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Abstract

In the present work, we propose a scheme for the digital formulation of lattice gauge theories with
dynamical fermionsin 3 + 1 dimensions. All interactions are obtained as a stroboscopic sequence of
two-body interactions with an auxiliary system. This enables quantum simulations of lattice gauge
theories where the magnetic four-body interactions arising in two and more spatial dimensions are
obtained without the use of perturbation theory, thus resulting in stronger interactions compared
with analogue approaches. The simulation scheme is applicable to lattice gauge theories with either
compact or finite gauge groups. The required bounds on the digitization errors in lattice gauge
theories, due to the sequential nature of the stroboscopic time evolution, are provided. Furthermore,
an implementation of a lattice gauge theory with a non-abelian gauge group, the dihedral group D3, is
proposed employing the aforementioned simulation scheme using ultracold atoms in optical lattices.

1. Introduction

Gauge theories lie at the core of fundamental physics; the standard model of particle physics—describing
electromagnetic, weak and strong interactions—is based on the principle of gauge invariance [1]. [t requires
introducing additional degrees of freedom, the gauge fields, to the matter fields: force carriers, mediating
interactions between matter particles. If the coupling is small enough, perturbative expansions allow
calculations up to arbitrary accuracy, as in quantum electrodynamics (QED). In some quantum field theories the
coupling depends on the energy scale (running coupling) [2, 3], and thus there are regimes where perturbation
theory is not valid, e.g. quantum chromodynamics (QCD) at low energies. In such non-perturbative regimes
only special methods can produce meaningful results.

The most common approach so far has been lattice gauge theory [4, 5]. The idea is to discretize space (or
spacetime) to construct a framework in which numerical tools could be applied—with Monte Carlo methods
being the most prominent ones [6]. In spite of their success (e.g. calculation of the low-energy hadronic
spectrum of QCD [7]), there are limitations which are inherent to Monte Carlo simulations of lattice gauge
theories. A major one is the sign problem, which prevents investigations in fermionic systems in finite chemical
potential scenarios [8]. As a consequence, corresponding phases in quantum field theories still remain relatively
unexplored, e.g. the quark—gluon plasma or the color-superconducting phase of QCD [9, 10]. Another
drawback of these simulations is that they take place in a Euclidean spacetime, thus making real-time dynamics
inaccessible and preventing, for example, the study of non-equilibrium phenomena.

One approach to overcome these obstacles is quantum simulation [11, 12]. The idea is to build a highly
controllable quantum system serving as a platform for simulations of another quantum system. In particular,
quantum simulations of lattice gauge theories [13—15] have been proposed using various quantum devices, such
as ultracold atoms in optical lattices [16—18], trapped ions [19, 20] or superconducting qubits [21, 22]. The
simulated models can be distinguished by several features: the framework in which the lattice gauge theory has
been formulated—the one by Kogut and Susskind [23] (or its truncations [24]), the quantum link model [25, 26]
or the prepotential approach [27]. Other characteristics include the gauge group (abelian or non-abelian), the
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matter content (dynamical or static) and the dimension. There are also differences in the proposed simulation
scheme: the first one is the analogue approach, where not only the degrees of freedom of the simulated system
are mapped to those of the simulating one: by appropriately tailoring the interactions of the simulator, its
Hamiltonian is exactly or approximately mapped to the desired one (which can be adiabatically changed).
Quantum simulations of this type have been proposed, mostly using ultracold atoms [28—44], as well as trapped
ions [45, 46] and superconducting qubits [47, 48]. Another approach—the digital one—is based on an idea of
Feynman [49], to use a quantum computer (i.e. single and two qubit gates) for simulating the dynamics ofa
quantum system by a discrete sequence of operations. Quantum simulations of lattice gauge theories employing
this simulation scheme have been proposed on several quantum simulation platforms [50-53]. The third
approach is a hybrid of both (e.g. [54]), where the time evolution is discrete but the different terms of the
Hamiltonian are implemented using analogue methods, instead of quantum gates. Such quantum simulations
have also been proposed to simulate lattice gauge theories [55, 56].

It is important to note that while the digital simulation scheme will probably need quantum error correction,
the other two may not. Using the scheme suggested by Feynman, a trapped ion based quantum simulation of a
lattice gauge theory was implemented in 2016 [57], allowing the observation of real-time dynamics in the
Schwinger model, (1 + 1) dimensional QED. However, the simulation involved only four ions and it remains a
big challenge to scale up such a system as it involves the construction of a quantum computer. In this work, we
will focus on the third option.

The main challenges of a quantum simulation of lattice gauge theories are threefold: first of all, to simulate
dynamical matter, the simulating system must include fermionic degrees of freedom. Unlike in other quantum
devices where fermionic statistics is imposed on spin degrees of freedom through Jordan-Wigner
transformations, fermionic degrees of freedom occur naturally in ultracold atomic systems, as one can work
directly with fermionic atomic species. This is beneficial in particular when dealing with two or more spatial
dimensions. Second, gauge invariance, as the characteristic symmetry of lattice gauge theories, is not manifested
naturally by the candidate quantum simulators. In analogue simulation schemes, where the degrees of freedom
and the Hamiltonian of the investigated theory get exactly or approximately mapped onto the simulating system,
local gauge invariance can be obtained either as a low-energy effective symmetry [28—30] or by an exact mapping
to an internal symmetry, like e.g. hyperfine angular momentum conservation [33, 41]. Although the analogue
approach works in one dimension (in particular as demonstrated by an ultracold atom experiment currently set
up to study the Schwinger model [58]), it becomes problematic when considering the third requirement. The
lattice gauge theory Hamiltonians in two or more spatial dimensions typically contain four-body interactions
(the magnetic plaquette interactions). In the current analogue simulation schemes, this four-body term is
realized only in fourth-order perturbation theory [33], thus leading to weak interactions and posing a major
challenge on the way to higher dimensional quantum simulations of lattice gauge theories.

This problem can be circumvented using the following concept: by introducing an auxiliary degree of
freedom and entangling it with the physical degrees of freedom, the four-body interactions can be decomposed
exactly as a sequence of simpler two-body interactions, resulting in stronger interactions compared to analogue
simulation schemes. Because of the sequential nature of the entangling operations, during which all other
interactions must be frozen, a stroboscopic time evolution is required. The time evolution is therefore
decomposed into smaller pieces according to Trotter’s formula: e *H = limNHoQ(Hj e itHi/NYN [59], This
method has already been proposed in 2 4 1 dimensions to construct a digital scheme for lattice gauge theories
with arbitrary gauge groups [56]. A concrete quantum simulation with ultracold atoms has been proposed for
the groups Z, and Z5 [55, 56].

In this work we extend this proposal of an algorithm digitizing lattice gauge theories with arbitrary gauge
groupsto 3 + 1 dimensions. Thisis an important step towards the simulation of phenomena occurring in
nature. To study the accuracy of the digital scheme, a thorough analysis of the digitization (Trotter) error is
conducted. Another important goal is the simulation of gauge theories with non-abelian gauge groups. The
second part of this work is therefore devoted to an ultracold atom based implementation of a lattice gauge
theory with the simple non-abelian gauge group D3, following the general algorithm presented in the
first part.

This paper is organized as follows: first, a brief lattice gauge theory background will be provided, with an
emphasis on the Hamiltonian formulation used later on for quantum simulation. In the second section the
digital algorithm enabling quantum simulation of lattice gauge theories with dynamical fermions in three
dimensions will be described. Afterwards, improved bounds on the digitization errors in lattice gauge theories
will be given. In the last section, possible implementations based on ultracold atoms will be discussed, in
particular the implementation of a lattice gauge theory with the dihedral gauge group D3, by exploiting its
semidirect product structure.
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2. Hamiltonian formulation of lattice gauge theories

Lattice gauge theories can be formulated in a Hamiltonian framework exhibiting a continuous time coordinate,
as first proposed by Kogut and Susskind [23]. The lattice consists of d spatial dimensions, where the matter fields
are placed on the vertices x € Z7 and the gauge fields reside on the links (x, k) (where k € {1, .., d} denotes the
direction in which the link points).

Since the matter particles are allowed to tunnel and thus their number is not conserved locally, the states on
the vertices are described by elements of a fermionic Fock space. Assuming the gauge group G to be either
compact or finite, we label its irreducible representations by j and represent the matter fields by spinors v;7,
where m denotes the components of j. Their behavior under group transformations, implemented by the unitary
operator f, is:

B0 = 32 U/ Din (@), (1)
n
where D], (g) is the irreducible unitary representation j of the group element g (the j will be omitted in the
following as only one fixed representation j is considered; generalization to more representations is
straightforward). We will work with staggered fermions [60], distributing the Lorentz components of the spinor
over neighboring lattice sites such that occupied even sites will correspond to particles and vacant odd sites to
anti-particles. The Dirac spinor is then regained in a continuum limit. The gauge transformations 9g of staggered

fermions are related to 0, by
5 O, for xce 5
() = b det(D(g™")) for x €0 @
with e (0) denoting the even (odd) sublattice. We can define a state | D) invariant under the above transformation
(analogous to the Dirac sea in the continuum) where all odd sites are fully occupied and all even sites are vacant.
The other physical ingredients, the gauge degrees of freedom, are described by a tensor product of local

Hilbert spaces on the links. The elements of each single link Hilbert space can be expressed in the group element
states {|g) }gc - The group G can act on it in two ways, corresponding to left (L) and right (R) transformations:

Olh) = |g~'h), OF|h) = |hg~"). 3)

We define the group element operator U, a matrix of operators acting on the link Hilbert space:

Unn = fDmn(g)|g> <g| dg’ 4)

where for continuous groups dg is understood as the group (Haar) measure, whereas for discrete groups the
integral reduces to a sum over the group elements.
The Hermitian conjugate of U in the Hilbert space and in matrix space are related by

Un)' = [ dgle) (el Dun(e) = [dgle) (gl Dhu(@) = U ®)
The group element operators obey the following rules under group transformations:
L F_ R —
®g Umn 9137 = Dmm’(g) Um’n) @g Umn @?T = Umn’ n'n Q{) (6)

With these definitions at hand we can define a local gauge transformation which acts on all degrees of freedom
intersecting at a vertex. It depends on a group element g which itself can depend on the position (see figure 1 for
illustration):

6,0 = [] ©Lx HOrx Lk k)b X, )
k=1..d

where k is the unit vector in k-direction. A state |1)) is therefore said to be gauge-invariant if
O, ®[Y) = [¥), Vx, g. ®)

Introducing the dual basis to the group element states, the representation basis {|jmn) }, connected by the
dim(j)
1Gl
left and right transformations), we can define a gauge-invariant ‘empty’ state for the whole lattice, including

matter and gauge fields:

relation (g|jmn) = D, (g) (with jlabeling irreducible representations and 1, n the components under

10) = D) ® [000), ©)
links
where |000) is a singlet state of the gauge fields in the representation basis, corresponding to the trivial
representation. All other gauge invariant states can be obtained by acting with gauge invariant operators on this
trivial state. A conventional lattice gauge theory Hamiltonian consists of four such types of terms:

3
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x+3

07 (x,3)
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0 (x-3,3)

Figure 1. The local gauge transformation ©,4(x), acting on the vertex x and adjacent links (shown here in three dimensions): 9; (x) acts
on the fermionic Fock space at vertex x, taking into account the staggered structure of the fermions. The three links (x, k) emanating
from vertex x are transformed by left transformations (~)§, whereas the incominglinks (x — k, k) are transformed by right
transformations OX".

(i) The magnetic Hamiltonian

One can obtain gauge invariant operators by taking products of U-operators along closed paths. The
shortest such possible path is a plaquette, characterized by two directions kand I (k < land ! € {2, .., d}).
Adding over all pairs of k and I for every vertex x, one may construct:

Hy=X > Tr(Ux, U+ k, DU (x+ 1, U (x, D)) + h.c. (10

xk<l

This term is called magnetic Hamiltonian as it corresponds to the magnetic energy in the continuum limit of
the Yang—Mills cases.

(ii) The electric Hamiltonian

Hp = Xg)  he(x, k)
x,k

with hg(x, k) = Y~ f(j)|jmn)(jmn| (11)

jm,n

The correspondence with the electric field becomes clear for the case of G = U(1) where—if we set

f(j) = j*—the Hamiltonian is just a sum over the square of the electric field of all links. Similarly, for SU(2)
f(j) = j(j + 1) corresponding to J°.

The two terms above involve only gauge fields. They both add up to

Hys = Hp + Hp, (12)

a generalized version of the Kogut—Susskind Hamiltonian for lattice gauge theories with compact gauge
groups [5, 23, 61] (in this work we use the conventions of [24]).

(iii) The fermionic mass Hamiltonian
Introducing staggered fermions gives rise to the following staggered mass term:

Hy = MY (=10 ¢ (), (13)
X
where the alternating sign comes from the Dirac sea picture: particles on even sites and anti-particles on
odd sites.

(iv) The gauge-matter Hamiltonian
The last term is a fermionic hopping term minimally coupled to the gauge fields in a gauge invariant way:

Hem = Aam Y ¥ (0 Upn (%, k), (x + k) + hec.. (14)
x,k
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The total Hamiltonian we want to simulate in the following chapters is the sum of all four pieces. The state
defined in (9) is the non-interacting vacuum: the ground state of Hy + Hy,.

3. Digital algorithm for the quantum simulation of lattice gauge theories in three
dimensions

Interactions in typical quantum simulation platforms are usually two-body, e.g. atomic collisions in ultracold
atomic setups or spin—spin interactions in trapped ion setups. Three-and four-body processes are strongly
suppressed on the relevant experimental timescales, making it much harder to map the Hamiltonian of the
simulated model onto the simulating system, if the former includes interactions of more than two bodies. This is
particularly relevant for lattice gauge theories since magnetic interactions are four-body terms (see section 2).
For the purpose of quantum simulation of lattice gauge theories it is therefore desirable to design a scheme in
which interactions involving three and more constituents can be rewritten as exact sequences of only two-body
interactions. In this way, the energy scale associated to plaquette interactions is not limited by perturbative
arguments (as in previous proposals) and the simulation can give access to a bigger region of the phase diagram.

One approach to this problem is based on the idea of using an auxiliary degree of freedom that gets entangled
with the physical degrees of freedom and mediates their interactions. In the following, we will briefly present an
isometry which formalizes this idea (it is sometimes referred to as stator [62, 63]). We anticipate that in this new
framework the time evolution has to be realized stroboscopically due to the sequential nature of the entangling
operations with the auxiliary system. Therefore, a digital algorithm based on Trotter’s formula will be designed
to simulate lattice gauge theories in three spatial dimensions, using only two-body interactions. This
corresponds to the hybrid simulation scheme discussed in the introduction, where the time evolution is
Trotterized but the individual parts of the Hamiltonian are still implemented by an analogue simulation. In the
last section, bounds on the Trotter error will be provided.

3.1. Isometries

We consider two Hilbert spaces: H, representing the ‘physical’ degrees of freedom, where the interaction is
supposed to be implemented, and Hp representing the auxiliary degrees of freedom (sometimes called control in
the following). We denote the operators acting on the Hilbert space H by O(H). An isometry S can then be
defined, mapping Hy — H, ® Hp, which can be created by a unitary Uyp € O(H, ® Hp) acting on some
initial state |ing) € Hp:

S = UAB|in3> S O(HA) ® HB. (15)

This can be viewed as an entangling operation between the physical and the auxiliary degrees of freedom. If this
entangling procedure is chosen in a certain way, operations on the physical Hilbert space can be implemented by
acting only on the auxiliary state. Assume we want to realize a Hamiltonian H € O(H,) in the physical Hilbert
space. For that, we need to create an isometry S and a hermitian operator H' € Hp in the auxiliary Hilbert space
in such a way that the following relation holds:

H'S = SH. (16)
An analogue relation for the time evolution follows directly, since HS = SH":
e 'S = Se~iH!, (17)

Therefore, by creating such an isometry and acting with H' on the control, we obtain the desired time evolution
of the physical state |1/ ):

Ul ing) = € US|y} = Se ). (e

The evolved physical state is still entangled with the auxiliary state which means that one can either perform
another operation using the isometry S or disentangle both states. This would lead to a product state with the
auxiliary state going back to its initial state:

Ulge T Up(1Yy) @ |ing)) = |ing) @ e Hgy). (19)

3.2. The three-dimensional algorithm

In this section we discuss an algorithm to simulate the lattice gauge theory Hamiltonian in three spatial
dimensions. We start from the lattice model described in section 2. To create plaquette and gauge-matter
interactions by means of isometries, we introduce an auxiliary degree of freedom in the middle of every second
cube (either all even or odd ones) and assign to it a Hilbert space H isomorphic to the Hilbert spaces on the links
(see figure 2). Then, the lattice gauge theory Hamiltonian is split up into several parts which are implemented
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Figure 2. The physical system consists of the gauge fields residing on the links (blue) and the matter fields on the vertices (red). The
auxiliary degrees of freedom (green) are located in the center of every second cube (either even or odd).

independently and sequentially:

6 6
Higr = Hg + Hy + > Hpi + Y Hom,jr (20)

i=1 j=1

where we explicitly distinguish gauge-matter interactions taking place along different directions and in odd or
even cubes, as well as plaquette interactions corresponding to the different plaquettes of a unit cube (therefore
we get a sum of six terms in both cases). The desired time evolution e~ *ic7 is then approximated by a Trotterized
time evolution consisting of Nsteps: e ot ~ ([T, e *5/N)N, where H;is any of the terms appearing in (20).
While electric and mass terms can be treated easily using only the physical degrees of freedom, the plaquette and
gauge-matter terms are further decomposed as a suitably chosen sequence of simpler interactions mediated by
the auxiliary systems. This sequence will then be executed in parallel for all cubes where auxiliary degrees of
freedom are located. However, since for the gauge-matter interactions the individual parts of this sequence do
not commute for adjacent links, we have to place the auxiliary d.o.f. in every second cube to avoid undesired
interactions. The exact decompositions will be given in the next sections.

3.2.1. Plaquette interactions
Since we put auxiliary atoms in every second cube, we cannot realize all plaquette interactions at once and we
split them up in the following way:

Hy=> MTr(Ux, DU+ 1,2)UT(x + 2, DUT(x, 2)) + h.c.)

+ NTr(Ux, 3) U+ 3, DUTx + 1,3)UT(x, 1)) + h.c)
+ O Tr(U®, 2)Ux + 2,3)UT(x + 3, 2)UT(x, 3)) + h.c)
> (Hg,1(x) + Hgp(x) + Hp3(x))

= > (Hp1(®) + Hpp(x) + Hp3(x)) + Y (Hp1(%) + Hp2(x) + Hp;3(x))

X even x odd

= Hg1. + Hpae + Hp3se + Hp 1o + Hp 2o + Hp 30 (21)

Itis important to mention that the six magnetic terms commute, therefore e =™ = []. e s e~i™Hsic and this

splitting does not affect the error of the Trotter approximation (20). To implement each term we will use the
isometry

5= [dglehtel @ 12), 22
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U(x) =U(x,1)
Us Us(x)=U(x+1,2)
Us(x) =U(x+2,1)
U Us(x) =U(x,2)
’ Us(x) =U(x,3)
Us Us(x) =U(x+3,1)
Us(x)=U(x+1,3)
X+ Us(x) = U(x + 3,2)
Us b Ug(x) =U(x+2,3)
Figure 3. There are three different plaquette terms associated to every vertex x: Hp ; (x) (red, solid plaquette), Hp »(x) (green, dashed
giasg?i;t:ieo) rz;nd Hjp 3(x) (blue, dotted plaquette). Each term involves four gauge field operators U, abbreviated as above for a convenient

where the first Hilbert space belongs to the gauge field, residing on link 7, and the second one to the
aforementioned auxiliary degree of freedom in the center of the cube. It fulfills the relation
USi = Si Utinki (23)

allowing to realize operations on the link i through the auxiliary degree of freedom. The isometry S; can be
created by the unitary

U = [dg gy (gh © OF 24)

acting on the initial state |1r}1l> = |&). We repeat similar entangling operations U; (or U] ) for the three other links
of the plaquette (e.g. thelinks 1, 2, 3, 4 of cube x, see figure 3) and obtain a plaquette isometry of the form

S0 = UF*lin) = UEUCOUS UL [in). (25)
The crucial part is that it fulfills the relation

TrHU ) + U ®)S24(x) = S Tr(Uy (%) Uy(x) U ®) Uj (x) + h.c.) (26)

i.e. actinglocally with

Hyx) = M Tr(0x + U x) @7)

on the control of cube x enables us to realize the magnetic time evolution for this plaquette. The required
sequence acting on the plaquette state |t)1,34), the tensor product of the four link states, and the auxiliary state
[in) is

U (x) e O3 (x) [4h1534) [in) = [in) e H107|ghyys,). (28)

The other two plaquette terms associated to cube x can be created in the same manner but with different
isometries. Using the abbreviations for the gauge field operators defined according to figure 3, we need to replace
the isometry S17** (x) by S27!(x) = UX"'(x) |$> (green, dashed plaquette), or 2% (x) = UX*(x) |;}J1> (blue,
dotted plaquette). Applying the sequence from (28) gives then rise to the time evolution of the physical state
under Hg,(x), or Hp 3(x).

We can now formulate an algorithm to implement the whole plaquette interactions. We start with the
controls placed in the center of every even cube and do the following three steps:

(i) Create the isometry: Let all the controls interact with all the gauge fields on links of type 4 and create the
unitary [ [ coen 4 Z(x). Repeat similar processes with links 3, 2 and 1 to obtain the unitaries [ [, ..., &/ ;(x),

T1, even Yo, T1, wyen Uh(X). In total, we get: T, oen LGOUCOUSRULE) = TT, yen U ().

(i) Act on the controls with the Hamiltonian >

ution [ oo, € BT,

xevenﬁl}(x) for time 7, resulting in the time evol-

(iii) In the last step, undo the isometry by creating the inverse of the first step, i.e. I] U (x).

X even

7
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The above procedure is applied to a state | 1)) |;H) Thanks to relation (28) we obtain:
[T uB™@e MO @|y)lin) = lin)eMhrly) = [in) W, lv). (29)

X even
We repeat the procedure with the two isometries S and S2%*. In this way we create W 5, = e~ 57 and
Ws.3. = e iHs37 The same steps are then repeated with the auxiliary degrees of freedom moved to the center of the
odd cubes so that we can implement Wg 1, Wk 20, Wh,3,. Since all pieces of the magnetic Hamiltonian commute,
this sequence gives us exactly the magnetic time evolution: Wg, 1, Wi 20 Wx, 3 Wi, 10 W.20 Wh,30 = Wi = e 17,

3.2.2. Gauge-matter interactions

After expressing the four-body plaquette interactions as a sequence of two-body interactions, we want to obtain
the gauge-matter interactions in a similar way. We need again to split up the relevant Hamiltonian terms into
parts suitable for implementation:

3
Hom = 3" Aam¥h () Upn (X, k)b, (x + k) + hc.

x k=1
= Z (HGM(X) 1) + HGM(Xr 2) + HGM(X7 3))

X even

+ > (Hom(x, 1) + Hom(x, 2) + Hom(x, 3))
x odd

= Hgwm,1e + Hom2e + Hom,se + Hom 1o + Haom2o + Hom, 30- (30)

An important ingredient for rewriting these interactions as two-body terms is the following unitary operation,
entangling the fermion at vertex x and the gauge field on link (x, k):

Uw(x, k) = eizmn(x,k)w;(x)wn(x)) 1)

where Z,,, = —i(log_ . (U)), and the logarithm is taken only in matrix space (well-defined since the matrix
elements commute). Its meaning becomes more apparent if we assume the gauge group G to be compact; then,
we obtain

U (x, k) = e GRE,ETLGE — i6°Q" (32)

an interaction of the ‘vector potential’ operator " with the fermionic charge Q“. It can therefore be interpreted
as a fermionic transformation whose parameter is an operator acting on the gauge field. The idea is now to use
this transformation to map a pure fermionic tunneling term into the desired gauge-matter interactions, as

U (%, ) ULOU X k) = 1,0 Unn (% k). (33)
Thus, defining the fermionic tunneling Hamiltonian as
H,(x, k) = Aom (¥, (0¥, (x + k) + h.c)) (34)
allows writing the Hamiltonian Hgy as:
Hom(x, k) = U (x, &) H, (x, DUy (x, k). (35)

Since every fermion is connected to six links in three dimensions we have to split up the process in six steps as
described in the beginning. We start by realizing Hgm, 10, 1-. Hom (X, 1) for all even links (see figure 4). We apply
the following sequence:

(i) Let the gauge degrees of freedom interact with the fermions at the beginning of the link to obtain the
unitary: [T, ooen Usv (X, 1).

. . . . . . ‘Hr 3 1
(i) Allow tunneling on these links for time 7: [], ., € &7,
(iii) Let thelink degrees interact again with the fermions to generate: [, ..., Uw (X, 1).
This gives us in total
X . —i Hom(x,1)7
[T Uwx, DeHEDf(x, 1) = e 2 How = Wo,1e- (36)

X even

By applying a similar sequence for the other links of the cube, we can create Wn 20, Wan, 3e» WaM, 100 WoM,200 WoM, 30-

Using isometries, there is an alternative way of realizing the gauge-matter interactions. It requires more steps
but on the other hand does not require interactions between the physical degrees of freedom as all of them are
mediated by the auxiliary degrees of freedom. The sequence goes as follows:

8
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Wi (x + 2) i (x+1)

Unnn(x,1)

Ul (%)

Figure 4. There are three gauge-matter terms associated to every vertex X, corresponding to the three links emanating from this
vertex: Hov(x, 1) (red,lsolid link), Hom(x, 2) (green, dashed link) and Hgum(x, 3) (blue, dotted link). Each interaction consists of two
fermions v}, (x) and v (x + k) located at the endpoints of the links and the gauge field operator U, (x, k) on the link.

(i) Let the controls—initially placed in all even cubes in the state |S> = |&)—interact with the gauge links U,
according to (24) to create the isometry S;: [] U(x) .

Xeven

ﬁzv(x, 1) which is the
same interaction as U1, (x, 1) but between the control and the fermion t),,(x). Due to the properties of the
isometry S; the interaction between the control and the fermion will translate into an interaction between
the fermion and the link.

(ii) Let the control interact with the fermion at vertex x to realize the interaction [, . e,

e . . . . . —_ H 8 1
(iii) Afterwards, allow for pure tunneling between the fermions which gives rise to [T, .., € 1t®D7.

(iv) Following (35), apply aw(x, 1) for all even cubes which is again realized by an interaction between the

control and the fermion v,,,(x): [ ] ﬁw(x, 1).

X even

(v) Finally, we have to undo the isometry between the control and the gauge field: ] U (x).

X even

The resulting sequence—applied to some physical state |/) and the auxiliary state | E)—is;

T UiTh(x e HEDT (x, D)) ) = [y e Hondy) = i) W, 1l ). (37)

X even

We repeat a similar procedure for all other links in the cube which gives us Woa 26, Won,ze» Wo, 100 Wo, 200 WoM, 30-

3.2.3. Other parts of the Hamiltonian
The electric part Wy = e 17 and the matter part Wy, = e 7 are local terms of our Hamiltonian and thus
one can implement them by acting locally on the physical degrees of freedom.

We can now write down the whole sequence for a time step 7 (combining commuting magnetic terms to
Wp):

W = Wy W Wam, 30 Wam, 20 Wa, 10 Wam, 3e Wom, 2e Wan, 1 Wa. (38)

Itis important to notice that all time evolutions in the above sequence are individually gauge-invariant.
Therefore, errors coming from the digitization do not break gauge-invariance.

3.3. Error bounds for Trotterized time evolutions in lattice gauge theory

Although the approximated Trotter evolution has the correct gauge symmetry, it is still important to analyze
how much it deviates from the desired exact time evolution. In this section we derive bounds for the Trotter
error, according to the digitization scheme presented in the previous section. We focus on the standard Trotter
formula (the first order formula) and the second order formula which gives a better approximation without
major changes in the implementation. We do not consider higher order formulas, because they would require
more experimental effort in the sense that the tunability of the experimental parameters would have to be much
more flexible and the number of operations required for a single time step would increase exponentially with the
order of the approximation [64]. The first order formula [59] is of the form

N
Un(@) = |]] e tv] . (39)
j
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For which, using the operator norm, the difference to the physical time evolution U(t) = e~ can be bounded
by [65-67]:
2
ety = Un(®| < o= >[I [Hj, Hel. (40)
IN 5

To get a better scaling with the number of time steps we can apply the Trotterization sequence in reverse order
after the usual Trotterized time evolution (second order formula) [68]:

U N(t) = (e v .. e e i ve -y |, e iHian)N, (41)
From an implementation point of view this decomposition can be realized straightforwardly once we know how

to obtain the sequence for the first order. Following the proof in [69] adapted to unitary operators, an upper
bound for the Trotter error can be derived:

[U(t) — Upn (@) ||

= e itH — (e iy ... e~ iHo-tiveiHphe=iHp 1oy | e~ )N I
> 1
S o STIH Higr + - + Hyl, Hop + o + Hp|| + EH[[Hk, Hipr + -+ HL Hlll. (42)
k=1

Compared to the first order formula, the second order formula has an error which decreases faster with the
number of time steps N at the cost of alonger sequence. The experimental difficulty, however, is the same for
both decompositions.

We can now specify these bounds for lattice gauge theories. This is an important task since an
implementation of this digital scheme will have to balance experimental errors, which can break gauge-
invariance and increase with the number of steps in the sequence, and errors caused by the digitization, which
have the opposite behavior. Therefore, a precise bound of the Trotter error helps in finding the optimal number
of steps, so that experimental errors do not accumulate unnecessarily and the chance of breaking gauge
invariance is reduced as much as possible.

Since the different parts of the Hamiltonian cannot be implemented simultaneously, they are split up in the
digitized simulation scheme. Hence, for the computation of the Trotter error we divide the Hamiltonian into
these individual pieces, according to the Trotterized time evolution given in (38). Generalizing to d dimensions:

2d
Higr = Hg + Hg + Hu + Y, Howm,i (43)
i=1

3.3.1. First order formula

By inspection of (40) we see that for an upper bound on the digitization error of the standard Trotter formula,
the commutators among all different parts of the Hamiltonian in (43) have to be evaluated, as well as their norms
Since the derivations are very lengthy we will refer the interested reader to the appendix. We provide here the
final result:

JUt) — Un(®)]|
; 2d—1 2d
< (Hg, Hpl||+||[Homs Helll 4|/ Homs Ha ||+ Z Z ”[HGM,j: Hem, il
N k=1 j=k+1
2 . .
_ thTMmkS(ABAELL(d — Dmax| f()] + AemAsmax| f(j)] + Moy + N 2d4 1)’ “
j J

where d is the number of spatial dimensions, di; the dimension of the representation of the group element
operator U and M, the number of links in the lattice. One might think that operator norms involving Hy are
unbounded but, since we either work with finite groups (whose number of irreducible representations is finite)
or appropriate truncations of infinite gauge field Hilbert spaces, the expression max;| f (j)|is finite, so that we
always obtain sensible error bounds.

3.3.2. Second order formula
To bound the error of the second order formula we need to calculate nested commutators according to (42).
Details on their calculation can be found in the appendix. We provide here the final result:

10
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lU@) — Uy n(2)||

3 .
<tMTnk;dU[l6)\E/\Bm?X|f(j)|(d - 1)(2AEm;axlf DI+ Apdy (d — ”)
j J

+ )\GM)\Em?X|f(j)|(2)\GMdU(2(2d - D+ 1+ >\Em€1x|f(j)|)
i i

+ AeuM (ddday + M) + Ny 2d — 1)(%(441 S+ %)] (45)

If we assume a cubic lattice with L lattice sites per side we can express the number of links as:

Niinks = d(L — 1)L4~ 1. The upper bound shows that N'should scaleas N ~ L4/2¢3 which is somewhat bad
since it considers a very general setting. If we restrict ourselves to the observation of intensive quantities we
expect this scaling to be much better (after completion of this work we became aware of a later work which
proves this behavior [70]). However, there are observables in lattice gauge theories, e.g. Wilson loops, which do
not fulfill this requirement and thus need to be bounded by more general estimates like the ones given above.

4. Implementation of digital lattice gauge theories with ultracold atoms

With this general scheme for the digital construction of three-dimensional lattice gauge theories at hand, we can
turn to the implementation of some concrete examples with ultracold atoms. Typical gauge groups of interest
are compact (e.g. U(1)), for which the link Hilbert spaces are infinite. A truncation of this Hilbert space is
therefore required to make the quantum simulation feasible. Previous proposals have performed this truncation
in the representation basis [13—15]. This procedure, however, spoils unitarity of the group element operators U
and prevents the use of isometries (see section 3.1). Thus, the Hilbert space of the gauge field should be truncated
using group element states instead. A truncation of U(1) in this sense is given by the finite groups Zy which
converge to U(1) in the N — oo limit. The digital quantum simulation of Zy gauge theories has been studied in
[55, 56]. We summarize below their main features, and then we build on these to tackle the simulation of simple
non-abelian gauge models with dihedral symmetry given by the group Dy.

4.1. Implementation of lattice gauge theories with gauge group Zy

Lattice gauge theories with a finite abelian gauge group play an important role as they approximate compact
QED [71]. Since the Hilbert space of the gauge field is reduced to dimension N if the gauge group Zy is
considered, ultracold atoms can be used to represent these gauge degrees of freedom. These N states are labeled
by |m) and we define unitary operators Pand Q on them:

PN=QN =1
PQPT = el¥Q
Q|m) =|m + 1) (cyclically)
P|m) = eiN™|m). (46)

Since the group is abelian, its representations are one dimensional and we need to consider a single fermionic
species, 1", on the vertices. We can now define the Hamiltonian of Zy lattice gauge theory with fermionic
matter:

HE :)\E Z(l - P(Xa k) - PT(Xy k))

x,k
HB = )\B Z Q(X, k)Q(X + k) Z)Q*(X + 1) k)QT(X> l) + h.c.
x, k<l
Hy = M) (=D (09 (x)
Hom = Aam Y, ¥ (0)Q(x, k)1 (x + k) + h.c.. (47)
X,k

Possible implementations for Z, [55] and Zs [56] with isometries have been discussed in two space dimensions.
These proposals can be readily generalized to three dimensions following the scheme presented in the previous
section. The matter content is represented by a fermionic atomic species whereas the gauge fields can be
represented by a second atomic species with the appropriate ground state manifold, e.g. F = 1/2for Z,or F = 1
for Z3. Furthermore, auxiliary atoms must be trapped in the center of each second cube. These species are
confined to the desired lattice geometry by suitable optical lattices and their interactions are realized by ultracold
atomic scattering. Since the type of interactions appearing in two and three dimensions are the same, the
implementation in three dimensions follows closely the steps explained in [55, 56] and the reader should refer to
the original references for more details.
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Here we just report the bounds on the Trotter error that can be computed following the discussion in
section 3.3. In three dimensions and for the gauge group Zy, we obtain the first order formula (see (44)) :

3t2(L — 1)L2( 5

HU(t) — UN(t)H < 16 g Ag + 2AgmAE + MAgum + )\éMZ) (48)

and the second order formula (see (45)):

3L — DI2

t
[Ut) — U n(B)]| < N7 (64)\E>\B(2)‘E + Ag) + 2AamAe(11Aam + Ap)

1 125
+ AemM (6Agym + EM) + ?AéM). (49)

Note that these formulas give a more accurate bound with respect to the original analysis in [55, 56].

4.2. Implementation of lattice gauge theories with a dihedral gauge group

We now turn our attention to a simple example—using the above procedure for the quantum simulation of a D;
lattice gauge theory. It is the smallest non-abelian group, and therefore provides both a simple and a non-trivial
example.

In the previous works we have constructed Zy examples. Zy converges to U(1) (compact QED) in the large-
Nlimit [71] and therefore one may discuss a continuum limit of a Zy gauge theory in the large-N sense.
Unfortunately, such a series does not exist for non-abelian groups of interest such as SU(2). Ds is the first group
in the series of dihedral groups Dy with Nodd and N > 3, that converges in the large-Nlimit to O(2), a
disconnected Lie group, whose gauge theory does not admit a continuum limit [72]. Therefore, our interest in
D5 as an example is not due to its physical properties or using it to approximate another group but rather as the
simplest non-abelian example. D; gauge theory was discussed in the context of doubled lattice Chern—Simons
theoryin [73].

The dihedral group Dy can be characterized by a set of rotations R in a two-dimensional plane and
reflections S along a certain axis:

Dy ={g=(p, m)=RQ2r/N)? §"|p € [0, N — 1)and m € {0, 1}}. (50)

The above notation already suggests that Dy can be decomposed into a semidirect product of the abelian groups
Zy and Z, corresponding to rotations and reflections: Dy =~ Zy % Z; (where G ~ N x H,ifand onlyif

V g € Gthereexistsaunique n € N (which isa normal subgroup of G) and a unique h € H (asubgroup of G)
such thatg = nh). Itis thus useful to write the states of the gauge field Hilbert space as states living in the tensor
product of an N-dimensional Hilbert space and a two-dimensional one, |p, m) = |p) ® |m) € Hy ® H,.In
the implementation, such a product Hilbert space can be realized by using two atoms with the appropriate
hyperfine structure. If we choose to work with the smallest faithful irreducible representation of the group, we
need two different fermionic components for the matter, denoted by ¢, and v,, due to the non-abelian nature.
Accordingly, the gauge field operators U on the links become matrices of operators U = /%% ¢'"

= >, plp) {plactson Hy and rir = 3=, m|m) (m|on H,; 0.and o, actin matrix space). This allows us to
write down the Hamiltonians

Hp=Xg >, Tr(Ux, U+ k, DU (x + 1, k) U (x, I)) + h.c.

x, k<l
s x)
HGM = >\GM XZ’;(wI(X)) w;(x))eleozax (X’ k)(Z;();)) + h.c.
Hy=M> (-} @y x = MY (=D (011(x) + @)1 (X)) (51)

The last part, the electric Hamiltonian, takes its simplest form if the states in H, are expressed in the usual group
element states {|m) } but the states of Hy in {|I), I = 0, .., N — 1}, the conjugate basis to {|p) } (defined by
(Ilp) = Te*izﬁlp, see the appendix for details):

1
N
Hp=Xg Y he(x, k)
x,k
(N=1)/2

with hp(x, k) :% S0, my (0w S S flL m) (L ml, 2)

I=—(N-1)/2 m

where f, and f; satisfy the condition f; = f , V1. Generally, the coefficients in (52) can be chosen in a way that
respects the combined large-N and continuum limit as in the Zy case. However, we do not have this option for
Dy as explained above; nevertheless, it is convenient to identify the second term of (52) with the electric energy of
a Zy lattice gauge theory (see above), and fix the coefficients accordingly.
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4.2.1. Simulating system

Our implementation scheme is in principle applicable to all dihedral groups but we focus here on the simplest
case Dj; (isomorphic to the group of permutations S;). We first discuss the system we will use as a platform to
perform the quantum simulation.

For the simulation of the matter fields it is crucial to use fermionic atoms to obtain the correct commutation
relations. A natural, minimal choice for the two fermionic d.o.f. ¢/, and 1), is to use the two internal levels of an
atom with an F = 1/2 hyperfine ground state. For example ¢/, and ¢, can be associated with the F = 1/2
multiplet in the following way:

Ul —|F=1/2; mp = 1/2)
Y} —|F=1/2; mg = —1/2). (53)

These atoms must be trapped by a superlattice that allows one to modulate the depth of the minima (to account
for the staggering) and the tunneling rate between nearest neighbors (to switch tunneling on and off in the
different steps of the Trotter sequence).

To simulate the gauge field and auxiliary Hilbert spaces, we will exploit the product structure as mentioned
above: H,ux =~ Hiink =~ Hs ® H,. One convenient choice is to use two atomic species: a bosonic one with an
F3 = 1hyperfine multiplet (the index 3 will label the three-level system) and a fermionic onewithan F, = 1/2
multiplet (the index 2 will label the two-level system). In total, we need four different atomic species: two atoms
trapped at the middle of each link, and two extra atoms (that must be addressed independently of the previous
two) in the middle of each second cube. For the links, we identify:

lp=1)=|F=1,m=1) lm=1)=|F,=1/2, mg = —1/2)

Every state of the Hilbert space on the link can be obtained as a tensor product of the two multiplets, e.g.
lp=1m=1)=|F=1,m=1) ® |F, = 1/2, mp = —1/2). The corresponding creation operators on
some link (x, k) are described by a,LF (x, k) with mp = —1,0, 1 for the three-level system and CLF (x, k) with
mp = —1/2,1/2 for the two-level system. It is useful to introduce unitary operators P;, Q; and P,, Q, acting,
respectively, on the three-level and two-level atoms. They are defined as:

Pip)=eiPlp)  Polm) = (—1)"|m)
Qslp) =|p + 1) (cyclically) Qylm) = |m + 1) (cyclically). (55)

The operators Ps, Qs fulfill the Z; algebra whereas the operators P,, Q, fulfill the Z, algebra.

The Hilbert space of the auxiliary atoms has the same structure, and we label its states/operators with a tilde
to distinguish them from the corresponding link quantities, i.e. we have states | p) and |71) and operators ﬁLF x)
(withmp = —1,0,1)and E;LF (x) withmp = —1/2,1/2).

The link and auxiliary atoms must be trapped in the desired positions by arranging suitable optical
potentials. The individual minima must contain exactly one atom and must be deep and well separated so that
the dynamics is frozen (no tunneling, no interactions between nearest neighbors). When requested, the lattices
must undergo a rigid translation so that specific pairs of atoms can overlap and interact via two-body scattering.
The resulting setup—for convenience projected to two dimensions—is depicted in figure 5.

Allinteractions between the constituents of the simulating system from above are in the form of two-body
scattering. As will become clear in the following, we need to impose specific constraints on the scattering. First
we want interactions that are diagonal in mpand do not change the internal level of the atoms. This can be
achieved by lifting the degeneracy of the hyperfine multiplets such that transitions changing mx will cost energy.
A possible way to do this is by introducing a uniform magnetic field which adds the following correction to the
Hamiltonian (Zeeman shift):

Hy = pigg.mgB, (56)

where pi5 is the Bohr magneton and grthe hyperfine Lande factor. The energy splitting has to be different for
different atomic species to avoid resonant exchanges, therefore we need to choose species with different Lande
factors. Another possible approach to realize the different energy splittings is to address each species individually,
for example exploiting the AC Stark effect. Second, at some point we need to modulate the interaction strengths
depending on the internal level of the atoms. This can be achieved for example by spatially separating the
different mplevels via a magnetic field gradient. The different mplevels will experience forces pointing in
different directions and reach different equilibrium positions within the same potential well. By properly
choosing the Lande factors of the atomic species and tuning the magnetic field gradient one can then tailor the
overlap of the atomic Wannier wave functions (and hence their interaction strength) in an mpdependent way.
Below we discuss several details of the implementation scheme.
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Figure 5. The simulating system consists of one atomic species on the vertices representing the matter (red) and two for both the gauge
fields (blue) on the links and the controls (green) located at the center of every second cube (projected into two dimensions for better
visualization). The simulated degrees of freedom are encoded in the hyperfine structure of the atoms, i.e. eitheran F = 1oran F = 1/2
multiplet. The alternating occupation of vertices with fermionic atoms shall illustrate the staggered fermion picture, in which this
configuration corresponds to the non-interacting vacuum (see Dirac sea in the continuum). The empty green circles indicate the need to
move the auxiliary atoms between even and odd cubes.

4.2.2. Initial configuration and background Hamiltonian
Before starting the simulation we should define the initial configuration of our simulating system. It is reached if
all optical potentials are sufficiently deep and separated such that no tunneling occurs and all atomic wave
functions do not overlap. All minima of the auxiliary lattice are loaded with one atom in the group element state
corresponding to the identity group element, i.e |;1> = |é) = |0, 0). This means we have to prepare the state
|F; = 1; ritp = 0) for the three-level system and |F, = 1/2; stz = 1/2) for the two-level system. The
preparation of the atoms representing gauge and matter fields depends on the initial physical state we want to
simulate. All atoms must occupy the motional ground state with energy E, (different for different atomic
species). As mentioned in the previous section, we also introduce a uniform magnetic field (or an AC Stark
effect) to lift the degeneracy of the ground state manifolds and induce energy splittings AE (again different for
different species) between the different mp components.

We can define the non-interacting Hamiltonian H, which will be present throughout the whole
implementation:

Hy =" (Eomat + AEma) V] ®)11 (%) + (Eo,mat — AEma) V3(X):(x)

+ > > (Eoa + AEamp)a, (%, k), (x, k)

xk mg

+ 33 (Eoe + AE.mp)c) (%, k) (%, k)

X,k mp

+ 305 (Eoa + AEamg)a,), (X)d,, (X)

X mg

+ 3N (Eoe + AEemp)Ef, ()&, (X). (57)

X mp

All parts of the digital simulations are added on top of Hy. To recover the desired Hamiltonian H of our D; lattice
gauge theory, we move to an interaction picture, i.e. we will work in a rotating frame with respect to H, and make
use of the rotating wave approximation.
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4.2.3. The mass Hamiltonian
The mass Hamiltonian in three dimensions takes the form

Hy = M (= 1)" 2541 ()4 (x) (58)

with 9t (%)) (x) = 9] (x)9)1(X) 4+ ¥} (x) 1, (x). Thus, the corresponding time evolution Wy, = e #47 for a time
step 7 can be implemented by smoothly modulating the superlattice trapping the fermions so that the energy of
the even minima is increased by an amount M.y, This results in the Hamiltonian

HIM = Meven Z(l + (_1)x1+x2+x3)wT(X)w(X)- (59)
X
If we act with this Hamiltonian for time %T, we obtain the desired unitary evolution Wy, up to anirrelevant
global phase.

4.2.4. Creating the isometry

The creation of plaquette interactions and gauge-matter interactions involves constructing the isometry S; (see
section 3), entangling auxiliary atoms with the atoms on link i. If we want to create it from the auxiliary state
corresponding to the neutral element |S> = |&), we have to apply U; = f dglg)i(gl ® @g. Specifying this
equation to the gauge group D3, we obtain the following interaction between the d.o.f. on link i and the ones of
the control:

Ulin) =323 Ip, mhi(p, ml; ® 67,10, 0)
p m
= ZZ |P> m>i <P> ml; ® @pazmlﬁ, ()> = 631,7,527,”,15, 6>, (60)
p m

where p = 32 p |p)i(pliand 1z = 3, m |m); (m;. As defined previously, Q, and Q; are the raising operators

of the auxiliary atoms, i.e azml and 631;- raise the #fip-values of the auxiliary atoms according to the mp-values of
the atoms on link i. By choosing |0, 0) as the initial state of the auxiliary atoms, the creation of the isometry
reduces to an interaction between the three-level atom on the link and the auxiliary three-level atom in parallel
with an interaction between the two-level atom on the link and the auxiliary two-level atom. These are the same
interactions required for creating the isometry of a Z; lattice gauge theory [56], respectively, a Z, lattice gauge

theory [55]. We can therefore directly adopt the procedure from [55, 56]. The idea is to write 6;; and azml asan

interaction between the z-components of the hyperfine angular momentum operators E 3 and F, 3, respectively,
E,andF,,:

631,)1‘ = \A/?-Z/{’i,-% with U5 ; = 5Bk, (61)
&t . = . ~ . . g .
where V5 is alocal change of basis from the Ps-basis {|p) } to its conjugate Qs-basis and:
Qi = V) U,V with Uy ; = e i) 0-2R00 2R, (62)

where XA//; is mapping from the P,-basis {|#1) } into the conjugate 62—basis. The basis transformations \73 and \7;
are local operations on the auxiliary atoms that can be implemented with optical /RF fields. The interactions
between the z-components of the hyperfine angular momentum operator can be realized by introducing an
energy splitting between the different m-levels such that the two-body scattering term will contain only 1
preserving terms The sequence to obtain U/, is therefore:

~T ~T ~ ~J
U= V3 VU U5 WV (63)
To undo the isometry it is necessary to create the conjugate of these interactions which can be done by flipping
locally the risp = 1and 7 = —1levels, thus mapping F, 5 into —E, ;. In the same way, the conjugate of the two-

level system is created.

4.2.5. Plaquette interactions

Knowing how to construct the isometry, the implementation of the plaquette interactions is straightforward.
Since we have to split them in six different parts (see section 3), we start with Hg 1, the type 1 plaquettes of the
even cubes, where the auxiliary atoms are placed in the standard configuration. We follow the three steps of the
algorithm given in section 3.2.1:

(i) We create the plaquette isometry out of the isometries S; which is realized for a link i by moving the lattice of
the auxiliary atoms to the respective link and tailoring the interactions as described above (neglecting the
basis transformations V' for the moment). This can be done in parallel for the whole lattice:
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U, = I Us0Ui). (64)
xeven
The desired plaquette isometry is obtained by applying this procedure to all four links and including overall
basis transformations V; oy and V) i:

~t At P RN,
[ hEUEUICULE) = ViuVaall el 2ol Vo Vi (65)
X even
This operation, acting on the tensor product of |0, 0) and any state of the links, gives rise to the proper
entangled state which maps plaquette interactions to local operations on the control.

(if) The nextstep is alocal operation on the auxiliary Hilbert space. We need to implement e~ iM7 with Hy being

the control Hamiltonian Hy = g Tr( U+ [N]T). This requires an interaction between the two-level and the
three-level system:

Hy = Tr| >SN 1B, ) (B, | €5 *Po™ + h.c.
p m

=2y + B)(1 — i), (66)

where 1 = 3, m|fi) (1i1|. We can rewrite P; + ﬁ; = —I + 3|0) (0] = —1I + 3N, with Ny = a .
Defining a number operator for the |F, = 1/2; mp = 1/2) state of the two-level system as lf\vfl /= 51%51 /2

we can write down the interaction e~ F57:

e il — o—22(-T+3N)N o7 _ 022N o e—i6 A NN o7 (67)

The first exponential is a local term of the two-level system which can be implemented by means of optical/
RF fields. The second term requires scattering between the two auxiliary atoms. The corresponding
Hamiltonian density in second quantized form is [74]:

n—1

Han® = 22 57 ge((Fr - F2) 000 B (00 @, (50 B5 (%), (68)
a,(3,7,60 k=0

where &/ denotes the creation operator of the atomic Wannier wave function corresponding to the internal
state o and p the reduced mass of the two atomic species. The projection operators onto the different
scattering channels are expressed by polynomials of F; - F,, the coefficients g are therefore functions of the
scattering lengths. To obtain the time evolution due to this interaction we have to integrate the Hamiltonian
density over space and time. Since equation (68) involves only specific levels, we need to turn on the
magnetic field gradient and split the different mz components such that only the 7z = 0-component and
the /it = 1/2-component overlap during the collision. Moreover, changes in the internal level of the two
atoms during the collision are suppressed by the Zeeman splitting. With these assumptions, the time
evolution is described by the following unitary

N | =

uscat,l =1+ (efigoa - 1)‘ 6’ %> <6) ’ = eiigoamﬁl/z (69)
with g, = %(3511 72 + 4as2) (ay /2, a3, are the scattering lengths for the scattering channels with Fy,, = 1/2

and Fy. = 3/2) and o the time-integral of the overlap of the two wave functions during the collision. By
6T

carefully tuning the interaction time we can set o = and finally obtain:

0

Z/{scat,l - eii6/\BN0N1/ZT (70)

which is up to local operations the desired unitary V. This interaction will be implemented in parallel for all
cubes where auxiliary atoms are placed, i.e. in this case for the even cubes. Hence, the overall interaction of
this step is e Zxeen 12697 When the magnetic field gradient is on, different levels of the hyperfine multiplet
will acquire an extra energy splitting with respect to the background Hamiltonian (57). This induces extra
phases that need to be cancelled somehow. For example, after the collision has been completed, we can
invert the slope of the gradient and accumulate phases in the opposite direction until the net effect is zero
(this trick has to be applied for all scattering events of this kind).

(iii) In the third and last step we have to undo the isometry. This can be done by taking the hermitian conjugate
of the first step, i.e. the sequence:

NT ~T ~ ~J
Vaan Vo anll ae U'se USiUS IV an V5 . 71)
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According to (29) these three steps give us Wp .. If we repeat now the same procedure but with the links
corresponding to the second and third plaquette term, we obtain W ,, and W 3. To realize the odd cubes time
evolution, we move the auxiliary atoms to the centers of the odd cubes and repeat all of the above. This results in
the time evolutions W 15, Wp,2, and Wj 3,. Afterwards, the auxiliary atoms are brought back to the centers of the
even cubes.

4.2.6. Gauge-matter interactions
For the gauge-matter interactions on a link (x, k) we have to implement the Hamiltonian

Ham (%, k) = Aam (%) U (%, k)93 (x + k) + h.c.
= Aam U () (€5 (@ e e (x + k) + hec.
= Aam ¥ () (Up)ap(% k) (Up (%, k)¢ (x + k) + h.c. (72)
with U, = ei5%P and U, = 0. We can use the product structure of U to implement the gauge-matter part via

two-body interactions. We follow the procedure given in section 3.2.2 and define the unitaries Uy, one
corresponding to U,,:

Uy p(x, k) = elog (a DY Y, — 5P W 090~ ¥ (X)) (73)
and another one corresponding to U,,;:

U m(x, k) = 2108 (Un)a (6 U (09,0 — o5 MW (09 00+ ¢ (001,00 — ¢ (09, (%) =9 (04, (), (74)

With these definitions at hand we can get the following relation by applying twice the Baker—Campbell—
Hausdorff formula:

Uy (% ) Uy (X5 KLUy (% YUy (% k) = ) (Upap (%5 §) (Up Do (X, ). (75)
The gauge-matter Hamiltonian can then be written as
Hom(%, k) = Uy p(%, ) Uy, (%, k) H, (%, DUy (x5 Uy (%, k) (76)

with the tunneling Hamiltonian H; (x, k) = Agm (¥} (%)%, (x + k) + h.c.) The crucial thing to note here is that
all the terms involve only two-body interactions which allows an implementation with the proposed ultracold
atomic setup. We cannot implement all gauge-matter interactions at once as the fermions on the vertices are
only allowed to interact with one link at a time. Focusing on the links in the one-direction for the even cubes, we
describe how to realize the time evolution e~ >xee Hou® DT Since we want to keep the lattice of the matter and
link degrees of freedom fixed, these interactions will be mediated by the control atoms according to the
algorithm presented in section 3.2.2.

(i) We first build the isometry S; between auxiliary atoms located at the center of even cubes x and the
corresponding atoms on link (x, 1), [, oyen U4(X). This interaction can be implemented exactly in the same
way as already done for the plaquette term (see (64)). Due to the relation in (23) the gauge-matter
interactions will then translate into an interaction of exactly the same form but between the auxiliary atoms

and the fermions.
(ii) Afterwards, the two terms U TW pand U ;&,m have to be implemented by two-body scattering processes but
between the fermions and the auxiliary atoms due to the isometry, therefore denoted as Uy, , and Uy ..

Starting with U ‘I/V,p’ we first write it in terms of the angular momentum operator, respectively, the second
quantized operators v, and v, for the fermions:

. (% k) = e FPU@UE-E0Hm) = T IF R0 00401090, 77)

Now we have to tailor the atomic collision between the F; = 1and the F = 1/2 multiplet accordingly. The
magnetic field again lifts the degeneracy of the hyperfine levels and thereby prevents any transitions
changing the mg-values. The interaction Hamiltonian contains two possible scattering channels and gives
rise to the following time evolution:

Usearr = € PG00 +g B v~ t509) 78)
with g = é(3a1 /2 +4azp), g = %(a3 /2 — a172) (a1 2, a3 » are the scattering lengths for the scattering

channels with Fi, = 1/2 and F,; = 3/2) and (3 the time-integral of the wave function overlap. If we tune
overlap and interaction time such that § = % we obtain
1

L s ) 25 E (e
uscat,Z = e 13g1 (1‘)1 wl+w2w2)e*12%1:z,3(7//1 l/)lfl/)zl‘”z)' (79)
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c 1. . . A . .
The second exponential is the desired interaction Uy, , whereas the first term is a fermion-dependent phase,

denoted from now on as
Vi (0) = e, (80)
where § = 2:—? and ¥fp = )y + i1, A discussion of these phases will be done later on. Before, the

. . ~t . .
implementation of I/yy ,, is explained. It has the form:
o = e i3,
= e N @Yt = e iTN Uit (81)
with N, = EL /262172 and Vi gor = %(O’x,fer + 03 tr) a Hadamard transform on the fermions which can
be implemented by means of optical /RF fields. The remaining two-body interaction is realized as scattering

between the F = 1/2 states of the control atoms and the fermions. It can be described by the following
unitary:

—iv| g Z EJ, Cm (11)? i +lr'; V) +gle,2 (Mr U= 'L"z )
m

uscat,So = ¢ (82)

(for the explicit form of g; see [55]). We switch on a magnetic field gradient designed in a way that only the
mp = —1/2 -components of the auxiliary atom and the fermion overlap. Moreover, the interaction time
should be tuned such that v = ﬁ which gives rise to:

0 1

Uscar,s = e &1 T 2B+l Tt — emimely Tty (83)
. . . o~ o~F . .
Since the implementation of Uy , and U,y ,, is done in parallel for all even cubes we get the sequence

T Uy Dy %, 1) Vi (). (84)

X even

(iii) In the next step we implement the tunneling in the one-direction for even cubes which can be achieved by
modulating the superlattice and decreasing the potential barriers on the desired links. We get

H efiH,(x,l)’r' (85)

X even

. . . . o~ f o~ .0 ~ .
(iv) After the tunneling we need to realize the conjugate of Uy , and Uy, i.e. Uy, , and Uy, ,,. One way of creating

ﬁw, » is by doing a spin flipping operation \7;: ; for the three-level system of the control which results in:

~ ~F ~T ~
VI’,auw,pVF,3 = Z/{W,p

V. aViv (0) Vi 5 = Vi (6). (86)

. ~ . ot . .
For the creation of Uy, we simply observe that I, ,,, is Hermitian. The sequence for step 4 is

[T V@l Dl mix, 1. (87)
(v) In the last step we need to undo the isometry, which is done by the conjugate of the first step, [, oyen (%)
(see section 4.2.4).
We summarize by writing down the whole sequence acting on the initial auxiliary state |$> =0, 0):
[T Vi OU O %, Doy m(x, De DT, (x, 1Ty (%, D) Vigr ()| i5)
X even
= lin) Vi (@) T] e He®DTV00(6) = [in) Vv (0) Wong,1e Viv: (). (88)

X even

We finally get the desired gauge-matter interactions up to the fermionic phases Vi, (0). However, if we consider
the whole lattice (on which the number of fermions is globally conserved) it can be shown that the phases
correspond to a static vector potential of zero magnetic field and are therefore unphysical, as carried out in the
procedure given in [56]. If we repeat the whole sequence (88) for the other links we obtain the gauge-matter
interactions WGM,Ze: WGM,Se: WGM,]O’ WGM,20 and WGM,30~
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4.2.7. Electric Hamiltonian

The electric Hamiltonian for the gauge group Dj acts on the gauge fields residing on the links. If we choose its
second part—which corresponds to pure rotations only—in accordance with the electric energy of Z; we
obtain, using the notation of previous sections:

Hp =X hp(x, k)

x,k
. 1
with A (x, k):5fr2|0, m)('| + f(1 — P; — P)) ® L. (89)
If we also express the interactions of the first part in terms of operators acting on the link atoms, we end up with:
1 1
B k) = —fragao @ (14 0+ f; 35 (1 + Imihay, an, © B (90)
mp=—1

The first Hilbert space represents the three-level system, the second one the two-level system. The coefficient f; is
the overall coefficient for the electric part corresponding to pure rotations, equivalently to Zs. We have to
implement the time evolution:

‘/VE — e*iHET — H e*ihe(x)k)T (91)
X,k
with
g o+ —iA 1+ e G
e—iheT — efi#aguo‘refi#ao’aoaxre ' Ef’%( Imz()a Fa"FT‘ 92)

The first and the third exponential are local terms of the atoms and can be addressed by external fields. The
second term is implemented by two-body scattering similar to the one for the plaquette interactions. Therefore,
we need to bring the two atoms together, which should be simple to implement since both of them are trapped
near the middle of the link. Following the steps for the plaquette interactions, we obtain:

uscat,l = eiiégoNoNl/z- (93)
. . . . e f, T .. . . .
Tuning overlap and interaction time such that § = o and combining it with the local operation
0
ST .

V= et 2 N givesus:

AEfT . SAESr

VZZ/{SCat,l — el Noe—l)\EergM/zT — e i Nooz'r_ (94)

If we then perform a Hadamard transform Vp, on the two-level system, we get the desired interaction:

e P
Vit o Valhscat, 1 Vig,p = €712 No% = e7i5 oo™ (95)

which gives us the electric Hamiltonian up to local operations.

We have implemented all interactions using local operations on the atoms and tailoring the appropriate two-
body scattering terms If we use the sequence to evolve the system for a time 7 = T/N and we repeat the same
sequence N times, we get a Trotter approximation of the desired time-evolution e~ HisrT, The accuracy of this
approximation is discussed below.

4.2.8. Errors

The errors affecting the precision of the simulation are twofold. On the one hand, we have Trotter errors coming
from the digitization which can be estimated by specifying the general error bounds given in section 3 to the case
of three dimension and gauge group D;. We obtain for the fist order formula (see (44)):

6t2(L — 1)L2(
N

5
|U) — Un()] < 16Ag Ag + 2AomAe + Mgy + )‘éMZ) (96)

and the second order formula (see (45)):

283(L — DI?
Ut — Uy 0] < (Tz)(lzsmmg + Xp) + 2AamAeQ2han + Ap)
1 125
+ AemM (6Agm + EM) + FA%M). 97)

We stress again that the digitization error does not break gauge invariance, because all steps of the sequence
individually respect the right symmetry. Therefore, the Trotter expansion can only give rise to quantitative
deviations, but not to qualitative changes.
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Table 1. The different types of experimental errors corresponding to some gate jare distinguished by the nature of the perturbation h;

(statistical or systematic) and whether the gate depends on the simulated time ¢ or is a fixed operation lasting for some time f.y, ;. The error
bound for each type scales differently with the number of Trotter steps N.
Type of error Bound on the experimental error

Statistical error/dependence on ¢ ([ Hﬁ

Systematic error/dependence on ¢ l|hj ||t
Statistical error/no dependence on t [17; ]| V2N texp j
Systematic error/no dependence on ¢ (17 [|2Ntexp, i

On the other hand, there will be experimental errors in the implementation. Unlike errors caused by the
Trotterization, they may break the gauge symmetry and accumulate step by step. We briefly want to look at the
scaling of these errors. We consider a small perturbation k; to one of the Hamiltonians H; which is realized
during the implementation of the Trotter sequence (38). The difference of the time evolution e~ (Hi+%) to the
desired one e~ can be bounded to first order in the operator norm by || || 7. To get the total experimental
error caused by the gates corresponding to Hj, we need to look at the whole Trotterized time evolution (we focus
here on the second order formula (41), i.e. the gate is repeated 2N times). We have to distinguish four cases: on
the one hand, whether the experimental error is statistical or systematic and, on the other hand, whether the
implemented gate depends on the simulated time (e.g. electric Hamiltonian, fermionic tunneling, etc) or not
(e.g. entangling operations). The advantage of a statistical error is that we can apply the central limit theorem and
obtain a scaling of /N with the number of Trotter steps compared to a linear scaling in the case of a systematic

error. In the same vein, a gate depending on the simulated time ¢ is advantageous since the time step 7 = ﬁ in

each Trotter sequence scales as %, whereas for gates not depending on t, the error scales with some fixed amount
of time f.yp, ; specific to the gate. The bounds for these four types of experimental errors are summarized in

table 1. We see that operations that do not depend on the simulated time ¢ are the ones most prone to errors.
During their implementation a lot of care should be taken, in particular to avoid systematic errors. When
estimating the error of the whole implementation sequence, one should keep in mind that errors of different
gates are generally independent and thus do not add up linearly. However, the total experimental error will still
increase with N, so that the number of Trotter steps has to be chosen in a way to balance digitization and
implementation errors.

Typical sources of errors in ultracold atom experiments are as follows: the first one is decoherence, e.g.
caused by spontaneous scattering of lattice photons with the atoms, atomic collisions with the background gas,
field (laser or magnetic) fluctuations, etc. This is relatively well under control nowadays, where coherence times
t.on Of the order of minutes have already been achieved [16, 75, 76], thus requiring the total simulation time #;,,,
to fulfill £, < t.on. Secondly, one needs to ensure that the atoms remain in the lowest Bloch band throughout
the whole implementation. Hence, it is of crucial importance to shape the lattice and move the atoms in an
adiabatic way. This is particularly important in our simulation scheme, where the auxiliary atoms have to be
moved around or when the matter lattice has to be deformed to allow tunneling. This means that the
corresponding timescale t,,,,, should be bigger than the inverse of the frequency w associated to the energy
difference between lowest and first excited Bloch band (¢, > 1/w), while at the same time the obvious
constraint t,,,, < ton has to be fulfilled. However, such techniques have also become well-controlled [16, 77].

Errors more specific to this proposal are connected with the tailoring of the two-body scattering. This
requires a high degree of control over the overlap of the atomic wave functions and accurate timing of
interaction during these collisions. This is also dependent on the ability to design and manipulate the magnetic
field gradient in a precise manner.

5. Summary

In this work, two main results were discussed. First, a digital simulation scheme was proposed to realize lattice
gauge theoriesin 3 + 1 dimensions including dynamical fermions using only two-body interactions. Its main
feature is the ability of obtaining the magnetic plaquette interactions without using fourth-order perturbation
theory, thus resulting in stronger interactions and allowing the study of wider phase-space regions compared to
analogue approaches. Second, following the aforementioned simulation scheme, an implementation of a lattice
gauge theory with a non-abelian gauge group—the dihedral group Ds;—was proposed, using ultracold atoms in
optical lattices. Since the time evolution is performed in a Trotterized manner, intrinsic errors occur. These were
studied in detail as a good bound on the Trotter error gives more leeway to experimental errors.

The key ingredient of the digital simulation scheme is an auxiliary system which can be entangled with the
physical system. This allows one to create an isometry which mediates the complicated three and four-body
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terms of lattice gauge theory via the auxiliary system by using two-body interactions, as desired for
implementations with various quantum simulation platforms. Moreover, it should be emphasized that all
time evolutions in this algorithm are individually gauge invariant. The corresponding gauge group has to be
either a compact Lie group or a finite group which is not a restriction for all relevant theories. In the case of
compact Lie groups, the local Hilbert spaces of the gauge fields have an infinite dimension and therefore need
to be truncated for a feasible implementation. However, since the isometry is defined in terms of the group
element basis, the truncation has to be done there as well and cannot be done in the typically used
representation basis (see section 2). Examples for such truncations are Zy for U(1) or—as proposed in this
work—Dy, for O(2).

For the implementation of the lattice gauge theory with dihedral group Ds—isomorphic to the symmetric
group S;—we exploited the group structure of D3 as a semidirect product. This allowed us to represent the gauge
fields by a tensor product of a three-level and a two-level system and thus simplified the implementation. The
potential gain from this procedure would be even higher for more complicated gauge groups exhibiting a
semidirect product structure.

No sophisticated experimental techniques (e.g. Feshbach resonances) are required. However, precise control
over atomic collisions is needed in order to obtain the desired time evolution, in particular gates entangling the
auxiliary system with the physical system, as they do not depend on the simulated time and are thus more prone
to experimental errors.

Future efforts on experimental techniques can therefore be targeted at the controllability of the relevant
parameters, i.e. in particular fine tuning of the overlap integrals and the interaction time during scattering
processes. The generation and experimental control of superlattices is important as well in order to create a
staggering potential for the dynamical fermions. Also conducting experiments on simpler models—as currently
set up for the Schwinger model—is a promising direction as it can serve as a proof of principle for the validity of
quantum simulations of lattice gauge theories and might encourage more work in this direction.

From the theoretical point of view, a logical next step is to think of possibilities to realize more complicated
gauge groups. One step towards that goal is to find suitable ways to truncate compact gauge groups like for
example SU(2) in a meaningful manner.
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Appendix A. Details on Dy lattice gauge theory

In the following we will present some details on the lattice gauge theory of Dy. Due to its non-abelian gauge
group the representations of the group become non-trivial and thus a lot of terms more complicated. Therefore,
we will start by discussing the most important group properties and the irreducible representations of Dy;.

Dy is the symmetry group of rotations by %‘ in a two-dimensional plane and reflections along a certain axis
(any axis passing through the center of rotations is possible). It can be characterized by the set

Dy = {g=(p, m) = RQw/N)? §"|p € [0, N — 1) and m € {0, 1}}. (A1)
The structure of the group is defined by the composition rules:
(P, ﬂ’l) . (T, T’Z) = (P + (_1)?}7’,’ m + T’Z), (AZ)

where the addition of p and r is understood as modulo N, respectively, modulo 2 for m and #. The neutral
elementis e = (0,0) and the inverse element of (p, m) is (p, m)~! = (p(—1)"*!, m). The representation theory
of Dy(Noddand N > 3) is characterized by the three irreducible representations shown in the table below:

Trivial (dimension 1) D'(p,m) =1
Sign (dimension 1) Ds(p, m) = (=1)"
.2
kth (dimension 2) D (p, m) = e‘Tpk”ZGZ’

We exclude the cases where N is even, since they have additional sign representations and are not relevant for the
discussion of D;. With the above table, the electric Hamiltonian can easily be given in the representation basis.
However, since this form of the Hamiltonian is not very feasible for the proposed quantum simulation we will
show how to transform it to the group element states:
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he(, k) =32 > F()Ig) (glimn) (jmnlg") (&'|

&g jmn
di i . .
=% T;,(l] )£ (j)lg) Tr(Di () D" (g (g1 (A3)
&g

To specify this expression for Dy we need to calculate the trace from above for all irreducible representations:
Trivial representation: Tr(D!(p, m)D'T(p/, m')) = 1
Sign representation:  Tr(D*(p, m)D**(p/, m')) = (—1)y"*+"’
kthrepresentation:  Tr(D¥(p, m)DX (', m')) = Sy (eI VKPP 4 e iXk(P—P),

Inserting this into (A.3) we obtain:

1
hp(x, k) =—>">"|p, m)(p’, m'|
2N & ~,
p.p’ mm
N—1 , ,
£ LD 4 23 i S (eI RF PP o iR [ (A4)
k=1

The expression simplifies if we go to the conjugate basis of {|p) } which can be viewed as the angular momentum
basis {|1) } characterized by the relation

(1, mip, n) = %émne*i%lp. (A5)

We obtain

1 2T 2T o) 12w 2T o1 ’
he(x, k) = — Z”’ m) Z(fteﬂ%lpel%lp + fseﬂ%lpel%lp (—1ymtm
2N m' LI P;P/

N-1
+2 ka 5mm{eifg(kl)peifg(l’k)p’ + ei?,j(kﬂ)peizlg(kﬂ’)p’)]<l/’ m/|
k=1

_! > [mo, m) (0, m'| + f.(=1)"*™'|0, m) (0, m'| + 23 Al m)(l, m|], (A.6)

2 m,m’ 1=0

where the coefficients f;have to satisfy the constraint f; = f ; V I. If we redefine the coefficient for the trivial and
sign representation as f, = f; — f,and fy = f, we can simplify the expression further:

(N-1)/2

he(x, k) = % SL10, my (0, )+ S S flL m) (L ml. (A7)

I=—(N-1)/2 m

The second term can be viewed as the electric energy of Zy as it acts trivially on the gauge field Hilbert space
corresponding to reflections.

Appendix B. Trotter errors

For the bounds on the Trotter error of the digital quantum simulation (presented in section 3) a computation of
commutators and nested commutators of the different parts of the Hamiltonian is required. Since the
calculation of these commutators for a general lattice gauge theory is very lengthy, it is only sketched here. A
detailed analysis can be found in [78].

B.1. First order
For the first order formula the ordinary commutators need to be computed. Starting with the commutator
between gauge-matter interactions on different links i and j, we obtain:
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[Hom,i» Howm,jl

=" Aam ¥ () Uy (x, k)b (x + k) 4+ hcd s Aam¥ () Unn (95 k) Uy + kj) + hec
x,k,' }/,k]‘

=XNm D, Y+ k) UL k) U (3, k)Y (x + k) — hec
x/ {boundary}

+ U, () Uy (6, k) UG+ ki — kjy k)t (x + ki — k) — hec.

=Am DL Uil (W(x + k)b (x + k) — hee) Uy U
x/ {boundary}

+ U Uy s ) (x + ki — k) — hec) U ald s (B.1)

where we used the unitary operators Uy, from section 3.2.2 to reduce the gauge-matter terms to pure fermionic
tunneling terms, thus allowing to estimate this expression:

Nin S
I[Hem,i» Homjl| < AéM%dU, (B.2)

where dy, is the dimension of the representation of U under the gauge group and therefore the operator norm of
the tunneling term. In the next step, the commutator between the matter- and gauge-matter interactions is
calculated:

[Hyr, Howm,il

= > M= D", )% (), S Aem¥h () Unn (9 k)Y (y + ki) + hec.

y.ki
= 25" MAem(— ¥, (0) Uy (x, k) (x + ki) — hec.. (B.3)

We rewrite this expression again in terms of the unitary operators U, which allows us to bound the commutator
in the following way:

|[Hm> Hom,il|| < 2MAGmMiinksdu- (B.4)

For the commutator with the electric part the whole gauge-matter Hamiltonian is considered as every part does
not commute with Hg. To bound this expression from above we write Hgy, again in terms of the unitary
operators Uy, similar to the previous calculations and obtain:

l[Homs He 1| < MinksAam Apmax| f (j) [2dy. (B.5)
i

The last commutator is the one between the magnetic and electric Hamiltonian. Since every link is contained in
2(d — 1) plaquettes, the commutator is straightforwardly estimated as:

|[Hp, Hell| < As AeMiinks8(d — 1)max| f (j)|dy. (B.6)
j

B.2.Second order

For abound on the second order formula we need to calculate all nested commutators. The computations of
them are done in the same manner as for the ordinary commutators, there are no additional tricks required.
Since these calculations are very lengthy, we will just give the bounds obtained for each nested commutator:

I[[Hs, Hgl, Hl| < A%AsmjaXIf () PMiinks64(d — 1)dy
I[[Hs, Hgl, Hpll| < Ap A%m?XIf () Nitinks64(d — 1%
I[[Hg> Haml, Houml|l < AéMAEmjaxv () WMins2Q2d — 1) + 1)4d}
Il[Hz> Homl> Helll < Aum A%m?XIf () PMiinks4dy

I[[Hy> Hemls Homl|l < AémM Nini8ddy
[ ([Hy> Homl, Hulll < 4AemM? Minisdu. (B.7)
In the last step the nested commutator among the different gauge-matter Hamiltonians needs to be computed:

N.
I[[Hom,i» Hom,jl, Homil|| < A2M$zdu. (B.8)

To obtain the error bound for the whole gauge-matter interactions we need to calculate how many times the
commutator from above appears. There are 2d different gauge-matter Hamiltonians which are implemented
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separately. Recalling the second order formula, this gives rise to two partial sums over the natural numbers:

2:2:1 I[[Hem b Homkr1 + - + Hom2al, Homky1 + - + Howmdl |
=1
+ %H[[HGM,;C, Hemi41 + - + Howm,2al, Homil ||
<A Ngnkszdu T 2 = Nwdu Ninis(2 ~ 1)(%(401 -+ 1)- (B.9)
x=1
Inserting all these commutators into the formulas of the total Trotter error will then result in the bounds given in
section 3.
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