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Abstract
Visual selective attention operates through top–down mechanisms of signal enhancement and sup-

pression, mediated by a-band oscillations. The effects of such top–down signals on local processing in

primary visual cortex (V1) remain poorly understood. In this work, we characterize the interplay

between large-scale interactions and local activity changes in V1 that orchestrates selective attention,

using Granger-causality and phase-amplitude coupling (PAC) analysis of EEG source signals. The task

required participants to either attend to or ignore oriented gratings. Results from time-varying, directed

connectivity analysis revealed frequency-specific effects of attentional selection: bottom–up g-band

influences from visual areas increased rapidly in response to attended stimuli while distributed top–

down a-band influences originated from parietal cortex in response to ignored stimuli. Importantly, the

results revealed a critical interplay between top–down parietal signals and a–g PAC in visual areas.

Parietal a-band influences disrupted the a–g coupling in visual cortex, which in turn reduced the

amount of g-band outflow from visual areas. Our results are a first demonstration of how directed

interactions affect cross-frequency coupling in downstream areas depending on task demands. These

findings suggest that parietal cortex realizes selective attention by disrupting cross-frequency coupling

at target regions, which prevents them from propagating task-irrelevant information.
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SIGNIFICANCE STATEMENT

In this work, we demonstrated how selective attention emerges from

the interplay between large-scale brain interactions and local structures

of information processing in sensory areas. When visual input is relevant,

the visual cortex rapidly propagates attended information through feed-

forward oscillations in the gamma band. When stimuli are irrelevant,

however, the parietal cortex suppresses information processing through

inhibitory influences in the alpha band. Importantly, we show that alpha

activity from parietal cortex disrupts the coupling between low and high

frequencies in visual regions, which in turn determine their amount of

feedforward propagation. Our results provide novel insight into how the

brain orchestrates selective attention and reveal how the parietal cortex

prevents the processing of irrelevant information in other cortical areas.

1 | INTRODUCTION

Our visual environment typically contains more information than our

perceptual system can handle. Selective attention is therefore a key

mechanism to regulate cortical information flow and prioritize the proc-

essing of behaviorally relevant stimuli. How the brain accomplishes

such selectivity is one of the fundamental questions in cognitive

neuroscience.

At the neuronal level, selective attention operates through the

enhancement of activity that represents attended information and the

suppression of activity for unattended stimuli. Attentional selection, for

example, can either increase or attenuate local responses in early sen-

sory areas, depending on whether they convey information that is rele-

vant or irrelevant for the task at hand (Carrasco, 2011; Daffner et al.,

2012; Kanwisher & Wojciulik, 2000; Kastner & Ungerleider, 2001;

O’Craven, Downing, & Kanwisher, 1999; Smith, Singh, & Greenlee,

2000). A hallmark of such selective mechanism is the differential pat-

tern of event-related potentials that can be observed on the scalp

when a physically identical stimulus is attended or ignored: Attended

stimuli often increase the amplitude of early evoked responses (e.g.,

the P1 component) (Hillyard, Vogel, & Luck, 1998), whereas ignored

stimuli evoke a later negative activation, the selection negativity (SN)

component (Daffner et al., 2012; Hillyard & Anllo-Vento, 1998), which
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underlies an inhibitory response to irrelevant and potentially distracting

input.

While the modulatory effects of selective attention on sensory

analysis and psychophysical performance have been extensively char-

acterized (Carrasco, 2006, 2011; Desimone & Duncan, 1995; Downing,

Liu, & Kanwisher, 2001; Driver, 2001; Maunsell & Treue, 2006; Pas-

cucci & Turatto, 2015; Reynolds & Chelazzi, 2004), a fundamental

question remains how selective attention is orchestrated between

brain areas and what sources and dynamics underlie the emergence of

local attentional modulations.

Neuroimaging and lesion studies have contributed to the identifi-

cation of two distinct functional networks where modulatory signals of

selective attention may originate: the ventral attention network (VAN),

which comprises the temporo-parietal junction and the ventral frontal

cortex and is activated by salient and unexpected stimuli, and the dor-

sal attention network (DAN), which includes the intraparietal sulcus,

superior parietal lobule and frontal eye fields and is engaged by the

voluntary and top–down control of attention (Corbetta & Shulman,

2002; Ptak & Schnider, 2011; Vossel, Geng, & Fink, 2014). Recent

models of attention suggest that when these attentional control

systems are activated, their constituent units may use long-range

connections to influence neuronal activity in early sensory areas (Fries,

2009; Vossel et al., 2014).

One way neurons in the attentional network can modulate activity

in sensory areas is through coupled oscillations at specific frequencies

(Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008; Womelsdorf &

Fries, 2008). Neuronal oscillations reflect rhythmic synchronization

among neuronal ensembles over a wide range of spatial and temporal

scales, which may play a crucial role in determining the quality and

propagation of sensory signals (Buffalo, Fries, Landman, Buschman, &

Desimone, 2011; Foxe & Snyder, 2011; Fries, 2009; Michalareas et al.,

2016; Womelsdorf & Fries, 2008). Gamma-band activity (g, 30–150

Hz), for instance, has been shown to reflect neuronal processing

(Gruber, M€uller, Keil, & Elbert, 1999; Jensen, Kaiser, & Lachaux, 2007;

Keil, M€uller, Ray, Gruber, & Elbert, 1999) and feedforward communica-

tion (Bastos et al., 2015; Michalareas et al., 2016), and has been related

to perceptual operations (Singer, 1999) and to neuronal states of high

excitability (Fries, Reynolds, Rorie, & Desimone, 2001; Tallon-Baudry,

Bertrand, H�enaff, Isnard, & Fischer, 2004; Vossel et al., 2014). Oscilla-

tory activity at lower frequencies (alpha (a) band, 8–14 Hz), in turn, has

been implicated in sensory suppression and temporal parsing mecha-

nisms (Haegens et al., 2015; Jensen & Mazaheri, 2010), and has been

associated with feedback interactions (Haegens et al., 2015), atten-

tional disengagement (Vanni, Revonsuo, & Hari, 1997), and low states

of perceptual receptivity and psychophysical performance (Hanslmayr

et al., 2007; Mathewson, Gratton, Fabiani, Beck, & Ro, 2009; Van Dijk,

Schoffelen, Oostenveld, & Jensen, 2008). Interestingly, when attention

is engaged by relevant stimuli, both a sustained increase in g power

and a decrease in a power have been reported (Bauer, Stenner, Friston,

& Dolan, 2014; Foxe, Simpson, & Ahlfors, 1998; Klimesch, Doppelmayr,

Russegger, Pachinger, & Schwaiger, 1998; Rajagovindan & Ding, 2011;

Thut, Nietzel, Brandt, & Pascual-Leone, 2006; Wyart & Tallon-Baudry,

2008).

These functional roles of a and g activity suggest neuronal oscilla-

tions as the candidate mechanisms through which selective attention

operates: sources of attentional control may drive enhancing or sup-

pressive signals at specific frequencies, which in turn could interact

with rhythmic synchronization and neuronal communication structures

in the ascending pathway (Fries, 2005; Siegel, Donner, Oostenveld,

Fries, & Engel, 2008; Womelsdorf & Fries, 2008). However, a good

understanding of how directed cortical interactions dynamically

implement selective attention is currently lacking.

In this work, we investigated the brain dynamics of directed inter-

actions that characterize the emergence of selective attention. We

recorded functional magnetic resonance imaging (fMRI) and high-

density EEG separately, while participants either attended to or ignored

physically identical stimuli presented at the same spatial location.

Stimulus-evoked EEG source activity was extracted from 20 critical

regions of the attentional and perceptual networks.

Dynamic connectivity analysis revealed a rapid emergence of

selective directed connections in the g- and a-bands: feed-forward

interactions in the g-band increased in response to attended stimuli

and were directed from early visual areas to the lateral occipital and

fronto-parietal cortex; Inhibitory interactions in the a-band dominated

network activity in response to irrelevant stimuli and were orchestrated

by parietal cortex. Interestingly, long-range a-band interactions from

parietal cortex disrupted phase-amplitude coupling (PAC) between a

and g activity in visual areas, a key mechanism regulating information

transmission and neuronal communication (Bonnefond & Jensen, 2015;

Dvorak & Fenton, 2014; Jensen & Mazaheri, 2010). Such reduced local

ag-band asynchrony, in turn led to a suppression of g-band interac-

tions from visual areas, effectively inhibiting feed-forward information

flow.

2 | MATERIALS & METHODS

2.1 | Participants

Sixteen healthy subjects (mean age5316 20, 3 female), all right-

handed and with good visual acuity (mean 1.56 range 0.8–1.7, as

measured with the Freiburg acuity test (Bach, 1996)) took part in the

experiment for monetary compensation. Written informed consent

was obtained from each participant before the experiment. The study

was performed according to the declaration of Helsinki and after

approval by the ethics committee of the University of Geneva.

2.2 | Experimental design

Stimuli were Gaussian-windowed sinusoidal gratings (Gabors; r538,

frequency53 cycles per degree) presented for 200 ms around a cen-

tral fixation spot (0.28). Each Gabor had a contrast of 100% and a vari-

able orientation (maximal 2458 to 458 off vertical). The intertrial

interval (ITI) varied randomly between 700 and 1,200 ms (fMRI session)

or 500 and 1,200 ms (EEG session). There were two conditions

depending on whether the Gabor stimulus was relevant or not for the

current task. In the Relevant condition, participants had to report the
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orientation of each Gabor in a two-choice task (left vs right) by pressing

the corresponding key on a response box. In the Irrelevant condition,

participants had to detect a color change in the fixation spot (from

black to red) occurring on �33% of trials during the inter-stimulus

interval between Gabors.

The same task and stimuli were used in separate fMRI and EEG

sessions. Stimuli were back-projected onto a screen (60 Hz,

1,024 3 768 pixels) during fMRI recordings, and presented on a CRT

monitor (75 Hz, 1,600 3 1,200 pixels) during the EEG session. Stimulus

generation, presentation and timing were controlled with PsychoPy

(Peirce, 2008) software run under Python 2.7.

The fMRI session consisted of 16 blocks (8 for each condition) of

variable length (between 14.7 and 25.2 s), presented in pseudo-random

order and interleaved with 8 blocks of rest (between 12.6 and 21 s,

consecutive task blocks were randomly interleaved with the 8 rest

blocks). In the EEG session the two conditions were performed in 4,

pseudo-randomly interleaved blocks of 100 trials. Written task instruc-

tions were provided before each block.

The orientation of Gabors in the Relevant condition was deter-

mined through an adaptive staircase procedure (Watson & Pelli, 1983)

designed to keep participants’ accuracy at 83%. In the Irrelevant condi-

tion, Gabors were randomly tilted toward the left or right with the off-

set fixed at threshold estimated in the last staircase procedure.

2.3 | fMRI data acquisition and preprocessing

fMRI images were acquired using a whole-body Tim Trio system (3T;

Siemens Healthcare) at the Brain and Behaviour Laboratory at the Uni-

versity of Geneva, with a radio-frequency (RF) body transmitter and a

32-channel receiver head coil. Functional runs consisted of 295 volumes

with 36 T2*weighted echo planar slices (EPIs; repetition time (TR)5

2,100 ms; time to echo (TE)530 ms; flip angle (FA)5808; 3.2 mm slice-

thickness with a 0.6 mm gap). After the experimental session, a struc-

tural whole-head image was acquired for each participant (TR51,900

ms; TE52.27 ms; field of view (FOV)52563 256 mm2; inversion time

(TI)5900 ms; voxel size513 13 1 mm3; sagittal orientation).

Functional and structural images were analyzed with the Statistical

Parametric Mapping toolbox (SPM12; University College of London,

London, United Kingdom). All EPI volumes were realigned to the mean

functional image using a two-pass procedure to correct for movement

artefacts. The mean of the realigned volumes was then co-registered to

the structural image. All images were normalized relative to the stand-

ard Montreal Neurological Institute (MNI) space using trilinear interpo-

lation and smoothed with an isotropic 8 mm2 full-width half-maximum

Gaussian kernel. The time course of cerebrospinal fluid (CSF) and white

matter (WM) signals were extracted for each participant before normal-

ization, using individual CSF and WM masks obtained from the stand-

ard segmentation procedure in SPM12.

2.4 | Statistical analysis: fMRI data

Functional images were submitted to a two-stage mixed-effects model

(Friston et al., 1994) (GLM). First-level analysis was performed using a

block design with three regressors of interest (the Relevant and Irrele-

vant conditions and the rest period) modeled with a boxcar function

convolved with the canonical hemodynamic response function. The six

motion parameters derived from realignment, the CSF and WM signals

and a constant term were included in the model as nuisance regressors.

A high-pass filter with cutoff of 512 s was applied to the time-series of

functional images to remove low-frequency noise while preserving sig-

nals at task-related frequencies.

Task-related activation maps were obtained from two contrasts of

interest (Figure 3). In the Task versus Rest contrast, we computed the

difference between activity during the two conditions (Relevant and

Irrelevant) and the rest period. In the “Irrelevant vs. Relevant” contrast,

we computed the difference between conditions. The combination of

these contrasts allowed identifying functional areas that were engaged

by the two tasks but also showing differential activity across condi-

tions. The resulting statistical maps were submitted to second-level

group analysis consisting of voxel-wise comparison across subject

(one-sample t test), treating each subject as a random effect. Statistical

significance was assessed at the group-level using an uncorrected

voxel-based threshold of p< .0001 and a minimum cluster size of 5

voxels. From the resulting group-statistic, we selected 20 functional

peaks of interest (14 from the Task vs Rest and 6 from the Irrelevant

vs. Relevant contrast; see Table 1) corresponding to voxels of maxi-

mum T-statistic within spatially segregated clusters and uniquely

labeled regions (based on the AAL2 and Neuromorphometrics labels,

SPM12). Only cortical and subcortical regions were considered. The

coordinates of the 20 peaks selected from group-statistic were then

transformed back from standard to the individual space of each partici-

pant by applying the deformation parameters generated after normal-

ization. These 20 locations in individual brains were the nodes in the

network used for functional connectivity analysis of EEG source activ-

ity (see below).

2.5 | EEG data acquisition and preprocessing

EEG data were acquired on a separate day with a 256 channel EGI

Geodesic setup (EGI Eugene, OR). Recordings were digitized at 1,000

Hz and referenced against the Cz electrode, the impedance was kept

below 50 kX. Electrode positions were digitized in 3D using a photo-

grammetry system (EGI Eugene, OR). The cheek and lower neck elec-

trodes were excluded, leaving 204 electrodes for further analysis. Four

participants were excluded from further analysis due to excessive noise

in the data. For the remaining 12 participants, EEG recordings were

preprocessed using a combination of functions from EEGLAB (Delorme

& Makeig, 2004) and custom scripts in Matlab (The Mathworks, Natick,

MA).

Prior to signal preprocessing, noisy EEG channels (as determined

through careful visual inspection) were removed from the dataset

(mean number of channels removed across participants: 19.564.6).

Data were then down-sampled to 200 Hz after applying an antialiasing

filter with cutoff frequency of 160 Hz and transition bandwidth of 80

Hz, DC-corrected and high-pass filtered at 0.1 Hz with a forward and

reverse noncausal FIR filter. EEG epochs were extracted from the
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continuous dataset and time-locked from 2500 to 1,000 ms relative to

the onset of each Gabor. Individual epochs containing nonstereotyped

artifacts, peri-stimulus eye blinks, and eye movements were identified

by visual inspection and removed from further analysis (mean number

of epochs removed across participants: 33.4614.3). Data were then

re-referenced to the average potential of all electrodes at each time

point (Lehmann & Skrandies, 1980; Michel et al., 2004) and cleaned

from line and monitor noise (50 and 75 Hz, plus harmonics) with an

adaptive filter (Cleanline plugin for EEGLAB). Because physiological

artifacts such as eye blinks, horizontal and vertical eye movements,

muscle potentials, and microsaccades may strongly compromise the

investigation of high-frequency oscillatory components (Hipp & Siegel,

2013; Keren, Yuval-Greenberg, & Deouell, 2010; Yuval-Greenberg,

Tomer, Keren, Nelken, & Deouell, 2008); in a final step, we performed

ICA-based removal of cranial and ocular artifacts following recent

guidelines (Hipp & Siegel, 2013) and using the extended Infomax

process implemented in EEGLAB (average number of components

obtained across participants: 183.564.6; average number of rejected

components: 20.3612.5). It has been shown that while ICA may have

a negligible impact on functional connectivity measures such as the

one employed here (Leistritz et al., 2013), a careful ICA cleaning and

the projection of EEG data into source space can efficiently remove

the confounding effect of cranial and ocular muscle artifacts during the

investigation of visual g activity (Hipp & Siegel, 2013). After ICA clean-

ing, excluded channels were interpolated using the nearest-neighbor

spline method.

Subject-specific lead fields were computed from a simplified realis-

tic head model (locally spherical model with anatomical constraints,

LSMAC) derived from individual MRI images, while confining the solu-

tion space to the grey matter without constraining source orientation

(Brunet, Murray, & Michel, 2011). For each participant, we co-

registered the digitized 3D electrode layout with the structural MRI,

TABLE 1 Maxima of fMRI activation from the group statistic on the contrast Task versus Rest and Irrelevant>Relevant

MNI coordinates

Label Region x y z

Task vs Rest

rSPL Right superior parietal lobule 45 255 49

rMFG Right mediofrontal gyrus 39 8 34

SMC Supplementary motor cortex 6 20 46

lSPL Left superior parietal lobule 227 252 55

lPoC Left post-central gyrus 233 237 43

lV1 Left V1 215 2100 22

lPrC Left pre-central gyrus 239 24 49

rV1 Right V1 15 2100 22

rSFG Right superior frontal gyrus 24 5 55

rIns Right Insula 33 26 1

rITG Right infero temporal gyrus 60 255 28

lIns Left insula 230 23 1

lIOG Left inferior occipital gyrus 236 285 214

rTMid Right middle temporal (fusiform) 42 273 22

Irrelevant>Relevant

mCC Middle cingulate cortex 23 225 40

lSFG Left superior frontal gyrus 221 32 49

lTInf Left inferior temporal gyrus 248 243 214

rMTG Right middle temporal gyrus 57 243 4

lMTG Left middle temporal gyrus 257 258 19

lThal Left thalamus 221 234 1

Note. Abbreviations: l5 left; r5 right; m5middle.
Only cortical and subcortical peaks within spatially segregated clusters and uniquely labeled regions were selected and used to define ROIs for connec-
tivity analysis. Regions from the Relevant> Irrelevant contrast were not included because of their proximity and overlap with ROIs from the other two
contrasts. Regions are labeled using the neuromorphometrics labeling in SPM12.
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defining a solution space of about 5,000 solution points. Distributed

source activity was estimated at each solution point with a linear

inverse solution (weighted minimum norm, regularization parameter:

12; Cartool software (Brunet et al., 2011)). Scalar current density values

were obtained by projecting instantaneous 3D dipoles to the predomi-

nant evoked dipole direction (between 50 and 500 ms after stimulus

onset (Coito et al., 2015; Plomp, Leeuwen, & Ioannides, 2010)). For

source-level functional connectivity analysis, we extracted source activ-

ity from source points located inside a sphere (radius510 mm) around

each one of the 20 fMRI peaks. The solution point with the highest rel-

ative amplitude within each that sphere was then selected, using the

average difference between the magnitude of evoked (between 70 and

150 ms) and baseline (between 2100 and 0 ms) activity across trials.

Data in the resulting set of 20 solution points of interest were then z-

scored across channels and time within participants, and submitted to

directed connectivity analysis.

2.6 | Statistical analysis: EEG data

The analysis of EEG scalp potentials was restricted to a cluster of elec-

trodes in right and left occipito-parietal regions (n5110, see Figure

2.A, right panel). This cluster was determined according to previous

work showing EEG components related to selective attention at occipi-

tal and parietal electrodes, in a comparable experimental design (Anllo-

Vento, Luck, & Hillyard, 1998; Daffner et al., 2012). Event-related

potentials (ERPs) within the cluster were separately averaged for

epochs of the Relevant and Irrelevant conditions. A difference wave

was then computed for each participant by subtracting ERPs to the

Irrelevant condition from those to the Relevant condition. Individual

difference waves were submitted to group-level statistic by means of

multiple t tests, comparing the difference at each time point against

zero (p< .05, corrected using false discovery rate).

The power spectral density (Figure 2.B) was estimated across the

entire EEG epoch separately for each channel and condition by means

of Fourier transformation.

2.7 | Directed connectivity

To measure dynamics of directed connectivity between nodes in the

Irrelevant and Relevant conditions we used a formulation of partial

directed coherence (Baccal�a & Sameshima, 2001) (PDC) based on time-

varying multivariate autoregressive modeling (tvMVAR) through Kal-

man filtering (Milde et al., 2010). PDC is a frequency-domain descriptor

of directed linear relationships among time series in a network of inter-

acting structures. It is based on the concept of Granger causality

(Bressler & Seth, 2011; Granger, 1969) which infers causality in terms

of cross-prediction between pairs of signals: signal A Granger-causes

signal B if past values of A can be used to improve predictions of future

values of B.

The computation of PDC follows the MVAR modeling of a multi-

variate time series, Y, and the estimation of a set of coefficients, A(k),

describing the linear prediction effect of kth past samples of Y, Y(t-k), on

predicting Y(t). The ijth element of A(k), aij(k), quantifies directed

interactions in the time domain from element i to j, up to some lag k,

with k>0 (i.e., excluding instantaneous effects to guard against prob-

lems from volume conduction (Vinck et al., 2015)). A(k) parameters were

estimated through a Kalman filter-based MVAR approach (Milde et al.,

2010), which yields high accuracy in modeling nonstationary, high-

dimensional multivariate processes, resulting in estimates of the MVAR

model at each time point (tvMVAR).tvMVAR modeling requires the

choice of an optimal lag order k and an adaptation constant c regulating

the tradeoff between the speed and stability of tvMVAR estimates

(Milde et al., 2010). To determine the optimal combination of k and c,

we used a two-step procedure. In the first step, multiple tvMVAR mod-

els of increasing order (from k51 to k530) were fitted to all the

epochs of each participant using the method of ordinary least squares

(OLS). We then used a combination of three information criteria, the

Bayesian Information Criterion (BIC), the Akaike Information Criterion

(AIC) and the minimum description length (MDL) to estimate the lag

order k that minimizes each criterion for each participant. A common

model order was chosen as the optimal k corresponding to the 70th

percentile among all ks selected by the information criteria, across par-

ticipants. According to this procedure, we selected a fixed model order

of k510 (50 ms) as a tradeoff between sufficient time–frequency

resolution and over-parametrization.

In the second step, for each epoch and participant in the two con-

ditions, we computed a series of Kalman filter-based tvMVAR models

with fixed model order (k510) but increasing c (from 0.001 to 0.4, in

10 logarithmic steps). The model performance at each c was evaluated

based on two indexes of model fit. The first index is a measure of the

goodness-of-fit, the relative explained variance (RExV) (Schlogl, Rob-

erts, & Pfurtscheller, 2000):

RExV5 12
MSE
MSY

� �� �
3100 (1)

where MSE is the mean square of the model residuals and MSY is the

variance of the multivariate time series Y. The RExV indicates the per-

centage of variance in the signal that is accounted for by the tvMVAR

model. The second index, called percent consistency (PC; Ding, Bress-

ler, Yang, & Liang, 2000), measures the percentage of the correlational

structure in the data that is captured by the MVAR model and is

expressed as

PCk5 12
jP̂2Pj
jPj

 !
� 100 (2)

where P̂is the vector of all pairwise cross-correlations among signals

predicted by the tvMVAR model, up to a lag k550, and P is the vector

of all pairwise cross-correlations in the real data. The RExV and PC for

each adaptation constant were averaged across participants and the

optimal c was selected as the one for which both the RExV and PC

were higher than 85%. According to this procedure, we selected an

adaptation constant of c50.1 which is consistent with the range

reported in previous work (Astolfi et al., 2008).

Thus, combined together, the model order selection based on

information criteria and the choice of c based on RExV and PC pro-

vided a parsimonious MVAR model to best explain variability and
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cross-correlational structures in the data. For each participant, the

MVAR coefficients and PDC were estimated on individual epochs and

epochs for which the MVAR model had PC lower than 70% were dis-

carded from further analysis (mean across participants: 3.964.7%).

Time-varying PDC was then computed from the frequency-

transformed A(k) parameters as

pij x; tð Þ5 j�At;ij xð Þj2PN
m51 j�At;im xð Þj2

(3)

where Aij ðxÞis the spectral representation of the coefficient matrix A(k)

and p quantifies the interaction from element j to i at frequency x and

time t. The square exponents enhance the accuracy and stability of the

estimates (Astolfi et al., 2006) and the denominator allows the normal-

ization of outgoing connections by the inflows (the normalization

denominator represents all incoming connections, from m51 to N),

which improves the accuracy and physiological plausibility of the

results (Plomp, Quairiaux, Michel, & Astolfi, 2014).

As a final step, single-trial, scaled PDC estimates (from 0 to 1)

were multiplied by the spectral power (SP) of each node. For each trial

and node, SP was computed in the 6–80 Hz frequency range using a

multitaper Hanning window function with a sliding window of 5 ms

and a window length of 250 ms. The obtained SP were scaled (from 0

to 1) and multiplied by PDC at the single epoch level. This yielded a

weighted version of PDC (wPDC) which embeds information about the

predominant frequencies of interaction and whose physiological plausi-

bility has been previously validated in animal models (Plomp et al.,

2014, p. 2014).

Single-trial estimates of wPDC were then averaged separately

across conditions resulting in a set of individual matrices (node 3 node

3 time 3 frequency) summarizing the time-varying directed interac-

tions among all nodes in the Relevant and Irrelevant conditions.

2.8 | Statistical analysis: wPDC

Statistical analysis of wPDC as a function of the Relevant and Irrelevant

conditions was restricted to a time window of interest (from 250 ms to

500 ms from stimulus onset, discarding a number of time frames equiv-

alent to the model order) and performed by means of a nonparametric,

cluster-based permutation test which controlled over the false-positive

rate in a multiple comparison setting (Maris & Oostenveld, 2007; Park

et al., 2016). The general approach is as follows: for the contrast Rele-

vant minus Irrelevant, a paired t test across participants is computed for

each time–frequency point of each cell of the wPDC matrix. The result-

ing statistic is then thresholded (here at p< .05) and adjacent significant

time–frequency points are combined to form clusters. For each cluster,

a new statistic is then obtained as the sum of all T values in the time-

frequency points that define the cluster. This procedure was repeated

(n55,000) while shuffling conditions across participants and retaining

the maximum cluster-forming T value obtained. The proportion of surro-

gate clusters with maximum T larger than the one observed defines the

corrected p value (maximum T statistic). The permutation test was per-

formed to identify clusters of significant differences in wPDC between

conditions (p< .05) in the 6–80 Hz frequency range.

We summarized results from the thresholded wPDC matrix as fol-

lows. First, we separately summed all significant interactions across

nodes in the Relevant and Irrelevant condition and we combined them

into a single matrix, summarizing global network dynamics and fre-

quency distribution as a function of whether the Gabor stimulus was

attended or ignored (Figure 4a). As a second step, we computed the

summed outflow for each node in the condition showing the larger

number of significant interactions (the Irrelevant condition). The

summed outflow was calculated as the sum of significant outgoing

wPDC values from each node at each time point, averaged across a fre-

quency band of interest (6–16 Hz, see Figure 4b). In a final step, we

assessed the direction of information flow across time from the two

predominant drivers in the Irrelevant condition (left and right SPL, see

Figure 4c). Three directions of interest were defined according to the

relative position in the axial plane of each receiver node with respect

to the two parietal drivers: an “interhemispheric” direction, assessing

the degree of cross-interaction between the two nodes of interest, a

“feedback” and a “feedforward” direction, summarizing the amount of

parietal driving toward posterior and anterior nodes, respectively. Only

cortical nodes were included in this summary.

2.9 | Phase-amplitude coupling (PAC)

Several algorithms have been proposed to extract phase-amplitude

coupling measures based on different approaches (Dvorak & Fenton,

2014). Here we used the raw modulation index (MIraw) (Canolty &

Knight, 2010; Onslow, Bogacz, & Jones, 2011; Penny, Duzel, Miller, &

Ojemann, 2008) which has better statistical properties than the normal-

ized MI (Penny et al., 2008) and because within-condition normaliza-

tion or surrogate statistics is not suitable for comparing PAC between

experimental conditions. The MIraw was computed for two nodes of

interest (left and right V1). Source activity in the two nodes was filtered

at a set of frequencies in the a- (6–16 Hz, in steps of 1 Hz) and g-band

(50–80 Hz, in steps of 2 Hz) via convolution with complex Morlet

Wavelets (width57) (Lachaux, Rodriguez, Martinerie, Varela, & others,

1999; Onslow et al., 2011). To avoid edge artifacts, filtering was

applied on a time window of interest (from 0 to 500 ms after stimulus

onset) plus additional buffer windows of 500 ms before and after. The

instantaneous low-frequency phase (Ua) and high-frequency amplitude

(Ag) were extracted from the filtered waves and a composite signal

Z n;tð Þ5Ag n;tð Þ3 e iUa n;tð Þð Þ (4)

was created at each time point t and epoch n, for all combinations of

low and high frequencies of interest. The MIraw index was then calcu-

lated separately for the two conditions as

MIraw5

����1N
XN
n51

�Z10% nð Þ

���� (5)

where n[1, . . ., N] are the trials of each condition and �Z10% nð Þ denotes

the 10% trimmed mean length of vector Z, across time bins t, which we

found to be more robust and less sensitive to spurious coupling. This

procedure yielded a set of individual matrices quantifying the degree of

phase-amplitude coupling among a and g frequencies in the two
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conditions. Statistical testing of the difference between conditions (Rel-

evant minus Irrelevant, see Figure 5b, left panel) was performed at the

group-level using permutations (n550,000) and the maximum T-statis-

tic applied over the whole matrix.

To generate Figure 5b (right panel), we computed the phase-

locking value (PLV) (Lachaux et al., 1999; Penny et al., 2008) between

all frequencies in the g-band and the subset of frequencies in the

a-band showing significant differences in the MIraw across conditions.

The PLV was computed for each condition at each time bin t as

PLVt5

����1N
XN
n51

exp i Ua nð Þ2UAg nð Þ
� �����

�
(6)

where UAg nð Þ is the instantaneous phase of the amplitude-filtered high-

frequency signal in trial n. The difference in PLV across conditions

(DPLV) was calculated by subtracting values of the Irrelevant condition

to the Relevant condition at each time point. An exploratory analysis

was performed on DPLV by means of permutation test (p

(uncorrected)< .05, two-tailed), shuffling the labels of conditions across

participants 50,000 times.

To test whether local changes in phase-amplitude coupling at occi-

pital nodes were related to the incoming parietal drive in the a-band

(Section 2.1), we ran a mixed-effects linear regression analysis using

the fitlme procedure with maximum likelihood estimation in Matlab

(Statistics and Machine Learning Toolbox). Mixed-effects linear regres-

sion analysis allows the mixing of categorical and continuous variables

and provides a better account of intersubject variability than canonical

repeated-measures ANOVA models. Log-transformed, single-trial esti-

mates of MIraw (the absolute of �Z10% nð Þ at frequency tiles of significant

differences, Ua510–11 Hz; Ag558–64 Hz) were modeled with the

continuous predictor Parietal adrive (the single-trial sum of incoming a

drive from parietal nodes in the time window between 0 and 500 ms

poststimulus), the factor Condition (Relevant vs. Irrelevant) and their

interaction (Condition 3 Parietal adrive), incorporating subjects as ran-

dom effect over the intercept term. With a similar approach, we also

tested for linear relationships between the amount of PAC at occipital

nodes and the outgoing drive in the g-band from these regions. In this

second model, occipital single-trial estimates of MIraw, the factor Con-

dition (Relevant vs. Irrelevant) and their interaction (Condition 3 MIraw)

were used to predict the log-transformed sum of occipital drive in the

g-band (Occipital gdrive, 50–80 Hz).

3 | RESULTS

3.1 | Visually evoked potentials and power spectrum

The behavioral task is depicted in Figure 1. Participants fixated on a

central spot while presented with sequences of oriented Gabors. They

were instructed either to attend to each Gabor, reporting its orienta-

tion (Relevant condition), or to ignore the Gabors and report an occa-

sional change of color in the fixation spot (Irrelevant condition). In the

Relevant condition, the average orientation discrimination threshold

was 0.838 of visual angle (SD50.37), as estimated by the adaptive

staircase. Participant performed on average 80% correct (SD 59.08),

and average reaction time (RT) was 613 ms (SD5143). In the Irrelevant

condition, color change was correctly detected in 87% of the cases (SD

514.78) and average RT was 485 ms (SD5136). Thus, participants

were exposed to near-identical visual stimulation across conditions, but

under different task demands.

We first investigated the effect of selective attention at the EEG

electrode level. Based on previous reports using similar attentional

manipulations, we expected an SN component, which has been exten-

sively related to attentional selection (Daffner et al., 2012; Hillyard &

Anllo-Vento, 1998). The SN is observed in difference potentials (i.e., by

subtracting the unattended to the attended condition) at posterior-

occipital electrodes. Thus, we restricted our analysis to a set of

posterior-occipital electrodes (see Figure 2a, right panel) and we sub-

tracted the averaged evoked responses across these electrodes in the

Irrelevant condition from those in the Relevant condition. Figure 2a

shows the first significant positive difference across conditions at the

time of early visual evoked responses (from 95 to 105 ms poststimulus,

p(FDR)< .05) followed by the expected SN component, emerging at

225 ms and persisting for the rest of the epoch (first significant time

window from 225 to 275 ms, second time window from 315 to 430

ms and third time window from 460 to 495 ms), consistent with previ-

ous reports (Daffner et al., 2012; Hillyard & Anllo-Vento, 1998). For

Relevant stimuli, the grand average a-band power was reduced (6–12

Hz, peak at 10 Hz, see Figure 2b), with largest reductions at parieto-

occipital electrodes. This shows that our attentional manipulation was

successful in eliciting an SN.

3.2 | Source–level connectivity

To investigate brain dynamics of directed interactions as a function

of selective attention, we first used fMRI to functionally localize a

large-scale network of interest. We identified peaks of task-related

activations in fMRI statistical maps using the contrasts Task vs. Rest

and Irrelevant vs. Relevant (Section 2 and Figure 3). This revealed

significant activations in primary visual cortex, lateral occipital and

middle temporal cortex, parietal and frontal cortex, insular regions,

and cingular cortex, in line with perceptual and attentional networks

described and functionally characterized in previous work (Corbetta

& Shulman, 2002; Sunaert, Van Hecke, Marchal, & Orban, 2000).

The selection of maxima from the fMRI activation clusters resulted

in a set of 20 nodes (Table 1) that were used for EEG source con-

nectivity analysis.

The results of the source–connectivity analysis are summarized in

Figure 4a. This figure shows the sum of the connectivity strengths

across all nodes that significantly varied with selective attention, in the

time and frequency domains. On average, increased connectivity for

Irrelevant stimuli occurred with a clear peak at 10–11 Hz. Although the

range of observed effects (6–16 Hz) encompassed some high u- and

low b-rhythms, we will for simplicity refer to this frequency band as a

band. Increased connectivity for Relevant stimuli was specifically

observed in the g-band (50–80 Hz). Network dynamics in the g-band

emerged rapidly after stimulus onset, at latencies of early visual evoked

responses (first peak at �60 ms after stimulus onset) and showed a
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maximum at 220 ms, followed by a gradual decrease. In the Irrelevant

condition, significant directed interactions in the a-band occurred at

longer latencies (from � 100 ms poststimulus) and increased during the

rest of the epoch.

Relevant stimuli evoked directed interactions in the g-band from

early visual nodes to regions in the lateral-occipital cortex, middle-

temporal cortex, right superior parietal cortex, and from a frontal node to

the occipital cortex (Figure 4d). The significantly increased high-frequency

interactions in the Relevant condition almost exclusively originated from

early visual areas (rV1(95.82%), rTMid(2.74%), lV1(0.06%)). A more com-

plex pattern of significant connections was found in the Irrelevant condi-

tion with an elevated number of reciprocal interactions (Figure 4e). Figure

4b represents the sum of outflow across significant time–frequency

points in the a-band, for each sender node. This summary identified the

left and right parietal cortex as the main drivers in the a-band. Signifi-

cantly increased a-band driving from parietal cortex emerged after about

100 ms from stimulus onset, with initial peaks between 100 and 200 ms

and a later peak after 400 ms, targeting a wide range of nodes.

To further characterize the dynamics of parietal driving in the Irrel-

evant condition, we divided receiving nodes according to their relative

position in the axial plane, with respect to the parietal senders. Three

main directions were defined: posterior (feedback), anterior (feedfor-

ward) and interhemispheric (between the parietal nodes), The dynamics

summed outflow from parietal nodes in these three directions is sum-

marized in Figure 4c. Parietal interactions were characterized by an ini-

tial interhemispheric coupling between the two nodes, emerging at

around 100 ms from stimulus onset, followed by a predominant and

gradually increasing drive to posterior regions, and a late increase in

driving toward anterior regions. A consistent portion of the outgoing a

drive from parietal nodes was interhemispheric or directed toward vis-

ual processing areas (interhemispheric (29.89%), rV1 (29.03%), lMTG

(8.68%), rITG (7.06%), and lV1 (6.07%)). During the initial interhemi-

spheric drive (100–200 ms), 60% of significant bidirectional interac-

tions were directed from the left PPC (l-PPC) to the right (r-PPC) and

40% in the opposite direction.

3.3 | Occipital phase amplitude coupling

The connectivity analysis revealed two main findings: (a) Selectively

attending to stimuli increases the outflow of g activity from early visual

areas and (b) ignoring stimuli evokes distributed interactions in the

a-band, orchestrated by superior parietal areas and directed predomi-

nantly toward nodes in the primary visual cortex. Following these

results, we investigated whether oscillatory influences from parietal

cortex interact with local mechanisms that coordinate the routing of

information carried by high-frequency oscillations from visual areas.

We tested this hypothesis by investigating the impact of parietal a

drive on the degree of local PAC at early visual nodes. PAC reflects

dependencies between the phase of a low-frequency oscillation and

the amplitude of the high-frequency component of a neural signal

(Szczepanski et al., 2014), and has been proposed as a mechanism of

gating (Bonnefond & Jensen, 2015; Jensen & Mazaheri, 2010) and local

coordination of neural processing (Dvorak & Fenton, 2014), by which

low frequencies modulate the excitability of neuronal ensembles (Can-

olty & Knight, 2010).

In line with this idea, we hypothesized that a-g coupling in visual

regions would be higher for Relevant stimuli, reflecting increased proc-

essing and information flow from these nodes. To test this hypothesis,

we compared PAC across conditions (Section 2) for each frequency

point in the range of a- and g-bands, as identified from the connectiv-

ity analysis (6–16 and 50–80 Hz; Figure 4A). As expected, we found an

overall tendency for stronger a–g coupling in the Relevant than in the

Irrelevant condition with a significant difference in the PAC between

phases at 10–11 Hz and amplitudes at 58–64 Hz (p< .05, two-tailed t

test, see Figure 5b, left panel). As shown by the phase locking value

(PLV, see Methods) between phases at 10–11 Hz and g amplitudes

(58–64 Hz), this increased coupling emerged between 100 and 200 ms

from stimulus onset (see Figure 5b, right panel), consistent with the

first window of attentional modulation of connectivity, and occurred

without statistically significant differences in a (p5 .206, two-tailed t

test) and g power (p5 .203) between conditions.

3.4 | PAC mediates c driving from early visual nodes

Hypothesizing that phase-amplitude coupling mediates the effective

outflow of early visual areas, we predicted (a) that the amount of

incoming a-drive from parietal nodes should predict the local PAC and

(b) that PAC predicts outgoing connection strengths in the g-band. To

test this, we used two multilevel linear models (Section 2). In the first

model, we modeled a-g occipital PAC as a function of Parietal adrive,

the Condition factor (Irrelevant vs. Relevant) and their interaction. The

model revealed a significant intercept (b50.65960.260, p< .05, Sat-

terthwaite approximation for degrees of freedom), a significant nega-

tive slope for the continuous predictor Parietal adrive (b520.0076

0.001, p< .001), a significant main effect of Condition (b50.0826

0.010, p< .01) and a significant interaction between Parietal adrive and

Condition (b50.01160.002, p< .001). The results of this multilevel

analysis showed (a) a decrease of occipital PAC with the increasing

parietal drive during Irrelevant trials, (b) an overall higher PAC in the

FIGURE 1 Experimental paradigm. In the Relevant condition,
participants discriminate the orientation (left vs. right) of briefly
presented Gabor stimuli. In the Irrelevant condition, Gabor stimuli were
ignored and participants had to report an occasional color change in
the fixation spot. Epochs for the EEG and connectivity analysis were
time-locked to the onset of each Gabor. Stimuli are not drawn to scale
[Color figure can be viewed at wileyonlinelibrary.com]
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Relevant condition, and (c) that Parietal adrive markedly decreased occi-

pital PAC for Irrelevant trials while it increased occipital PAC on Rele-

vant trials (Figure 5c).

Following a similar approach, in a second model, we tested the

hypothesis that the amount of a–g PAC at visual nodes could pre-

dict the degree of information flow from these regions, as indexed

by the sum of occipital outgoing interactions in the g-band. This

second model had a nonsignificant intercept (b520.58160.641,

p> .05) and a significant positive slope for the continuous predictor

occipital PAC (b50.12460.009, p< .001), indicating that g interac-

tions from early visual nodes increased as a function of the strength

of local PAC. We also obtained a main effect of Condition

(b50.36860.040, p< .001) and a significant interaction between

occipital PAC and Condition (b520.03160.008, p< .001), reveal-

ing that, although outflow g interactions were overall higher in the

Relevant conditions, increases in the amount of occipital PAC led to

larger g outflow in the Irrelevant condition (Figure 5d). Because con-

fidence intervals of the regression widened considerably with

increased PAC values, due to fewer observations, we refrain from

interpreting this interaction further.

4 | DISCUSSION

Our results are compelling evidence that selective attention emerges

from the interplay between frequency-specific, large-scale interactions

and local dynamics of neuronal computation. Our main findings can be

FIGURE 2 Attentional modulations of evoked potentials and power spectrum. (a) Evoked potentials for all EEG channels (top-left) and the
activity evoked by the Gabor stimuli in the two conditions at occipito-parietal sites (top-right, red for the Relevant and blue for the Irrele-
vant condition). The Selection Negativity (SN) component observed in a subset of occipito-parietal electrodes (gray circles, bottom-right
panel) is shown in the bottom-left panel with the corresponding SN scalp topography at 250 ms (bottom-right panel). Significant differences
between evoked activity in the Relevant and Irrelevant condition are highlighted by the orange bottom line (p(FDR)5 .05). Shaded areas are
95% confidence intervals of the mean. (b) The power spectrum density across the whole epoch (PSD, top-right panel) with the difference in
the PSD between conditions for all EEG channels (Relevant minus Irrelevant, bottom-left panel) and the topography of the increased a

activity (6–12 Hz) in the Irrelevant condition at posterior sites (right panel) [Color figure can be viewed at wileyonlinelibrary.com]
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summarized as follows: (a) selective attention increases early influences

from visual nodes to higher level areas in the g-band; (b) suppression of

task-irrelevant stimuli is orchestrated by parietal nodes through top–

down driving in the extended a-band; (c) influences from parietal nodes

determine nested oscillations and signal outflow from occipital sites by

changing local a–g couplings.

The finding of predominant g interactions in response to attended

stimuli is well in agreement with the current understanding of g activity

as a marker of neuronal excitability and functional integration in large-

scale networks dedicated to perceptual processing (Bastos et al., 2015;

Fries et al., 2001; Gruber et al., 1999; Jensen et al., 2007; Michalareas

et al., 2016; M€uller, Gruber, & Keil, 2000; Tallon-Baudry et al., 2004;

Vossel et al., 2014). Poststimulus g oscillations in visual cortex have

been shown to correlate with neuronal spikes (Belitski et al., 2008) and

to foster neuronal gain mechanisms and behavioral performance (Ni

et al., 2016; Womelsdorf, Fries, Mitra, & Desimone, 2006). Further-

more, recent work in primates and humans has shown that influences

along feedforward projections are dominated by g-band synchroniza-

tion, suggesting a pivotal role for high frequencies in the propagation

of task-relevant signals (Bastos et al., 2015; Bosman et al., 2012; Buf-

falo et al., 2011; Grothe, Neitzel, Mandon, & Kreiter, 2012; Jia, Tanabe,

& Kohn, 2013; Michalareas et al., 2016; Van Kerkoerle et al., 2014).

Here, we provide the first investigation of selective attention using

directed functional connectivity with high temporal resolution. This

allowed us to show the fast emergence of directed g-influences from

primary visual areas, specifically for task-relevant stimuli. These rapid

interactions occurred with initial peaks at latencies of visual evoked

responses (�90 ms) and propagated in the feedforward direction, tar-

geting regions involved in higher level visual processing (i.e., lateral

occipital cortex and middle temporal gyrus (Grill-Spector, Kourtzi, &

Kanwisher, 2001; Ungerleider & Haxby, 1994)) visual attention (right

parietal lobule; Corbetta & Shulman, 2002) and response selection/

evaluation (left insular cortex; Corbetta, Miezin, Dobmeyer, Shulman, &

Petersen, 1991; Eckert et al., 2009; Menon & Uddin, 2010). By charac-

terizing the fast dynamics with which g oscillations route attended

information along the ascending pathway, we expand on previous

work relating attention to increased g activity (M€uller et al., 2000) and

synchronization (Fries et al., 2001; Fries, Womelsdorf, Oostenveld, &

Desimone, 2008).

Whereas g-band interactions increased with attentive stimulus

processing, irrelevant stimuli triggered wide-spread influences in a

range of lower frequencies extending from high u to low b (6–16 Hz)

and predominated by oscillations in the a band (10–11 Hz). Recent

insights on the functional role of a activity have suggested its involve-

ment in mediating inhibition of cortical structures activated by irrele-

vant events (Herrmann, Str€uber, Helfrich, & Engel, 2016; Jensen &

Mazaheri, 2010; Klimesch, 2012; Rihs, Michel, & Thut, 2007). Contrary

to high frequencies, a oscillations are inversely related to attention and

behavioral performance, their amplitude increases in regions associated

with irrelevant processes and decreases in areas engaged by relevant

and attended stimuli (Jensen & Mazaheri, 2010; Klimesch, 2012).

Therefore, a-band synchronization has been proposed as a mechanism

to prevent local neural analyses and network propagation of stimulus

information (Womelsdorf & Fries, 2008). Here we found distributed

interactions centering on the a band that began at around 100 ms after

stimulus onset and persisted until the end of each epoch (500 ms), thus

encompassing early and later stages of perceptual processing. This

result is consistent with the emergence of a stimulus-evoked brain-

FIGURE 3 fMRI region of interest selection. Regions with higher activity in both tasks compared to rest are shown in the green color
scale. Negative and positive results from the comparison Irrelevant versus Relevant are shown in the blue and red color scales, respectively.
Significant voxels (p(unc.)5 .0001, minimum cluster size55 voxels) are superimposed on a MNI ICMB152 Average Brain atlas using

MRIcron software (www.mricro.com) (Rorden & Brett, 2000) [Color figure can be viewed at wileyonlinelibrary.com]
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wide inhibitory drive through a oscillations that prevents multiple brain

regions from receiving irrelevant and interfering information.

It is interesting to note that the time course of a interactions

roughly paralleled the selection negativity (Hillyard & Anllo-Vento,

1998) component observed at the sensor level. Our findings, therefore,

suggest that the well-known SN might result from increased parietal

driving that inhibits the information transfer from visual areas.

As for the sources of such top–down inhibitory drive, our study is

the first to reveal the key driving role of the posterior parietal cortex

(PPC) from EEG recordings. This result is in line with the established

role of PPC in coordinating shifts of spatial attention and disengage-

ments of attention from stimuli (Posner & Petersen, 1990) and with

more recent studies suggesting its top–down regulatory effect on vis-

ual selection (Bressler, Tang, Sylvester, Shulman, & Corbetta, 2008;

Hung, Driver, & Walsh, 2005; Kastner & Ungerleider, 2001; Plomp,

Hervais-Adelman, Astolfi, & Michel, 2015; Yantis et al., 2002)

We show that a-mediated inhibitory signals originated from sour-

ces in the superior portion of the PPC. These suppressive influences

FIGURE 4 Time-varying directed connectivity results. (a) Time–frequency plot summarizing the difference in global network dynamics across
conditions. The summed strength of all interactions that showed significant attentional modulation (p< .05, cluster-based correction for multi-
ple comparisons) is shown in the yellow-red color scale for the Relevant> Irrelevant comparison and in the cyan-blue color scale for the Irrele-
vant>Relevant comparison. Marginal plots on the right represent time-collapsed frequency distributions of significant interactions. Marginal
plots on the top are frequency-collapsed distributions of interactions over time. Marginal distributions are plotted separately for the Relevant
(red) and Irrelevant (blue) condition. (b) Sum of the total a outflow (6–16 Hz) in time from each node in the Irrelevant condition. (c) Direction of
a interactions from parietal nodes over time. (d) Average of significantly increased interactions in the g-band during the Relevant condition. (e)
a-band connections with average strength below 1% of the total network are not shown [Color figure can be viewed at wileyonlinelibrary.com]
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emerged swiftly after stimulus onset, first targeting regions of early

perceptual processing and then interacting with nodes in the frontal

cortex at longer latencies (Figure 4). This suggests that the PPC may

have the key function to prevent irrelevant processing in a hierarchical

fashion, from the inhibition of early perceptual analyses to the tracing

and suppression of residual signals at later stages. We should caution

that although we functionally identified these sources in a superior por-

tion of the parietal cortex using fMRI, the low spatial resolution of EEG

and potential residual mixing of signals after source reconstruction, pre-

vent the complete separation of activity in these regions from that in

neighboring loci, such as those reported by previous work (Plomp et al.,

2015; Posner & Petersen, 1990) and thus, here we broadly refer to the

parietal nodes as the PPC.

The first pattern of a-band driving from parietal cortex was inter-

hemispheric, targeting the homologous region in the contralateral

hemisphere, with stronger interactions from the left to the right PPC.

Selective inhibition of visual information may therefore require initial

interhemispheric interactions that set the parietal system into an inhibi-

tory state, after which PPC effectuates attentional suppression is

through long-range interactions. This interpretation is consistent with

recent work showing that inhibitory interactions induced by bilateral

TMS over PPC prevents the parietal system from promoting the excit-

ability of visual areas (Silvanto, Muggleton, Lavie, & Walsh, 2008).

In addition to demonstrating the critical role and the dynamics of

a-band interactions from PPC, our results suggest a mechanism for

how parietal cortex modulates activity in distal areas during selective

attention. We demonstrated, for the first time, a direct link between

the amount of incoming a modulation and the degree of phase-

amplitude coupling (PAC) in occipital areas. PAC reflects the coupling

of the amplitude of high-frequency oscillations to the phase of slower

components (Szczepanski et al., 2014) and has been positively related

to neuronal processing and communication (Canolty & Knight, 2010;

Dvorak & Fenton, 2014; Voytek et al., 2010). Although some valid criti-

cism has been raised concerning the measures and physiological mean-

ing of cross-frequency coupling (Aru et al., 2015), large body of work

suggests that PAC serves as an information integration mechanism

over multiple temporal and spatial scales (Canolty & Knight, 2010; Jen-

sen & Colgin, 2007). During PAC, the amplitude of a fast rhythm (e.g., g

oscillations), and the potentially related degree of neuronal excitability,

increases at specific phases of a slow oscillation (e.g., a rhythm). This

system of nested oscillations implies that low frequencies rhythmically

modulate and coordinate neuronal activity, optimizing information

processing within ensembles of neurons (Dvorak & Fenton, 2014) and

favoring the exchange of relevant information among distant ensem-

bles oscillating in synchrony (Voytek et al., 2010).

Our work demonstrates a strong relationship between parietal

drive in the a range, local occipital PAC, and g-band driving. Previous

work has emphasized the potential role of PAC as a mechanism for

communication within and between cortical areas under attentional

demands (Sadeh, Szczepanski, Knight, & Mangun, 2014), suggesting a

potential target mechanism for the influence of top–down selective

modulation. In line with this view, our findings show that attentive

processing of stimuli leads to increased a-g PAC in visual cortex, which

FIGURE 5 Parieto-occipital interactions affect occipital phase amplitude
coupling. (a) Differences in occipital PAC (left panel) and PLV (right panel)
across conditions. PAC is shown for low-frequency phases (6–16Hz) and
high-frequency amplitudes (50–80Hz) of interest. PLV is shown for low-
frequencies phases of significant PAC (10–11Hz) and high-frequencies
amplitudes (50–80Hz). Opaque areas represent regions of significant PAC
(p< .05, maximumT-statistic) and PLV (p(unc.)< .05, permutation-based
statistic). (b) Relationship between the summed parietal a outflow to V1 and
the PACmeasured at occipital sites for the Irrelevant (left panel, blue dots
and line) and Relevant (middle panel, red dots and line) condition. The left
panel shows the interaction Condition3 Parietal a-drive, as resulting from
themixedmodel fit. The separate plots on the right show the raw data for
the two conditions with their regression line. (c) The left panel shows the
interaction Condition3Occipital PAC as resulting from themixedmodel fit.
The plots on the right show the raw data for the two conditions with their

regression line. In panels (b) and (c), dots are single trial values of all partici-
pants, with individual random intercepts removed. Lines and shaded areas
are the estimated regression lines and 95% prediction intervals from each
multilevel model. Darker colors reflect points closer to the predicted regres-
sion line [Color figure can be viewed at wileyonlinelibrary.com]
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in turn, predicts the degree of occipital outgoing g interactions. Ignor-

ing a stimulus, on the other hand, leads to decreased occipital a-g PAC,

and this decrease is determined by the incoming parietal inhibitory

drive. These results point to an important functional interpretation of

the role of PPC in selective attention: to ignore irrelevant information,

parietal inhibitory a interactions disrupt structures of information proc-

essing at target regions by decoupling fast from slow oscillations and

thus, reducing the influences that these regions exert on upstream

areas. This way, local PAC in V1 works as a mechanism for signal prop-

agation to upstream areas, while PPC gates neuronal communication

by adjusting occipital PAC as a function of attentional demands

through directed interactions in the a-band.

We found that selective attention operates by disrupting a–g cou-

pling in visual areas and that this disruption is brought about by

directed a-band influences from parietal to visual areas. Recent studies

using Granger causality measures have shown similar frequency-

specific interactions in selective attention, in which slow-wave activity

(e.g., a and b) in higher order visual areas modulates lower order

regions, while the reverse occurs for g oscillations (Bastos et al., 2015;

Bonnefond, Kastner, & Jensen, 2017; Van Kerkoerle et al., 2014;

Michalareas et al., 2016; von Stein, Chiang, & K€onig, 2000). Further-

more, feedback activity in the a–b range has been found to promote

the feedforward propagation of visual g-band activity during atten-

tional selection (Richter, Thompson, Bosman, & Fries, 2017), an evi-

dence that corroborates the regulatory role of top–down a influences

observed in our study. The critical interplay between top–down a and

bottom–up g in visual processing has been also investigated using

microstimulation: the electrical stimulation of V1 causes increases of

gamma activity at later stages of the visual hierarchy (V4), whereas the

stimulation of V4 increases alpha power in V1 (Van Kerkoerle et al.,

2014).

While EEG recordings reflect the aggregate activity over many

cortical columns, recent work on the functional roles of cortical layers

in attention is broadly consistent with our findings and suggests a pos-

sible laminar mechanism for attentional selection through interareal

interactions. In the laminar organization of visual cortex, for instance,

feedback projections to layer I and V are predominantly in the a range,

whereas g band activity is associated with feedforward communication.

Spontaneous activity recorded from V1 of awake macaques has

revealed that the phase of a activity at infragranular layers determines

the power of g band activity at supragranular layers (Spaak, Bonnefond,

Maier, Leopold, & Jensen, 2012). It has also been shown that infragra-

nular a phase modulates supragranular spiking activity during visual

stimulation, suggesting a functional role for this coupling in visual proc-

essing (Dougherty, Cox, Ninomiya, Leopold, & Maier, 2017). Although

a-band activity is also present in other cortical layers and feedback

activity is unlikely to be its only function (Haegens et al., 2015), this

body of work suggests a plausible mechanism of cross-frequency cou-

pling in layer V that is controlled by downstream areas and modulates

processing in supragranular layers, which may account for how our

large-scale findings could have come about.

Our findings provide empirical support for a recently proposed

account of cross-frequency neuronal communication (Bonnefond et al.,

2017). On this theory, neuronal communication occurs through syn-

chronization between areas at low frequencies, which in turn aligns the

excitability phase of different pools of local neurons. According to this

framework, neuronal ensembles exchanging task-relevant information

would oscillate coherently in the a-band with a collective decrease in a

power. The low a amplitude would allow longer windows of shared

excitability among synchronized regions, favoring interactions in the

g-band. This predicts that attentional suppression may be accompanied

by two phenomena: (a) a substantial increase in a power and (b) a loss

of a synchrony among local and distal neuronal pools processing task-

irrelevant signals, with a consequent reduction of their g-mediated

interactions. Whereas our findings are broadly in line with this perspec-

tive, they tend to favor the latter mechanism as the primary mediator

of attentional inhibition. It is worth emphasizing that, at the source

level, occipital a power was not significantly increased by the occur-

rence of irrelevant stimuli, nevertheless, g-band interactions and occipi-

tal PAC were both decreased (Dvorak & Fenton, 2014). This suggests

that attentional suppression may be the product of an induced non-

rhythmic (e.g., desynchronized) behavior in the excitability profile of

neuronal ensembles and a resulting failure to establish coherent, high-

frequency interactions with other regions. Crucially, our results indicate

that such desynchronization of occipital activity may be induced by

parietal neurons through fast and directed interactions in the a-band.

Although our paradigm did not allow a direct (e.g., behavioral) mea-

sure of participants’ attention, similar protocols have been widely used

in the fMRI (Sunaert et al., 2000) and EEG (Daffner et al., 2012; Hillyard

& Anllo-Vento, 1998) literature to investigate mechanisms of selective

attention underlying the processing of task-relevant or irrelevant stim-

uli. Our work shows how task-irrelevant signals, carried by high-

frequency oscillations, dissipate rapidly after stimulus onset as a conse-

quence of the top–down inhibitory and suppressive control of higher

level areas. The gating by induced asynchrony account proposed here

may represent a general mechanism by which top–down attention

exerts control over sensory signals: after sensory representations are

formed in response to irrelevant stimuli, top–down biases would inter-

vene to dissolve this information locally, at the level of early sensory

areas, thus minimizing its propagation and resonance into later circuits

of working memory, decision-making, and postperceptual processing.

Such a mechanism, for instance, could have a key role in explaining the

reduced attentional capture and disengagement of attention from

those features and locations that do not match top–down goals

(Becker, Folk, & Remington, 2013; Belopolsky, Schreij, & Theeuwes,

2010; Gaspelin & Luck, 2017; Geng, 2014; Pascucci & Turatto, 2015;

Turatto, Bonetti, & Pascucci, 2017) and may underlie the experience-

dependent process by which attentional orienting becomes immune to

learned distractors (Neo & Chua, 2006; Pascucci & Turatto, 2015; Tur-

atto et al., 2017; Turatto & Pascucci, 2016).

An interesting question for future studies would be to extend our

findings to other classical attentional task (i.e., the Posner paradigm) in

which behavioral performance can be directly related to network

dynamics at critical frequency bands. In a similar vein, we focused on

two specific frequency bands identified in a data-driven way. This does

not exclude that in other paradigms, under different attentional
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manipulations, other oscillatory components may play critical roles (Sie-

gel et al., 2008; Szczepanski et al., 2014). Moreover, here we show

how parietal cortex modulates local PAC in visual areas through

directed influences at the low-frequency range. Future studies may

extend these findings by investigating the role of interregional and

directional PAC (Jiang, Bahramisharif, van Gerven, & Jensen, 2015),

focusing on the type of long-range cross-frequency interactions that

regulate information flow in selective attention. In conclusion, our find-

ings support the view of selective attention as a top–down modulation

of oscillatory activity (Womelsdorf & Fries, 2008) and provide first evi-

dence of the causal role of a-band influences from parietal cortex in

biasing rhythmic synchronization and neural efficacy at target regions.

4.1 | Data and code availability

The data and code generated during this study are openly available

from the corresponding author on reasonable request.
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