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Appendix A: Simulation Details

In the flowchart of Fig. A we give a schematic description of the steps to be performed to implement the ICWF
algorithm, namely:

1. Sample initial positions, {rα(0),Rα(0)}, from the initial probability density |Ψ(r,R, 0)|2 for each of the M
trajectories. This can be done, e.g., by using an importance sampling technique. Here, we chose the initial
trajectory positions to be (stochastically) Monte Carlo-sampled from |Ψ(r,R, 0)|2.

2. Use the M positions {rα(0),Rα(0)} to evaluate the 2M conditional wavefunctions, {ψα1 (r, 0), ψα2 (R, 0)}, as
prescribed in Eqs. (3) and (4). The coefficients C(0) at the initial time can be found by inverting the equa-

tion
∑
α C

α(0)ψα1 (r, 0)ψα2 (R, 0) = Ψ(r,R, 0). The initial velocity fields {ṙα(0), Ṙα(0)} can be then evaluated
according to Eqs. (10) and (11).

3. Propagate the Hermitian CWF equations of motion according to Eqs. (5) and (6) by simply neglecting the
complex potentials ηα1 (r, t) and ηα2 (R, t).

4. Solve the equation of motion for the coefficients C(t) using Eq. (8) together with the definitions in Eq. (9).

5. Evaluate the velocity fields using Eqs. (10) and (11), and then propagate the M trajectories {rα(t),Rα(t)}.

6. Repeat the procedure starting from point 3. until the end of the simulation.

Step 4. in the implementation is what distinguishes the ICWF approach from independent trajectory methods
such as its lowest order version, the HCWF approach. For all CWFs, the time integration has to be performed
simultaneously. The parallelization of the algorithm is thus essential for numerical efficiency.

General observables can be written in terms of a CWFs by making use of the Ansatz in Eq. (7). In particular, the
performance of the proposed method is assessed by computing the adiabatic populations:

Pm(t) =

∫
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an indicator of decoherence:

Dnm(t) =

∫
dR|χ(m)(R, t)|2|χ(n)(R, t)|2 =
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and the reduced nuclear/photonic probability density:

ρ(R, t) =

∫
dr|Ψ(t)|2 =

M∑
α′,α

C∗α′Cαψ
α′∗
2 ψα2

∫
drψα

′∗
1 ψα1 . (A.3)
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FIG. 1. Flowchart describing the numerical implementation of the ICWF method.


