved processes, for example
stratification (Cummins et al., 1990) or energy input by tides (Simmons et al., 2004), but
they represent only a subset of mixing processes.

Consequently, different models show different MOC strengths which hampers a robust
interpretation of MOC projections, a key issue for this discrepancy being the representation
of vertical mixing in the models (e.g. Randall et al., 2007). Clearly, for a consistent mixing
parameterization a detailed understanding of the contributing processes to mixing— which
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are mainly IGWs— is indispensable. Along this direction, a consistent IGW parametriza-
tion to represent IGW dissipation and mixing effects called IDEMIX (Internal gravity wave
Dissipation, Energy and MIX-ing) has been recently developed (Olbers and Eden, 2013,
2017; Eden and Olbers, 2014, 2017) that includes energy exchange with the mean flow as
well as non-linear wave-wave interactions. However, uncertainties related to the sources of
IGW energy, such as balanced flows, still persist and a precise representation of these pro-
cesses is missing. To account for this, an improved understanding of the energy pathways
linking balanced flows and IGWs is clearly necessary.

Ocean’s energy budget and energy sink for balanced motions

IGWs are an integral component of the ocean’s energy budget and are a key player in
the energetics of the ocean. The potential energy (PE) supplied to the ocean at large scales
by the wind stress and the resulting Ekman pumping from the atmosphere is partly lost to
the eddies by baroclinic or other instabilities in the form of KE. Large-scale PE is supplied
by IGW mixing, IGWs in turn are driven by tides to a large extent (e.g. Eden, 2016). In
ocean models where eddies are not resolved, the effects of eddies are often parameterized in
an energy inconsistent way, and the eddy kinetic energy (EKE) and eddy potential energy
(EPE) is simply lost. However, the dissipated EKE can potentially be used through IGWs
for mixing and driving the deep overturning circulation. The eddies can lose their energy
to IGWs through various mechanisms described in Section 1.2.1. In this way, IGWs can
act as an energy sink for the eddies and may provide an important pathway linking the
eddies down to the scales of molecular mixing (e.g. Bartello, 1995; Brüggemann and Eden,
2015 and Chapters 2 and 3 of this thesis).

An excursion back to the opening Section 1.1 tells us that besides the unbalanced
IGW motions the geophysical flows also contain balanced motions. The picture of the
global ocean remains largely incomplete without the ubiquitous mesoscale eddy field which
contain most of the ocean’s KE and are the most energetic component of the ocean’s energy
cycle. Mesoscale eddies interact and exchange energy with a variety of processes including
IGWs. The balanced mesoscale field can generate IGWs by numerous mechanisms (Section
1.2.1) and the generated IGWs can in turn act as a potential energy sink to the balanced
mesoscale field, as discussed above. This interlinking between balanced mesoscale eddies
and unbalanced IGWs forms an important energy pathway and has crucial implications
for the ocean’s energy budget. To better understand the energy conversions between the
mesoscale eddies and IGWs, an understanding of the dynamics and energy sources and
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sinks of mesoscale eddies is crucial. The next section presents an overview of the dynamics
of oceanic mesoscale eddies.

Figure 1.5: The South Atlantic in springtime near the Drake passage. (a) A satellite image of
phytoplankton communities between the islands to the east of Argentina: the Falkland Islands to
the west and South Georgia Island to the east, captured in November 2015 during spring in the
Southern Hemisphere. This region also belongs to the Southern Ocean whose dynamics are largely
controlled by eddies, as seen in the region enclosed by the circle. (b) An enlarged view of the eddy
structures in the ocean. Clearly seen is a field of huge mesoscale eddies, about 100 km in size, and
smaller sub-mesoscale eddies painted with rich hues by the phytoplankton communities imparting
different shades to the region (owing to different chlorophyll concentrations). Eddies can vertically
transport nutrient-rich water necessary to sustain phytoplanktons, as well as laterally transport
with them several species of marine organisms which feed on phytoplanktons and other organisms,
thus sustaining marine ecosystems. Eddies are aptly called ’the pastures of the ocean’. Image
courtesy of NASA.

1.3 Dynamics of mesoscale eddies

The ocean is a sea of vortices. Vortices are whirling water masses, similar to little eddies
in a stream. Mesoscale eddies are such vortices in the ocean with typical horizontal spatial
scales of about 50− 100 km and evolve over timescales of weeks to several months. They
are three dimensional structures and can occur in the upper, interior, as well as the deep
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ocean. A satellite image of eddies in the South Atlantic is shown in Fig. 1.55. A field of
eddies coloured by various phytoplankton communities is clearly seen.

The vertical scales of the eddies, which may extend up to a few kilometers, are dwarfed
by the substantially larger horizontal scales, and so the eddies can be considered as quasi
two-dimensional features resembling a pancake-like structure. Mesoscale eddies belong to
the class of balanced motions and are governed by the dynamics of Rossby waves (Section
1.1). Consequently, the eddy related fluctuations can be thought of as interaction between
Rossby waves as described in the next section.

1.3.1 Generation mechanisms

Mesoscale eddies in the ocean derive their energy primarily through the barotropic and
baroclinic instabilities of Rossby waves (e.g. Pedlosky, 1987; Vallis, 2006; Olbers et al.,
2012).
Barotropic instability

Barotropic instability draws its energy from the horizontal shear of the currents which
may be released by turbulent fluctuations to generate eddies. A barotropic fluid features
isopycnals parallel to isobars which can also occur in a non-stratified fluid. In a fluid
which is stratified, barotropic instability can co-exist with baroclinic instability. However,
barotropic instability involves a KE exchange, unlike baroclinic instability which involves
an exchange of PE.
Baroclinic instability

Baroclinic instability is relevant to rapidly rotating, strongly stratified flows with a
meridional and vertical temperature gradient. Baroclinic instability feeds on the available
potential energy6 (APE) manifested in the horizontal density gradients. Since the isopyc-
nals exhibit a tilting in the vertical for a baroclinic fluid, the associated instability generates
eddies by the slumping of horizontal density gradients and converts the APE into the KE
of the mesoscale eddies. The theory can be explained by the classical models of baroclinic
instability: Eady model on the f -plane (Eady, 1949), and β-plane models of Charney and
Phillips (Charney, 1947; Phillips, 1954). A variant of the Eady model, which is based on
quasi-geostrophic equations, is developed by Stone (1966) for primitive equations. Such a

5The image is a courtesy of NASA/Ocean Biology Processing Group, NASA Goddard Space Flight Center, and is taken
from https://oceancolor.gsfc.nasa.gov/feature/images/V2015320174400.SouthAtlantic.jpg

6Available potential energy is that part of the total potential energy which is ‘available’ for conversion into kinetic energy
(cf. Lorenz, 1955; Vallis, 2006; Olbers et al., 2012).
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model is implemented in this thesis to represent an idealized baroclinically unstable flow
over a wide range of dynamical conditions from Ri� 1 to Ro = O(1).

Baroclinic instability is dominated by balanced flows and can exist for different dy-
namical regimes which can be distinguished by Ri of the flow: quasi-geostrophic baroclinic
instability characterized by Ri � 1 (or Ro � 1) and ageostrophic baroclinic instability
characterized by Ri = O(1) (or Ro < 1). However, several other kinds of instabilities
pervade the ocean associated with smaller scales, such as sub-mesoscales. Sub-mesoscale
motions or eddies are a characteristic feature of the upper-ocean and predominantly occur
in the ocean mixed layer where departures from quasi-geostrophic balance give way to
ageostrophic dynamics (although such departures might also occur in the ocean interior).
For an extreme case with Ri < 1, other kinds of ageostrophic instabilities appear (e.g.
Stone, 1966, 1971; Haine and Marshall, 1998; Fox-Kemper et al., 2008; Thomas et al.,
2008) such as symmetric instability and Kelvin-Helmholtz instability for Ri < 0.25 and in
these scenarios the unbalanced dynamics dominate.

1.3.2 Dissipation and energy transfers

Mesoscale eddies act as a vast reservoir of energy that mainly enters the ocean through
solar heating, winds, tides, and geothermal heating. In particular, most of the energy input
by winds is stored as PE that feeds eddies and other instabilities, while a minor portion
is used for mixing (Wunsch and Ferrari, 2004). For this reason the dissipation of this vast
reservoir of eddy energy is of tremendous concern, but the current understanding about
the dissipation of eddy energy is much less.

The quasi two-dimensional structure of mesoscale eddies determines their mode of dis-
sipation. In line with that, these eddies exhibit geostrophic turbulence (Charney, 1971), or
two-dimensional turbulence, rather than the classical three-dimensional turbulence. Un-
like three-dimensional turbulence in which KE is fluxed from larger to smaller scales dis-
sipating finally at viscous molecular scales (Kolmogorov, 1941), the energy transfer in
two-dimensional turbulence predominantly occurs from smaller scales towards large scales
(Batchelor, 1969; Charney, 1971; Rhines, 1977). Thus, the former features a downscale
energy transfer, whereas the latter an upscale energy transfer.

Mesoscale eddies are known to transfer their KE back to the large scales via upscale
energy transfer. Evidences for this process in the ocean have been presented from satellite
altimeter data (Scott and Wang, 2005) as well as models (Schlösser and Eden, 2007). This
process falls short, however, to explain how the energy contained in this massive energy
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reservoir is lost to the smallest molecular scales where the ocean’s energy finally dissipates.
For this to occur, these eddies must take a downscale route to dissipation.

Mesoscale eddies can directly transfer energy to small-scale turbulence upon interaction
with rough ocean bottom through bottom friction in a turbulent bottom boundary layer
(Arbic et al., 2009). Further potential sinks are given by the mechanisms of IGW gen-
eration described in Section 1.2.1. The IGWs eventually break and contribute to mixing
wherein the energy is finally viscously dissipated. Yet another mechanism is the exchange
of energy between balanced eddies and IGWs by wave-mean flow interaction resulting from
the gravity wave drag (cf. Eden and Olbers, 2017). The conversion of the eddy kinetic
energy (EKE) to the energy of IGWs is also crucial for the energy budget of IGWs, as
suggested by the recent model-based estimates of small-scale dissipation rates which show
digressions from observations without EKE effects taken into account (Pollmann et al.
(2017)).

While global estimates of mesoscale eddy energy dissipation due to bottom friction and
topographic interaction by lee wave generation have been developed (e.g. Arbic et al., 2009;
Nikurashin and Ferrari, 2011), these processes appear still too small to act as a major eddy
energy sink (Ferrari and Wunsch, 2009). On the other hand, eddy energy directly lost to
IGWs has been identified as a potential candidate (e.g. Wunsch and Ferrari, 2004) but
the global estimates of this energy sink remain unidentified. This thesis is an attempt in
this direction, and chapters 2 and 3 discuss the role of IGWs in the dissipation of balanced
eddy energy during the downscale transfer of energy.

1.3.3 Impact of mesoscale eddies on ocean circulation and climate

Mesoscale eddies are the "weather" of the ocean and are analogous to atmospheric highs
and lows on a weather map. They drive the large-scale ocean circulation, sustain marine
ecosystems, and profoundly impact the weather and climate of the Earth.

Ocean’s transport system, marine ecosystems, and carbon-dioxide sink

Mesoscale eddies can act as a transport system of the ocean transporting heat and salt
across huge horizontal distances owing to their huge horizontal scales. As they move along
isopycnals, the eddies also transport water masses between the surface and the deeper layers
of the ocean. By doing so, the mesoscale eddies help establish the ocean’s circulation and
promote large-scale mixing by distribution of different water masses. In this way, the eddies
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determine the water mass properties in different regions of the global ocean impacting the
ocean as well as the climate both locally and globally.

Moreover, eddies act as a huge sink for the anthropogenic CO2, which has marked im-
plications for the increasingly warming global climate. The eddies are especially related
to the CO2 sink in the Southern Ocean (e.g. Sallée et al., 2012) which stores most of the
anthropogenic CO2 taken up by the global ocean. Modeling results also show that eddies
affect the CO2 storage and induces changes in the overturning circulation (e.g. Munday
et al., 2014). In addition, mesoscale eddies transport nutrients as well as marine organisms
and are thus of central importance in the growth and sustenance of the ocean’s primary
production, linking the base of the oceanic food chain to more complex marine ecosystems
(e.g. Condie and Condie, 2016; Shulzitski et al., 2016).

Southern Ocean, the Meridional Overturning Circulation, and the climate

The Southern Ocean (SO) is a salient component of the global overturning circulation
of the ocean and one of its prominent features is the inter-basin connection, connecting the
principal oceanic divisions: the Pacific, Atlantic, and Indian Oceans (cf. Fig. 1.4). In this
way, the SO circulation acts like a "steering wheel" of the global MOC by circulating heat,
salt, CO2, biological, and chemical elements among the major oceanic branches. The SO
circulation is a result of several dynamical features at play, but the most prominent ones
are the Antarctic Circumpolar Current (ACC), mesoscale eddies, and the Ekman transport
(e.g. Olbers et al., 2012).

The ACC, the largest oceanic current resulting due to the intense westerly winds at the
"roaring forties and furious fifties" latitudes, i.e. 40◦S and 50◦S, contributes to significant
transports of heat, salt, and tracers eastward (e.g. Vallis, 2006; Olbers et al., 2012). But
the lack of zonal continental boundaries in the SO does not allow for meridional transports
by the ACC, which is fundamental to sustain the global MOC. It is mainly the eddies
which drive a poleward volume transport opposing the equatorward wind driven Ekman
transports. The sum of Ekman and eddy-driven transport establish the MOC in the SO.
In addition, the eddies also aid the vertical transport of momentum into the deep ocean.

Mesoscale eddies play a similar (but less prominent) role also in the circulation of other
oceanic basins, and hence in the overall dynamics of the global MOC. The meridional
transport of heat by mesoscale eddies impacts the overlying atmosphere which in turn
governs wind and precipitation patterns influencing weather on a global scale. Clearly, the
changes in the eddy transport would significantly impact the MOC and hence the climate.

22



1.4. Specific questions addressed in this thesis

Although eddies play a momentous role in the ocean’s energetics, they are not resolved
or resolved partially in OGCMs or climate models because of which the representation of
eddy effects in the models relies on parameterizations. Current mesoscale eddy parame-
terizations account for certain aspects of the effects of eddies, such as isopycnal mixing;
but other major aspects which modify eddy energy such as the interaction and exchange of
eddy momentum with the mean flow and the interlinking of mesoscale eddies with IGWs,
remain unclear and pose a challenge for a precise parameterization of these processes and
consequently affect the interpretations of future climate projections in the models.

1.4 Specific questions addressed in this thesis

The question of the downscale energy transfer from balanced flows to the smallest oceanic
scales is a difficult one. It gets complicated further because the preferred energy transfer by
the balanced flows is in the opposite direction, i.e. they feature an upscale energy transfer
(Charney, 1971, also Section 1.3.2). This general picture of the balanced flows, however,
changes with the flow characteristics estimated by the dimensionless parameters Ri and Ro

described in Section 1.1. For a range of dynamical regimes of baroclinic instability ranging
from ageostrophic (Ri = O(1) or Ro < 1) to quasi-geostrophic (Ri � 1 or Ro � 1),
Brüggemann and Eden (2015) discuss the spectral energy fluxes and find that the regimes
with smaller and smaller Ri show stronger and stronger energy flux towards large wavenum-
bers, i.e. a more and more downscale transfer of energy. In view of this, Brüggemann and
Eden (2015) have emphasized that a direct ageostrophic route can potentially facilitate the
dissipation of balanced flows towards small scales. But specific processes involved in the
downscale energy transfer via an ageostrophic route were not identified.

IGWs put forward a strong candidature for this task, and this thesis addresses the
question if IGWs diagnosed from the two diagnostic tools (Sections 1.1.2 and 1.1.3) are
indeed related to the ageostrophic route suggested by Brüggemann and Eden (2015) and
if so, to what extent IGWs contribute the downscale energy transfer. But the detection
of IGW signals is a fundamental issue because of their coupling with the balanced flows.
This directs to the need of separating balanced flows and IGWs which is the central point
addressed in this thesis by using a model setup similar to Brüggemann and Eden (2015).
Further, the questions of the efficiency of the two diagnostic tools in diagnosing IGWs and
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the strength of IGW emission for a range of baroclinic instability regimes as well as in
different emission scenarios are considered. The thesis ultimately directs to the question
of the role of IGWs in the downscale energy transfer in the ocean.

1.5 Thesis Overview

As outlined in this chapter, this thesis addresses the disentangling of IGWs generated from
balanced flows and assesses the diagnosed IGW activity in different dynamical scenarios.

The Chapters 2 and 3 of this thesis comprise of two research papers written in the style
of journal publications. As a consequence, they contain their own abstract, introduction
and conclusions.

Chapter 2 consists of a research paper titled “Fast gravity waves and how to find them"
submitted to the Journal of Physical Oceanography and is currently under review. It
addresses the spontaneous emission of IGWs from baroclinic instability in an idealized
numerical model in different dynamical regimes, from ageostrophic (Ri = O(1)) to quasi-
geostrophic (Ri� 1) and the role of IGWs in downscale energy transfer in the ocean, using
modal decomposition based on the method proposed by Machenhauer (1977).

Chapter 3 consists of a research paper titled “Gravity wave emission by different mech-
anisms" in preparation to be submitted to the Journal of Physical Oceanography. It in-
troduces a new diagnostic tool called the QG filter based on a potential vorticity inversion
method to diagnose IGWs generated by different mechanisms: spontaneous emission, con-
vective instability, lateral boundary instability.

Chapter 4 presents the key results and conclusions based on the research undertaken in
the research papers. An outlook further discusses the results with respect to open questions
and opens doors for new questions.



O’ mighty ocean!

Thy tryst with winds and tides

Maketh waves far and wide

Speaketh but, O’ mighty ocean!

Sans winds, sans tide

How doth thee maketh waves inside?





Chapter 2

Fast gravity waves and how to find them

This chapter is under review in the Journal of Physical Oceanography.

Citation: Chouksey, Manita, Carsten Eden, and Nils Brüggemann, 2018: Internal grav-
ity wave emission in different dynamical regimes. J. Phys. Oceanogr.

Note: This is the version submitted to the journal and it might undergo some changes
after revision. The final form after publication might appear different than the present
one.
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Chapter 2. Fast gravity waves and how to find them

Abstract
We aim to diagnose internal gravity waves emitted from balanced flow and investigate

their role in the downscale transfer of energy. We use an idealized numerical model to
simulate a range of baroclinically unstable flows to mimic dynamical regimes ranging from
ageostrophic to quasi-geostrophic flows. Wave-like signals present in the simulated flows,
seen for instance in the vertical velocity, can be related to gravity wave activity identified
by frequency and frequency-wavenumber spectra. To explicitly assign the energy contri-
butions to the slow balanced and fast unbalanced gravity modes, we perform linear and
non-linear modal decomposition to decompose the full state variable into its slow balanced
and fast unbalanced gravity wave counterparts. The linear decomposition shows a reason-
able separation of the slow and fast modes, but is limited in its application to a non-linear
system. To account for the non-linearity in our system, we apply a decomposition using
the normal mode initialization technique proposed by Machenhauer in 1977. Further, we
assess the strength of the gravity wave activity and dissipation related to the decomposed
modes for different dynamical regimes. The results show that there is much more gravity
wave activity for an ageostrophic regime than for a quasi-geostrophic regime. Furthermore,
internal gravity waves dissipate predominantly through small-scale dissipation. Thus, in-
ternal gravity waves could possibly be catalysed by ageostrophic baroclinic instability and
might therefore contribute to a downscale energy transfer in the ocean.

2.1 Introduction

Internal gravity waves (IGWs) occur naturally in the atmospheric and oceanic flows and
influence the atmosphere mainly by vertical momentum transport and the ocean by density
mixing. Despite their ubiquity and importance in the geophysical flows and numerous
observational and numerical studies, the emission and dissipation of IGWs are not well
understood. Due to this inadequacy, the parameterization of IGWs remains a strenuous
task. This gap is in part related to the short spatial and temporal scales of IGWs which
render them hard to observe and difficult to resolve, in part to the specification of their
sources, and to a certain extent to the difficulty of separating IGW from other motions.
The latter is the theme of this paper, in which we diagnose IGWs emitted from balanced
flows for different dynamical regimes and investigate their role in the downscale transfer
of energy.
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IGWs are forced mainly by orography, convection, and jet/front systems in the atmo-
sphere, and winds and tides in the ocean. Of these, the emission of IGWs from geostroph-
ically balanced flows, referred to as spontaneous generation (see Vanneste (2013), and
references therein), is of marked interest as it provides an avenue to the internal mecha-
nisms in the flow that lead to IGW generation. IGWs generated spontaneously have been
discussed extensively in both oceanic and atmospheric literature: in observations (e.g. Sec-
tion 2 of Plougonven and Zhang, 2014), laboratory experiments (e.g. Williams et al., 2008),
and several numerical simulations (discussed below; also see reviews by Vanneste (2013)
and Plougonven and Zhang (2014), and references therein). Spontaneous generation (or
emission) is also of special interest for it allows for understanding the fundamental nature
of balanced flows, which dominate much of the atmosphere and ocean.

The slow geostrophically balanced motions evolve over long timescales, whereas the
IGW correspond to the fast unbalanced motions. The slowly varying nature of the balanced
motion led to the concept of "slow manifold" (Leith, 1980; Lorenz, 1980, 1986) that is
defined as a subspace of the phase space which is strictly "invariant" and completely
devoid of any IGW activity. However, the routinely observed emission of unbalanced fast
motion (IGW) in geophysical flows questions the validity of such a manifold. The existence
of the slow manifold –or rather its non-existence– has been discussed by several authors
(e.g. Lorenz and Krishnamurthy, 1987; Lorenz, 1992; Ford et al., 2000; Vanneste and
Yavneh, 2004) which makes clear that an exactly invariant slow manifold does not exist
but rather manifolds with different degrees of "invariance", where the slow balanced and
fast unbalanced motions coexist but their degree of interaction differs. Accordingly, such
a manifold more suitably came to be called as a fuzzy manifold (Warn, 1997) or a slow
quasimanifold (Ford et al., 2000). The non-existence of an exactly invariant slow manifold
implies that immaterial of the initially balanced conditions the slowly evolving balanced
motion will always co-occur with the fast motion and hence "spontaneous generation of
IGWs for geophysical flows is inevitable" (Vanneste, 2013). An insight into this mechanism
also facilitates our understanding of the emission of IGWs from balanced mesoscale flows
(mesoscale eddies) in the ocean, that has strong implications for the energy budget of the
ocean.

Mesoscale eddies, a consequence of baroclinic instability, are ubiquitous in the ocean
and are one of the most energetic components of the ocean energy budget. The eddies act
as a reservoir of energy which enters the ocean at large scales, but energy in the ocean is
finally dissipated at the viscous molecular scales via a downscale energy transfer. Balanced
mesoscale flows are known to lose their energy to large oceanic scales through an upscale
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energy transfer (e.g. Charney, 1971). How the balanced mesoscale eddies lose their energy
to dissipative molecular scales is however unclear; this is where the unbalanced motions such
as IGWs come into the picture. Studies suggest that balanced flows could lose their energy
to unbalanced motions, like IGWs, through processes such as geostrophic adjustment,
spontaneous generation, loss of balance, stimulated loss of balance, topographic interaction,
direct extraction, gravity wave drag. Geostrophic adjustment (e.g. Rossby, 1938; Blumen,
1972; Bartello, 1995), differs from previously discussed spontaneous generation in that
for the former process the flow is forced away from its balanced state by an arbitrary
initial condition and the flow then adjusts to its balanced state (geostrophy) while emitting
unbalanced IGWs. Another mechanism is the loss of balance (e.g. Molemaker et al.,
2005) where the balance of the flow can break down and transfer energy into unbalanced
motions. Stimulated loss of balance (e.g. Gertz and Straub, 2009; Xie and Vanneste,
2015) is different from loss of balance and it refers to the process by which externally
forced waves can further ‘stimulate’ the emission of waves and this wave-mean interaction
extracts energy from the balanced flow. Topographic interaction (e.g. Dewar and Hogg,
2010) requires that the balanced flow interact with topography and in the process emit
unbalanced motions, whereas the energy transfer from mesoscales directly to IGWs has
been referred to as direct extraction and was discussed in the context of a wind-driven
channel flow by Barkan et al. (2017). Yet another mechanism is the exchange of energy
between balanced flow and gravity waves by wave-mean flow interaction resulting from the
gravity wave drag (see Eden and Olbers, 2017). In these ways the balanced motions could
find an energy pathway via unbalanced motions en route to viscous dissipation, resulting in
the downscale transfer of energy. The idea is further motivated by numerous atmospheric
and oceanic studies and there seems to be a general consensus on this notion; some of these
studies are briefly mentioned in the following passage.

The loss of balance in a baroclinically unstable flow results in a transfer of energy from
balanced mean flow to unbalanced motions and eventually to dissipation by means of a
downscale energy transfer as shown by Molemaker et al. (2005). A direct interior route to
dissipation by means of unbalanced motions in a Boussinesq flow that can initiate a down-
scale energy transfer has been discussed in an idealized flow configuration by Molemaker
et al. (2010). For a range of dynamical regimes, downscale energy transfer from baroclin-
ically unstable flows in an idealized setting has been discussed by Brüggemann and Eden
(2015), and they emphasize that an ageostrophic direct route to dissipation might be of
importance in the energy budget of the ocean. For a realistic flow configuration, Capet
et al. (2008)c find an increase in the downscale energy flux related to the ageostrophic dis-
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sipation route with an increased horizontal resolution that can better resolve ageostrophic
dynamics. Another unbalanced route is the stimulated loss of balance that can propel the
downscale energy transfer as shown by Gertz and Straub (2009) for an unstratified thin-
aspect-ratio fluid. Spontaneous generation of IGWs from idealized dipoles, e.g. Sugimoto
and Plougonven (2016), also suggest that the balanced flows could dissipate via unbalanced
IGWs during a downscale energy transfer. An alternative perspective that links IGWs and
balanced mesoscale eddies are the recent model-based estimates of small-scale dissipation
rates in the ocean, which fail to reproduce the observations without eddy forcing taken
into account in a parameterization of IGW, implying that eddy dissipation is necessary for
the IGW energy budget (Pollmann et al. (2017)).

Despite numerous observational and numerical studies on IGW emission from balanced
motions, the exact mechanism behind this process remains poorly understood and a puz-
zling part is the identification of IGWs. The complication related to the identification of
the IGW signals is in part associated with the coupling of the balanced motions and IGWs.
The extent of this coupling can be estimated by Rossby number (Ro) (or an equivalent
Richardson number (Ri)) which is a measure of the timescale separation between the slow
balanced and fast unbalanced IGW motions. This coupling is weak for a regime with Ro

� 1, equivalent of a Ri � 1, such that the fast and slow motions are "well separated";
on the contrary, for a large Ro, equivalent to Ri = O(1) or smaller, the fast and slow
motions interact more strongly and the separation of these processes is not well defined
(Vanneste, 2013; Zeitlin, 2008). The coupling between these motions adds to the intricacy
of separation and detection of IGW signals from the balanced flow field. The emphasis of
this paper is on the diagnosis of gravity wave signals.

The traditional approach to identify IGWs, or more generally unbalanced motions, is
to use the fast fields such as the horizontal velocity divergence, the vertical component of
the vorticity to determine the IGWs (e.g. Plougonven et al., 2005; Plougonven and Snyder,
2007), or a spatial filtering to obtain small-scale vertical velocity as the signature of the
IGWs (e.g. Sugimoto and Plougonven, 2016). As another way, the full field of interest could
be separated into horizontally non-divergent and vertically irrotational components (e.g.
Molemaker et al., 2005) or simply put into rotational and divergent parts (Molemaker et al.,
2010; Brüggemann and Eden, 2015) which give the balanced and unbalanced contributions
respectively. Another technique to obtain IGW signals is from the quasi-geostrophic omega
equation which gives the ageostrophic vertical velocity whose difference with the full vertical
velocity yields the unbalanced IGW contribution (e.g. Danioux et al., 2012; Nagai et al.,
2015). Although these methods work well in identifying IGWs owing to the waves’ distinct
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spatial characteristics, the methods have the restraint that the unbalanced part interpreted
as the IGW could still contain a notable amount of balanced part which hampers a concise
interpretation of the signals.

A conceptually different approach is the linear modal decomposition, similar to projec-
tion onto the balanced manifold, which separates the slow balanced and fast IGW modes
by decomposing the full field. Such a decomposition has been implemented for a linear
system, for example by Molemaker et al. (2010) and Borchert et al. (2014). However, the
application of a linear decomposition to a nonlinear system is hindered by its limitation to
account for the non-linear evolution, and thus an extension of this method to a non-linear
framework is desirable. This issue is addressed by a non-linear normal mode initialization
technique (NLNMI) developed independently by Machenhauer (1977) and Baer and Trib-
bia (1977), that allows for adjustments to the initial conditions in order to minimize the
tendency of the system to generate fast motions. Relating these initialization procedures
to quasi-geostrophic balance, Leith (1980) derived decomposed modes for the hydrostatic
Boussinesq equations, which was later generalised to the non-hydrostatic set of equations
by Bartello (1995). More recently, the non-linear initialisation scheme of Baer and Tribbia
(1977), was applied by Kafiabad and Bartello (2016) for balanced rotating dynamics to
identify the energy cascades for differently initialized balanced regimes, and by Kafiabad
and Bartello (2017) to identify mechanism and scales of spontaneous imbalance in a ro-
tating stratified turbulence system. In this paper, we apply the non-linear initialization
procedure of Machenhauer (1977) with an aim to diagnose IGWs by decomposing the full
field into its balanced and unbalanced counterparts, for a range of dynamical regimes from
ageostrophic to quasi-geostrophic.

The present work is also motivated by the previous work of Brüggemann and Eden
(2015) who discussed spectral energy fluxes for a range of dynamical regimes ranging
from ageostrophic (small Ri) to quasi-geostrophic (larger Ri). The regimes with smaller
and smaller Ri show stronger and stronger energy flux towards large wavenumbers, i.e.
a larger and larger downscale transfer of energy (although there is also still an inverse
energy transfer for the smaller wavenumber range). We use a very similar model setup as
Brüggemann and Eden (2015) and by diagnosing gravity waves we also aim to answer the
question whether this ageostrophic route towards dissipation is generated by gravity wave
emission during ageostrophic baroclinic instability.

To weave together the numerous threads sketched up above, we use a simple model
of baroclinic instability to simulate flows representing low to high Ri regimes from ageo-
strophic to quasi-geostrophic (Section 2.2). This allows us to study the evolution of the
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flows individually and evaluate the characteristics of the unbalanced motions without in-
terference from other processes as is the case in a more complex flow configuration. To
characterize the waves we first explore them in the Fourier space (Section 2.3). We then ap-
ply Machenhauer’s non-linear initialization technique to the model data to obtain balanced
and unbalanced modes and analyze gravity wave activity for different flow regimes (Sec-
tion 2.4). Further we estimate the energy dissipation related to balanced and unbalanced
modes for different dynamical regimes under study (Section 2.5). Finally, we summarize
the results and the key conclusions (Section 2.6).

2.2 Baroclinic instability in different dynamical regimes

2.2.1 Numerical model

Baroclinic instability in our setup is represented in an idealized channel configuration
resembling the classical Eady model (Eady, 1949) of baroclinic instability: flow on a f -
plane with a prescribed stratification and a vertically sheared background zonal flow, under
Boussinesq and hydrostatic approximations. Our model configuration differs from the Eady
model by using a free surface and a meridional buoyancy gradient which is expressed as
a sine function with an amplitude of M2

0 . The latter allows to apply double periodic
boundaries to exclude lateral boundary instabilities. The presence of boundaries itself can
lead to IGW generation (e.g. Borchert et al., 2014, laboratory experiments by Williams
et al., 2008) and we suppress it with double periodic boundaries since we focus on studying
IGW emission from balanced flows. In its initial state, the model has a background flow
in thermal wind balance with a constant stratification N2

0 and a meridional buoyancy,
this combination makes the setup baroclinically unstable. An example of the initial state
temperature of the setup is shown in Fig. 2.1(a). Temperature is the only active tracer in
our setup and hence temperature and buoyancy are equivalent. The model is forced with a
restoring of the zonal mean flow and zonal mean buoyancy towards the initial state, there
is no additional surface forcing and no bottom friction.

We simulate baroclinic instability for a range of dynamical regimes characterized by
the Richardson number (Ri) which is defined here as the ratio of the vertical density
stratification and vertical shear of the horizontal velocity. The parameters Ri, N0 and M0

are related as:

Ri =
N0

2f 2

M0
4 (2.1)
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where f the Coriolis parameter. Ri sets the initial buoyancy restoring in the model,
and hence the flow dynamics ranging from ageostrophic (Ri = O(1)) to quasi-geostrophic
(Ri � 1) as described in Brüggemann and Eden (2015). The potential energy (PE)
deposited into the model by the restoring is lost to the kinetic energy (KE) predominantly
by baroclinic instability, as in the Eady model. This energy is dissipated in the model
by lateral biharmonic (Ah) and vertical harmonic friction (Av) at small scales and by a
linear drag acting on the zonal mean zonal flow at the large scales (as in Brüggemann
and Eden, 2015). Dissipation by biharmonic and harmonic friction is controlled by a grid
Ekman number (Ek) which is set to Ek = 0.1, 0.06 for Ri = 3, 13 and Ek = 0.01 for
Ri = 377, 915. The time scale of the linear drag λu and the relaxation time scale λT are set
proportional to the time scale of the fastest growing modes (see Table 2.1). The numerical
code for the model is identical to the one in Eden (2016).

Figure 2.1: Temperature field shown at different instances of the model run for Ri = 915
from the standard setup. (a) Temperature at the initial state (time=0) of the model with
zonal velocity contours on top (10 days later) shown in black. (b) Temperature at the
surface after 32 days, notice the four wavelengths of the fastest growing mode.. Note that
the vertical axis in (a) is depth and in (b) the meridional extent.

A small random initial perturbation provided in temperature grows exponentially with
time as the baroclinic instability sets in. For each stratification and shear, there exists a
particular perturbation of a certain spatial scale which grows faster than perturbation of
other scales. This particular spatial scale is of the order of the deformation radius (Eady,
1949; Stone, 1966) and is referred to as the fastest growing mode, which becomes dominant
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over all the other perturbations and is therefore assumed to be the mode at which most of
the PE is converted to KE. The linear growth rate σmax and the corresponding wavenumber
kmax of the fastest growing mode can be expressed for the primitive equations as derived
by Stone (1966):

kmax ≈
√

Ri

1 + Ri

√
5

2
L−1
r , σmax ≈

√
Ri

1 + Ri

√
5

54

f√
Ri

(2.2)

For quasi-geostrophic approximation (large Ri), the length and time scales of this fastest
growing mode turn into expressions as derived by Eady (1949):

kmax ≈ 1.61 L−1
r , σmax ≈ 0.31

f√
Ri

(2.3)

where Lr = N0H/f is the Rossby radius of deformation. Since our model is based on
primitive equations, in our simulations we use Stone’s formulation and the model domain
allows for four wavelengths of the fastest growing mode (4 × 2π/kmax) (for example, see
Fig. 2.1(b)). The domain width is chosen to be equal in zonal and meridional directions
and so Lx = Ly. In our standard model setup the number of grid points in both horizontal
directions is nx(= ny) =120. Note, however that the actual horizontal resolution, which
determines the smallest resolved scales, depends on kmax and varies as we vary Ri for differ-
ent simulations. On the contrary, a fixed vertical depth of H = 200 m with nz = 40 layers
for the standard setup provides a constant vertical resolution of 5m for all simulations. In
addition, we also run simulations at a higher resolution with 240 and 80 grid points in the
horizontal and vertical respectively, the vertical resolution in this case is 2.5m. We use our
standard model setup for the bulk of our analysis, and we mention the resolution used for
the respective diagnosis in the text or the figure caption. The model time step depends on
the Courant-Friedrichs-Lewy (CFL) condition, mean flow, and the horizontal resolution.
CFL is set to 0.001, 0.003, 0.005, and 0.005 for Ri = 3, 13, 377, and 915 respectively. An
overview of the model parameters for the standard setup is presented in Table 2.1. Next
we discuss the numerical simulations used in this work.
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Symbol Meaning V alue Unit

nx, ny, nz Number of grid points in (x, y, z) directions 120, 120, 40 -
H Depth of the basin 200 m
α Aspect ratio 0.02 -
f Coriolis frequency 7× 10−5 s−1

N0 Brunt-Väisälä frequency f/α s−1

M0 Meridional stratification
√
fU0/H s−1

U0 Mean flow N0H/
√

Ri m s−1

Lr Rossby radius of deformation N0H/f m
kmax Wavelength of the fastest growing mode

√
5/2
√

Ri/(1 + Ri) L−1
r m−1

σmax Growth rate of the fastest growing mode
√

5/54
√

Ri/(1 + Ri) f/
√

Ri s−1

Lx Length of the domain 4× 2π/kmax m
dx(=dy) Horizontal resolution Lx/nx m
dz Vertical resolution H/nz m
dt Time step dx CFL/U0 s
Ah Biharmonic horizontal friction Ek fdx4 m2 s−1

Av Harmonic vertical friction Ek fdz2 m2 s−1

λu Linear drag coefficient 0.75 σmax s−1

λT Restoring time scale 2 σmax s−1

Table 2.1: An overview of the model parameters for our standard model setup.

2.2.2 Numerical simulations

The numerical simulations can be used to investigate different dynamical regimes depending
upon the choice of the parameter Ri: ageostrophic (Ri = O(1)) to quasi-geostrophic (Ri�
1). After about 45 days, all model simulations are in a quasi-steady equilibrium between the
buoyancy forcing and the large and small-scale dissipation. We disregard the spinup period
here and consider the quasi-steady integrations only. Snapshots of KE and buoyancy for
our setup’s two extreme Ri (3 and 915) from the quasi-steady state are shown in Fig. 2.2.
The differences between the two extreme regimes are evident from the spatial scales of the
associated features both in buoyancy and KE, where the ageostrophic regime with Ri = 3

exhibits small scale features with filament-like structures and has much higher KE than
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the quasi-geostrophic regime with Ri = 915 which exhibits mesoscale eddy-like features
with large spatial scales.

Figure 2.2: Snapshots of buoyancy (a, b) and KE (c, d) at a depth of 1.25 m from the
surface in the quasi-steady state of the high resolution model simulations. The differences
in the structure and magnitude are clearly evident between the dynamical regimes with
Ri = 3 (a, c) and Ri = 915 (b, d), equivalent of an ageostrophic and quasi-geostrophic
regime respectively.

Snapshots of the vertical velocity corresponding to the Ri in Fig. 2.2 are shown in
Fig. 2.3. These suggest the existence of wave-like features for both ageostrophic and quasi-
geostrophic regimes, similar to e.g. what is described in Plougonven and Snyder (2007).
These wave-like features manifest themselves as wave trains, as can be seen for instance
in the vertical velocity for Ri = 3 in Fig. 2.3. Since the crests and troughs seen in the
figure above are akin to gravity wave activity, those signals are accordingly interpreted by
e.g. Plougonven and Snyder (2007) as gravity waves generated by the baroclinic instability
process in the simulations. It is the aim of this study to investigate if those signatures are
indeed gravity waves in a more qualitative manner, or vertical velocities associated with
the balanced mode. We proceed further to explore these wave signals in the Fourier space.
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Figure 2.3: Snapshots of vertical velocity at about 20 m depth, for (a) Ri = 3 and (b) 915
from the quasi-steady state of the high resolution model runs. Note that the colorscales
are different.

2.3 Analysis in Fourier space

2.3.1 Frequency spectrum

The presence of wave-like features in the physical space motivates us to delve further into
Fourier space to identify the characteristic properties of these wave signals. A frequency
(ω) spectrum of KE at 50 m depth for different Ri is shown in Fig. 2.4. The spectra shown
are averages of 11 chunks, each of 45 day period, of the quasi-steady integrations of the
standard model setup and averages over the model domain. We show results from only one
depth but frequency spectra calculated at other depths give similar results. Most of the
energy is concentrated at the smallest frequencies, i.e. the spectrum is red, but a certain
amount of energy is also contained in super-inertial frequencies with ω > f indicative of
gravity waves, in particular for small Ri. The percentage of the KE content above the
inertial frequency f is also indicated in the figure. It shows that the relative energy level
contained in the super-inertial frequencies is much higher for an ageostrophic regime, than
it is for other dynamical regimes. This energy in the super-inertial frequencies could be
associated with gravity waves, which have frequencies higher than f . On the other hand,
the gravity waves can be Doppler shifted by the mean flow such that the frequency analysis
alone does not provide a clear separation of the balanced and gravity mode, for which a
frequency and wavenumber spectrum is better suited.
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Figure 2.4: Frequency spectrum for KE for different Ri as indicated in the Figure, from the
standard model setup. The spectrum shown is an 11-chunk average, and is shown at 50m
depth. The vertical dashed grey line indicates the Coriolis frequency f , and the numbers
to its right indicate the percentage of energy contained in the frequencies larger than f for
each Ri. The values are similar also at other depths (not shown).

2.3.2 Energy in vertical modes

We begin with the vertical wavenumber and consider the energy distribution in vertical
modes. All model variables are projected on vertical modes by transformations in the
vertical, i.e. discrete sine transformation of the vertical velocity (w) and buoyancy (b),
and a discrete cosine transformation of the horizontal velocity (u, v) and pressure (p). The
vertical eigenvalues m, for N = const are given by m = nπ/H for the vertical mode
number n = 0, 1, 2, 3, ... After decomposition into the vertical modes we calculate KE,
available potential energy (APE), and total energy (TE) contained in each mode. APE is
defined here as P = b′2/(2N2

m), where b′ = b−N2
m z gives the difference between the local

buoyancy b and the reference buoyancy N2
mz of the time and global mean of N2

m, which is
the stratification of the equilibrated flow.

The distribution of TE and KE as a fraction of TE in the barotropic and first four
baroclinic modes is shown in Table 2.2 for different Ri, again using 11 chunks of quasi-
steady integrations of the standard setup. The values shown in Table 2.2 are averaged
in time and horizontally. The breakdown of energy into vertical modes shows that both
KE and APE (the remaining fraction of TE in Table 2.2) rapidly decrease in general with
higher vertical modes, although APE appears to share a larger portion of TE for higher
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modes. For the first baroclinic mode KE dominates APE for small Ri while the reverse is
true for large Ri, whereas for higher baroclinic modes APE dominates KE for all Ri.

Ri → 3 13 377 915

modes ↓ TE KE/TE TE KE/TE TE KE/TE TE KE/TE
0 5236.00 1.00 1553.00 1.00 341.00 1.00 163.00 1.00

1 2481.48 0.66 268.01 0.51 36.27 0.19 30.66 0.13

2 861.81 0.33 124.11 0.22 27.92 0.02 25.69 0.01

3 329.12 0.40 49.94 0.26 9.53 0.03 8.27 0.01

4 267.72 0.26 40.65 0.16 9.96 0.01 9.20 0.00

Table 2.2: Total energy (TE) (in m2s−2) and KE as a fraction of TE in the first five
vertical modes for different regimes indicated by Ri. TE and KE are averaged in time
and horizontally after they are are computed from vertically decomposed buoyancy and
horizontal velocities.

Further, frequency and wavenumber spectra of KE in different vertical modes (not
shown) shows distinct differences between odd and even modes, the trend being more
pronounced for regimes with higher Ri. This disparity between odd and even modes might
be related to the behaviour of the fastest growing mode in the simulations. To test this we
project the fastest growing mode φ on the vertical eigenfunctions Φn (see Appendix A for
a detailed derivation). The projection can be written as φ(z) =

∑∞
n=1AnΦn(z) and upon

solving the coefficient An takes the simple form for baroclinic modes1:

An =
2d

H(1 + n2π2d2/H2)

[
(−1)n χ+ 1

]
(2.4)

Here d = f/Nk2
h, kh is the horizontal wavenumber, and χ is a function of d (for the full

expression of χ refer to Appendix A). Since the energy in vertical modes depends on the
coefficient An and An in turn is proportional to

[
(−1)n χ + 1

]
, this disparity between

modes might be inferred from in Eq. 2.4 (f , N and H being constant). The decisive
factors in this expression are (−1)n and the ‘+1’ in the square brackets, the factor (−1)n

acts as a switch and gives rise to the odd-even non-uniformity in the modes. Note, however,
that this projection is performed for the Eady modes which might differ from the ones in
the model since the model is based on primitive equations (Section 2.2.1). Although the
model background state is not the same as the Eady state, we find a similar behaviour in

1For barotropic mode, the factor 2 vanishes in the RHS expression of An. See Appendix A.
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our simulations. That being so, the projection explains that the energy distribution not
only tends to decrease with increasing vertical modes, it also shows a distinct distribution
between odd and even modes. Further, we extend the analysis to the frequency and
horizontal wavenumber space, to better identify gravity waves in the model simulations.

2.3.3 Frequency-wavenumber analysis

KE and APE in frequency-wavenumber (ω−kh) space are obtained from a three-dimensional
Fourier Transform of the horizontal velocity in time and space (zonal and meridional di-
rection), for different vertical modes. The zonal (k) and meridional (l) wavenumbers are
collapsed together to give the horizontal wavenumber (kh). Variance preserving ω-kh spec-
tra of KE (shown as log10(ω ∗ kh∗KE)) for the first and second baroclinic modes (n = 1, 2)
for Ri = 3 and Ri = 915 are shown in Fig. 2.5. The figure also shows the gravity wave
dispersion relation, which can be expressed as ω2 = f 2 + gHk2

h (barotropic mode) and
ω2 = f 2 + c2

nk
2
h (baroclinic modes), where g is acceleration due to gravity and cn = N/m.

As the wave’s frequency can be influenced by the Doppler-shift, we show ω ± U0kh in the
figure, where U0 is the mean flow (see Table 2.1). We assume that the possible region for
gravity wave lies approximately within the envelope of the Doppler-shifted extrema. We
call this guideline region, henceforth, as the gravity-wave branch.

As is evident from Fig. 2.5, there is a substantial amount of energy in the gravity-wave
branch for Ri = 3 for both modes, while it is much smaller for Ri = 915 and outside
of the gravity-wave branch. Instead, most of the energy for Ri = 915 is located at the
wavelength of the fastest growing mode confirming that there is not much energy related to
gravity waves for a quasi-geostrophic regime. For an ageostrophic regime, on the contrary,
the energy in the gravity wave branch suggests that ageostrophic dynamics resulting from
baroclinic instability at small Ri could generate a significant amount of gravity wave energy.
However, a ω − kh spectrum is not enough to confirm this statement because the energy
of the balanced could also be within the gravity-wave branch. Especially for Ri = 3 in
Fig. 2.5, the balanced mode lies mostly within the gravity-wave branch. The co-existence
of these processes makes it difficult to isolate the energy contributions from gravity waves
or unbalanced modes and the balanced mode. To treat this difficulty and to clearly ascribe
this energy to the gravity waves, we employ a modal decomposition method to decompose
the full flow vector into these two modes, elaborated in the next section.
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Figure 2.5: Variance preserving frequency-wavenumber spectrum (log-log scale) for KE
for the first (top) and second (bottom) baroclinic modes, compared for Ri = 3 (left) and
Ri = 915 (right). In each subplot:- Left: solid grey curve shows ωKE as a function of
frequency (ω) averaged in wavenumber space; Bottom: the dashed grey curve shows khKE
as a function of horizontal wavenumber (kh) averaged in frequency space, and the dashed-
dotted grey line indicates kmax, the wavenumber of the fastest growing mode; Middle: the
shading shows ωkhKE as a function of ω and kh, the solid black curve indicates the gravity
wave dispersion relation, lines with black circles indicate the Doppler shifted dispersion
relation. The gravity wave branch is enclosed by the Doppler-shifted extrema. The dotted
black line (left and middle subplot) represents the Coriolis frequency (f). The spectra are
calculated and averaged from 11 chunks of 45 day length each from the standard setup.
KE shown is normalized with the total KE, and hence the figure shows at which scales
most of the KE is concentrated.
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2.4 Modal decomposition: balanced and unbalanced modes

We use here a linear modal decomposition to diagnose the gravity wave oscillations in
our simulations and extend this decomposition by a non-linear normal mode initializa-
tion technique (NLNMI) by Machenhauer (1977), used in numerical weather prediction to
generate an appropriate balanced initial state. This section presents an overview of the
decomposition methods, details appear in Appendix B.

The hydrostatic and Boussinesq system of equations,

∂tu+ u ·∇u = −∂xp+ fv , ∂tv + u ·∇v = −∂yp− fu , ∂tb+ u ·∇b = −wN2 (2.5)

complemented by the diagnostic relations ∂zp = b and ∇ · u = 0, can be written for the
state vector x containing the relevant state variables as:

∂tx = iL · x + N (x) (2.6)

where L · x contains all the linear terms and the vector N contains the non-linear and
forcing terms.

After decomposition into vertical modes and then a Fourier transformation in x and y,
the system in matrix notation yields,

x̃ =

 ũ

ṽ

p̃

 , L =

 0 −if −k
if 0 −l
−kc2

n −lc2
n 0

 (2.7)

where a Fourier transformed quantity is represented by a tilde (̃ ). The spectrum of the
matrix L , which is the set of eigenvalues of L , describe the characteristic frequencies of
the system and are given by ω = ω0 = 0 and ω = ω± = ±

√
f 2 + c2

nk
2
h. Notice that ω±

resembles the dispersion relation for gravity waves with cn>0 = N/m = NH/(nπ) and
c0 =

√
gH.

The corresponding right (q0,±) and left (p0,±) eigenvectors2 to the matrix L then give
the state vector x̃ in Fourier space, which can be expressed as:

x̃ = b q0 + g+q+ + g−q− with b = p0 · x̃ , g+ = p+ · x̃ , g− = p− · x̃ (2.8)
2For a given matrix, a right eigenvector is a column vector while a left eigenvector is a row vector. In the context

of matrices, the commonly used “eigenvector" is the right eigenvector. Here we use the two eigenvectors separately. See
Appendix B for details.
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This yields a projection of the state vector x̃ on three eigenmodes or normal modes: one
balanced slow mode and two unbalanced fast gravity wave modes corresponding to the
characteristic frequencies ω0 and ω± respectively. Henceforth, we call these modes as
balanced mode and unbalanced gravity modes (or simply unbalanced modes). The left
and right eigenvectors are given explicitly in Appendix B.

We define vectors x̃B and x̃G associated with the balanced manifold and unbalanced
manifold respectively:

x̃B = b q0 = B · x̃ (2.9)

x̃G = g+q+ + g−q− = G + · x̃ + G − · x̃ (2.10)

Since the matrix L is Hermitian, the eigenvectors of L are mutually orthogonal,
and so are the balanced and unbalanced modes and the associated linear manifolds. As
the manifolds B and G are mutually orthogonal, they span the whole phase space and
therefore the vector x̃ can be written as a linear combination of the two modes implying
that x̃ = x̃B + x̃G holds true (cf. Leith, 1980; Theiss and Mohebalhojeh, 2009). After
reverse transformation from x̃ to x (i.e. x̃B to xB and x̃G to xG) the energy contained in
the balanced and unbalanced gravity modes can be obtained.

2.4.1 Linear modal decomposition

In the linear case (N = 0 in Eq. (2.6) ) any x̃ can be projected on the slow linear manifold.
This part of x̃ i.e. x̃B becomes stationary,

∂tx̃B = iL · x̃B = ib ω0q0 = 0 (2.11)

and only the fast modes will evolve in time according to

∂tx̃G = iL · x̃G =
∑
d=±

igdωdqd (2.12)

The balanced and the gravity modes are then contained in x̃B and x̃G respectively. We call
the modes resulting from the linear normal mode decomposition of baroclinically unstable
fully non-linear model state as the linear balanced mode (BAL_L) and linear unbalanced
modes (UNB_L).
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2.4.2 Non-linear modal decomposition

The linear modes refer to the linear system and using them for the realistic non-linear case
does not provide a consistent decomposition. To handle this discrepancy we include in the
decomposition the non-linearity in the system. For N 6= 0, the time evolution of the slow
mode is non-zero and its behaviour becomes

∂tx̃B = ˜N (xB) 6= 0 (2.13)

where xB is the inverse Fourier transform of x̃B and ˜N the Fourier transform of N . One
approach to separate the modes in the non-linear case is to choose a state that eliminates
the fast modes such that only the slow mode remains, whose difference with the full vector
then gives the isolated fast modes. According to Machenhauer (1977), the time changes
in the fast modes, i.e. G =

∑
d=± G d, can be eliminated by a non-linear normal mode

initialization technique requiring that the time derivative of the fast modes is zero, that is

G · ∂tx̃ = 0 (2.14)

which for Eq. (2.6)
becomes

G · ∂tx̃ = iG · (L · x̃) + G · ˜N (x) = 0 → (L · G ) · (G · x̃) = iG · ˜N (x)

→ G · x̃ = i(L · G )−1 · G · ˜N (x) (2.15)

Here the linear operator (L · G )−1 · G =
∑

d=±(ωd)−1G s operates in the gravity mode
space only where the eigenvalues are non-zero to avoid problems by singularities for the
inversion (L · G )−1 as claimed by Leith (1980).

Eq. (2.15) is a non-linear condition on x which is proposed by Machenhauer (1977)
to be solved iteratively until convergence is reached, which is usually the case after a few
steps. Starting with a linear slow mode xB the iteration for the initialisation technique is
given by:

x̃1 = x̃B + i(L · G )−1 · G · ˜N (xB) (2.16)

x̃2 = x̃B + i(L · G )−1 · G · ˜N (x1) (2.17)

. . . (2.18)

x̃k = x̃B + i(L · G )−1 · G · ˜N (xk−1) (2.19)
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It was shown by Leith (1980) that the first iteration step corresponds to the quasi-
geostrophic approximation. Hence, we use only the first step in our analysis, further
iterations do not change the results much. The result of the iteration can now be used
to calculate the non-linear balanced mode, the difference of this balanced mode to the
actual state vector can be interpreted as the non-linear gravity mode. We call the modes
resulting from the non-linear decomposition as the non-linear balanced mode (BAL_NL)
and non-linear unbalanced modes (UNB_NL).

2.4.3 Decomposition results

As stated above, a non-linear decomposition is more suitable for a fully non-linear model
state of a baroclinically unstable flow, such as our setup, so we first present an example of
the non-linear decomposition in physical space. Next we consider both the decompositions
by means of ω − kh spectra and elaborate on the differences. Fig. 2.6 shows snapshots of
zonal velocity for Ri = 915 for the full velocity (FULL) and velocities from the non-linear
balanced mode (BAL_NL) and non-linear unbalanced modes (UNB_NL) as an example of
the non-linear decomposition. For the balanced mode more large-scale features are present
as in the full component, whereas the unbalanced mode shows indeed more small-scale
features akin to gravity wave activity. This is a first indication that the separation of the
slow and fast modes using the modal decomposition is effective. To demonstrate this more
quantitatively we apply next a frequency-wavenumber analysis to the decomposed fields.

The ω−kh spectra (see Fig. 2.7, Fig. 2.8, Fig. 2.9) are computed similar to the method
described in Section 2.3.3 and then averaged for 11 chunks of 45 day length each. The
spectra shown are at 50 m depth and are normalized with the total KE (or APE) under
the volume. Recall from Section 2.1, that the coupling between balanced and unbalanced
modes tends to be weaker for Ri � 1 regime such that the temporal scales of the slow
balanced and the fast unbalanced motions are well separated. The opposite is true for
small Ri where this coupling is much stronger and the separation of the modes gets more
difficult. We tackle the less complicated case first (for Ri � 1) before expounding on a
case with small Ri.

A ω − kh spectra of KE for Ri = 915 is shown in Fig. 2.7 for modes obtained from the
linear and non-linear decomposition. As the balanced modes correspond to the motions
with large temporal scales, in ω− kh space the energy associated with the balanced modes
is expected to lie towards low frequencies, away from the high frequencies. The energy
associated with the unbalanced motions, on the other hand, is expected to lie in the region
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confined by the gravity-wave branch, which is the super-inertial frequency range that allows
for gravity waves enveloped by the corresponding Doppler-shifted dispersion relation. The
expectation is fulfilled in the case of balanced modes (BAL_L, BAL_NL), as seen from
Fig. 2.7(a, b), where most of the KE lies outside the gravity-wave branch and towards
small frequencies and wavenumbers.

Figure 2.6: Snapshots of zonal velocity for Ri = 915 with its full component, FULL
(top) and modally decomposed components: balanced, BAL_NL (middle) and unbalanced,
UNB_NL (bottom) modes using non-linear decomposition. Note the difference in the
colorscale in the bottom panel.
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Figure 2.7: Variance preserving frequency-wavenumber spectra of KE of the balanced (a,b)
and unbalanced (c,d) modes for Ri = 915 at 50 m depth. The spectra are calculated and
averaged from 11 chunks of 45 day length each from the standard setup and the KE shown
is normalized with the total KE under the volume. The spectra in (a) and (c) are obtained
from the linear decomposition (BAL_L, UNB_L), and the ones in (b) and (d) from the
non-linear decomposition (BAL_NL, UNB_NL). In each subplot: the color shading shows
the respective KE as a function of ω and kh, the dashed black line indicates the Coriolis
frequency (f), the solid black curve indicates the gravity wave dispersion relation and lines
with black circles show the Doppler shifted dispersion relation. Note that the gravity-wave
branch is enclosed by the Doppler-shifted extrema. Notice a magnitude difference of two
orders between the balanced and unbalanced modes.

However, also for the unbalanced modes (UNB_L, UNB_NL) (Fig. 2.7(c, d)) most of
the KE lies outside the gravity-wave branch against the expectation. This KE is much
higher for the linear unbalanced modes than for the non-linear unbalanced modes (com-
pare Fig. 2.7(c) and (d)). This suggests that this discrepancy could be a consequence of
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applying a linear decomposition to a non-linear flow system. The non-linear decomposition
in Fig. 2.7(d) indeed shows a reduction of KE that sits outside the gravity-wave branch, as
compared to the linear decomposition in Fig. 2.7(c). Thus, the non-linear decomposition
appears to be an improvement over the linear one and a better suited tool than a linear
decomposition to decompose the modes. We find similar improvement for the other model
experiments (not shown).

However, there is still energy outside the gravity wave branch in Fig. 2.7(d). This could
be related to a misinterpretation of the gravity wave branch, since, as mentioned in Section
2.3.3, we use the mean flow prescribed initially U0 (see Table 2.1) to calculate the Doppler
shift. This mean flow might not be well suited for an "effective" Doppler shift of the
waves, which means that the gravity wave branch would also change. On the other hand,
the residual unbalanced energy outside the gravity wave branch could also be related to
an (unknown) artifact of the non-linear decomposition. A possibility for such an artifact is
that we use the eigenvectors q0,± and p0,± of the analytical instead of the discrete system
for the method. We will explore this issue further in later studies and in the following we
consider the results only from the non-linear decomposition since they show improvement
with respect to our expectation.

Further, notice the difference in magnitude of two orders between the balanced and
unbalanced modes in Fig. 2.7, stating that a significant amount of KE is contained in the
balanced mode for large Ri. The negligible amount of KE in the gravity-wave branch even
for the unbalanced modes signifies that the gravity wave emission is weak in a Ri � 1

regime. We now consider examples from other Ri.

Balanced (BAL_NL) and unbalanced (UNB_NL) modes from the non-linear decom-
position for the extreme Ri (3) and an intermediate Ri (13) in our simulations are shown
in Fig. 2.8. For the balanced modes (see Fig. 2.8 (a, c)), for Ri = 3 and 13, most of the
KE lies outside the gravity-wave branch, but some KE is also within this branch. This
is associated with the strong coupling between the balanced and unbalanced motions for
small Ri, for which the timescale separation of these modes is not well-defined. In contrast,
most of the KE in the balanced mode for the aforementioned Ri = 915 clearly lies outside
this branch. Also, the balanced mode has much higher KE for Ri = 915 than for smaller
Ri.
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Figure 2.8: Variance preserving frequency-wavenumber spectra of KE similar to Fig. 2.7
but for different Ri: 3 (top) and 13 (bottom), from the non-linear decomposition. The
spectra are for the non-linear balanced modes (BAL_NL) are shown in (a) and (c) and
the ones for the non-linear unbalanced modes (UNB_NL) are shown in (b) and (d). The
gravity-wave branch is enclosed by the Doppler-shifted extrema. Note the difference in the
colorscales.

This high KE for Ri = 915 is not surprising, since as one moves from ageostrophy
towards quasi-geostrophy, one progresses towards a more ‘balanced’ state, and not unex-
pectedly would one find balanced modes dominating the unbalanced modes. Put in other
words, it implies that a regime in a quasi-geostrophic balance will emit weak unbalanced
gravity waves. In the context of modal decomposition, this suggests that for a regime in
a quasi-geostrophic balance the energy in unbalanced modes would be far less than in an
ageostrophic regime. This conjecture is supported by Fig. 2.8 (b, d) and Fig. 2.7 (d) for
the non-linear unbalanced modes. The figure clearly illustrates the negligibly small KE in
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the gravity-wave branch for the unbalanced modes of Ri = 915 in contrast to Ri = 3 and
13, where a significant amount of KE is concentrated within the gravity-wave branch. For
the intermediate Ri = 13, KE in the unbalanced mode is aligned along the gravity-wave
dispersion relation. For Ri = 3, the reason for high KE at higher frequencies is not known,
and might also be related to numerical issues which we have not tested further.

Figure 2.9: Variance preserving frequency-wavenumber spectra of APE similar to Fig. 2.7
but for Ri = 13. The balanced modes are shown in (a,b) and unbalanced modes in (c,d).
The spectra in (a) and (c) are obtained from the linear decomposition (BAL_L, UNB_L),
and the ones in (b) and (d) from the non-linear decomposition (BAL_NL, UNB_NL). The
gravity-wave branch is enclosed by the Doppler-shifted extrema. Notice that the colorscales
differ for unbalanced and balanced modes.

Further we discuss an ω − kh spectra for APE for the linear and non-linear decompo-
sitions, and as an example we show the APE spectra for Ri = 13 in Fig. 2.9. The APE
spectra exhibit a distribution between balanced and unbalanced modes similar to what
is described before for KE (Fig. 2.8 (b, c)). In the balanced modes (BAL_L, BAL_NL)
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(Fig. 2.9 (a, b)), most of the APE is present at lower frequencies, whereas for the un-
balanced modes (UNB_L, UNB_NL) APE tends to be present at higher frequencies.
However, there appears to be more APE in the non-linear modes (BAL_NL, UNB_NL)
than in the linear modes (BAL_L, UNB_L), and unbalanced modes show more APE than
the balanced modes.

2.5 Energy dissipation under different dynamical regimes

The energy in the model setup is dissipated at small scales by horizontal biharmonic friction
and harmonic vertical friction, and at large scales by the zonal mean drag. We use the
modal decomposition results to assess the differences in small and large-scale dissipation
associated with the velocities of the full model state, balanced and unbalanced modes.

The equation for KE obtained from the horizontal momentum equation is written as

∂tK = −∇ · uK −∇ · up+ wb′ + uh · λu(uh) + uh · F u (2.20)

where K = u2
h/2 denotes the kinetic energy, u = (u, v, w) is the full, uh is the horizontal,

and uh is the zonal mean velocity. The dissipation terms, which are the last two terms in
the RHS of Eq. (2.20), extract KE from the flow. Large-scale dissipation, which acts on the
large scales, is denoted by the term DL = uh ·λu(uh), where λu is the linear drag coefficient
which extracts energy from the mean flow and is related to the maximum growth rate as
λu = 0.75σmax. Small-scale dissipation on the other hand damps the smallest scales and
is denoted by DS = uh ·F u, where F u = Ah∇4uh +Av∂

2uh/∂z
2 indicates the dissipation

due to biharmonic and vertical friction respectively (for Ah and Av see Table 2.1).

The global mean values of KE dissipation are illustrated in Fig. 2.10 for all Ri for their
full velocity component (FULL) and modally decomposed components: non-linear balanced
mode (BAL_NL), and non-linear unbalanced modes (UNB_NL). The figure illustrates the
large-scale (DL) and small-scale (DS) dissipation values, shown as a fraction of the total
dissipation (DS + DL) for the respective mode; note that DS + DL = 1. In addition, the
dissipation values for the modes from linear decomposition and contributions to DS by
biharmonic friction (Db) and vertical friction (Dv) are tabulated in Table C of Appendix
C.

For small Ri, DS of the full component is larger than the corresponding DL, while DS

becomes smaller and negligible for higher Ri, as seen from the figure. The opposite is true
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for DL which dominates DS at larger Ri and becomes smaller, but not negligible, for small
Ri. The impact of vertical friction (Dv) is in general much smaller than the biharmonic
friction (Db) in all cases (Table C, Appendix C). Further, we weigh the variations in the
dissipation due to the decomposed modes for different Ri, but note that the unscaled
dissipation rates related to the balanced and unbalanced modes will not add up to the
dissipation of the full velocities (i.e. DS(UNB_NL) + DS(BAL_NL) 6= DS(FULL); also
for DL) because we disregard covariances between the decomposed velocities here. Only for
the total energy of the linear decomposition, the covariances of the state vector components
x cancel.

Figure 2.10: Globally integrated values of KE dissipation for the full and the non-linear
balanced and unbalanced components (BAL_NL, UNB_NL) for all Ri. Dissipation con-
tribution to the total KE dissipation from small-scales (DS) is shown by the hatched region
and from large-scales (DL) by the black shaded region. Note that DS + DL = 1 for the
respective mode.

The dissipation related to the non-linear balanced modes, BAL_NL, has higher values
for DL than DS for all Ri except for Ri = 3. For Ri = 377 and Ri = 915, most of the
dissipation in BAL_NL occurs at large-scales while it is almost negligible for small-scales.
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For Ri = 3, however, a significant amount of dissipation still occurs at the small-scales. For
the non-linear unbalanced modes, UNB_NL, DS is much larger than DL for all Ri, with a
maximum of DS for Ri = 3, while DL for UNB_NL tends to become almost negligible for
small Ri. This directs to the inference that in the gravity wave mode dissipation occurs
predominantly at small-scales for all Ri.

The dissipation results for the decomposed modes elucidate that regimes with larger Ri

dissipate energy preferably at large-scales contrary to the small Ri regimes which dissipate
energy predominantly at small-scales. This result is consistent with previous results, e.g.
Brüggemann and Eden (2015), which predict that in wavenumber space regimes with large
and small Ri show a dominant KE flux towards large scales and small scales, respectively. In
their study, the velocity field was decomposed into its rotational and divergent components,
analogous to the balanced and unbalanced gravity modes in our study. Brüggemann and
Eden (2015) showed that a downscale energy transfer is associated with a divergent flow
field. However, a specific connection to a process, such as IGWs, was not made. We suggest
based on our results that gravity waves could be a potential participant in the downscale
energy transfer via the ageostrophic route.

2.6 Summary and Conclusions

In this study, we diagnose internal gravity waves emitted from balanced flow using the
non-linear initialization technique of Machenhauer (1977). We use an idealized numeri-
cal setup which is baroclinically unstable and the choice of the Richardson number (Ri)
allows us to emulate different dynamical regimes ranging from ageostrophic (Ri = O(1))
to quasi-geostrophic (Ri�1) flows. We first diagnose internal gravity waves in frequency
and wavenumber space, and then using linear and non-linear modal decomposition. The
modal decomposition yields balanced and unbalanced gravity modes, which we discuss in
frequency-wavenumber space, followed by an assessment of the dissipation associated with
the decomposed modes. The key results are as follows:

1. An ageostrophic regime shows much more gravity wave activity than a quasi-geostrophic
regime. In frequency-wavenumber space, most of the energy is concentrated at small
scales for the former and at large scales for the latter.

2. The non-linear initialization technique used is able to segregate balanced and unbal-
anced gravity modes, although this segregation becomes difficult for Ri = O(1) or
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less. The non-linear decomposition is promising and an improvement over the linear
decomposition.

3. Gravity waves dissipate predominantly through small-scale dissipation. Hence, grav-
ity waves could be responsible for the downscale energy transfer.

It should be noted that the non-linear decomposition might be less efficient for Ri =

O(1) since the interactions between the balanced and unbalanced motions are much stronger
and the time scale separation between these modes is minimal, which renders it hard to
separate one mode from the other. Nonetheless, for regimes which allow the separation of
fast and slow motions, the procedure seems promising and can be applied to isolate gravity
wave modes from balanced modes for future studies.

We have attributed the IGW signals in the simulations as emissions from balanced flows.
However, the unbalanced motions generated from balanced motions could form triads and
can further generate unbalanced motions. This process might also contribute to IGW
activity. Triad interactions between slow balanced and fast unbalanced motions have been
studied, for e.g. by Bartello (1995), which suggest that in a slow-fast-fast triad the slow
mode can catalyze the flow of energy from one fast mode to another. This slow-fast-fast
interaction also sweeps the balanced energy from the slow mode downscale to the scales of
dissipation (Bartello, 1995). This supports the notion of a downscale energy transfer via
an ageostrophic route suggested by e.g. Brüggemann and Eden (2015). Our results suggest
that gravity waves could be a potential candidate in the downscale energy transfer via the
ageostrophic route and hence could be catalyzed by ageostrophic baroclinic instability.

2.7 Appendix A: Eady mode projection on vertical modes

The wave solution for the Eady case can be expressed as:

φ(z) = A cosh(z/d) +B sinh(z/d) (2.21)

where d = f/Nk2
h (where k2

h = k2 +l2) and A = BH(U0−c)/(U0d) and B = 1 are constants
evaluated from the initial condition (for details of the Eady solution, see e.g. Olbers et al.,
2012.) The phase speed, c, is given as:

c =
U0

2
± U0d

H

√
1 +

H2

4d2
− H

d
coth(

H

d
) (2.22)
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Note that c becomes imaginary when the term under the square root becomes negative.
The set of vertical eigenfunction Φn is expressed as:

Φn(z) = cos(
nπ

H
)z = cosmz (2.23)

m =
nπ

H
, n = 0, 1, 2, 3, ... (2.24)

The projection of Eady mode on the vertical modes then can be written as:

φ(z) =
∞∑
n=1

AnΦn(z) (2.25)

and the coefficient An can be estimated from:∫ 0

−H
AnΦ2

n(z) dz =

∫ 0

−H
φ(z)Φn(z) dz (2.26)∫ 0

−H
An cos2(mz) dz =

∫ 0

−H
{<(A) cosh(z/d) + sinh(z/d)} cos(mz) dz (2.27)

=
d

1 +m2d2

[
<(A)

{
sinh

(H
d

)
(−1)n

}
− cosh

(H
d

)
(−1)n + 1

]
(2.28)

for n = 0 (barotropic mode)

A0 =
d

H(1 +m2d2)

[
<(A) sinh(H/d)− cosh(H/d) + 1

]
(2.29)

and for n = 1, 2, 3, ... (baroclinic modes)

An =
2d

H(1 +m2d2)

[
(−1)n

{
<(A) sinh(H/d)− cosh(H/d)

}
+ 1
]

(2.30)
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2.8 Appendix B: Modal decomposition

2.8.1 Eigenvectors

The three right (column) eigenvectors q±,0 to the matrix L with L · q±,0 = ω±,0q±,0 are
given by

q± =

 (if l − kω)/(ω2 − f 2)

(−ifk − lω)/(ω2 − f 2)

1

 , q0 =

 −il/fik/f

1

 (2.31)

and the three left (row) eigenvector p±,0 to the matrix L with p±,0 · L = ω±,0p±,0 are
given by

p± =
ω2 − f 2

2ω2

(
(−if l − kω)c2

m

ω2 − f 2
,

(ikf − lω)c2
m

ω2 − f 2
, 1

)
, p0 =

f 2

(ω±)2

(
ilc2

m/f , −ikc2
m/f , 1

)
(2.32)

Note that it holds that

p± · q± = p0 · q0 = 1 , p± · q∓ = p∓ · q± = p0 · q± = p± · q0 = 0 (2.33)

(For q± and p±, read ω as ω±.)

2.8.2 Projection matrices

Mathematically, B and G are the projection matrices B = q0 · p0 and G ± = q± · p±,

B = q0 · p0 =
c2
m

(ω±)2

 l2 −kl −ilf/c2
m

−kl k2 ikf/c2
m

ilf −ikf f 2/c2
m

 (2.34)

G ± = q± · p± =
1

2(ω±)2

 (f 2l2 + k2(ω±)2)/k2
h klc2

m − ifω± if l − kω±

klc2
m + ifω± (f 2k2 + l2(ω±)2)/k2

h −ifk − lω±

(−if l − kω±)c2
m (ifk − lω±)c2

m k2
hc

2
m

(2.35)
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with the properties

L = ω0B +
∑
d=±

ωdG d =

 0 −if −k
if 0 −l
−kc2

m −lc2
m 0

 (2.36)

and

G ± · G ± = G ± , G ± · G ∓ = 0 → L n =
∑
s=±

(ωs)nG s → f(L ) =
∑
s=±

f(ωs)G s (2.37)

for a general function f , but note that L is singular since ω0 = 0.

2.8.3 Operator i(G ·L )−1 · G

The matrix i(G ·L )−1 · G introduced in Section 2.4.2 is given by

i(G ·L )−1 · G =
1

(ω±)2

 0 f −ik
−f 0 −il
−ikc2

m −ilc2
m 0

 (2.38)

2.9 Appendix C: Dissipation

Ri → 3 13 377 915
modes ↓ Db Dv DS DL Db Dv DS DL Db Dv DS DL Db Dv DS DL

FULL 0.69 0.01 0.71 0.28 0.44 0.01 0.46 0.53 0.08 0.00 0.08 0.91 0.09 0.00 0.09 0.90
UNB_L 0.69 0.05 0.75 0.24 0.77 0.09 0.87 0.12 0.71 0.12 0.83 0.16 0.75 0.13 0.88 0.11
UNB_NL 0.86 0.08 0.94 0.05 0.80 0.08 0.88 0.11 0.76 0.11 0.87 0.12 0.78 0.11 0.89 0.10
BAL_L 0.35 0.00 0.36 0.63 0.21 0.00 0.22 0.77 0.04 0.00 0.04 0.95 0.06 0.001 0.06 0.93
BAL_NL 0.72 0.05 0.77 0.22 0.36 0.02 0.38 0.61 0.04 0.00 0.04 0.95 0.06 0.00 0.06 0.93

Table 2.3: Globally integrated values for KE dissipation shown as a fraction of the total
dissipation. The total dissipation is a sum of large-scale (DL = uh · λuuh) and small-scale
(DS = uh ·F u) dissipation, and DS comprises of the contributions from biharmonic friction
(Db) and vertical friction (Dv) (i.e. Db +Dv = DS). The dissipation values are shown for
different regimes indicated by Ri for their full velocity component (FULL) and modally
decomposed components: linear and non-linear balanced modes (BAL_L, BAL_NL), and
linear and non-linear unbalanced modes (UNB_L, UNB_NL).



O’ mighty ocean!

Sans winds, sans tide

Yet thou maketh waves inside

Speaketh but, O’ mighty ocean!

What doth thee maketh of those waves

When walls in thy path stays?





Chapter 3

Gravity wave emission by different
mechanisms

This chapter is in preparation for submission.
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Abstract
We introduce a new diagnostic tool to diagnose internal gravity waves emitted from

balanced flow and examine the wave emission in three different scenarios: spontaneous
emission, convective instability, and lateral boundary instability. The new diagnostic tool,
quasi-geostrophic (QG) filter, is based on a potential vorticity inversion method to di-
agnose internal gravity waves. The QG filter has the additional capability to diagnose
ageostrophic horizontal velocity components from the flow, thus providing a robust esti-
mate of the unbalanced component. The QG filter is implemented in a version consistent
on the discrete grid level and compared with a reformulated discrete implementation of
the non-linear initialization technique proposed by Machenhauer (1977). The QG filter
comes forth as an efficient diagnostic tool, however the discrete version of Machenhauer’s
method extended to three iterations performs even better by minimizing wave activity in
the initial conditions. Internal gravity waves diagnosed from the QG filter are examined in
three scenarios: spontaneous emission, generation at fronts, and emission from boundary
instabilities. The emission in the case of frontal instability is higher as compared to spon-
taneous emission and boundary instabilities. Further, the waves emitted from boundary
instabilities are similar to Kelvin waves arrested by the balanced flow. The QG filter pro-
vides a robust extraction of wave signals revealing considerable wave activity in the three
scenarios presented. The results bring forth the prominent role of internal gravity waves
as an energy sink of balanced flow.

3.1 Introduction

Quasi-geostrophically balanced flows, which span a range of motions from mesoscale eddies
to the large-scale circulation, dominate atmospheric and oceanic flows. Since balanced
flows dominate the geophysical flows, balanced models such as based on quasi-geostrophic
equations are a reasonable approximation to describe geophysical flows. But besides the low
frequency balanced motions, high frequency unbalanced motions, such as internal gravity
waves (IGWs), forced internally or externally occur naturally in geophysical flows and
play a vital role in shaping the flow dynamics. Balanced models exclude by construction
the high frequency dynamics in order to facilitate the theoretical understanding of the
geophysical flows which are largely balanced. This exclusion sets a restriction to explore
the interaction between balanced and unbalanced dynamics which is germane to conjure
up a picture of the energy transfers among different dynamical processes. Whilst the
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unbalanced motions are crucial to understand the energetics of the flow, the rapidity of
their temporal scales renders them hard to observe or resolve in models as well as makes it
complex and tenuous to identify and disentangle them from other motions. In this paper,
we introduce a potential vorticity inversion method called a quasi-geostrophic filter (QG
filter) embedded in a quasi-geostrophic balanced model to filter and diagnose the high
frequency unbalanced dynamics in different scenarios.

In case of the ocean, the primitive equations with the Boussinesq and hydrostatic
approximation comprise of the evolution equations of horizontal velocities and buoyancy.
A balanced quasi-geostrophic model under the same approximation reduces to a single
evolution equation of potential vorticity. This evolution equation corresponds to the low
frequency mode of the flow. On the contrary, the primitive equations for such a system,
as well as for a system without hydrostatic approximation, consist of one low frequency
mode and two high frequency modes (or fast modes) associated with IGWs. In this way,
a balanced model excludes the high frequency dynamics. But the high and low frequency
motions do interact and exchange energy. This interaction between the low and high
frequency motions is crucial to understand the energy transfers between these motions
which influence the ocean dynamics as well as the ocean energy cycle. For this, a brief
review of the energy sources and sinks in the ocean is laid out.

In the ocean, the energy primarily from penetrative solar heating, winds, tides, and
geothermal heating drives the large-scale ocean circulation and feeds energy into the bal-
anced motions. This energy is lost ultimately to the smallest molecular oceanic scales. So,
the energy enters and leaves the ocean at scales of motions furthest apart in the oceanic
spectra. But the tricky riddle that the ocean has in store is: how do the balanced motions
lose their energy to the smallest dissipative scales? This question is further complicated
by the preferred energy transfer of the balanced flow towards large scales. Therefore, this
energy pathway that links the balanced flow to the unbalanced ones is the key to get a
complete picture of the energy budget of the ocean. IGWs are a potential candidate in
this energy pathway– a notion that resonates with previous studies (e.g. Bartello, 1995;
Brüggemann and Eden, 2015; also Chapter 2)

Numerous mechanisms have been proposed for the possible energy pathway(s) through
which energy from the balanced flow can be lost to IGWs on the way to molecular dis-
sipation. Internal mechanisms that can generate IGWs from the balanced flow include
geostrophic adjustment (e.g. Rossby, 1938; Blumen, 1972; Bartello, 1995), spontaneous
generation (e.g. review by Vanneste, 2013), and loss of balance (e.g. Molemaker et al.,
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2005). External ingredients can also stimulate the excitation of IGWs from the balanced
flow, mainly by winds, tides, and topography. In this paper we discuss gravity wave emis-
sion in three different scenarios: spontaneous emission, convective instability at fronts,
and lateral boundary instability. Spontaneous emission is the generation of IGWs by the
balanced flow spontaneously without any external stimulus (see reviews by Vanneste, 2013
and Plougonven and Zhang, 2014). Spontaneous emission is a ubiquitous phenomenon and
is inevitably tied to the emission of IGWs (e.g. Vanneste, 2013). Convective instability at
fronts generated by balanced flow arises due to an unstable density column which can lead
to isopycnal overturning followed by emission of IGWs. Such processes during frontogenesis
have been found to generate IGWs via frontogenesis (e.g. Shakespeare and Taylor, 2015,
2016). Lateral boundary instability can result in emission of IGWs when a balanced eddy
collides with a lateral wall. This process is similar to the interaction of a balanced vortex
with topography which can result in emission of unbalanced wave motions (e.g. Dewar and
Hogg, 2010).

However, the understanding of these processes is hindered by the fast timescales of
these waves which not only makes them hard to observe but also difficult to resolve in
models. The other aspect that complicates the issue further is the coupling between the
high frequency unbalanced and low frequency balanced component of the flow. In different
dynamical regimes, the timescales of the two different motions are coupled to different ex-
tents. In particular, for a regime with Rossby number Ro = O(1), the timescale separation
between the high and low frequency modes becomes much smaller (Zeitlin, 2008; Vanneste,
2013) and the identification and separation of the wave motions from the balanced flow
becomes a challenging task. Several procedures have been developed to address this issue
as discussed below, and in this paper we introduce a new procedure.

A family of quasi-geostrophic balanced models (e.g. Vallis, 1996 and references therein)
have evolved with the aim to achieve a balanced state. These balanced procedures can be
modified and applied to diagnose IGWs. One such diagnostic tool is the quasi-geostrophic
omega equation (e.g. Houghton et al., 1971; Hoskins et al., 1978, 2003), based on the quasi-
geostrophic potential vorticity equation, that has been applied to diagnose IGWs from the
flow field (e.g. Pinot et al., 1996; Danioux et al., 2012; Nagai et al., 2015). However,
in a primitive equation model, Pinot et al., 1996 evaluated the diagnostic performance
of the omega equation in diagnosing vertical velocities at ocean fronts and have pointed
out the importance of including the ageostrophic advection to accurately diagnose vertical
velocities. In agreement, the new diagnostic tool introduced in this paper has the capability
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to diagnose ageostrophic horizontal velocities aiming to provide improved detection of
unbalanced wave signals.

Another balance procedure is the Optimal Potential Vorticity (OPV) method intro-
duced by Viúdez and Dritschel (2004) which begins with an IGW-permitting dynamics
to achieve a balanced solution with minimal IGW activity. This method works by itera-
tions, where IGWs are removed in every iteration and potential vorticity (PV) is restored,
which grows slowly over a long enough time period towards a prescribed PV field which is
that of the state of balance. However, at the end of the iteration weak residual IGWs are
still present due to spontaneous generation (cf. Viúdez and Dritschel, 2004 and McKiver
and Dritschel, 2008). An alternative balance procedure is the nonlinear quasi-geostrophic
(NQG) balance put forward by McKiver and Dritschel (2008). This method works by
removing the ageostrophic component of the horizontal vorticity from the equations to
obtain a pair of diagnostic balance relations which filters inertia gravity waves.

A different iterative procedure, known as the non-linear normal mode initialization pro-
cedure has been introduced by Machenhauer (1977), Baer (1977), and Baer and Tribbia
(1977) that allows for adjustments to the initial conditions in order to minimize the ten-
dency of the system to generate IGWs. This has been further extended to the hydrostatic
system by Leith (1980) and to the non-hydrostatic set of equations by Bartello (1995).
Recently, the non-linear initialisation scheme of Baer and Tribbia (1977), has been ap-
plied by Kafiabad and Bartello (2016, 2017) for balanced rotating dynamics to identify the
energy cascades for differently initialized balanced regimes. In Chapter 2, the non-linear
initialization procedure of Machenhauer (1977) is implemented in a primitive equation
ocean model by to diagnose IGWs for a range of dynamical regimes from ageostrophic to
quasi-geostrophic.

In this work, we introduce a new diagnostic procedure named the quasi-geostrophic
(QG) filter implemented in a consistent way on the discrete level to filter and hence di-
agnose IGWs. The QG filter is based on quasi-geostrophic equations and uses a potential
vorticity inversion method with the additional capacity to diagnose the horizontal ageostro-
phic components, which is absent in the traditional QG-omega equation based methods.
This new feature allows for extraction of the ageostrophic balanced part from the flow
to obtain unbalanced motions with minimal balanced part. A QG model can be used to
filter the high frequency unbalanced dynamics and it can also be used to initialize the
model with QG balance conditions such that the emission of fast motions is reduced. The
gravity waves diagnosed from the QG filter are then used to understand gravity wave emis-
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sion in different scenarios such as spontaneous emission, lateral boundary instability and
convective instability.

The paper unfolds as follows: the theoretical background and a demonstration of the
QG filter is described in Section 3.2. A comparison with the normal mode initialization
technique of Machenhauer is also presented and discussed. Gravity waves diagnosed with
the QG filter are used to study gravity wave emission in different scenarios viz. spontaneous
emission, convective instability, and lateral boundary instability are presented in Section
3.3. A summary and the main conclusions are stated in Section 3.4.

3.2 Quasi-geostrophic filter

3.2.1 Theoretical background

The primitive equations are given by

∂t u + fu¬ = −∇p+ u̇ , ∂tb+ wN2 = ḃ (3.1)

supplemented by the diagnostic relations b = ∂zp and ∇ · u + ∂zw = 0, where u̇ and ḃ

contain the advection terms, friction and mixing. The Coriolis frequency f and the stability
frequency N are assumed to be constant. The vorticity and divergence equation are given
by

∂t ∇2ψ − f∂zw = ∇¬ · u̇ , ∂t ∇2φ− f∇2ψ = −∇2p+ ∇ · u̇ (3.2)

introducing a streamfunction ψ and potential φ with ∇¬ · u = ∇2ψ and ∇ · u = ∇2φ. All
vectors are two-dimensional here and u¬ denotes anticlockwise rotation of u by 90o.

Now we neglect the term ∂t ∇2φ in the divergence equation which eliminates linear
gravity waves (e.g. Olbers et al., 2012), and which is equivalent to the quasi-geostrophic
assumption. With p = pg + pa, where pa is the ageostrophic pressure, which is assumed to
be small compared to the geostrophic pressure pg it follows to leading order

∇2ψ = −∇2pg/f → ψ = pg/f (3.3)

and to first order that ∇2pa = ∇ · u̇. The relation involving the ageostrophic pressure is
needed below to diagnose the ageostrophic velocities.
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Now we express the vertical velocity in the vorticity equation with the remaining equa-
tions to obtain the potential vorticity equation. Buoyancy is also split into a dominant
geostrophic part bg and a ageostrophic part for which both the hydrostatic relation b = ∂zp

holds, and thus

∂tq = ∇¬ · u̇ +
f

N
∂z ḃ

g ,

(
∇2 +

f 2

N2
∂zz

)
ψ = q = ∇¬ · u +

f

N
∂zb (3.4)

where ḃg denotes the advection and mixing operator applied to bg. The potential vorticity
equation Eq. (3.4) can be integrated in time using suitable vertical and lateral boundary
conditions as specified below. The second part of Eq. (3.4) can be used to obtain ψ from a
given field of u and b using equivalent boundary conditions. It is not exactly correct since
we replaced bg with b, which needs to be done since bg is unknown to us before inverting the
second part of Eq. (3.4) for ψ. The vertical velocity and ageostrophic velocity components
can be diagnosed from the buoyancy and momentum equation as

w = wa = (ḃg − ∂tf∂zψ)/N2 , ua = ∇φ = (−∇¬p
a + u̇¬ + ∂t∇ψ)/f (3.5)

where pa can be diagnosed from∇2pa = ∇·u̇, while the time tendency of ψ can be obtained
by inverting the first part of Eq. (3.4). Note that the diagnosed ua from equation Eq. (3.5),
however, is incomplete since the rotation part of ua is not included in the diagnosed ua.
This diagnosed ua might have an affect on the interpretation of the horizontal velocity
related to the unbalanced motions. However, in this analysis mostly the vertical component
of the velocity is used to interpret the unbalanced motions. The discrepancy related to the
diagnosed ua in Eq. (3.5) is being investigated currently.

At the upper- and lowermost levels we need to implement the surface and bottom
boundary conditions, w = 0 at z = 0,−h which becomes

∂tf ∂zψ = ḃ → ∂zψ = b/f at z = 0,−h (3.6)

This is again not exactly correct since we replaced bg with b, but bg remains unknown
diagnosing ψ from the model variables. For lateral boundary conditions some auxillary
conditions are needed which are given in Appendix A. In Appendix B we detail the con-
sistent discrete version of all diagnostic relations which we use.

We now invert Eq. (3.4) for ψ using u and b from an integration of an idealized primitive
equation model. From ψ we diagnose the geostrophic velocities ug, and from the diagnostic

67



Chapter 3. Gravity wave emission by different mechanisms

relations Eq. (3.5) we diagnose the ageostrophic velocities ua and wa. We then interpret
the residual u− ug − ua and w − wa as gravity wave activity.

3.2.2 Demonstration of the method

To demonstrate the operation of the QG filter, we show a simple test case which is es-
sentially an initial value problem. The test case model setup consists of a double periodic
domain with a lens of warmer water in the middle of the domain in a constant stratification.
To show case how the QG filter works, the test case is initialized in two different ways:
first, the test case setup is initialized using only the buoyancy structure of the lens (this
test case is referred to as INI_NO); second the model is initialized with quasi-geostrophic
balanced conditions obtained by applying Eq. (3.4) to the buoyancy structure of the lens
(this test case is referred to as INI_QG). Further, the skill of the QG filter is compared
against a third test case in which the initial conditions are balanced using the non-linear
initialization procedure of Machenhauer (1977), which has been implemented as a diag-
nostic for gravity waves in Chapter 2. The third test case is referred to as INI_MH and
achieves balance by an iterative procedure that eliminates the high frequency unbalanced
motions with each iteration. Presently we have used three iterations, although in Machen-
hauer’s method has been shown to attain quasi-geostrophic balanced conditions after the
first iteration (Leith, 1980).

Each of the three model setups have the same domain size and resolution. The zonal
and meridional extents are set to 100 km with 199 grid points each, and the domain depth is
1000 m with 100 grid points. The Coriolis frequency and the initial stratification frequency
are f = 10−4 and N0 = 5× 10−3 respectively. Fig. 3.1 shows the initial state of the model
for the horizontal velocities with buoyancy contours. Note that the test case INI_NO
has only an initially buoyancy structure (no horizontal velocities), similar to the buoyancy
contours in Fig. 3.1. The snapshots of vertical velocities at different time intervals are
shown in Fig. 3.2 for differently initialized models. The leftmost panel in Fig. 3.2 refers to
a model where no balanced initial conditions are imposed (INI_NO). The middle and the
rightmost panels show the vertical velocities for a model initially balanced with the quasi-
geostrophic balanced conditions (INI_QG) and the balanced condition obtained from the
Machenhauer’s non-linear initialization procedure (INI_MH) , respectively. As is evident
from the figure, the magnitude associated with the vertical velocity for INI_NO is much
higher than INI_QG and INI_MH. The emission of waves, as can be seen from the vertical
velocity, is similar to the process of geostrophic adjustment. Owing to this geostrophic
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adjustment there is a significant amount of wave emission in a state which is not initially
balanced.

Figure 3.1: Initial state of the model used for INI_NO, INI_QG, and INI_MH. (a) and
(b) Snapshots of zonal and meridional velocities respectively at the initial model state
with buoyancy contours in black. (c) Horizontal speed variation with depth and buoy-
ancy contours in black. The initial state for INI_NO consists of only buoyancy shown in
black contours. The initial states for INI_QG and INI_MH comprises of both buoyancy
and horizontal velocities. Note that the vertical axis in (a) and (b) corresponds to the
meridional extent and in (c) to the depth.

When the model state is initially in a quasi-geostrophic balance (INI_QG), there is a
significant reduction in the emission of the waves. This implies that the flow is already
in a quasi-balanced state and emits much smaller amount of waves than the initially non-
balanced initial state. Further, the Machenhauer’s initial condition of balance imposes a
stricter state of balance and allows for a state where the wave emission is almost negligible.
Note that the Machenhauer’s condition imposed here is calculated for the discrete version
of the method with discrete eigenvectors. The use of analytical eigenvectors in computation
yields a slight error. The discretized version of the equations used in Machenhauer’s method
and the discrete eigenvectors are detailed in Appendix C.

Furthermore, we assess the efficiency of the QG filter in frequency wavenumber space.
To this purpose, the QG filter has been used in conjunction with an idealized numerical
model representative of the Eady model (Eady, 1949) of baroclinic instability. The model
setup is similar to the one described in Chapter 2, and consists of a baroclinically unstable
flow on an f -plane with a double periodic domain to exclude boundary instabilities. The
model setup used here, however, has a higher resolution: nx = ny = 240 grid points in
the horizontal direction and nz = 80 grid points in the vertical direction. The model
is forced by the restoring of the zonal mean buoyancy and zonal mean velocity towards
its initial state. This restoring is set by the Richardson number (Ri) (as in Chapter 2),
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which differs for different dynamical regimes. Small and large Ri represent ageostrophic
and quasi-geostrophic regimes respectively. Any other forcing is absent from the model.

Figure 3.2: Snapshots of vertical velocity w in 10−3 ms−1 from a simple model configuration
initialized with differently balanced conditions as indicated by the experiment name. (a),
(b), and (c) Snapshots from a model without any imposed balanced condition (INI_NO).
(d), (e) and (f) show snapshots from a model initialized using the quasi-geostrophic balance
conditions (INI_QG). (g), (h) and (i) show the snapshots from the model when the model
is initialized with the balanced conditions obtained after three iterations from the normal
mode initialization technique of Machenhauer (INI_MH). Note that the values of w are
shown with a factor of 10−3, such that for Machenhauer’s method (INI_MH) the presence
of vertical velocity is negligible. Also note that the colorscales are different.

The gravity wave component obtained from the QG filter is applied to this model for
different dynamical regimes. Using the QG filter, the full flow field of interest can be
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segregated into the balanced and unbalanced wave counterparts. From the unbalanced
horizontal velocity components provided by the QG filter, the kinetic energy (KE) associ-
ated with the unbalanced dynamics can be estimated. This can be compared against the
KE related to the balanced dynamics to assess the distribution of KE in the balanced and
unbalanced components.

Figure 3.3: Variance preserving frequency-wavenumber spectra of KE for a high and low Ri
regime, from the model setup described in Chapter 2 but with a higher resolution. Balanced
and unbalanced component obtained from the QG filter are shown for Ri=1000 in (a,b) and
for Ri=20 in (c,d). The balanced component is computed as ug+ua whereas the unbalanced
components are computed as u−ug−ua and are interpreted as gravity waves. The spectra
shown are depth averaged as well as averaged over 20 chunks from the high resolution
simulations for a baroclinically unstable setup. In each subplot: the color shading shows
the respective KE as a function of frequency (ω) and horizontal wavenumber (kh); the
dashed black line indicates the Coriolis frequency (f), the solid black curve indicates the
gravity wave dispersion relation and lines with black circles show the Doppler shifted
dispersion relation. Note that the gravity-wave branch is enclosed by the Doppler-shifted
extrema. Notice that the colorscales differ.

An example for two very different regimes with different Ri is shown in Fig. 3.3. The
balanced component is denoted by ug + ua whereas the unbalanced components are com-
puted as u−ug−ua and are interpreted as gravity waves. The spectra shown in Fig. 3.3 are
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depth averaged as well as averaged over 20 chunks from the high resolution simulations.
A frequency-wavenumber spectra combined with the dispersion relation of gravity wave
can help to identify the scales in spectral space with high IGW activity. The gravity wave
dispersion relation shown in Fig. 3.3 (solid black lines) is for the first baroclinic mode and
takes the form: ω2 = f 2 +c2

nk
2
h with n = 1. Acceleration due to gravity is denoted by g and

cn = NH/(nπ), where N is the stratificaion frequency and H is the depth. In addition,
Fig. 3.3 also shows the Doppler-shift, ω±U0kh, where U0 is the mean flow (see Table 3.2).
The possible region for gravity wave activity is assumed to lie approximately within the
envelope of the Doppler-shifted extrema, and is called as the gravity-wave branch.

The spectra in Fig. 3.3 is compared for Ri = 20 and Ri = 1000 to indicate gravity
wave activity in contrasting (small and large) Ri regimes. The balanced part of the flow
is expected to span the lower frequencies and lie outside of the gravity-wave branch in the
spectral space. On the contrary, the fast unbalanced motions are expected to lie in the
region inside the gravity-wave branch and towards higher frequencies. In line with our
expectations, we find that the spectra in Fig. 3.3 shows indeed a reasonable separation of
the balanced and unbalanced motions. Also, the unbalanced motions related to gravity
wave activity tend to be higher for a small Ri regime than a large Ri regime. This is in
accordance with the result presented in Chapter 2.

3.3 Gravity wave emission in different scenarios

We now apply the results from the QG filter to detect gravity wave activity in different
scenarios that can generate internal gravity wave in the ocean. Here we present three
mechanisms as examples of gravity wave emission from the balanced flow, viz. spontaneous
emission, convective instability at fronts, and lateral boundary instability. Note that there
are several other known mechanisms of IGW generation in the ocean, we simply discuss
three of those mechanisms here.

Idealized model setups used to represent these scenarios are spindown simulations of a
baroclinic flow initialized with a constant vertical (N0) and meridional stratification (M0).
In case of double periodic domain, the meridional stratification is sinusoidal with M0 as
amplitude. N0 andM0 determine the initial Richardson number (Ri) of the flow defined as
the ratio of the vertical density stratification and vertical shear of the horizontal velocity:

Ri =
N0

2f 2

M0
4 (3.7)
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Symbol Meaning SPON CONV LBI
nx, ny Grid points in (x, y) 120, 120 240, 240 240, 240
nz Grid points in z 40 80 80
Ri Richardson number 500 100 400
α Aspect ratio 0.02 0.02 0.01
CFL CFL criteria 0.005 0.004 0.01
Ek Ekman number 0.01 0.05 0.01
f Coriolis frequency (s−1) 7e−5 7e−5 1e−4

Lx Length of the domain (m) 2L0 L0 2L0

Domain - Double periodic Double periodic Zonally periodic
Lateral boundaries - None None Meridional

Table 3.1: Model parameters for the setups in different scenarios: spontaneous emission
(SPON), convective instability (CONV), and lateral boundary instability (LBI). The aspect
ratio α is the ratio of vertical to horizontal scales.

The combination of stratification and shear give rise to perturbations as the baroclinic
instability sets in and the most dominant of these perturbations is referred to as the fastest
growing mode (Eady, 1949; Stone, 1966). In our model, the length scale L0 associated with
the fastest growing mode and the corresponding wavenumber kmax are based on Stone’s
formulation (Stone, 1966). The corresponding length scale L0 is:

L0 =
2π

kmax

= 2π

√
2

5

√
Ri + 1

Ri
Lr (3.8)

where Lr = N0H/f is the Rossby radius of deformation.

The setup is similar to the one described in Chapter 2. The numerical code for the
model is identical to the one in Eden (2016). The setup has different values of numerical
parameters for different scenarios of gravity wave emission. The differences in the model
setup in the three scenarios are listed in Table 3.1, the other set of model parameters listed
in Table 3.2 are be derived from the values in Table 3.1.
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Symbol Meaning V alue Unit

N0 Brunt-Väisälä frequency f/α s−1

M0 Meridional stratification
√
fU0/H s−1

U0 Mean flow N0H/
√

Ri m s−1

dx(=dy) Horizontal resolution Lx/nx m
dz Vertical resolution H/nz m
dt Time step dx CFL/U0 s
Ah Biharmonic horizontal friction Ekfdx4 m2 s−1

Av Harmonic vertical friction Ekfdz2 m2 s−1

Table 3.2: An overview of the model parameters for all the scenarios derived from values
in Table 3.1.

3.3.1 Scenario I: Spontaneous emission

Spontaneous emission refers to the emission of gravity waves from balanced flow spon-
taneously without any external forcing. It is one of the important mechanisms for the
balanced flow to lose its energy towards small scales. Spontaneous emission is more promi-
nent for a Ro = O(1) regime for which the timescale separation between the balanced and
unbalanced motions is gets smaller and gravity wave activity is much enhanced. In con-
trast, a Ro � 1 regime shows a very weak to nearly negligible emission of gravity waves.
For this reason, such a regime is assumed to be largely balanced.

In such a regime, it becomes particularly challenging to detect gravity wave signals
because the signal is faint to detect by traditional means. Here we aim to detect gravity
wave signal from a baroclinically unstable flow representing a Ro� 1 regime. The residual
of the vertical velocity w − wa obtained from the QG filter has the advantage that the
balanced ageostrophic part has been further removed from the vertical velocity field, so
that the residual vertical velocity sincerely represents the unbalanced part. This is an
improvement over the traditional methods to interpret gravity wave signals which rely
only on the vertical velocity. As is obvious, in a Ro � 1 regime the vertical velocity
signature would be weak because the dominant balanced part would still be intact in the
velocity field, making the weak gravity wave signal extremely hard to detect. With the
QG filter diagnostic, we expect to capture even these small signals in a largely balanced
regime. The setup in experiment SPON consists of a channel flow with double periodic
boundaries as described above. The baroclinic flow is allowed to evolve and dissipate in
a spin down run. After a certain time period, i.e. after the baroclinic instability sets in,
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the emission of wave packets can be seen. These wave packets appear to move along with
the baroclinic eddies, similar to atmospheric numerical experiments (e.g. Plougonven and
Snyder, 2007).

Figure 3.4: Snapshots of w−wa in 10−3 ms−1 and streamfunction ψ (black contours) in a
baroclinically unstable flow in experiment SPON.

Spontaneous emission in the model setup SPON is depicted in Fig. 3.4 for different time
steps. The residual vertical velocity w − wa represents the wave activity associated with
the unbalanced wave field and is shown in Fig. 3.4 with contours of the streamfunction
ψ. After the baroclinic instability sets in, it spawns a field of balanced eddies. Balanced
eddies then generate unbalanced gravity waves by spontaneous emission as in the example
shown in Fig. 3.4. Subsequent snapshots show the evolution of the flow and propagation of
the gravity wave packets with the flow. The wave emission in Fig. 3.4a is shown about 85
days after the initial time, but the wave emission by eddies can be seen at an even earlier
stage. After the next four days, the eddy field changes to Fig. 3.4b. The snapshots shown
thereafter are each set apart by 20 hours (Fig. 3.4(b-f)) to show the evolution of the eddy
field and the concurrent wave emission over short time scales. At later stages in Fig. 3.4,
a form of secondary instability begins to emerge towards the northern side of the channel
(Fig. 3.4(d-f)) (and slight occurrences on the southern side). Snapshots of unbalanced
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components of the horizontal velocities obtained from the QG filter, computed as u−ug−ua,
are shown in Fig. 3.5. The horizontal unbalanced velocities provide information about the
horizontal components of the wave packets seen in Fig. 3.4. These components also appear
encircled by the eddy field like the wave packets in Fig. 3.4, however, the magnitude of
horizontal unbalanced components is much larger than the vertical unbalanced components.
The horizontal and vertical components can be combined to retrieve other properties of
the emitted waves, such as wave propagation from the polarization relation.

Figure 3.5: Snapshots of u − ug − ua in ms−1 and streamfunction ψ (black contours)
in a baroclinically unstable flow in experiment SPON. The snapshots correspond to the
snapshot in Fig. 3.4.

These instabilities manifest themselves in wave trains of much smaller spatial scales
than the gravity wave field resulting from spontaneous emission. These secondary insta-
bilities could be related to spontaneous emission but they could also be a consequence of
interactions between unbalanced wave components generated by balanced eddies in the
first place. It is instructive to also look at the local Rossby number to further characterize
these motions. Snapshots of local Rossby number are shown in Fig. 3.6 for the correspond-
ing to the time steps shown in Fig. 3.4 and Fig. 3.5. Clearly, the region close to the eddies
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filled by the gravity wave packets in Fig. 3.4 are the regions of O(1) Rossby number, a
regime which is characterized by unbalanced motions.

Figure 3.6: Snapshot of local Rossby number, Ro = ζ/f , for a baroclinically unstable
flow and streamfunction ψ (black contours) in experiment SPON. Here, ζ is obtained from
the full components of horizontal velocities. The snapshots correspond to the snapshot in
Fig. 3.4.

3.3.2 Scenario II: Convective instability

The experiment CONV is similar to SPON but with higher horizontal and vertical res-
olution (see Table 3.1). The setup represents a baroclinically unstable flow with double
periodic boundaries and can be run to depict different dynamical regimes. We discuss here
an example for a case with Ri = 100, while the experiment SPON was for Ri = 500.

Convective instability in a stably stratified fluid can arise when denser fluid gets lifted
above lighter fluid and this unstable situation can cause overturning of the isopycnals. Such
a situation co-occurs with a sharp localized decrease in the stratification frequency as shown
in Fig. 3.7, causing the isopycnals to overturn, indicating the onset of convective instability.
The gradual sharpening of the density gradients lead to the formation of fronts which can
result in such an unstable situation. An example of such a front for a section of the domain
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is presented in Fig. 3.8a which shows the residual vertical velocity component w−wa from
the QG filter and streamfunction contours in experiment CONV. The snapshot in Fig. 3.8a
is 20 days after the model initial time and the subsequent snapshots (Fig. 3.8(c-d)) are
each 10 hours apart. Frontogenesis can further intensify a front by further sharpening the
gradients (Fig. 3.8b). The resulting convective instability can eventually lead to a frontal
collapse which is accompanied by the generation of unbalanced processes such as internal
waves (Fig. 3.8(c,d)).

Figure 3.7: A section of the local Brunt-Väisälä frequency N =
√
∂zb in 103 ms−1 and

temperature (black contours) across a typical front. The snapshot shown is after about 20
days from the initial model state in experiment CONV.

Convective instability is generally known to cause the breaking of internal waves, which
by breaking generate small-scale turbulence and contribute to diapycnal mixing. Here we
show an example of convective instability as a generation mechanism for internal waves
in a baroclinically unstable flow. However, the emitted internal waves might then break
as they propagate. In Fig. 3.8, IGW emission can be seen at the unstable front, but in
the subsequent snapshots waves appear to radiate away from the front and then decay as
the front collapses. Thus internal waves generated due to convective instability are likely
short-lived as they appears to decay soon after their genesis.

In comparison to the previous scenario of spontaneous emission (experiment SPON),
convective instability shows a higher magnitude of wave generation. Unlike spontaneous
emission for which wave emission increases for a small Ri regime (Chapter 2), the wave
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generation through convective instability is likely to be a local phenomenon and further
work in this direction will be undertaken to test the Ri dependence of the mechanism. It
might be that the IGWs seen in Chapter 2 are actually generated by convective instabil-
ity. As the generation occurs at the site of the unstable front the convective instability
mechanism is expected to be more important locally for wave generation.

Figure 3.8: Subsequent snapshots of w−wa in 10−3 ms−1 at 20 m depth and streamfunction
ψ (black contours). Snapshot (a) is the model state after about 20 days from the initial
model state from experiment CONV, the following snapshots are 10 hours apart each.

3.3.3 Scenario III: Lateral boundary instability

So far we have seen internal wave generation from balanced flow through internal mecha-
nisms, i.e. without the presence of any external parameters. In addition, to avoid flow inter-
action with the lateral boundaries, we applied double periodic boundaries in the numerical
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model. However, the real ocean is not devoid of boundaries— it has lateral boundaries, sea
mounts, ridges, and more complex topography— and interaction between balanced mo-
tions and the oceanic topography is a common occurrence. In this section, we explore this
scenario of unbalanced wave generation: the interaction of balanced flow with the lateral
boundary such as a continental shelf.

Lateral boundary instability can be thought of as the interaction of the balanced flow
with a simplified topography such as a lateral wall. To represent this scenario, we introduce
meridional boundaries (experiment LBI) to the setup similar to that described in Section
3.3.2. Boundary conditions are that of no-normal flow and free slip. The associated
boundary conditions for the QG filter are described in Appendix A.

Figure 3.9: Snapshots of full buoyancy b in 10−3 ms2 with pressure field in m2s2 with
(black contours) in baroclinic unstable flow with meridional boundaries in experiment
LBI. Snapshots are shown for a depth near the surface. The southern wall is located at
y = 0 km. Snapshot (a) is the model state after 20 days from the initial model state in
experiment LBI, the following snapshots (b-f) are two days apart each.

Balanced baroclinic vortices in the model are allowed to travel and reach the meridional
walls, where these vortices interact with the lateral wall and generate unbalanced internal
gravity waves. Such a balanced vortex-wall interaction for a case with Ri=400 (equivalent
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to Ro � 1 regime) is shown in Fig. 3.9 near the surface. The southern wall is located at
y = 0 km and the northern wall at y = 160 km. The figure shows the full buoyancy after
20 days of the initial model state of experiment LBI (Fig. 3.9a) followed by snapshots each
two days apart (Fig. 3.9(b-f)). The pressure contours (black) and the full buoyancy (color
shading) characterise the coherent vortex or eddy structures that hit the wall and generate
unbalanced motions ((Fig. 3.10, discussed below). This eddy-wall interaction gets stronger
and stronger with later times. The developing meanders followed by eddies hitting the
walls is clearly seen in Fig. 3.9.

A similar example of unbalanced wave generation has been studied by Dewar and Hogg
(2010) with barotropic and baroclinic vortices interacting with various types of topography.
They found that the unbalanced waves generated as a result of the vortex-wall interaction
have the characteristics of boundary trapped Kelvin waves. Further, they found that upon
hitting the wall the balanced vortex generates both low mode and high mode Kelvin waves,
where the latter being slower can be arrested by the balanced vortex. For a wave to be
arrested by the balanced vortex, the wave should travel sufficiently slowly. A wave is said
to be arrested by a balanced vortex if the wave does not move relative to the vortex. In
other words, the balanced vortex and the wave structure move with similar speeds.

In our case, one can get an estimate of the eddy speed from the snapshots in (Fig. 3.9(a-
e)). For instance, tracing the course of the eddy near the surface and located at about
x = 70 km from Fig. 3.9a to Fig. 3.9e (where the eddy is located at x = 100 km), the
eddy travels about 30 km in 8 days (each snapshot is 2 days apart) giving an estimated
eddy speed ceddy = 0.043 m/s. We will get back to this aspect after a discussion of the
unbalanced waves generated from the eddy-wall interaction. In what follows, we weigh the
characteristics of the detected wave signals to verify if these wave signals are indeed Kelvin
wave related structures and if they are arrested in a similar way as the Kelvin wave arrest
discussed by Dewar and Hogg (2010).

Unbalanced wave generation after the eddy-wall interaction in our setup is shown in
Fig. 3.10. The variation of unbalanced vertical w−wa at the southern wall of the channel
at different times are shown in Fig. 3.10(a-e) and an example from the northern wall is
shown in Fig. 3.10f. The snapshots in Fig. 3.10(a-e) are at at the same time steps as
in Fig. 3.9(a-e). As shown in the figure, clear signatures of wave trains appear at the
wall where the eddy collides with the wall (Fig. 3.9). The wave signatures increase in
magnitude with time (Fig. 3.10(a-e)) and decay from the surface into the interior of the
channel. Interestingly, the corresponding northern wall snapshot in Fig. 3.10f, appears as
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a laterally inverted mirror image of the wave train structure in Fig. 3.10c at the southern
wall, and in both the cases the waves decay towards the interior and away from the wall.
The structure of the wave train resembles a wave with a very high vertical mode number,
for instance, the wave train structure in the middle of the wall in Fig. 3.10c shows a mode
number of about 10. A high mode number wave structure also appears in the wave train
at the northern wall (Fig. 3.10f). Similar high mode wave structures appear at different
instances (not shown) and could be related to Kelvin waves like in Dewar and Hogg (2010).

Figure 3.10: Snapshots of residual vertical velocity w − wa in 10−4 ms−1 diagnosed from
the QG filter and full buoyancy b in 10−3 ms2 (black contours) in baroclinic unstable flow
with meridional boundaries in experiment LBI. (a-e) w − wa at the southern side wall of
a channel. (f) w − wa at the northern wall corresponding to the snapshot in (c). The
snapshots (a-e) correspond to the same time steps as in Fig. 3.9(a-e).

From Fig. 3.10(a-e) the speed of travel of the wave trains can be worked out. Beginning
from Fig. 3.10(a) and tracking the wave train up to the snapshot Fig. 3.10(e), the wave
train at the middle of the wall appears to travel about 30 km in 8 days (each snapshot is
2 days apart). With that the wave train has a speed of cwave = 0.043 ms−1. The match
between the wave speed and the eddy speed ceddy implies that the eddy and the wave train
travel the same distance in about the same time and that the unbalanced wave is arrested
by the balanced eddy flow. That the wave appears to move as slow as the balanced eddy
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guides towards a high mode number wave structure, in accordance with the wave structures
detected in the model (Fig. 3.10).

For the given parameters in our model (N = f/α, H = 200 m, f = 10−4 ms−1,
α = 0.02), the Kelvin wave phase speed cn = NH = 0.63 m/s, with mode number n = 1

corresponding to the first baroclinic Rossby radius (Lr = NH/(nπf)). For a mode number
of 10 the phase speed reduces to c10 = 0.063 ms−1, for an even higher value of n the phase
speed reduces further (c11 = 0.057 m/s, c12 = 0.053 ms−1). Although these values are
higher than the speed cwave of the wave train as seen from Fig. 3.10, they appear to match
reasonably well; for a higher mode number the phase speed gets even more closer to cwave.
The similar speeds convey that these wave structures are consistent with Kelvin wave
characteristics. The lower value of cwave suggests that the wave structure detected in our
model is a Kelvin wave of even higher mode number. However, this could also be an effect
of the Doppler shift due to the mean flow, which we have not taken into account.

Figure 3.11: Snapshots of u− ug − ua in ms−1 with contours (black) of b− bg in baroclinic
unstable flow at the southern side wall of the channel in experiment LBI.

Now we look at the residual zonal velocity component u − ug − ua. A depth section
along the location of the wave train (Fig. 3.10(c)) in x direction is shown in (Fig. 3.11) for
the residual zonal velocity. The figure shows a region close to the southern wall at y = 0
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km and the decay of the wave amplitude away from the wall, similar to a Kelvin wave, is
clearly visible. The overlaid black contours of the unbalanced buoyancy component b− bg
show a similar pattern. Also, most of the wave signal is concentrated close to the wall, and
thereafter it shows a drastic decay away from the wall. The e-folding length scale the decay
of the wave signals (less than a km) roughly matches the length scale of the 10th baroclinic
deformation radius which is about 636.94 m. The corresponding meridional component
(v − vg − va) (not shown) is nought, also consistent with the Kelvin wave property for
which the meridional velocity vanishes at the wall due to the no-normal flow condition.

These consistencies shed light towards the point that the unbalanced wave structures
generated in response to the eddy-wall interaction are slowly propagating Kelvin wave
structures, and like in Dewar and Hogg (2010), these Kelvin waves are arrested by the
balanced eddy flow. In addition, the unbalanced wave emission can be compared against
the two scenarios discussed in the previous sections. The magnitude of w − wa for the
eddy-wall interaction appears to be of comparable magnitude with spontaneous emission,
but less than that for emission due to convective instability at fronts.

3.4 Summary and conclusions

We introduce a new balance procedure called the Quasi-Geostrophic (QG) filter to diagnose
internal gravity waves in different dynamical scenarios. The QG filter is based on quasi-
geostrophic equations and is a potential vorticity inversion method with the additional
capability to diagnose the horizontal ageostrophic components. We have implemented the
QG filter in a fully discrete version consistent on the discrete grid level. Quasi-geostrophic
horizontal velocities are obtained from the inversion of potential vorticity equation while
the ageostrophic horizontal and vertical velocities are obtained from the diagnostic rela-
tions. When a model based on the primitive equations is diagnosed by the QG filter,
the residual obtained by subtracting the geostrophic and ageostrophic components from
the full component can be interpreted as the gravity wave component. Alternatively, the
QG filter can be used to initialize a model with QG balanced conditions to eliminate the
unbalanced gravity waves.

The QG filter is used to diagnose gravity waves in different scenarios and the key
conclusions are:

1. The new diagnostic, QG filter, is a competent diagnostic tool to diagnose internal
gravity waves from a balanced flow field. The QG filter can be applied as a diagnostic
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as well as a balance procedure. When use to balance initial conditions, the QG
filter eliminates gravity waves similar to the normal mode initialization procedure by
Machenhauer (1977). The Machenhauer method in its discrete version is, however,
superior to the QG filter in balancing the initial conditions.

2. Spontaneous emission of gravity waves from baroclinic eddies shows that there is
a significant amount of gravity wave activity and gravity waves appear to emanate
from the eddies. Although gravity wave emission is weak for a Ro � 1 regime, the
new diagnostic method is capable of detecting the gravity wave signals.

3. Convective instability during frontogenesis arising from an unstable density strati-
fication and resulting into overturning of isopycnals excites gravity waves at fronts.
The waves excited at the frontal instability eventually propagate away from the front
and dissipate.

4. Lateral boundary instability results in gravity wave emission by eddy-wall interaction.
In this setting, a baroclinic eddy upon collision with a lateral wall emits unbalanced
gravity waves. The emitted gravity waves bear the characteristics of a high mode
number Kelvin wave structures which appear arrested by the balanced eddy.

The additional capability of the QG filter provides us with the horizontal velocities as-
sociated with the unbalanced motions. This feature has backed a deeper insight into some
of the internal wave generation mechanisms addressed in this paper. Among these mech-
anisms of internal gravity wave generation, convective instability, though a local event,
appears with a larger magnitude of wave activity than spontaneous emission and lateral
boundary instability. The wave generation in the latter two scenarios appears compara-
ble in magnitude although the processes are entirely different. Though different, in some
situations these processes can co-exist and can contribute together to internal wave gener-
ation. Further, the emitted unbalanced wave motions can interact with other unbalanced
processes and generate further unbalanced wave motions through resonant interactions. In
the present work, however, we have focused on the wave generation from the balanced flow.
In our next steps we intend to further expand the capabilities of QG filter to explore more
complex interactions.

The results have strong implications not only for gravity wave dynamics but also for
the energetics of balanced motions as well as the ocean’s energy budget. Gravity wave
emission from balanced flows provides an important source of the internal wave field in the
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ocean, and breaking of internal gravity wave is a primary contributor to diapycnal mixing
in the ocean. In this way, the internal gravity wave pathway links the balanced flow to the
scale of molecular mixing, acting as an energy sink of the balanced flow.

3.5 Appendix A: QG filter: Lateral boundary condi-

tions

For a closed domain without islands the no-normal-flow boundary condition is ψ = µ0(t, z)

along the boundary. The boundary value µ0 is obtained by insuring zero net vertical mass
flux

∫
A
wdA = 0, which implies

∂tf ∂z

∫
A

ψdA =

∫
A

ḃdA → f ∂z

∫
A

ψdA =

∫
A

bdA (3.9)

at all depths, where A is the surface area of the domain. This constrain also needs to be
satisfied for a double periodic domain.To satisfy that condition we decompose ψ as

ψ(t,x, z) = ψ0(t,x, z) + µ0(t, z) (3.10)

with f∂zψ0 = b and ∂zµ0 = 0 at z = 0,−h to satisfy the upper and lower boundaries, and
with ψ0 = 0 along the lateral boundaries (if there are any). The condition yields

∂t ∂zµ0 =
1

A

∫
A

ḃ/fdA− ∂t ∂z
1

A

∫
A

ψ0dA → ∂zµ0 =
1

A

∫
A

b/fdA− ∂z
1

A

∫
A

ψ0dA(3.11)

which yields as differential equation for ψ0

∇2ψ0 +
f 2

N2
∂zz

(
ψ0 −

1

A

∫
A

ψ0dA

)
= q − f 2

N2
∂z

1

A

∫
A

b/fdA (3.12)

For a zonally reentrant channel configuration no normal flow boundary conditions need
to be established by the additional constraint of global momentum conservation

∫
u̇dA.

We decompose the streamfunction as

ψ(t,x, z) = ψ0(t,x, z) + µ0(t, z) + µ1(t, z)ψ1(x) , ∇2ψ1 = 0 (3.13)

Lateral boundary conditions are ψ0 = 0 at all boundaries and ψ1 = 0 at the southern
boundary at y = 0 but ψ1 = 1 at the northern boundary at y = L, and with f∂zψ0 = b
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and ∂zµ0 = 0, ∂zµ1 = 0 at z = 0,−h to satisfy the upper and lower boundaries. The
momentum conservation condition becomes∫
u̇dA =

∫
∂tudA = −

∫
∂t∂yψdA →

∫
udA = −

∫
∂yψdA → µ1 = − 1

B

∫
udA(3.14)

where B is the zonal extent of the channel. The zero mass flux condition becomes

∂zµ0 =
1

A

∫
A

b/fdA− 1

A

∫
A

∂zψ0dA− ∂zµ1
1

A

∫
A

ψ1dA (3.15)

and the differential equation for ψ0 becomes

∇2ψ0 +
f 2

N2
∂zz

(
ψ0 −

1

A

∫
A

ψ0dA

)
= q − f 2

N2

1

A

∫
A

∂zb/fdA−
f 2

N2
∂zzµ1

(
ψ1 −

1

A

∫
A

ψ1dA

)
(3.16)

The northern boundary acts like an islands. If there are more than one island line integrals
along the boundaries of the island need to be solved in addition.∮

C

∇¬∂tψ · d` =

∮
C

u̇ · d` →
∮
C

∇¬ψ · d` =

∮
C

u · d` (3.17)

where d` is the increment parallel to the coastline C.

3.6 Appendix B: QG filter: Discrete equations

The discrete version for f = const on an equidistant C-grid is

∂t ui,j,k − fvi,j,ki+
j−

= −δ+
x pi,j,k + u̇i,j,k (3.18)

∂t vi,j,k + fui,j,k
i−j+ = −δ+

y pi,j,k + v̇i,j,k (3.19)

δ+
z pi,j,k = bi,j,k

k+ (3.20)

∂tbi,j,k +N2wi,j,k
k− = ḃi,j,k (3.21)

δ−x ui,j,k + δ−y vi,j,k + δ−z wi,j,k = 0 (3.22)

with the finite differencing operators

δ+
x pi,j,k = (pi+1,j,k − pi,j,k)/∆x , δ

+
y pi,j,k = (pi,j+1,k − pi,j,k)/∆y , δ

+
z pi,j,k = (pi,j,k+1 − pi,j,k)/∆z(3.23)

δ−x pi,j,k = (pi,j,k − pi−1,j,k)/∆x , δ
−
y pi,j,k = (pi,j,k − pi,j−1,k)/∆y , δ

−
z pi,j,k = (pi,j,k − pi,j,k−1)/∆z(3.24)
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and the averaging operators

vi,j,k
i+ = 0.5(vi,j,k + vi+1,j,k) , vi,j,k

i− = 0.5(vi,j,k + vi−1,j,k) (3.25)

vi,j,k
j+ = 0.5(vi,j,k + vi,j+1,k) , vi,j,k

j− = 0.5(vi,j,k + vi,j−1,k) (3.26)

vi,j,k
k+ = 0.5(vi,j,k + vi,j,k+1) , vi,j,k

k− = 0.5(vi,j,k + vi,j,k−1) (3.27)

Since all differencing and averaging operators commute the vorticity and divergence equa-
tions become

∂t(δ
−
x δ

+
x + δ−y δ

+
y )ψi,j,k − fδ−z (wi,j,k)

i+
j+

= δ+
x v̇i,j,k − δ+

y u̇i,j,k (3.28)

∂t(δ
+
x δ
−
x + δ+

y δ
−
y )φi,j,k − f(δ−x δ

+
x + δ−y δ

+
y )ψi,j,k

i−j−
= −(δ−x δ

+
x + δ−y δ

+
y )pi,j,k (3.29)

+δ−x u̇i,j,k + δ−y v̇i,j,k (3.30)

introducing a streamfunction ψ and potential φ with ui,j,k = δ+
x φi,j,k − δ−y ψ and vi,j,k =

δ+
y φi,j,k + δ−x ψ and where the vorticity equation was combined with (δ+

x δ
−
x + δ+

y δ
−
y )φi,j,k +

δ−z wi,j,k = 0.

3.6.1 Quasi-geostrophic approximation

Implementing the quasi-geostrophic assumption as in the continuous case yields

f(δ−x δ
+
x + δ−y δ

+
y )ψi,j,k

i−j−
= (δ−x δ

+
x + δ−y δ

+
y )pgi,j,k → ψi,j,k

i−j−
= pgi,j,k/f (3.31)

and

(δ−x δ
+
x + δ−y δ

+
y )pai,j,k = δ−x u̇i,j,k + δ−y v̇i,j,k (3.32)

Buoyancy is also split into a dominant geostrophic part bg and a ageostrophic part for
which both the hydrostatic relation holds, and thus

δ+
z p

g
i,j,k = bgi,j,k

k+
→ fδ+

z ψi,j,k
i−j−

= bgi,j,k
k+

(3.33)

The leading order buoyancy equation becomes

∂tb
g
i,j,k +N2wi,j,k

k− = ḃgi,j,k → f 2

N2
∂tδ
−
z δ

+
z ψi,j,k

i−j−
= −fδ−z wi,j,k

k−k+
+

f

N2
δ−z ḃ

g
i,j,k

k+

(3.34)
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The potential vorticity equation becomes

∂t

(δ−x δ
+
x + δ−y δ

+
y )ψi,j,k

k+
k−

+
f 2

N2
δ−z δ

+
z ψi,j,k

i−j−
i+

j+ = (δ+
x v̇i,j,k − δ+

y u̇i,j,k)
k+

k−
+

f

N2
δ+
z ḃ

g
i,j,k

i+
j+

k−

(3.35)

thus the quasi-geostrophic potential vorticity on a C grid is given by

(δ−x δ
+
x + δ−y δ

+
y )ψi,j,k

k+
k−

+
f 2

N2
δ−z δ

+
z ψi,j,k

i−j−
i+

j+

= qijk = (δ+
x vi,j,k − δ+

y ui,j,k)
k+

k−
+

f

N2
δ+
z bi,j,k

i+
j+

k−

(3.36)

Eq. (??) corresponds to Eq. (3.4) in the continuous case.

Diagnostic relations for ageostrophic velocities

The vertical velocity can then be diagnosed from the buoyancy equation as

wi,j,k
k−k+

= ḃgi,j,k
k+

/N2 − f

N2
∂tδ

+
z ψi,j,k

i−j− (3.37)

The divergent velocities ua = ∂xφ and va = ∂yφ can be obtained from the momentum
equation as

fuai,j,k
i−j+

i+
j−

= (v̇i,j,k − ∂ypai,j,k)
i+

j−
− ∂t δ−x ψi,j,k

i+
j−

(3.38)

fvai,j,k
i+

j−i−
j+

= −(u̇i,j,k − ∂xpai,j,k)
i−j+
− ∂t δ−y ψi,j,k

i−j+ (3.39)

3.6.2 Vertical boundary condition

From the diagnostic relation it follows that

δ+
z pi,j,k = bi,j,k

k+
, fψi,j,k

i−j−
= pi,j,k → fδ+

z ψi,j,k
i−j−

i+
j+

= bi,j,k
k+

i+
j+

(3.40)

Assume that δ+
z bk = 0 at the surface and bottom such that

δ+
z ψi,j,k

i−j−
i+

j+

= bi,j,k
i+

j+

/f at k = Nz , δ−z ψi,j,k
i−j−

i+
j+

= bi,j,k
i+

j+

/f at k = 1(3.41)

or the corresponding relation for ∂tf ∂zψ = ḃ.
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Lateral boundary condition for closed domain

The discrete version of the zero mass flux condition for a closed domain is

δ+
z (µ0)k =

1

A

∫
A

bi,j,k/f
k+

i+
j+

dA− δ+
z

1

A

∫
A

(ψ0)i,j,k
i−j−

i+
j+

dA (3.42)

Note that the averaging in i and j is not necessary in the surface integrals for a double
periodic domain. The differential equation for ψ0 for the closed domain is then given by

(δ−x δ
+
x + δ−y δ

+
y )(ψ0)i,j,k

k+
k−

+
f 2

N2
δ−z δ

+
z

(ψ0)i,j,k
i−j−

i+
j+

− 1

A

∫
A

(ψ0)i,j,k
i−j−

i+
j+
 (3.43)

= (δ+
x vi,j,k − δ+

y ui,j,k)
k+

k−
+

f

N2
δ+
z

(
bi,j,k

i+
j+

− 1

A

∫
A

bi,j,k
i+

j+

dA

)k−

(3.44)

3.6.3 Lateral boundary condition for channel configuration

The discrete version of the mass flux constrain for a channel configuration is

δ+
z (µ0)k =

1

A

∫
A

bi,j,k/f
k+

i+
j+

dA− δ+
z

1

A

∫
A

(ψ0)i,j,k
i−j−

i+
j+

dA− δ+
z (µ1)k

1

A

∫
A

(ψ1)ijk
i−j−

i+
j+

dA(3.45)

and the equation for ψ0 for a channel configuration becomes

(δ−x δ
+
x + δ−y δ

+
y )(ψ0)i,j,k

k+
k−

+
f 2

N2
δ−z δ

+
z

(ψ0)i,j,k
i−j−

i+
j+

− 1

A

∫
A

(ψ0)i,j,k
i−j−

i+
j+
 (3.46)

= (δ+
x vi,j,k − δ+

y ui,j,k)
k+

k−
+

f

N2
δ+
z

(
bi,j,k

i+
j+

− 1

A

∫
A

bi,j,k
i+

j+

dA

)k−

(3.47)

− f
2

N2

(
δ−z δ

+
z µ

1
k

)(ψ1)ijk
i−j−

i+
j+

− 1

A

∫
A

(ψ1)ijk
i−j−

i+
j+

dA

(3.48)
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3.7 Appendix C: Machenhauer initialization: Discrete

equations

Discrete system for freely propagating waves

The Fourier transform of the discrete linear system is done using the definitions

ik̂+
x (kx) =

eikx∆x − 1

∆x
∆x→0

= ikx , ik̂−x (kx) =
1− e−ikx∆x

∆x
∆x→0

= ikx (3.49)

1̂+
x (kx) =

eikx∆x + 1

2
∆x→0

= 1 , 1̂−x (kx) =
e−ikx∆x + 1

2
∆x→0

= 1 (3.50)

and similar for k̂+
y , k̂−y , etc, with (1̂+

x )∗ = 1̂−x , (k̂+
x )∗ = k̂−x , k̂+

x (−kx) = −k̂−x (kx) and
1̂+
x (−kx) = 1̂−x (kx). Then

ui,j,k = ûei(kxx+kyy+kzz) , vi,j,k = v̂ei(kxx+kyy+kzz) , bi,j,k = b̂ei(kxx+kyy+kzz) (3.51)

yields ignoring the non-linear terms in the discrete equations

∂t û− f1+
x 1−y v + ik̂+

x p = 0 , ∂t v̂ + f1−x 1+
y u+ ik̂+

y p = 0

∂tb̂+N21−z w = 0 → ∂tp̂+ ic2(kz)1
+
z 1−z (k̂−x u+ k̂−y v) = 0 (3.52)

with ik̂+
z p = 1+

z b and k̂−x u+ k̂−y v+ k̂−z w = 0 and c2(kz) = N2/(k̂−z k̂
+
z ). This can be written

as

∂tz = iA · z , A =

 0 −i1+
x 1−y f −k̂+

x

i1+
y 1−x f 0 −k̂+

y

−c2(kz)k̂
−
x −c2(kz)k̂

−
y 0

 , z =

 û

v̂

p̂

 (3.53)

Note that c2 is real as the eigenvalues of the matrix. The eigenvalues of A are

ω = 0 , ω2 = c2(k−y k
+
y + k̂−x k̂

+
x ) + 1+

x 1−y 1−x 1+
y f

2 (3.54)

and the eigenvectors are

Qs =


if1+x 1−y k+y −k+x s|ω|
s2ω2−1+x 1−y 1+y 1−x f2

−if1+y 1−x k+x −k+y s|ω|
s2ω2−1+x 1−y 1+y 1−x f2

1

 , P s = ps
(−if1+

y 1−x k
−
y − k−x s|ω|

s2ω2 − 1+
y 1−x 1+

x 1−y f
2
,
if1−y 1+

x k
−
x − k−y s|ω|

s2ω2 − 1+
y 1−x 1+

x 1−y f
2
, c−2

)
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with the normalisation

ps =
|s2ω2 − 1+

x 1−y 1+
y 1−x f

2|
(1 + s2)(k−y k

+
y + k̂−x k̂

+
x + 1+

x 1−y 1−x 1+
y L
−2)

(3.55)

Note that this is all identical to the analytical eigenvectors for ∆x,∆y,∆z → 0.

Discrete system for vertical modes

The discrete vertical relations with respect to the vertical coordinate are given by

δ+
z p = b

k+ → −pn
2 sinm∆z

∆z(cosm∆z + 1)
= bn (3.56)

∇ · u + δ−z w = 0 → ∇ · un + wn
2 sin(m∆z/2)

∆z
= 0 (3.57)

∂tb+ wk−1N2 = 0 → ∂tbn + wnN
2 cos(m∆z/2) = 0 (3.58)

∂tpn + c2∇ · un = 0 , c2 = N2 ∆z2

4

(cosm∆z + 1)

sinm∆z tan(m∆z/2)
(3.59)

with m = nπ/H and the operators δ+
z , etc as defined above. The horizontal part stays the

same as for the free waves.
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Chapter 4

Conclusions

The results obtained from the research undertaken in the thesis are compiled in this chapter.
The main results are discussed followed by prospects that look at the results from a different
light. Perspectives for the present and forthcoming research wind up the thesis and raise
new questions to embark upon a new quest.

4.1 Disentangling gravity waves from balanced flow

The first and foremost aim of this thesis has been to disentangle internal gravity waves
(IGWs) from balanced flows. IGWs, which are unbalanced high-frequency motions, are
coupled with low-frequency balanced motions in a complex manner which makes the sepa-
ration of these motions equally complex. The separation becomes particularly complicated
for regimes with Richardson number Ri = O(1) (or equivalently Rossby number Ro < 1)
because of the strong coupling between balanced and unbalanced motions. To diagnose
IGWs from balanced flows two different methods have been implemented: modal decompo-
sition discussed in Chapter 2 and quasi-geostrophic filter (QG filter) discussed in Chapter
3.

4.1.1 Performance of modal decomposition based on Machenhauer

(1977)

The linear modal decomposition gives the linear balanced and unbalanced modes of the
system that appear well separated as seen in physical space (Fig 2.6) and further in the
frequency-wavenumber spectra (Fig 2.7) of the kinetic energy (KE) associated with the
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decomposed modes for a Ri � 1. For the linear balanced mode, the associated KE lies
predominantly outside the gravity wave branch and towards smaller frequencies. On the
other hand, the linear unbalanced mode show energy inside the gravity wave branch but
also some energy outside the branch towards smaller frequencies. This discrepancy is
attributed to the fact that the inherent non-linearity of the flow is not included in the
linear decomposition.

To account for the non-linearity, a non-linear decomposition based on the non-linear
initialization technique proposed by Machenhauer (1977) is applied, which gives the non-
linearly decomposed modes. A distinct separation between non-linear balanced and non-
linear unbalanced modes is evident from the frequency-wavenumber spectra of KE of the
decomposed modes (Fig 2.8). For Ri � 1 (Ro � 1), which exhibits large timescale
separation between balanced and unbalanced modes, the separation of modes is less difficult
than for Ri = O(1) (Ro < 1) which exhibits strong coupling between the balanced and
unbalanced modes. Accordingly, for Ri = O(1) (Ri = 3 in Fig 2.8) non-linear unbalanced
mode shows a significant KE within the gravity wave branch, but KE lies within the
gravity wave branch also for the non-linear balanced mode. This is because the strongly
coupled co-existing balanced and unbalanced motions for a Ri = O(1) i.e. an ageostrophic
regime, make the decomposition much more difficult. For higher Ri the decomposition
clearly separates the balanced and unbalanced motions. Therefore, the non-linear modal
decomposition comes forth as an efficient tool to decompose the flow field into balanced
and unbalanced modes and is superior to the linear modal decomposition but becomes less
efficient for small Ri.

4.1.2 Performance of the QG filter

The new diagnostic, QG filter, emerges as a competent diagnostic tool to extract IGW
signal from a balanced flow field. The additional capability of the QG filter makes avail-
able the horizontal velocity components of the unbalanced motions, which are utilized to
extract further information of the diagnosed IGWs that aid in a robust characterization
of the signals. The frequency-wavenumber spectra of KE calculated from the unbalanced
horizontal velocities (Fig. 3.3) gives a first indication of the effective separation of the
balanced and unbalanced components. For both small (Ri = 20) and high (Ri = 1000)
regimes, the KE in the unbalanced components follows the curve of IGW dispersion re-
lation, whereas most of the balanced KE lies outside the gravity wave branch. Further,
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the QG filter efficiently diagnoses IGWs generated by different mechanisms: spontaneous
emission, convective instability, and lateral boundary instability.

Additionally, the QG filter can be applied as a balance procedure to balance initial
conditions in a model with the aim to eliminate IGWs. To test this, the initial balanced
conditions provided by the QG filter is compared on the one hand against a model without
balanced initial conditions and on the other hand against the reformulated discrete ver-
sion of the non-linear initialization technique by Machenhauer (1977) which in this case
is implemented with three iterations. The QG filter (Fig. 3.2 d,e,f) performs remarkably
well in suppressing the unbalanced IGW motions, which are up to two orders of magnitude
smaller than the IGW signals present in the model without balanced initial conditions (Fig.
3.2 a,b,c). The discrete version of Machenhauer (1977) method (Fig. 3.2 g,h,i), however,
performs even better resulting in further minimization of IGW signals which are an order
of magnitude smaller than the ones obtained from the QG filter.

Prospects
The discrete consistent version of Machenhauer (1977) method (Chapter 3) appears to be
better suited than its analytical version (Chapter 2), and so the results of IGW detection
presented in Chapter 2 might further improve using the discrete version instead of the
analytical one. Moreover, the method is applied in Chapter 2 only up to the first iteration
but up to three iterations in Chapter 3. Higher iterations tend to extract more and more
IGWs, hence providing a robust interpretation of the IGW signals present in the flow.

At the same time, the non-linear initialization procedure of Machenhauer (1977) is not
entirely free from issues. By setting the initial time derivatives of the IGW modes to zero,
and hence imposing a non-linear balance condition devoid of IGW motions, Machenhauer’s
method implies that the obtained balanced state is a strict balanced manifold, which does
not exist as discussed earlier in the thesis. The slow evolving balanced manifold will gen-
erate small but non-zero amount of fast motions. The non-linear balance condition is
therefore not exactly consistent with such a manifold (cf. Leith, 1980; Theiss and Mohe-
balhojeh, 2009). This correction was taken into account by Baer (1977) by including a
correction term beginning from the second iteration. This correction, however, does not
matter for the first iteration (Theiss and Mohebalhojeh, 2009) which is the case in Chapter
2 of this thesis. In Chapter 3, however, the reformulated Machenhauer’s version with three
iterations might further improve with this correction term taken into account, and is one
of the points for exploration hereafter. With that said, Machenhauer’s method has its own
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advantage of being economical w.r.t. computational time (e.g. Temperton and Williamson,
1981).

Another aspect related to the modal decomposition (not only Machenhauer’s method) is
that it becomes complicated for Ri = O(1) owing to the strong coupling between balanced
and unbalanced motions. The same applies for the QG filter. For regimes with Ri < 1

where baroclinic instability cannot exist anymore, the onset of other instabilities would
introduce new complications to diagnose IGWs. However, for regimes that do allow the
separation of the balanced and unbalanced motions, IGWs can be effectively diagnosed by
the diagnostic tools presented in this thesis.
The efficient detection of IGWs based on Machenhauer’s method and the QG filter is
encouraging and can potentially be utilized for forthcoming studies.

4.2 Gravity wave activity in different dynamical regimes

IGW activity in different dynamical regimes is discussed in Chapter 2, where an idealized
numerical model is used to mimic baroclinic instability ranging from ageostrophic (Ri =

O(1)) to quasi-geostrophic (Ri � 1). IGW activity in an ageostrophic regime is much
more pronounced than in a quasi-geostrophic regime. For a quasi-geostrophic regime most
of the energy is contained in the non-linear balanced mode and negligibly small energy in
the non-linear unbalanced mode, indicating weak IGW activity.

Further, the dissipation associated with the balanced and unbalanced mode indicates
that the unbalanced mode related to IGWs always dissipates through small-scale dissipa-
tion. The dissipation of balanced mode is predominantly through large-scale dissipation
for a quasi-geostrophic regime, but as one proceeds from quasi-geostrophic to ageostro-
phic regime small-scale dissipation occupies larger and larger share of the dissipation of
the balanced mode. Therefore, we can conclude that an ageostrophic regime features the
downscale energy transfer primarily through IGWs.

Prospects
As suggested by the results, IGW emission depends on the flow parameters such as Ri, and
thus a similar analysis for a range of Ri for other IGW emission mechanisms would provide
more insight into the energy transfer from balanced flow to IGWs. Further, the IGWs dis-
cussed here might be generated by both spontaneous emission and convective instability.
Distinguishing the source of IGW emission can be achieved in one way by identifying the
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characteristics of IGWs emitted by a particular mechanism. This task depends upon the
precise detection of emitted IGW signals, and for this purpose enhancing the capabilities
of the diagnostic tools employed in this thesis is yet another subject of further research.

For Ri < 1, instabilities such as symmetric instability and Kelvin-Helmholtz instability
cast a regime where the dynamics are primarily unbalanced, such regimes might have even
stronger IGW activity. Such a postulate is difficult to make though, because a Ri < 1

regime leads to further escalation in the complexity of separating IGWs from a pool of
instabilities with similar scales, such that the diagnostic tools based on the concept of
balance cannot segregate these co-existing motions. Due to much more pronounced IGW
activity such regimes might also serve as a transition regime between baroclinic instability,
small-scale turbulence, and molecular scales where viscous dissipation occurs.

4.3 Gravity wave emission by different mechanisms

IGW emission by different mechanisms is discussed in Chapter 2, where an idealized model
setup is used to simulate different scenarios of IGW emission by baroclinic instability:
spontaneous emission, convective instability, and lateral boundary instability.

Spontaneous emission of IGWs is shown for Ri � 1 representing a quasi-geostrophic
regime. The residual vertical velocity obtained from the QG filter shows wave packets
encircled by the baroclinic eddy field, with local Rossby number of O(1) in the regions of
high wave activity, confirming that the wave signals are indeed IGWs. Although a quasi-
geostrophic regime exhibits weak IGW emission, as discussed previously, the QG-filter is
efficient in detecting the IGW signals.

Convective instability is a special case of spontaneous emission arising as a consequence
of frontogenesis. Baroclinic instability can lead to sharpening of density gradients resulting
in a density front. The gradual steepening of isopycnals in the front ultimately leads to
an convectively unstable situation resulting in overturning of isopycnals. This frontal
collapse is accompanied by emission of IGWs which propagate away from the front and
eventually decay. This scenario of wave emission via frontogenesis could also be related
to geostrophic adjustment, where the flow system tries to regain balance after the frontal
collapse by emitting unbalanced IGWs.

Lateral boundary instability leads to emission of IGWs when balanced flow encoun-
ters a wall. This scenario is akin to an eddy colliding with a lateral boundary such as a
continental shelf in the ocean. When a balanced eddy collides with meridional walls in
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the model, unbalanced IGWs are generated. These IGWs exhibit the characteristics of a
high-mode number Kelvin wave which appear to be arrested by the eddies.

Prospects
The magnitude of IGWs generated by convective instability (discussed for Ri = 100) is
higher than that for spontaneous emission (discussed for Ri = 500) and lateral boundary
instability (discussed for Ri = 400). This is presumably due to the characteristic weak
IGW emission for higher Ri and an enhanced emission for smaller Ri. Therefore, an anal-
ysis of these mechanisms of IGW generation in the light of Ri dependence will provide
useful aid in their quantification and relative importance.

Furthermore, other mechanisms of IGW generation from balanced flows as well as the
extension of the present research work to more realistic scenarios is a plan of action for
further research. For instance, the lateral boundary instability studied here with simplified
topography implemented as meridional walls, can be further extended by including more
realistic and complex topography to further examine the characteristics of emitted IGWs,
which forms a prospective case for further study.

4.4 Role of gravity waves in the downscale transfer of

energy

The question of the role of IGWs in the downscale transfer of energy addressed in the
beginning of the thesis is answered in the light of the results presented. IGW activity
examined in different settings supports and strengthens the role of IGWs in the downscale
energy transfer. Baroclinic instability in all regimes ranging from Ri = O(1) to Ri �
(1) exhibits a predominant small-scale dissipation related to the unbalanced mode. For
Ri = O(1) regime, even the balanced mode dissipation occurs primarily by small-scale
dissipation, implying that in such a regime the energy transfer from balanced flow en route
to molecular scale dissipation occurs mainly by IGWs. For Ri� (1) regime, which shows
weaker IGW activity, also shows small-scale dissipation through IGWs. The emission of
IGWs by different mechanisms further reinforces the link between oceanic balanced flows
and IGWs which act as a sink to balanced energy.
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Prospects
In addition to the vital energy pathway between balanced flows and IGWs, downscale en-
ergy transfer in the ocean can occur through several different pathways. The unbalanced
motions generated from balanced motions can form resonant triads with balanced as well
as unbalanced motions. Resonant triad interactions between slow balanced and fast unbal-
anced motions, in particular the slow-fast-fast triad, can transfer energy from the balanced
motions towards smaller scales (Bartello, 1995).

In addition, unbalanced IGWs which are generated from balanced flows can further
interact to form wave-wave resonant triads and transfer energy to other waves or to small-
scale turbulence, for instance by parametric subharmonic instability or induced diffusion
(e.g. McComas and Bretherton, 1977; Müller et al., 1986; Olbers et al., 2012, also Section
1.2.2). Moreover, the generated IGWs can interact with the balanced flow and draw its
energy by gravity wave drag (Eden and Olbers, 2017). Subsequently, the energy transfer
from balanced flows to IGWs and from IGWs to small-scale dissipation can become far
more complicated than the mechanisms demonstrated in the thesis.

One or more of these IGW related processes may simultaneously be at play and ex-
tract energy from the balanced flows. This makes the detection, characterization, and
quantification of these processes and their contribution to the downscale energy transfer
a challenging task. To include and identify such complex processes the diagnostic tools
presented need further refinement to tackle the disentangling of such complex interactions,
which is currently being explored.
In consideration of the foregoing, the precise detection of IGWs is a prerequisite, for which
the diagnostic tools presented in this thesis appear proficient. There is much more to
explore, but the journey has just begun.

4.5 Perspectives

The results presented in this thesis further foster the candidature of IGWs in the dissipation
of balanced flow during the downscale transfer of energy in the ocean, and also give way
to several new questions.

In this thesis, IGW emission is examined in an idealized numerical environment and
the question of how these scenarios translate to the realistic ocean is an obvious one. In
a realistic scenario wherein IGWs co-exist with many other processes of diverse scales, all
of which exhibit complex non-linear interactions, identifying the energy transfers to and
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from IGWs becomes inextricably tricky and even more complicated. IGWs interact and
exchange energy with motions of diverse scales, whereas the idealized scenarios considered
here include only a subset of these interactions.

In order to perceive the intricacies of the real ocean, new studies are required that
include more complex flow configurations, realistic model setups, as well as other forcing
such as winds, tides, and topography. This further leads to the question of how the global
picture looks like for different scenarios of IGW emission: how can these processes of
IGW emission be extrapolated to the global ocean; what are their quantitative estimates;
what is the relative importance of these processes and their role in the ocean’s energy cycle.
Further, the diagnostic tools put forward in this thesis appear promising and would benefit
from further refinement to facilitate understanding of other complex interactions such as
the resonant triad interactions. Furthermore, the diagnostic procedures can be extended
to other model setups such as a β-plane model. Even further, IGWs exist and influence
the dynamics of the rotating flows in the Earth’s interior as well as the dynamics of other
rotating planets beyond the realms of our own blue planet.

The implications of the results contained in this thesis range from the instantaneous
mixing to the climate that spans millenia, therefore a familiarity with the IGWs and their
energetics is a prerequisite to perceive the subtleties of the overarching picture. IGWs and
their interactions are largely parameterized in ocean and climate models as of now, and
they are likely to remain unresolved in the face of the complex interactions they present
and the computational power available at present. The picture might change in the future,
but as a Danish proverb says, it is hard to make predictions, especially about the future.
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This ocean seemingly tranquil

Wraps wild waves within

Serene as a work of art

Yet restless as a young heart
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