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The desert ant Cataglyphis fortis inhabits the North African salt-
pans where it individually forages for dead arthropods. Homing
ants rely mainly on path integration, i.e., the processing of direc-
tional information from a skylight compass and distance informa-
tion from an odometer. Due to the far-reaching foraging runs,
path integration is error-prone and guides the ants only to the
vicinity of the nest, where the ants then use learned visual and
olfactory cues to locate the inconspicuous nest entrance. The
learning of odors associated with the nest entrance is well estab-
lished. We furthermore know that foraging Cataglyphis use the
food-derived necromone linoleic acid to pinpoint dead insects.
Here we show that Cataglyphis in addition can learn the associa-
tion of a given odor with food. After experiencing food crumbs
that were spiked with an innately neutral odor, ants were strongly
attracted by the same odor during their next foraging journey. We
therefore explored the characteristics of the ants’ food-odor mem-
ory and identified pronounced differences from their memory for
nest-associated odors. Nest odors are learned only after repeated
learning trials and become ignored as soon as the ants do not
experience them at the nest anymore. In contrast, ants learn food
odors after a single experience, remember at least 14 consecu-
tively learned food odors, and do so for the rest of their lives.
As an ant experiences many food items during its lifetime, but
only a single nest, differentially organized memories for both con-
texts might be adaptive.
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The desert ant Cataglyphis fortis inhabits the North African
saltpans where it individually forages for dead arthropods.

During foraging ants take into account directional information
from a skylight compass (1) and distance information from an
odometer (2). By integrating both types of information the ants
are always informed about their relative position to the nest
entrance. However, as the foraging runs can cover more than
1.5 km (3), path integration due to accumulating errors guides
the ants only to the vicinity of the nest. Close to the nest entrance
homing ants then use the visual landmark panorama (4) as well
as olfactory cues like carbon dioxide emanating from the nest
entrance (5) or learned environmental odors (6, 7) to locate the
inconspicuous nest entrance. Olfaction has also been shown to
be involved in food location. Foraging Cataglyphis perform ex-
tensive cross-wind runs on a search for odor plumes derived from
dead arthropods. Upon plume contact, the ants follow this plume
to pinpoint the food item [a strategy that was also found in leaf
cutter ants (8)]. It was found that the ants are highly sensitive to
the food-derived necromone linoleic acid and use this compound
to localize their dead prey in the saltpan (9). Although linoleic
acid emanates from most insect carcasses, ants experience nu-
merous different food sources and might learn additional ol-
factory characteristics that help them to find food efficiently.
Here we show that Cataglyphis indeed can learn the associa-

tion of a given odor with food. After experiencing food crumbs
that were spiked with an innately neutral odor, ants were strongly
attracted by the same odor during their next foraging journey.
We therefore explored the characteristics of the ants’ food-odor
memory and—when comparing it with the memory for nest

odors—identified pronounced differences regarding acquisition
time, storage capacity, and memory duration.

Results and Discussion
Learning of Food Odors. C. fortis ants learn to associate different
odors with the nest entrance and use this knowledge to pinpoint
the nest during homing (6). Here, we asked whether ants also
learn to associate odors with food. To address this question, we
first trained ants to forage at a distant feeder [nest-to-feeder
distance: 6 m; nest-to-feeder direction: perpendicular to wind
direction (which was continuously tracked via a wind vane at the
experimental area)] by placing a bucket containing a petri dish
with biscuit crumbs in the ground (Fig. 1A1). The ants could
access these crumbs in the bucket via a ladder that they could
climb up and down. Under this situation it takes about 1 h until
most of the foraging ants of this nest continuously commute
between nest and feeder along a rather straight line. We then
approached ants on their way to the feeder with an open
Eppendorf tube containing a single odor (2 μL diluted in 100 μL
of hexane) and placed some 2 m upwind of the ant and observed
whether this odor would elicit plume following (Fig. 1A2). A
short thin thread attached to the tube informed us about the
current wind direction and ensured that we were approaching
the ant from upwind. Turning into the plume was regarded as a
positive response when it led the ants into a less than 5 cm dis-
tance to the tube. By doing this we tested the innate attraction of
32 common plant volatile odors (blue bars in Fig. 1B). We next
spiked the food in the feeder with one of the odors by shaking
the biscuit crumbs in a tube that contained 2 μL of the test odor
(diluted in 100 μL of hexane). Ants were allowed to forage on
the spiked crumbs for 15 min (i.e., about three to four training
runs per ant) (Fig. 1A3). For each trained odor, we set up a
feeder at a new nest to guarantee that each nest was trained and
tested with only one odor. Testing of the ants’ responses to the
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odors afterward (Fig. 1A4) showed that training resulted in 23 of
the 32 odors having a significantly elevated attraction (solid bars
in Fig. 1B). In laboratory experiments using a Y-maze assay,
Camponotus ants have been shown to associate odor with a sugar
reward (10, 11). Our data reveal that such an association can be
learned also in a natural context, where freely foraging ants are
exposed to numerous cues from the environment. In proboscis
extension experiments, harnessed bees were shown to learn some
odors better than other odors (12). The authors (12) argued that
either the bees had pre-experimental experience with the better-
learned odors within the hive or that these odors were more
reliably associated over evolutionary time with resources that are
normally linked with a food reward. In our study we did not use
any reported food or nest odors, to make an innate bias toward
one of the training odors less likely. We, however, cannot ex-
clude that the ants had experienced some of the experimental
odors before.

Memory Acquisition Time. We next asked how fast ants can form
this association. To do so, we again trained ants to forage at a
feeder and waited until most of the foraging ants were com-
muting between nest and feeder. We then loaded the feeder with
crumbs spiked with the training odor and immediately removed
the ladder from the feeder. Ants facing this situation jumped into
the feeder and took a spiked food crumb, but were unable to
leave the feeder again. When all commuting ants were trapped in
the feeder, the ladder was reinstalled, and all ants were allowed
to return to the nest. We then tested the ants’ responses to the
training odor on their next foraging run, i.e., after they had ex-
perienced the food odor only once. Surprisingly, after a single
training trial the ants already strongly pinpointed an odor that
before training had been neutral (Fig. 1C).

Memory Duration. Having shown that the ants learn odors that
quickly, we next asked, how long they would remember them.
For that, we slightly modified the training procedure. Instead of
spiking the food itself (which would result in foraging ants car-
rying the training odor into the nest), we did not shake the
crumbs in the odor but applied the odor (0.8 μL of the test odor
diluted in 40 μL of hexane) inside the bucket, but outside of the
petri dish containing the food crumbs. Therefore, whenever
picking up an unscented food crumb at the feeder, ants still ex-
perienced the training odor. We trained the nests for 2 h to as-
sure that most ants of the nest’s foraging force would have visited
the feeder many times, marked all ants that visited the feeder
with a color dot, and removed the odor from the feeder after-
ward. We next tested feeder-heading ants (that due to the color
dot belonged to the former training force) 1–26 d after training.
More than 80% of the ants followed the odor 1 d after training.
However, even after 26 d, more than 45% of the ants were
attracted by the odor that originally had been innately neutral
(Fig. 1D). Obviously, the ants’ olfactory memory remains for a
very long time.

Memory Capacity. We then asked how many individual odors the
ants’ memory can store at the same time. We took advantage of
our list of learned odors (Fig. 1B) and trained the ants with 14
well-learned odors consecutively, with the training odor on
cookie crumbs being exchanged every 15 min. When testing the
ants with one of the training odors afterward, the ants exhibited
significantly increased attraction to each of the odors compared
with before the training (Fig. 2A). To exclude that the ants after
being trained with numerous odors just generalized between
odors and, hence, started to follow any odor, we repeated the
experiment by training the ants with only 7 of the 14 odors and
testing all 14 odors individually afterward. Regardless of which
seven odors that the ants were trained to recognize, the ants
afterward mainly followed the training odors and either ignored
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Fig. 1. Learning of food odors. (A1–A4) Training and test paradigms. (A1)
Pretraining to establish the feeder. Black circle: nest entrance; blue circle:
dug-in bucket with cookie crumbs; nest-to-feeder distance: 6 m). (A2) Test for
innate attraction. Feeder-heading ants approach or do not approach a tube
with odor placed 2 m upwind. (A3) Odor training. Food crumbs in the feeder
become spiked with training odor. Orange circle: dug-in bucket with odor-
enriched cookie crumbs. (A4) Test for learned attraction. Ants do approach
or do not approach a tube with odor placed 2 m upwind of feeder-heading
ants. (B) Innate and learned responses to odors. Blue bars: percentage
of ants that approached an odor before training; orange bars: percentage
of ants that approached an odor after they had been trained to recognize
it; solid bars: learned odors with significant learning-induced differences
(P < 0.05, test of equal or given proportions); open bars: odors that were
not learned (P > 0.05); numbers next to bars: number of tested ants. (C )
Responses of ants that had experienced the odor only during one foraging
trip (P < 0.05, test of equal or given proportions); for color coding, see B. (D)
Responses of ants that were tested with decanal 1–26 d after they had been
trained to it (P < 0.05, test of equal or given proportions with Bonferroni
correction for multiple comparisons with data of naive ants). For color
coding, see B.
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or weakly responded to those seven odors that were not included
in the training procedure (Fig. 2 B1 and B2). We conclude that
ants can store multiple food-odor associations simultaneously.

Nest-Odor Memory. As ants obviously can associate odors both
with food items and with the nest (6), we next aimed to compare
the memory characteristics of nest and food odors. Contrary to
the single-trial learning of food odors (Fig. 1C), ants are known
to associate an olfactory nest cue only after 10–15 foraging runs
(13). Hence, both memories differ regarding memory acquisition
time. Furthermore, the ants remembered a food odor almost
1 mo after they had learned it (Fig. 2). Would the ants remember
nest odors that they had learned in the past, also? To test this, we
performed experiments similar to those described by Steck et al.
(6); i.e., we connected a nest entrance to the center of an open
aluminum channel (length: 13 m; width: 7 cm; height: 7 cm) and
trained the ants to forage at a petri dish with food crumbs (nest-
to-feeder distance: 4 m).
We then pipetted 0.4 μL of the test odor (diluted in 20 μL of

hexane) of either alpha-Farnesene (Fig. 3B1) or Methylsalicylate
(Fig. 3B2) as an olfactory cue placed directly at the nest entrance.
After at least 30 min of training (i.e., ∼15 training runs), homing
ants were caught when they started their return from the feeder
and were released in a remote channel with the same odor but
without a nest entrance (for a schematic of the training and test
paradigm, see Fig. 3A). Under this situation the ants immedi-
ately unreeled their path integration vector and afterward started
a highly stereotyped nest search. Ants relying on an odor cue
exhibit a narrow search, while ants relying only on path in-
tegration exhibit a rather wide search (6). The distance of the
first six turning points to the center of the search (i.e., the mean
of the first six turning points) after an ant had passed the odor
for the first time informed us about whether the ant associated
the cue with the nest entrance. A second group of ants was
trained under identical conditions. However, before testing these
ants, the odor cue at the nest was removed, and the training was
continued for another 30–120 min.
When testing these ants later with the formerly trained odor in

the test channel, the distance between the turning points and the
odor was significantly longer and did not differ anymore from
ants, that had not been trained to the odor at all (Fig. 3 B1 and
B2). We conclude that a nest-defining odor loses its behavioral
significance for the ant when this odor is not present at the nest
anymore. We also conclude that, while food odors are learned
quickly and remembered for a long time and multiple food-odor
associations can be stored, ants take longer to learn olfactory
cues at the nest entrance and ignore former nest odors when
these odors are removed from the nest entrance. Obviously,
Cataglyphis exhibits two distinct olfactory memories for food and
nest odors.
Different strategies regarding the memory of food and nest

odors might be adaptive for this ant. During its lifetime as a
forager [life expectancy for foragers of a closely related Cata-
glyphis ant in a similar habitat was calculated as only 6 d (14)] an
ant might experience contact with different food items. While
the type of food (dead arthropods such as spiders, cicadas, ant
sexuals) is rather unpredictable, during some of our field ex-
cursions cicadas and ant sexuals suddenly appeared in the habitat
of C. fortis in masses. It has been shown that predators [spiders
(15), birds (16, 17)], by establishing visual search images of their
prey, increase their foraging efficiency. It might therefore be
beneficial for Cataglyphis foragers to establish an olfactory search
image, i.e., learn and store the olfactory characteristics of a given
food item, as this might help the ants to efficiently localize more
items of the same type afterward. That the ants learned the food-
odor association after a single foraging trip is in agreement with
learning experiments with leafcutter ants (18, 19), bees (20),
cockroaches (21), and mollusks (22, 23). However, the long
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storage duration of at least 26 d that by far exceeds the foragers’
average life expectancy is surprising. To our knowledge the
longest time for olfactory memory retrieval in insects has been
reported in leafcutter ants (24). These ants collect leaves to
culture a fungus and learn to avoid odors of plants that turned
out to be harmful to the fungus. Saverschek et al. (24) observed

that this olfactory avoidance remained even after 18 wk. As the
survival of the fungus is crucial for the ant colony, lifetime
memory for the smell of plants that turned out to be poisonous
seems to be highly adaptive. Lifetime olfactory memory, how-
ever, also has been reported for positive cues. Crickets can learn
to associate an odor with a sugar reward and remember this
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association even after 10 wk (25). Similar to our finding that
Cataglyphis can remember the association of at least 14 odors,
crickets have been further shown to remember a preference in a
two-choice test for seven odor pairs (26). Obviously, a lifetime
olfactory memory with storage capacity for numerous odors is
conserved in insects.
Why, however, do the ants ignore nest odors already 30 min

after the cues have been removed from the nest entrance?
Contrary to the numerous food items that an ant experiences
during its life as a forager, it will always return to the same nest
entrance. Hence, there seems to be no need to remember nu-
merous alternating cues or those cues that are not existing any-
more. Contrary to our findings, Ziegler and Wehner (27) showed
that ants that were first trained to nest-defining visual cues, and
then kept in captivity for 20 d, still remembered the nest cues.
However, as these ants were kept in captivity until they were
tested, they did not experience the nest without cues between
training and test. In another study, Bisch-Knaden and Wehner
(28) showed that knowledge about nest-defining cues is not
erased after a single foraging trip without these cues. As our ants
were tested 30 min after cue removal, they most probably per-
formed several foraging runs without the nest-defining odor
before they were tested. Therefore, these datasets do not allow
the comparison of the robustness of visual and olfactory memory
of nest cues. Future studies will reveal whether olfactory nest

cues are remembered as long as visual ones, when the ants are
kept in captivity directly after training and hence do not perform
any foraging runs without cues before they are tested. This will
tell us whether the ants indeed forget about nest odors after a
short time or whether they rather always update their knowledge
and hence learn after the removal of training odors that the nest
is not smelly.
However, obviously it is adaptive for the ant to learn and re-

member multiple food odors, while the olfactory memory of nest
odors is restricted to the last odor learned.

Materials and Methods
Experiments were performed in a saltpan close to the Tunisian village of
Menzel Chaker (geographic coordinates, E010.411 N34.956). This area con-
tains more than 900 nests and allowed us to use each ant nest for only one
experiment to avoid individual ants becoming trained in different training
paradigms. Ants were trained as described above. Each ant was tested only
once and was excluded from further experiments. During the training ants
were baited with crumbs (crumb size: ∼8 mm3) of locally available biscuit
cookies. All odorants used for the learning experiments were purchased
from commercial sources (Sigma, www.sigma-aldrich.com and TCI
America, www.tcichemicals.com/en/us/).
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