Supplementary Information

Two-component latency distributions indicate two-step vesicular release at simple glutamatergic synapses

Miki et al.

Supplementary Figure 1: Latencies of APs and release events in paired recordings Latencies of APs and release events were detected by paired recording. Whole cell recording and cell-attached recording were performed in connected postsynaptic MLI and presynaptic GC soma.

a: A representative trace of cell-attached recording from a GC soma. 1 ms voltage steps were applied at 200 Hz. Peaks of AP-associated currents are shown by asterisks. These peaks correspond to the time point of maximum slope of the presynaptic AP¹. We measured the time difference between the onset of voltage step and the peak of AP-associated currents (arrows in bottom panels).

b: Top, plot of AP latency (mean \pm sd) vs. stimulus number, showing little jitter at a given stimulus number, and little variation of the mean latency during an AP train. Bottom, in contrast to AP latencies (grey squares, same as top panel), EPSC latencies (open symbols; mean \pm sd) display significant jitter at each stimulus number, and their mean value increases with stimulus number. This plot displays the latencies of first events after each stimulation; an all-latency plot would display even broader scatter.

c: Group analysis of AP latencies from 3 paired recordings (mean \pm sem). Gray lines indicate averages of individual paired recordings.

Supplementary Figure 2: Ca2+ channel distributions in AZ

a: Left: A representative example of Ca²⁺ channel labeling in a single PF-MLI AZ of a SDS-treated freeze fracture replica (SDS-FRL). Same data pool as in Miki et al.². We chose an AZ that displayed an area close to the average ($0.0427 \mu m^2$), and a number of Ca²⁺ channel close to the average number corrected by labeling efficiency² (27). Contour lines show distances from nearest Ca²⁺ channel. Dashed line shows the borders of the AZ area. Right: Histogram of area distribution of this representative data as a function of distance from nearest Ca²⁺ channel in the AZ region.

b: Histogram of area distribution of the model AZ in Figure 1c. Note the similarity with the histogram in **a**. We used the slightly idealised version of Figure 1c in our simulations, because the 3-fold rotation symmetry of the distribution in Figure 1C facilitated the calculations of Ca^{2+} diffusion.

c: Comparison of [Ca²⁺] waveforms calculated using the VGCC distribution in A and the model VGCC distribution of Fig. 1c.

d: Comparison of peak amplitudes of [Ca²⁺] waveforms between VGCC distribution from SDS-FRL data and model VGCC distribution. Upper: Ratio of peak [Ca²⁺] from model VGCC distribution to that from the SDS-FRL representative data. Lower: Peak [Ca²⁺] as a function of distance from nearest VGCC, for the two distributions.

Supplementary Figure 3: 2-photon Ca²⁺ imaging in PF varicosities

a: Time course of presynaptic intracellular $[Ca^{2+}]$ in 1.5 and 3 mM extracellular $[Ca^{2+}]$ conditions when applying 4 APs at 100 Hz.

b: Peak [Ca²⁺] as a function of AP number in 1.5 and 3 mM extracellular [Ca²⁺]. Linear fits have slopes of 0.24 and 0.32 μ M/AP for 1.5 and 3 mM [Ca²⁺] respectively. The difference between the value of 0.32 μ M/AP in 3 mM extracellular [Ca²⁺] obtained here and the value of 0.90 μ M/AP used for [Ca²⁺] simulation in Fig. 1d arises from the presence of exogenous buffers associated with the recording solution in the present experiments (see Methods).

Supplementary Figure 4: Values of parameters for the simulation of paired-pulse experiments

a: Left panel: Local [Ca²⁺] waves at 40 nm distance from Ca²⁺ channel clusters for paired pulse stimulations with different inter-AP intervals. Right panel: P_r were calculated from local [Ca²⁺] waves using allosteric model with parameter values k_{on} = 5 x 10⁸ M⁻¹s⁻¹, k_{off} = 5000 s⁻¹, b = 0.75, g = 1500 s⁻¹, f = 31.3.

b: Left panel: Global [Ca²⁺] waves for paired pulse stimulation with different intervals. Global [Ca²⁺] was defined as the average of [Ca²⁺] in x-y plane at z of 0.25 µm in the simulation bouton with a volume of 0.9(x) x 0.5(y) x 0.5(z) µm (Fig. 1c). Right panel: Replenishment rates from replacement site to docking site (R_f: forward rate, R_b: backward rate). R_f is calculated using Michaelis-Menten kinetics based on the global [Ca²⁺] profile shown in the left panel, assuming a maximum rate V_m = 800/s and a K_d of 2 µM. While this treatment is in conformity with previous modeling of R_f (ref. 3), another option would be to calculate R_f based on the quickly evolving local [Ca²⁺] prevailing near the replacement site, at a distance of 45-90 nm from the plasma membrane, and to introduce a downstream rate limiting step to represent actual SV movement. We preferred the simpler first option to the second, potentially more relevant modeling because it contained a smaller number of free parameters. c: Docking site occupancy (δ) displays a quick decrease followed by a rebound and an overshoot over the basal value within 5 ms. Then it slowly decays back to the resting state.

Supplementary Figure 5: Effects of various experimental manipulations on release rates during trains

Overall release rates (upper row) have been decomposed into a superslow component representing asynchronous release (middle row; expanded vertical scale) and a phasic component (lower row). To extract superslow component, we blanked release rates during 4 ms after every AP, filtered remaining points with a 5 points window (black trace in middle row) and performed smoothing (red trace in middle row).

a: Comparison between control synapses (3 mM external [Ca²⁺] and 200 Hz stimulation) and synapses pretreated with latrunculin B.

b: Comparison between 1.5 mM and 3 mM external [Ca²⁺] (200 Hz stimulation in each case).

c: Comparison between control recordings (3 mM external [Ca²⁺] and 100 Hz stimulation) and test recordings obtained after adding 1 mM TEA to increase release probability.

a: Average release rate (per ms and per simple synapse; 3mM external $[Ca^{2+}]$ and 200 Hz stimulation; n = 10 experiments). Middle panel: Expanded vertical scale highlighting asynchronous release. Lower panel: Average release rate after subtracting asynchronous release from original average release rate.

b: Cumulative latency counts.

c: Superimposed cumulative latency distributions for each AP stimulation during 8-AP train. Average traces of 8-AP responses (thick black curve) is fitted with a double exponential (red) with indicated τ_{fast} and τ_{slow} values.

d: Relative contributions of τ_{fast} and τ_{slow} component as a function of stimulus number.

Supplementary Figure 7: Parameter values for the simulation of 8-pulse experiments in 3 and 1.5 mM external [Ca²⁺] conditions

a: Average $[Ca^{2+}]_i$ wave at a 40-nm distance from the nearest Ca^{2+} channels for 200 Hz stimulation in 3 mM external $[Ca^{2+}]$ condition (3Ca; left). P_r was calculated from local $[Ca^{2+}]_i$ using the standard allosteric model ($k_{on} = 5 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$, $k_{off} = 5000 \text{ s}^{-1}$, b = 0.75, $\gamma = 2800 \text{ s}^{-1}$, f = 31.3 ; upper middle). The bottom middle panel shows a vertically expanded plot of P_r, illustrating the widening and accumulation of late

release rate as a function of stimulus number. Slow P_r was calculated starting from the local $[Ca^{2+}]_i$ profile shown in the left panel, using modified parameter values of the allosteric model ($k_{on} = 5 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$, $k_{off} = 2000 \text{ s}^{-1}$, b = 0.5, $\gamma = 2000 \text{ s}^{-1}$, f = 31.3; right). The lower right panel shows a diagram illustrating the return from high P_r release to low P_r release, where each parameter linearly changes from its high P_r value to its low P_r value over a period of 40 ms.

b: Left, global $[Ca^{2+}]_i$ wave for 3Ca condition. Middle, R_f was calculated from global $[Ca^{2+}]_i$ wave using a Michaelis-Menten reaction having a maximum speed (V_m) of 800 s⁻¹ and a dissociation constant (K_d) of 2 μ M. R_b value was set such that the occupancies of docking site ($\delta = 0.3$) and replacement site ($\rho = 0.9$) were kept constant at the resting state assuming $[Ca^{2+}]_{rest}$ of 50 nM. Right, S_f was calculated from global $[Ca^{2+}]_i$ wave using a Michaelis-Menten reaction having $V_m = 60$ sec⁻¹ and $K_d = 2 \ \mu$ M. S_b value was set such that the occupancy of replacement site ($\rho = 0.9$) was kept constant at the resting state.

c: Average $[Ca^{2+}]_i$ wave at 40-nm distance from the nearest Ca^{2+} channels for 200 Hz stimulation in 1.5 mM external $[Ca^{2+}]$ condition (1.5Ca; left). P_r was calculated from local $[Ca^{2+}]_i$ with standard allosteric model parameters ($k_{on} = 5 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$, $k_{off} = 5000 \text{ s}^{-1}$, b = 0.75, $\gamma = 2800 \text{ s}^{-1}$, f = 31.3; upper middle). Expanded P_r plot displays signifcantly less widening and accumulation of late release rates compared to 3Ca (bottom middle panel; compare with A). Slow P_r was calculated from local $[Ca^{2+}]_i$ with the modified allosteric model ($k_{on} = 5 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$, $k_{off} = 2000 \text{ M}^{-1}\text{s}^{-1}$, b = 0.5, $g = 2000 \text{ s}^{-1}$, f = 31.3), showing a marked decrease of the slow release rate compared to 3Ca (right panel).

d: Left, global $[Ca^{2+}]_i$ wave for 1.5Ca. Middle, R_f was calculated by global $[Ca^{2+}]_i$ wave using a Michaelis-Menten reaction having a maximum speed (V_m) of 800 s⁻¹ and a dissociation constant (K_d) of 2 μ M. R_b value was set such that the occupancies of docking site ($\delta = 0.15$) and replacement site ($\rho = 0.9$) were kept constant at the resting state assuming $[Ca^{2+}]_{rest}$ of 50 nM. Right, S_f was calculated from global $[Ca^{2+}]_i$ wave using a Michaelis-Menten reaction having $V_m = 60 \text{ sec}^{-1}$ and $K_d = 2 \mu$ M. S_b value was set such that the occupancy of replacement site ($\rho = 0.9$) was kept constant at the resting state.

Supplementary Figure 8: Parameter values for the simulation of 100-Hz 8-pulse experiments in control and in TEA

a: Average $[Ca^{2+}]_i$ wave at a 40-nm distance from the nearest Ca^{2+} channels for 100 Hz stimulation in 3 mM external $[Ca^{2+}]$ condition (3Ca; left). P_r was calculated on the basis of local $[Ca^{2+}]_i$ using the allosteric model ($k_{on} = 5 \ge 10^8 \text{ M}^{-1}\text{s}^{-1}$, $k_{off} = 5000 \text{ s}^{-1}$, b = 0.75, $\gamma = 2800 \text{ s}^{-1}$, f = 31.3 ; upper middle). The bottom middle panel shows a vertically expanded plot of P_r, showing less slowing and less accumulation than at

200 Hz (compare with Supplementary Fig. 6A). As before slow P_r was calculated starting from the local $[Ca^{2+}]_i$ profile shown in the left panel, using the modified allosteric model ($k_{on} = 5 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$, $k_{off} = 2000 \text{ s}^{-1}$, b = 0.5, $\gamma = 2000 \text{ s}^{-1}$, f = 31.3; right).

b: Left, global $[Ca^{2+}]_i$ wave for 3Ca condition at 100 Hz. Middle, R_f was calculated from global $[Ca^{2+}]_i$ wave using a Michaelis-Menten reaction having a maximum speed (V_m) of 800 s⁻¹ and a dissociation constant (K_d) of 2 μ M. R_b value was set such that the occupancies of docking site ($\delta = 0.3$) and replacement site ($\rho = 0.9$) were kept constant at the resting state assuming $[Ca^{2+}]_{rest}$ of 50 nM. Right, S_f was calculated from global $[Ca^{2+}]_i$ wave using a Michaelis-Menten reaction having $V_m = 60 \text{ sec}^{-1}$ and $K_d = 2 \mu$ M. S_b value was set such that the occupancy of replacement site ($\rho = 0.9$) was kept constant at the resting state.

c: Average $[Ca^{2+}]_i$ wave at 40-nm distance from the nearest Ca^{2+} channels for 100 Hz stimulation in 3 mM external $[Ca^{2+}]$ and in the presence of 1 mM TEA (left). P_r was calculated on the basis of local $[Ca^{2+}]_i$ with standard allosteric model parameters $(k_{on} = 5 \times 10^8 \text{ M}^{-1}\text{s}^{-1}, k_{off} = 5000 \text{ s}^{-1}, b = 0.75, \gamma = 2800 \text{ s}^{-1}, f = 31.3$; upper middle). Expanded P_r plot displays significantly more widening and accumulation of late release rates compared to 3Ca (bottom middle panel; compare with A). Slow P_r was calculated by local $[Ca^{2+}]_i$ with the modified allosteric model $(k_{on} = 5 \times 10^7 \text{ M}^{-1}\text{s}^{-1}, k_{off} = 2000 \text{ s}^{-1}, b = 0.5, \gamma = 2000 \text{ s}^{-1}, f = 31.3$), showing a marked increase of the slow release rate compared to 3Ca (right panel).

d: Left, global $[Ca^{2+}]_i$ wave for 3Ca plus TEA condition. Center, R_f was calculated from global $[Ca^{2+}]_i$ wave using a Michaelis-Menten reaction having a maximum speed (V_m) of 800 s⁻¹ and a dissociation constant (K_d) of 2 μ M. R_b was set such that the occupancies of docking site ($\delta = 0.3$) and replacement site ($\rho = 0.9$) were kept constant at the resting state assuming $[Ca^{2+}]_{rest}$ of 50 nM. Right, S_f was calculated from global $[Ca^{2+}]_i$ wave using a Michaelis-Menten reaction having $V_m = 60$ sec⁻¹ and $K_d = 2 \ \mu$ M. S_b value was set such that the occupancy of replacement site ($\rho = 0.9$) was kept constant at the resting state.

Supplementary Figure 9: Release simulations for train stimulus without changes in $[Ca^{2+}]_i$ profile or without shift to slower P_r

Kinetics of total cumulative release and cumulative release from docking site (DS), replacement site (RS), and recycling pool.

a: Monte Carlo simulation was performed using same P_r among all stimulations as that for single stimulation in 3 mM external [Ca²⁺] simulation. Left, total cumulative release and cumulative release from 3 different resources are shown: total (black), DS (red), RS (blue), and recycling pool (orange). Right, τ values for kinetics of release from DS (red) and RS (blue) were derived from fitting the cumulative release in each stimulation with a single exponential curve.

b: Monte Carlo simulation was performed without using slower P_r following previous release. Left, total cumulative release and cumulative release from 3 different resources are shown in black for total, red for DS, blue for RS, and orange for recycling pool. Middle, τ values for kinetics of release from DS (red) and RS (blue) were derived from fitting the cumulative release in each stimulation with a single exponential curve. Total cumulative release of each response was fitted with a double exponential curve having τ_{fast} of 0.49 ms and τ_{slow} of 1.87 ms, providing fast and slow component amplitudes as a function of stimulus number (right).

Supplementary Figure 10: Binomial statistical analysis of the number of release events in 3 mM external [Ca²⁺] simulation

a: The mean and variance of the number of events were determined in a 5-ms period after individual stimulations in 3 mM external $[Ca^{2+}]$ simulation. The resulting curve can be fitted with a parabola indicating a release site number N = 5.60 (dashed curve).

b: The probability distribution p(k) to observe k events is displayed for the second stimulus in A. The binomial model approximates the plot from the simulation (dashed line; N = 5; mean probability P = 0.29).

Supplementary Figure 11: Simulated latency distributions depending on the distance between release sites and Ca²⁺ channel clusters

 Ca^{2+} waves at 40-, 100-, and 150-nm from the perimeter of Ca^{2+} channel cluster were used to simulate cumulative release. The cumulative release curves were normalized and fitted with a single exponential to estimate release latencies. The time constant τ was 0.528, 0.766, and 1.28 ms for 40, 100, and 150 nm, respectively.

Supplementary Figure 12: Monte Carlo simulations for paired pulse experiments
a: Total cumulative release for paired stimulations with 6 different intervals.
b: Cumulative releases for SVs originating from DS and RS are shown in red and blue, respectively. This plot shows a marked increase in the relative contribution of SVs coming from RS for the second stimulation compared to the first.

Simulation Parameters	value	units	Reference
Simulation volume	09-05-05	um	Modified from Hillman & Chen ⁴
(bouton size) x-y-z	0.3 - 0.3 - 0.3	μπ	Noulled north Fillman & Cherr
Simulation voxel size	10	nm	
Time step for Ca	0.0303	uS	
simulation			
La entry per single			
			Calculated from Weber et al ⁵
Maximal single channel	0.2 (3 mM Ca)		and Li et al 6 for 3 mM Ca
current	0.14 (1.5 mM Ca)	рА	Adjusted to Ca imaging data
			for 1.5 mM Ca
			Sabatini & Regehr ⁷ for control.
FWHM of Ca ²⁺ entry		ms	Adjusted to Ca imaging data
	0.00 (TEA)		for TEA.
Diffusion coefficient	0.22	μm² ms⁻¹	Allbritton et al. ⁸
Basal Ca ²⁺	50	nM	Sabatini & Regehr ⁷
	0.0		Listershare at al 9
Ca extrusion	0.9	ms	Heimchen et al.*
Endogonous fixed			
buffer properties			
k _{on}	200	mM ⁻¹ ms ⁻¹	
k _{off}	10	ms ⁻¹	Sabatini & Regehr ⁷
Concentration	2	mM	
ATP calcium binding			
properties		. 1 . 1	
K _{on}	500	mM ms	
K _{off}	0.22	ms	Naragni & Nener
Dirusion coencient	0.22	µm ms	Modified from Nakamura et
Free concentration	0.2	mM	al. ¹¹
Calretinin			
T site k _{on}	1.8	mM ⁻¹ ms ⁻¹	
T site k _{off}	0.053	ms ⁻¹	1
R site k _{on}	310	mM ⁻¹ ms ⁻¹	Faas et al. ¹²
R site k _{off}	0.02	ms ⁻¹	
Diffusion coefficient	0.02	μm ² ms ⁻¹	
Concentration	0.1	mM	See Methods

Supplementary Table 1: Parameters for simulations of [Ca²⁺] diffusion

Supplementary References

- 1. Alcami, P., Franconville, R., Llano, I. & Marty, A. Measuring the firing rate of high resistance neurons with cell-attached recording. *J. Neurosci.* **32**, 3118–3130 (2012).
- Miki, T., Kaufmann, W., Malagon, G., Gomez, L., Tabuchi, K., Watanabe, M., Shigemoto, R., & Marty, A. Numbers of presynaptic Ca²⁺ channel clusters match those of functionally defined vesicular docking sites in single central synapses. *Proc. Nat. Acad. Sci. USA.* **114**, E5246–E5255 (2017).
- 3. Neher, E., & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. *Neuron* **59**, 861–870 (2008).
- 4. Hillman, D. E., & Chen, S. Compensation in the number of presynaptic dense projections and synaptic vesicles in remaining parallel fibers following cerebellar lesions. *J. Neurocytol.* **14**, 673–687 (1985).
- 5. Weber, A. M., Wong, F. K., Tufford, A. R., Schlichter, L. C., Matveev, V., & Stanley, E. N-type Ca²⁺ channels carry the largest current: implications for nanodomains and transmitter release. *Nat. Neurosci.* **13**, 1348–1350 (2010).
- Li, L., Bischofberger, J., & Jonas, P. Differential gating and recruitment of P/Q-, N-, and R-type Ca²⁺ channels in hippocampal mossy fiber boutons. *J. Neurosci.* 27, 13420– 13429 (2007).
- 7. Sabatini, B., & Regehr, W. G. Optical measurement of presynaptic calcium currents. *Biophys. J.* **74**, 1549–1583 (1998).
- 8. Allbritton, N. L., Meyer, T., & Stryer, L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. *Science* **258**, 1812–1815 (1992).
- 9. Helmchen, F., Borst, J. G., & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. *Biophys. J.* **72**, 1458–1471 (1997).
- 10. Naraghi, M., & Neher, E. Linearized buffered Ca²⁺ diffusion in microdomains and its implications for calculation of [Ca²⁺] at the mouth of calcium channel. *J. Neurosci.* **17**, 6961–6973 (1997).
- 11. Nakamura, Y., Harada, H., Kamasawa, N., Matsui, K., Rothman, J. S., Shigemoto, R., Silver, R. A., DiGregorio, D. A., & Takahashi, T. Nanoscale distribution of presynaptic Ca²⁺ channels and its impact on vesicular release during development. *Neuron* 85, 145–158 (2015).
- 12. Faas, G. C., Schwaller, B., Vergara, J. L., & Mody, I. Resolving the fast kinetics of cooperative binding: Ca²⁺ buffering by calretinin. *PLos Biol.* **5**, e311 (2007).