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We present an efficient ab initio algorithm for quantum dynamics simulations of interacting sys-
tems that is based on the conditional decomposition of the many-body wavefunction [Phys. Rev.
Lett. 113, 083003 (2014)]. Starting with this formally exact approach, we develop a stochastic
wavefunction ansatz using a set of interacting conditional wavefunctions as a basis. We show that
this technique achieves quantitative accuracy for a photo-excited proton-coupled electron transfer
problem and for nonequilibrium dynamics in a cavity bound electron-photon system in the ultra-
strong coupling regime, using two orders of magnitude fewer trajectories than the corresponding
mean field calculation. This method is highly parallelizable, and constitutes a practical and efficient
alternative to available quantum-classical simulation methods for systems of interacting fermions
and bosons.

PACS numbers:

New computational tools are still needed to treat
nonequilibrium many-body quantum dynamics problems
in molecular and condensed phase systems. Pragmat-
ically speaking, while exact solutions are out of reach
for a broad range of systems, our main goal is to pro-
vide a novel alternative theoretical framework for gener-
ating simulation-based predictions of observable proper-
ties that are as accurate as possible, in a computationally
feasible, ab initio, manner.

Trajectory based quantum dynamics methods provide
one possible route toward this goal, and offer the stan-
dard trade-off between physical accuracy and compu-
tational cost [1–3]. Of these approaches, perhaps the
most popular are Ehrenfest mean field theory[4], and
Tully’s surface hopping dynamics[5]. Both of these ap-
proaches can be simulated using an ensemble of uncor-
related trajectories. Reintroducing correlation, for ex-
ample by using wavepacket methods [6–10], semiclas-
sical techniques[11, 12], the quantum-classical Liouville
equation [13–15], linearization-based approaches[16–19],
or methods based on the exact factorization [20–22], al-
lows for further accuracy at the expense of (often signif-
icant) additional computational effort. In practice, es-
sentially all of these quantum dynamics methods are for-
mulated using a discrete (truncated) Hilbert space rep-
resentation for the electronic degrees of freedom. In this
picture, the Born-Oppenheimer (BO) approximation nat-
urally emerges as classical nuclear dynamics on the elec-
tronic ground state potential energy surface (BOPES)
[23], and nonadiabatic effects are introduced by including
multiple electronic potential energy surfaces, and nona-
diabatic coupling terms (NACTs) [24].

An alternative to this approach, is to use the (real

space) position representation for the electrons. This al-
lows one to go beyond the BO picture, without the need
to explicitly calculate several BOPESs and NACTs[25].
This is an attractive feature from a computational point
of view, as these quantities may be demanding to ob-
tain from ab initio electronic structure calculations. The
conditional wavefunction (CWF) approach can be for-
mulated in this picture; it is an exact decomposition and
recasting of the unitary time-evolution of a closed quan-
tum system, that yields a set of coupled, non-Hermitian,
equations of motion [26]. Inspired by the trajectory based
approach to quantum dynamics of de Broglie and Bohm
[27–30], the CWF approach allows one to describe the
evolution of arbitrary subsets of the degrees of freedom
in a system, on a formally exact level. In addition, this
alternative formulation of the many-body quantum dy-
namics problem allows novel approximate schemes to be
developed [31, 32] providing a completely new perspec-
tive to deal with the long-standing problems of nonadia-
batic dynamics in complex interacting systems.

In this Letter we report an approach for performing
nonadiabatic quantum dynamics simulations using a set
of time-evolving basis functions that are obtained from
an approximation to the exact CWF equations of motion.
This technique allows one to bypass the, typically neces-
sary, computation of multiple BOPESs and NACTs, and
potential subsequent diabatization procedures. Hence,
this method offers a new and attractive route to calcu-
late observables and time correlation functions without
relying on the widely used concept of the BOPES.

We consider a closed system of interacting particles,
and separate the degrees of freedom into two arbitrary
subsets. We also use the position representation for both
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sets; lowercase symbols will be used for the first sub-
system, e.g. r = {r1, ..., rn}, and uppercase symbols
R = {R1, ...,RN} for the second. This decomposition
holds for an arbitrary number of subsets (up to the to-
tal number of degrees of freedom in the system), and
applies to both fermionic and bosonic many-body inter-
acting systems. Here we choose n and N to represent
the total number of degrees of freedom in each of the two
subsystems.

The conditional wavefunction (CWF) approach can
be developed starting from the full time-dependent
Schrödinger equation (TDSE) in the position represen-
tation,

i~
∂

∂t
Ψ(r,R, t) = Ĥ(r,R, t)Ψ(r,R, t). (1)

The total Hamiltonian for the system is

Ĥ = T̂1(r) + T̂2(R) +W (r,R, t), (2)

where the kinetic energy operators for each species j are

T̂j = ~2

2mj
(i∇j −Aj(t))

2, and mj are their characteristic

masses. The vector potential (in Coulomb gauge) due to
an arbitrary external electromagnetic field, Aj(r,R, t) is
also included. The full interacting potential energy of the
system is W (r,R, t).

The total wavefunction can be exactly decomposed in
terms of the CWFs of either of the two subsystems,

ψα1 (r, t) :=

∫
dRδ(Rα(t)−R)Ψ(r,R, t), (3)

ψα2 (R, t) :=

∫
drδ(rα(t)− r)Ψ(r,R, t). (4)

Using these definitions in Eq. (1), one can show that the
CWFs, ψα1 (t) and ψα2 (t), obey the following equations of
motion:

i~
dψα1
dt

=
(
T̂1(r) +W (r,Rα, t) + ηα1 (r, t)

)
ψα1 , (5)

i~
dψα2
dt

=
(
T̂2(R) +W (rα,R, t) + ηα2 (R, t)

)
ψα2 , (6)

where we have suppressed the explicit time-dependence
of the coordinates, i.e., {rα,Rα} ≡ {rα(t),Rα(t)}. The
complex potentials ηα1 (r, t) and ηα2 (R, t) are functionals
of the full wavefunction, and are given in Refs.[25, 26].
The conditional wavefunctions, (3) and (4), represent
slices of the full wavefunction taken along the degrees
of freedom of the two disjoint subsets (see, e.g., Fig. 2
in Ref. [25]). Each individual conditional wave func-
tion constitutes an open quantum system, whose time-
evolution is non-unitary, due to the complex potentials.

An exact solution to Eq. (1) can be constructed
provided an ensemble of trajectories {rα,Rα} that ex-
plores the full support of |Ψ(r,R, t)|2. For example, an
ensemble of Bohmian trajectories defined through the

conditional velocity fields [33, 34] would fulfill such re-
quirements. An approximate solution can be formulated
[26] by expanding the complex functionals around the
conditional coordinates, and then truncating such that
ηα1 (r, t) = f(Rα, t) and ηα2 (R, t) = g(rα, t). In this limit,
these potentials only engender a pure time-dependent
phase that can be omitted, as the conditional velocity
fields are invariant under such global phase transforma-
tions [26]. The resulting propagation scheme is thus re-
stored to a Hermitian form, and this approximate version
of the CWF formalism is referred to as the Hermitian-
CWF approach [26].

The Hermitian-CWF propagation scheme recasts the
full quantum time-propagator as a set of independent
single-species propagators, which is clearly a major sim-
plification of the full problem. Hence, this form of the
conditional decomposition allows one to circumvent the
problem of storing and propagating the full many-body
wavefunction, whose size scales exponentially with the
number of degrees of freedom.

In this Letter we consider the following ansatz for the
full many-body wavefunction:

Ψ(r,R, t) =

M∑
α=1

Cα(t)ψα1 (r, t)ψα2 (R, t). (7)

The basis functions in this sum are chosen to be
Hermitian-CWFs, and the upper limit of the sum, M ,
refers to the total number of stochastically sampled tra-
jectories (that we will show below can be kept to a very
low number, making the present scheme computation-
ally very efficient). Including interactions between the
trajectories in the ensemble corrects the Hermitian-CWF
evolution, through the set of complex time-dependent co-
efficients, C(t) = {C1(t), ..., CM (t)}. The time evolution
of these coefficients, is obtained by inserting Eq. (7) into
Eq. (1),

iMĊ(t) = (W−W1 −W2)C(t), (8)

where the matrix elements of M, W, W1, and W2 are:

Mα,α′ =

∫
drψα

′∗
1 ψα1

∫
dRψα

′∗
2 ψα2 (9a)

Wα,α′ =

∫
drdRψα

′∗
1 ψα1 ψ

α′∗
2 ψα2W (r,R) (9b)

Wα,α′

1 =

∫
drψα

′∗
1 ψα1W (r,Rα)

∫
dRψα

′∗
2 ψα2 , (9c)

Wα,α′

2 =

∫
drψα

′∗
1 ψα1

∫
dRψα

′∗
2 ψα2W (rα,R). (9d)

Obtaining these matrix elements is straightforward
and, except for (9b), they can be easily calculated from
independent single species integrals. Evaluating the ma-
trix elements of W, in principle, requires the reconstruc-
tion of the full (ansatz) wavefunction. This does not re-
strict the use of the method to cases where the potential
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energy W (r,R) can be fit to a sum-of-products form,
as in the multi-configurational time-dependent Hartree
method [35] for example, but it does pose a potential
numerical challenge in the case of a large trajectory en-
semble.

Once the coefficients C(t) are known, the velocity fields
{ṙα, Ṙα} are then constructed according to the exact ex-
pressions for each subsystem:

ṙα(t) = Im

[∑
α Cα(t)ψα2 (Rα, t) (∇rψ

α
1 (r, t)) |rα(t)∑

α Cα(t)ψα1 (rα, t)ψα2 (Rα, t)

]
,(10)

Ṙα(t) = Im

[∑
α Cα(t)ψα1 (rα, t) (∇Rψ

α
2 (R, t)) |Rα(t)∑

α Cα(t)ψα1 (rα, t)ψα2 (Rα, t)

]
.(11)

The Interacting-CWF method, described above, does
not require the electronic BOPES or NACs as input, or
for time propagation. This feature is potentially quite
advantageous for treating processes that involve many
quantum states or continua, as in light-induced dynam-
ics or surface-scattering phenomena. In addition, the
Interacting-CWF propagation scheme avoids the compu-
tation of the nonlocal complex potentials, ηα1 (r, t) and
ηα2 (R, t), as it is based on the Hermitian limit of the
CWF equations of motion. Furthermore there is mini-
mal cross-talk between trajectories, which makes the al-
gorithm computationally efficient in massively parallel
architectures [36].

We first show Interacting-CWF simulation results for
a prototypical photo-induced proton-coupled electron
transfer reaction, using the Shin-Metiu model [37]. The
system comprises donor and acceptor ions which are fixed
in space, and a proton and an electron that are free
to move in one dimension along the line connecting the
donor-acceptor complex. This model is very flexible and
describes situations where electron-nuclear correlations
play a crucial role in the reaction dynamics [38]. The pa-
rameters of the model are chosen to make contact with
previous work on non-adiabatic relaxation for this system
[26, 39].

We choose an initial state for the system with the
electron in the first excited BO state, while the initial
nuclear wavefunction is chosen to be a Gaussian cen-
tered on the equilibrium geometry of the ground state.
The short-time dynamics that proceeds from this initial
condition involves a passage through an avoided cross-
ing of two BOPESs, with further crossings occurring at
later times as the system evolves. In order to char-
acterize the dynamics, we monitor the BO electronic
state populations, the reduced nuclear probability den-
sity, ρ(R, t) =

∫
dr|Ψ(r,R, t)|2 as well as an indicator

of decoherence that is defined as the overlap integral of
projected nuclear densities evolving on different BO elec-
tronic states, Dnm(t) =

∫
dR|χ(n)(R, t)|2|χ(m)(R, t)|2.

When the system passes through the nonadiabatic cou-
pling region, the electron transfers probability between
the first excited state and the ground state (top panel of

Figure 1: Dynamics in the Shin-Metiu model for photoin-
duced proton-coupled electron transfer (see text and SI for
details). Exact results (black line), Interacting-CWF with
M = 250 (open green circles) and Ehrenfest mean field theory
(blue dots). Top panel: Evolution of the BO state populations
P1(t) and P2(t). Mid panel: Snapshot of the reduced nuclear
coordinate density ρn(R, t) at t = 31.84fs. Bottom panel:
Time-dependent decoherence indicator D12(t); Interacting-
CWF results with 10 trajectories (red dashed line).

Fig. 1). As a result of the electronic transitions, the re-
duced nuclear density changes shape by splitting into two
parts representing influences from both ground and ex-
cited state BOPES’s at t ≈ 32fs (middle panel of Fig. 1).
As non-adiabatic transitions occur the system builds up a
degree of coherence, and this coherence subsequently de-
cays as the system evolves away from the coupling region
(bottom panel of Fig. 1). The Interacting-CWF method
vastly outperforms the Hermitian-CWF approach [26],
Ehrenfest mean field theory (also shown in Fig. 1), as
well as Tully’s surface hopping dynamics [40], in describ-
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ing all these aspects of this problem. While both the
Interacting-CWF method and Ehrenfest dynamics cor-
rectly capture the exact population dynamics at short
times, the latter breaks down at longer times. Mean
field theory also fails to capture the qualitative struc-
ture of the time-evolving reduced nuclear density, and
the indicator of decoherence. These features are perfectly
captured by our Interacting-CWF approach using very
few trajectories; fully converged Interacting-CWF results
were reached with 250 trajectories, while 2x104 trajecto-
ries (initially sampled from the Wigner distribution cor-
responding to the initial quantum nuclear wave packet)
were required for convergence with Ehrenfest dynamics.
Somewhat surprisingly, as shown in the bottom panel
Fig. 1, electronic decoherence is captured nearly quan-
titatively by the Interacting-CWF method using only 10
trajectories.

Next, we simulate a single electron in a one-
dimensional double well potential that is coupled to a
quantum electrodynamical (QED) cavity through a sin-
gle photon mode in the ultra-strong coupling regime [41–
43]. This scenario constitutes a formidable challenge
for approximate approaches. In this regime the ground
BOPES is strongly coupled to the first excited state, and
there are significant couplings among the other higher-
lying excited states [44]. The effective mass of the pho-
ton displacement coordinate is identical to the electronic
mass, hence the dynamics deviate strongly from the BO
limit. Furthermore, tunneling, quantum coherence, and
zero-point energy conservation are also important for
both interacting subsystems.

We choose the system to be initially prepared with the
electron in the first excited BO state, while the initial
photonic wavefunction is prepared in a displaced coher-
ent state (see [44]). This initial state is not a stationary
eigenstate of the full electron-photon Hamiltonian, and it
evolves in time by scattering thorough multiple avoided
crossings. The reduced photon density develops a com-
plex structure as time progresses as there are at least
four BOPESs involved in the dynamics (see top panel
of Fig. (2)). The exact electronic and photonic dynam-
ics are quantitatively captured by the Interacting-CWF
approach, as shown in Fig. 2, again with an extremely
small trajectory ensemble.

To summarize, we presented a method for solv-
ing the TDSE that is based on the recently intro-
duced, exact, conditional decomposition of the many-
body wavefunction[26]. We use the lowest order solution
to the CWF equations of motion as a time-dependent ba-
sis, in a stochastic wavefunction ansatz which we call the
Interacing-CWF approach. Our simulation results for
the coupled electron-nuclear and electron-photon model
system show that this method captures a quantitatively
accurate physical picture, while using a number of tra-
jectories that is orders of magnitude lower than the cor-
responding mean-field simulation. The degree of com-

Figure 2: Nonequilibrium QED cavity-bound electronic dy-
namics in the ultra-strong coupling regime. Exact (black
solid line) and Interacting-CWF (green circles) with 400 tra-
jectories. Top panel: Evolution of electronic BO state pop-
ulations. Mid panel: Reduced quantized displacement-field
coordinate probability density ρ(R, t) at t = 0.65fs. Bot-
tom panel: Time-dependent decoherence indicator D12(t)
and D23(t); Interacting-CWF results with 20 trajectories (red
dashed line).

putational efficiency offered by this approach creates the
possibility to treat dynamics in molecular and extended
quantum systems with unprecedented accuracy without
the need to pre-compute the BOPESs or NACTs, while
providing access to all observables relevant for describing
nonequilibrium dynamical phenomena.

In addition, these developments provide a general
framework to approach the many-body problem in a va-
riety of contexts. Notice that the decomposition of the
full wave function offered here, in (3) and (4), is but one
option of many possible conditional decompositions of
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the interacting many-body wavefunction. For example,
using single-particle CWFs in a form compatible with
time-dependent density functional theory is another par-
ticularly appealing route to follow in this respect, and
work in this direction is already in progress.
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