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Abstract In this work, we study the impact of quantum
entanglement on the two-point correlation function and the
associated primordial power spectrum of mean square vac-
uum fluctuation in a bipartite quantum field theoretic system.
The field theory that we consider is the effective theorry of
axion field arising from Type IIB string theory compactified
to four dimensions. We compute the expression for the power
spectrum of vacuum fluctuation in three different approaches,
namely (1) field operator expansion (FOE) technique with the
quantum entangled state, (2) reduced density matrix (RDM)
formalism with mixed quantum state and (3) the method of
non-entangled state (NES). For massless axion field, in all
these three formalism, we reproduce, at the leading order, the
exact scale invariant power spectrum which is well known in
the literature. We observe that due to quantum entanglement,
the sub-leading terms for these thee formalisms are different.
Thus, such correction terms break the degeneracy among the
analysis of the FOE, RDM and NES formalisms in the super-
horizon limit. On the other hand, for massive axion field we
get a slight deviation from scale invariance and exactly quan-
tify the spectral tilt of the power spectrum in small scales.
Apart from that, for massless and massive axion field, we
find distinguishable features of the power spectrum for the
FOE, RDM, and NES on the large scales, which is the result
of quantum entanglement. We also find that such large-scale
effects are comparable to or greater than the curvature radius
of the de Sitter space. Most importantly, in near future if
experiments probe for early universe phenomena, one can
detect such small quantum effects. In such a scenario, it is
possible to test the implications of quantum entanglement in
primordial cosmology.
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1 Introduction

The concept of quantum entanglement is one of the most
interesting features that one can study in the context of quan-
tum mechanics. Using such idea one can study the instan-
taneous physical implication of local measurements [1–3].
There are several applications in the framework of quantum
field theory in which the quantum entanglement play a signif-
icant role. For example, particle creation (EPR Bell pair [4])
through the bubble nucleation procedure has been explained
using the idea of quantum entanglement where the quantum
system is strongly correlated [5–9]. Also using the concept
of quantum entanglement in QFT one successfully explains
many phenomena like entropy bounds, phase transitions,
anomalies, confinement, thermalization and quantum critical
quenches, localization in quantum gravity and description of
interior of black holes. Apart from that quantum entangle-
ment has huge application in the context of quantum infor-
mation theory, quantum cryptography and interferometry.

The von- Neumann entropy and Rényi entropy are the
appropriate measures of quantum entanglement the frame-
work of condensed matter theory [10], in quantum informa-
tion theory and in theoretical high energy physics. The idea of
entanglement entropy in the context of quantum field theory
is the best possible computational tool to quantify and study
the nature of the long range effects of quantum correlation.
However, the computation of entanglement entropy for a spe-
cific class of quantum field theories were not easy before the
method proposed by Ryu and Takayanagi [11]. In this work,
the authors have computed the entanglement entropy for a
strongly coupled field theory set up with a gravity dual using
the techniques of holography and the results are remarkable
as it is in agreement with various expectations from the quan-
tum field theory side [12–17].

Following this success, Maldacena and Pimentel in Ref. [18]
further proposed an explicit technique to compute the entan-
glement entropy in the framework of quantum field the-
ory of de Sitter space with Bunch Davies quantum ini-
tial vacuum state. Here, the authors have studied the grav-
itational dual of the quantum field theory of de Sitter
space using holographic techniques in detail. Further in
Ref. [19] the authors have extended this computation in the
context of α vacua [20–23] in the same context. In Refs. [24]
and [25] the computation of quantum entanglement entropy
and the formation of EPR Bell pair from stringy Axion were
discussed with Bunch Davies and α vacua respectively.

Based on the physical set up used in our previous works
[24] and [25], in this paper we have studied the cosmological

implications of quantum entanglement by focussing on the
long range effects of the two point correlation function com-
puted from the mean square vacuum fluctuation of stringy
Axion field with Bunch Davies and α quantum states as initial
choice of vacua . We expect from this analysis that the signa-
ture and impact of quantum entanglement could be manifest
in the correlation function even beyond the Hubble horizon
scale. Our expectation is mainly due to the fact that de Sitter
expansion of universe distinguish between a pair of Axions
[26–29], known as EPR Bell pair which is created within
causally connected Hubble region. For this purpose, we use
three different techniques:

1. Field operator expansion (FOE) method with entangled
state,

2. Reduced density matrix formalism (RDM) with mixed
state and

3. Non-entangled state (NES) method.

Here one can ask the following sets of questions regarding the
implementation of three different techniques in the present
context:

• Q1. Why we have used three different formalisms to com-
pute the cosmological two point correlation function?

• Q2. What is the correct physics they believe that happens
in the setup of the space time?

• Q3. In those three formalisms, the physics is completely
different. So which one is correct?

• Q4. We finally could only observe one possible observa-
tional consequence. So which one is correct?

The appropriate answers to above mentioned questions are
appended below point wise:

• A1: We have used three different formalisms to compute
the cosmological two point correlation function to check
the explicit role of quantum mechanical entanglement
in the primordial cosmology. In these three formalisms
the leading order expressions become same. But the dif-
ference only can be found once we look into the small
quantum corrections appearing in these formalisms. If
the signature of quantum entanglement will be detected
in near future in the observational probes of early uni-
verse, then one can explicitly rule out the possibility of
appearing of NES method in the context of quantum field
theory of primordial cosmology. On the other hand, if the
signatures of quantum entanglement cannot be confirmed
then one can strongly rely on the result obtained in the
NES method. Additionally it is important to note that,
these three frameworks provide us the quantum mechan-
ical origin of quantum field theory of early universe cos-
mology.
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• A2 and A3: From the theoretical perspective these three
different formalisms have their own merit on the physical
ground. If the quantum mechanical origin of the quantum
correction of the primordial fluctuation is coming from
the non entangled state then NES formalism is the only
single option which can take care of the correct physics.
On the other hand, if the quantum mechanical origin of
the quantum correction of the primordial fluctuation is
coming from the entangled mixed state then RDM for-
malism applicable to the subsystem is the most promising
option which supports correct physical explanation. The
last option is FOE formalism which is applicable when
the quantum mechanical origin of the quantum correc-
tion of the primordial fluctuation is guided by the total
entangled state (not the subsystem) then FOE formalism
is useful to describe the correct physics.

• A4: It is very well known fact that at late time scale all the
large scale structure is formed due to long range persis-
tent correlation originated from the primordial quantum
mechanical fluctuation in the early universe. This can
only be consistently theoretically established by using
FOE and RDM formalisms which supports the concept of
quantum entanglement in early universe cosmology. Now
RDM formalism is more theoretically consistent than the
FOE method as it is based on the quantum description of
the reduced subsystem. Now as far as the detection in the
observation is concerned, if we can detect the quantum
mechanical origin of the sub leading quantum correc-
tion in near future probes then one can explicitly very
the explicit role of quantum entanglement, precisely test
FOE or RDM formalism is correct. If we cannot detect
the role of quantum entanglement then NES formalism
will provide the correct physical explanation of the quan-
tum origin of the sub leading correction term in the two
point primordial correlation function.

We implement the RDM formalism using the previous
work done by Maldacena and Pimentel in Ref. [18] in
the context of de Sitter cosmology. In our computation we
have explicitly included the effect of Stringy Axion in the
small field regime and as a result we get perturbatively cor-
rected contributions in the expression for the power spectrum
derived using FOE, RDM and NES formalisms. Such correc-
tion terms can be interpreted as quantum effects which are
appearing from the UV complete theory, such as a specific
type of bipartite quantum field theory driven by axion. We
note that the axion field which is being considered here, is
actually originating from Type IIB string theory compacti-
fied on a Calabi-Yau three fold (CY3), in presence of a NS5
brane sitting at the bottom of a long throat [30–33]. Most

importantly, in the large wave number1 limit (small scale
or small wave length approximation [34]) we have shown
the results for the power spectrum derived from these three
formalism perfectly match with each other if we consider
only the leading order contribution. However, the results are
different for these three formalisms if we we include the con-
tributions from next and next to next leading order. In a way
one can say that such additional small perturbative correc-
tion terms play a pivotal role to distinguish between the FOE,
RDM and NES formalisms. This is obviously an important
information because using the present observational data on
early universe cosmology [35–61] one can further constrain
the present model and also test the appropriateness of these
formalisms. Apart from this, for completeness, we have also
analysed the behaviour of the power spectrum in the small
wave number limit (large scale or large wave length approx-
imation). We find that all these three formalisms yield dis-
tinctive results in terms of the momentum (quantum num-
ber) dependence of the power spectrum in order by order.
But the lack of observational data on this particular regime
does not allow us to test the appropriateness and correctness
of the proposed methods. We hope that in near future when
the observational data for this regime will be available, our
results can further constrain the model and rule out two of
the possibilities between the three formalisms discussed here.
We would like to mention here that in our computation of the
power spectrum for mean square vacuum fluctuation we have
not considered the quantum fluctuation of the pseudo scalar
Axion field as a classical back ground field, the approach
which is mostly used in the context of the cosmological cor-
relations from early universe. Instead , we have chosen the
field operator of the Axion field itself as quantum operator
whose fluctuation with respect to a quantum mechanical vac-
uum state (Bunch Davies and α vacua). Thus, in this paper,
we have followed:

1. A complete quantum approach to compute the primor-
dial power spectrum of mean square vacuum fluctuation,
which is not usually followed in the context of cosmol-
ogy.

2. For the specific structure of the axion effective potential,
we have computed the explicit form of the corrections
which are due to quantum effects.

3. For our calculation, we have used three different
approaches at super horizon time scale hoping that the
quantum corrections, at small and large wave number
limits when confronted with observations, can select the

1 Here the wave number p mimics the role of SO(3, 1) principal quan-
tum number in the de Sitter hyperbolic open chart which is continuous
and lying within the range 0 < p < ∞. The other SO(3, 1) quantum
numbers m (azimuthal) and l (orbital) play no significant role in the
final result as the expression for the power spectrum for mean square
vacuum fluctuation only depends on the quantum number p.
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Cosmological correlation from Quantum 
entanglement in de Sitter space with stringy axions

Study of vacuum fluctuation using 
Bunch Davies and generalised 

quantum state  

Field Operator Expansion (FOE) 
formalism (Entangled state) 

Reduced Density Matrix (RDM) 
formalism (Mixed state) 

Power spectrum from two 
point function using FOE

Power spectrum from two 
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Large wavenumber  
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 limit in super horizon 
time scale both are same

Small wavenumber  (long wavelength) limit in super horizon 
 time scale they are completely different

Non Entangled state (NES) 
formalism 

Fig. 1 Schematic diagram for the computation algorithm of long range effect of cosmological correlation function from quantum entanglement
of axion in de Sitter open hyperbolic chart

most effective approach and the nature of quantum cor-
rections. From the cosmological perspective we believe
this is a very important step forward.

The plan of the paper is as follows: In Sect. 2, we begin
our discussion with the computation of the wave function of
the Axion field in a de Sitter hyperbolic open chart. For this
purpose we have discussed the details of the background de
Sitter geometrical set up in Sect. 2.1. Further in Sects. 2.2
and 2.3, we have solved the total wave function for Axion
for Bunch Davies vacuum and generalised α- vacua respec-
tively. Using these solutions we have derived the cosmologi-
cal power spectrum of mean square quantum vacuum fluctu-
ation in Sect. 3. In Sects. 3.1.1 and 3.1.2 we have discussed
the quantum vacuum fluctuation using field operator expan-
sion (FOE) formalism with entangled state for Axion. field.
We have also derived the explicit form of the wave func-
tion in this formalism. This solution is used to derive the
power spectrum by computing the two point quantum cor-
relation function from mean square vacuum fluctuation. In
Sects. 3.2.1 and 3.2.2 we have discussed the quantum vacuum
fluctuation using reduced density matrix (RDM) formalism
using mixed state for Axion field and we have derived the
explicit form of the reduced density matrix in the de Sitter
hyperbolic open chart. Further, this result is used to derive
the power spectrum by computing the two point quantum
correlation function from mean square vacuum fluctuation
in large and small wave number limits for both massless
and massve Axion fields. In Sects. 3.3.1 and 3.3.2 we have
studied the quantum vacuum fluctuation using non entangled
state (NES) formalism for Axion field and have discussed the
NES formalism in detail. This result has been used to derive

the power spectrum by computing the two point quantum
correlation function from mean square vacuum fluctuation.
Finally, Sect. 4 has been devoted to summery and conclusion
and future prospects . In Fig. 1, we have presented a schematic
diagram for the computation algorithm of long range effect
of cosmological correlation function from quantum entan-
glement of axion in de Sitter open hyperbolic chart.

2 Wave function of axion in open chart

We briefly review here, for sake of completeness, the back-
ground geometry and the results for wave function of the
axion field.

2.1 Background geometry

We consider a time preserving space-like hypersurface S2 in
the open hyperbolic chart of the de Sitter space. As a result S2

is divided into two sub regions-interior and exterior which are
identified byRI (≡ L)/RII (≡ R). In terms of the Lorentzian
signature an open chart in de Sitter space is described by three
different subregions:

R(= RII)/L(= RI):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τE = ±π
2 ∓ i tR/L tR ≥ 0/tL ≥ 0

ρE = −irR/L rR ≥ 0/rL ≥ 0

ds2
R/L = 1

H2

[
−dt2

R/L + sinh2 tR/L

×
(
dr2

R/L + sinh2 rR//L d�2
2

)]
(2.1)
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Fig. 2 Schematic diagram for the geometrical construction and underlying symmetries of the bipartite quantum field theoretic system of de Sitter
hyperbolic open chart. Corresponding Penrose diagrams are also drawn for completeness

C:

⎧
⎪⎪⎨

⎪⎪⎩

τE = tC −π
2 ≤ tC ≤ π

2
ρE = π

2 − irC −∞ < rc < ∞.

ds2
C = 1

H2

[
dt2

C + cos2 tC(−dr2
C + cosh2 rC d�2

2

)]
(2.2)

where H = ȧ/a is the Hubble parameter and d�2
2 represents

angular part of the metric on S2. Now let us assume that the
total Hilbert space of the local quantum mechanical system is
described by H, which can be written using bipartite decom-
position in a direct product space as, H = HINT ⊗ HEXT.
Here HINT and HEXT are the Hilbert space associated with
interior and exterior region and describe the localised modes
in RI/ RII respectively.

In Fig. 2 we have shown the schematic diagram for the
geometrical construction and underlying symmetries of the
bipartite quantum field theoretic system of de Sitter hyper-
bolic open chart. Corresponding Penrose diagrams are also
drawn for completeness.

2.2 Wave function for axion using Bunch Davies
vacuum

Though our prime objective is to compute the cosmological
correlation functions for axion field in de Sitter space, we
need the results for the wave function of the axion field in the
just mentioned geometrical set up. Note that he axion field
under consideration is coming from RR sector of Type IIB
string theory compactified on CY3 in presence of NS 5 brane
[30–33,69]. The effective action for the axion field is given
by [30–33]:

Saxion =
∫

d4x
√−g

[

−1

2
(∂φ)2

+μ3
{

φ + b fa cos

(
φ

fa

)}]

, (2.3)
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Fig. 3 Behaviour of the axion
effective potential obtained from
Type IIB String Theory with
respect to the dimensionless
field value φ/ fa , where fa is the
axion decay constant

where μ3 is the mass scale, fa is axion decay constant and the
parameter b is defined as, b = 	4

G/μ3 fa . Here 	G depend

on the string coupling gs , slope parameter α
′

and details of
SUSY breaking parameter. For φ << fa , effective potential
for axion can be expressed as:

V (φ) ≈ μ3 (b fa + φ) − m2
axion

2
φ2, (2.4)

where we introduce the effective mass of the axion as,
m2

axion = μ3b/ fa = 	4
G/ f 2

a . Here axion decay constant fol-
low a (conformal) time dependent profile, which is explicitly
mentioned in references.

In Fig. 3 we have explicitly presented the behaviour of the
above axion potential with respect to the dimensionless field
value φ/ fa .

Further using Eq. (2.3) the field equation of motion for the
axion can be written as:
[

1

a3(t)
∂t

(
a3(t)∂t

)
− 1

H2a2(t)
L̃2

H3 + m2
axion

]

φ = μ3,

(2.5)

where the scale factor a(t) in de Sitter open chart is given by,
a(t) = sinh t/H . Here the Laplacian operator L̃2

H3 in H3

can be written as:

L̃2
H3 = 1

sinh2 r

[

∂r
(
sinh2 r ∂r

)+ 1

sin θ
∂θ (sin θ ∂θ ) + 1

sin2 θ
∂2
φ

]

,

(2.6)

which satisfy the following eigenvalue equation:

L̃2
H3Yplm(r, θ, φ) = −(1 + p2)Yplm(r, θ, φ). (2.7)

Here Yplm(r, θ, φ) represents orthonormal eigenfunctions
which can be written in terms of a radial and angular part
as:

Yplm(r, θ, φ)

= � (i p + l + 1)

� (i p + 1)

p√
sinh r

P
−
(
l+ 1

2

)

(
i p− 1

2

) (cosh r)Ylm(θ, φ),

(2.8)

where Ylm(θ, φ) is the spherical harmonics. Consequently,
the total solution of the equations of motion can be written
as:

�(t, r, θ, φ) =
∑

σ=±1

∑

Q=p,l,m

×
[
aQVQ(t, r, θ, φ) + a†

QV
∗
Q(t, r, θ, φ)

]
,

(2.9)

Here the total solution VQ(t, r, θ, φ) for Bunch Davies vac-
uum can be expressed as:

VQ(t, r, θ, φ) = 1

a(t)
χp,σ (t)Yplm(r, θ, φ)

= H

sinh t
χp,σ (t)Yplm(r, θ, φ), (2.10)

where χp,σ (t) forms a complete set of positive frequency
function. Also this can be written as a sum of complementary
(χ(c)

p,σ (t)) and particular integral (χ(p)
p,σ (t)) part, as given by:

χp,σ (t) = χ(c)
p,σ (t) + χ

(p)
p,σ (t). (2.11)

Explicitly the solution for the complementary part and the
particular integral part can be expressed as:
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Fig. 4 Schematic diagram for the computation algorithm of solving the wave function of our universe in de Sitter hyperbolic open chart for stringy
axion

χ(c)
p,σ (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 sinh πp

[
(
eπp−iσ e−iπν

)

�
(
ν+ 1

2 +i p
) P i p

(
ν− 1

2

)(cosh tR) −
(
e−πp−iσ e−iπν

)

�
(
ν+ 1

2 −i p
) P−i p

(
ν− 1

2

)(cosh tR)

]

for R

σ
2 sinh πp

[
(
eπp−iσ e−iπν

)

�
(
ν+ 1

2 +i p
) P i p

(
ν− 1

2

)(cosh tL) −
(
e−πp−iσ e−iπν

)

�
(
ν+ 1

2 −i p
) P−i p

(
ν− 1

2

)(cosh tL)

]

for L,

(2.12)

χ
(p)
p,σ (t) = sinh2 t

∞∑

n=0

1
(
p2 − p2

n

)χ(c)
pn ,σ (t)

∫

dt
′
χ(c)
pn ,σ (t

′
) μ3 . (2.13)

where the parameter ν is defined as:

ν =
√

9

4
− m2

axion

H2 =
√

9

4
− μ3b

faH2 =
√

9

4
− 	4

G

f 2
a H

2 .

(2.14)

In Fig. 4 we have given a schematic diagram for the compu-
tation algorithm of solving the wave function of our universe
in de Sitter hyperbolic open chart for stringy axion.

2.3 Wave function for axion using α vacua

Here we use two subspaces in CPT invariant SO(1, 4) iso-
metric de Sitter space, which is identified as RI and RII
respectively. Use the result obtained for Bunch Davies vac-
uum, and performing a Bogoliubov transformation the mode
functions for the α-vacua can be expressed as:

�(r, t, θ, φ)

=
∫ ∞

0
dp

∑

σ=±1

∞∑

l=0

+l∑

m=−l

×
[
dσ plmF (α)

σ plm(r, t, θ, φ)+d†
σ plm(F (α)

σ plm)∗(r, t, θ, φ)
]
,

(2.15)
where the α-vacua state are defined as:

dσ plm |α〉 = 0 ∀σ = (+1,−1);
0 < p < ∞; l = 0, . . . ,∞,m = −l, . . . ,+l. (2.16)

In this context, the α-vacua mode function F (α)
σ plm can

be expressed in terms of Bunch Davies mode function
Vσ plm(r, t, θ, φ) using Bogoliubov transformation as:

F (α)
σ plm =

[

cosh α Vσ plm(r, t, θ, φ)

+ sinh α V∗
σ plm(r, t, θ, φ)

]

. (2.17)
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Here Vσ plm(r, t, θ, φ) is the Bunch Davies vacuum states,
which is defined as:

Vσ plm(r, t, θ, φ) = H

sinh t
χp,σ (t)Yplm(r, θ, φ). (2.18)

After substituting Eqs. (2.17) and (2.18) in Eq. (2.15) we get
the following expression for the wave function:

�(r, t, θ, φ) = H

sinh t

∫ ∞

0
dp

∑

σ=±1

p−1∑

l=0

+l∑

m=−l

×
[

dσ plm cosh α χp,σ (t)

+ d†
σ plm sinh α χ∗

p,σ (t)

]

Yplm(r, θ, φ),

(2.19)

Finally, the solution of the time dependent part of the wave
function can be recast as:

χp,σ (t) =
∑

q=R,L

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

Np

[
ασ
q Pq + βσ

q Pq∗]

︸ ︷︷ ︸
Complementary solution

+
∞∑

n=0

1

Npn

(
p2
n − p2

)
[
ᾱσ
q,n P̄q,n + β̄σ

q,n P̄q∗,n
]

︸ ︷︷ ︸
Particular solution

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∀σ = ±1 (2.20)

where we use the following shorthand notation:

P̄q,n = sinh2 t
∫

dt
′
χ(c)
pn ,σ,q(t

′
) μ3 Pq,n . (2.21)

Here we also use the shorthand notations Pq , Pq,n , for
the Legendre polynomial. Also the coefficient functions
(ασ

q , βσ
q ) and (ασ

q,n, β
σ
q,n), normalization constants Np, Npn

for the complementary and particular part of the solution
which are defined as:

Np = 4 sinh πp√
π

√
cosh πp − σ sin πν

|� (ν + i p + 1
2

) | , (2.22)

Np,(n) = 4 sinh πpn√
π

√
cosh πpn − σ sin πν

|� (ν + i pn + 1
2

) | . (2.23)

3 Cosmological spectrum of quantum vacuum
fluctuation

In this section, we present our computation of the spectrum
of Bunch Davies vacuum and α vacua fluctuation from two

point correlation function . We will be discussing the com-
putation of two point correlation function and their associ-
ated cosmological spectra from three completely different
formalisms:-

1. Field operator expansion (FOE) method:
This method is useful for entangled quantum states with
the wave function of the de Sitter universe for Bunch
Davies and most generalised α vacua. Technically this
formalism is based on the wave function χI which we
will explicitly derive . The cosmological spectrum is
characterised by the two point correlation function and
their associated power spectrum. Using such entangled
state in this formalism one can construct the usual density
matrix for Bunch Davies and most generalised α vacua.

2. Reduced density matrix (RDM) formalism:
This formalism is helpful for mixed quantum states and
is useful for the construction of reduced density matrix
in a diagonalised representation of Bunch Davies and α

vacua by tracing over the all possible degrees of freedom
from the region R. Technically the formalism is based on
the wave function ψI which we explicitly derive.

3. Non entangled state (NES) formalism:
This formalism in presence of non entangled quantum
state which deals with the construction of wave function
in the region L in which the total universe is described.
Here we also use Bunch Davies and most generalised α

vacua in the regionL. Technically this formalism is based
on the wave function φI which we explicitly derive in
this paper.

We will now derive the expression for the mean square fluc-
tuation considering both Bunch Davies vacuum and α vacua
using the results presented in the previous section. For this
computation we will follow the steps which are outlined
below:

1. First of all, we trace out all contributions which belong
to the R region. As a result the required field operator is
only defined in the L region. This method we use in FOE
formalism where the quantum states for L and R region
are entangled with each other. On the other hand, doing
a partial trace over region R one can construct reduced
density matrix which leads to RDM formalism. Instead,
if we use the non entangled quantum state and compute
the wave function solely inL region we will be lead to the
NES formalism. Note that all of these three methods are
used to compute mean square vacuum fluctuation or more
precisely the quantum mechanical computation of two
point correlation function for axion and the associated
power spectrum.

2. Instead of doing the computation in |L〉 basis we use a
new basis |L′ 〉, obtained by applying Bogoliubov trans-
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formation in |L〉. Consequently the field operators will act
on |L′ 〉 and the FOE method is developed in this trans-
formed basis. On the other hand, as mentioned earlier
it will appear in the expression for the reduced density
matrix to be used in the RDM formalism. But in the NES
formalism this transformation is not very useful since in
this case the total wave function is solely described by
the quantum mechanical state appearing in the L region
and the corresponding Hilbert space is spanned by only
|L〉 which forms a complete basis.

3. Further, we will compute the expressions for the mean
square quantum vacuum fluctuation and the correspond-
ing cosmological power spectrum after horizon exit using
all the three formalisms i.e. FOE, RDM and NES. We will
finally consider two limiting situations: long wave length
and short wave length approximation for the computation
of the power spectrum.

3.1 Quantum vacuum fluctuation using field operator
expansion (FOE) (with entangled state)

3.1.1 Wave function in field operator expansion (FOE)

Let us first compute the spectrum of vacuum fluctuation using
field operator expansion (FOE). In Fig. 5 we have presented
a schematic diagram for the computation algorithm of field
operator expansion method for entangled state of axion in de
Sitter hyperbolic open chart. To compute the vacuum fluc-
tuation using FOE, we focus only with the left region L as
it is completely symmetric to the right region R. We use the
time dependent mode function for the left region L which we
have presented in Sect. 2. Thus instead of getting a (4 × 4)

square matrix (when both sectors are considered) we have
a (4 × 2) matrix which appears in the solution of the field
equation as:

χ̃ I = 1

Np
M̃I

J P̃J +
∞∑

n=0

1

Np,(n)

˜
(
M(n)

)I
J P̃J

(n), (3.1)

where the index J = 1, 2 is appearing for the contribution
from region L. To write down the total solution in region L
we define the following matrices:

M̃I
J =

(
ασ
L βσ

L
βσ ∗
L ασ ∗

L

)

,

˜
(
M(n)

)I
J =

(
ᾱσ
L,n β̄σ

L,n
β̄σ ∗
L,n ᾱσ ∗

L,n

)

, (3.2)

χ̃ I =
(

χσ (t)
χσ∗(t),

)

, P̃J =
(

P̃L

P̃L∗
,

)

,

P̃J
(n) =

(
P̃L,n

P̃L∗,n

)

, (3.3)

where σ = ±1, I = 1, 2, 3, 4 and J = 1, 2. The Fourier
mode of the field operator, which is also the total solution of
the field equation for axion (in presence of source contribu-
tion) can be expressed as:

˜�(tL) = H

sinh tL
QI χ̃ I = H

sinh tL
QI

×
[

1

Np
M̃I

J P̃ J +
∞∑

n=0

1

Np,(n)

˜
(
M(n)

)I
J P̃J

(n)

]

,

(3.4)

where the operator QI represent a set of creation and anni-
hilation operators which are defined (in Sect. 2) for Bunch
Davies vacuum (α = 0) and α vacua (α �= 0) as:

QI ≡

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

aI = (aσ , a†
σ ) =

[
a(c)
I +∑∞

n=0 a
(p)
I (n)

]

for Bunch Davies vacuum

dI = (dσ , d†
σ ) =

[
d(c)
I +∑∞

n=0 d
(p)
I (n)

]

for α vacua.

(3.5)

Here we have labeled the time coordinate t by tL since we
are considering the left region L only.

To explicitly write down the expression for the amplitude
of the normalized power spectrum, we start with the column
matrix representation of the time dependent part of the solu-
tion of the wave function, given by:

χ̃ I =
(

χσ (t)
χσ∗(t)

)

=
(

Aσ
LP̃L + Bσ

LP̃L∗
Bσ∗
L P̃L + Aσ∗

L P̃L∗
)

+
∞∑

n=0

(
Aσ

L,(n)P̃L
(n) + Bσ

L,(n)P̃L∗
(n)

Bσ∗
L,(n)P̃L

(n) + Aσ∗
L,(n)P̃L∗

(n)

)

, (3.6)

where the entries of the column matrix for the complementary
and particular integral part of the solution are given by the
following expressions:

Aσ
L = ασ

L

Np
= σ

eπp − iσ e−iπν

Np�
(
ν + i p + 1

2

) , (3.7)

Bσ
L = βσ

L

Np
= −σ

e−πp − iσ e−iπν

Np�
(
ν − i p + 1

2

) , (3.8)

Aσ
L,(n) = ασ

L,(n)

Np,(n)

= σ
eπpn − iσ e−iπν

Np,(n)�
(
ν + i pn + 1

2

) , (3.9)

Bσ
L,(n) = βσ

L,(n)

Np,(n)

= −σ
e−πpn − iσ e−iπν

Np,(n)�
(
ν − i pn + 1

2

) . (3.10)

Np and Np,(n) in the above equations are the normalization
constants for the complementary part and particular integral
part of the solution as defined Sect. 2.
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Field operator expansion (FOE) 
formalism for entangled state

Computation of mean square quantum vacuum fluctuation 
in terms of two point correlation function using Bunch 
Davies and generalised vacuum state configuration

Large wavenumber  
(short wavelength) 

 limit in super horizon 
time scale

Small wavenumber  (long wavelength) 
 limit in super horizon time scale

Solution of the total wave function of the universe 
in L region of dS space

Result exactly matches with the cosmological 
two point correlation function and the power 

spectrum for massless and massive axion 
Result is different compared to the cosmological 

two point correlation function and the power 
spectrum for massless and massive axion

Using this quantum state one 
can construct density matrix and 
entanglement entropy using von 
Neumann measure in region L

Fig. 5 Schematic diagram for the computation algorithm of field operator expansion method for entangled state of axion in de Sitter hyperbolic
open chart

3.1.2 Two point correlation function

To compute the expression for the two point correlation func-
tion for the vacuum fluctuation let us now concentrate on a
single mode with fixed value of the SO(3, 1) quantum num-
bers p, l and m. As a result the mean square vacuum fluc-
tuation of axion for any generalized arbitrary vacuum state
(|�〉) can be expressed as:

〈�| ˜�plm(tL)
(

˜�p′ l ′m′ (tL)
)† |�〉

= H2

sinh2 tL
〈�|

[
QI χ̃ I

]

plm

([
QI χ̃ I

]

p′ l ′m′

)†

|�〉.
(3.11)

Further explicitly writing the expression for the mean square
vacuum fluctuation of axion for Bunch Davies vacuum we
get the following simplified expressions:

〈BD| ˜�plm(tL)
(

˜�p′ l ′m′ (tL)
)† |BD〉

= H2

sinh2 tL
〈BD|

[
aI χ̃ I

]

plm

([
aI χ̃ I

]

p′ l ′m′

)†

|BD〉

= H2

sinh2 tL

∑

σ=±1

|χ̃σ |2 δ(p − p
′
) δll ′ δmm′

≡ PBD(p, tL) δ(p − p
′
) δll ′ δmm′ , (3.12)

where we define the amplitude of the normalized power
spectrum of axion as:

PBD(p, tL) = p3

2π2 PBD(p, tL)

= p3

2π2

H2

sinh2 tL

∑

σ=±1

|χ̃σ |2. (3.13)

Further using Eq. (3.6) we compute the following expres-
sion, which is appearing in the expression for the amplitude
of the normalized power spectrum:
∑

σ=±1

|χ̃σ |2 =
∑

σ=±1

(
χ̃σ
)†

χ̃σ

=
[(

|Aσ
L|2 + |Bσ

L|2
)
P̃LP̃L∗

+Aσ
LBσ∗

L

(
P̃L
)2 + Aσ∗

L Bσ
L

(
P̃L∗)2

+
∞∑

n=0

{(
Aσ

LAσ∗
L,(n) + Bσ

LBσ∗
L,(n)

)
P̃LP̃L∗

(n)

+
(
Aσ

LBσ∗
L,(n) + Aσ

L,(n)Bσ∗
L

)
P̃LP̃L

(n)

+
(
Aσ∗

L,(n)Bσ
L + Aσ∗

L Bσ
L,(n)

)
P̃L∗

(n)P̃L∗}

+
∞∑

n=0

∞∑

m=0

{(
Aσ

L,(n)Aσ∗
L,(m) + Bσ

L,(n)Bσ∗
L,(m)

)
P̃L

(n)P̃L∗
(m)

+Aσ
L,(n)Bσ∗

L,(m)P̃L
(n)P̃L

(m) + Aσ∗
L,(n)Bσ

L,(m)P̃L∗
(n)P̃L∗

(m)

}]
.

(3.14)
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Using Eq. (3.14), the amplitude of the normalized power
spectrum of axion from Bunch Davies vacuum can be
expressed in all time scales of region L as:

PBD(p, tL) = p3

2π2

H2

sinh2 tL

∑

σ=±1

|χ̃σ |2 = p3

2π2

H2

sinh2 tL

×
[(

|Aσ
L|2 + |Bσ

L|2
)
P̃LP̃L∗ + Aσ

LBσ∗
L

(
P̃L
)2

+Aσ∗
L Bσ

L

(
P̃L∗)2

+
∞∑

n=0

{(
Aσ

LAσ∗
L,(n) + Bσ

LBσ∗
L,(n)

)
P̃LP̃L∗

(n)

+
(
Aσ

LBσ∗
L,(n) + Aσ

L,(n)Bσ∗
L

)
P̃LP̃L

(n)

+
(
Aσ∗

L,(n)Bσ
L + Aσ∗

L Bσ
L,(n)

)
P̃L∗

(n)P̃L∗}

+
∞∑

n=0

∞∑

m=0

{(
Aσ

L,(n)Aσ∗
L,(m) + Bσ

L,(n)Bσ∗
L,(m)

)
P̃L

(n)P̃L∗
(m)

+Aσ
L,(n)Bσ∗

L,(m)P̃L
(n)P̃L

(m) + Aσ∗
L,(n)Bσ

L,(m)P̃L∗
(n)P̃L∗

(m)

}]
.

(3.15)

However, it is not easy to extract any information from
Eq. (3.15) for cosmological predictions. Hence, we consider
the superhorizon time scales (tL >> 1) of region L. In such
a case, the Legendre functions, appearing in the complemen-
tary part and the particular integral part of the time dependent
solution, can be approximated as:

(
P̃L, P̃L∗) ≡ P±i p

ν− 1
2
(cosh tL)

tL >> 1−−−−−→
2ν− 1

2 (cosh tL)ν− 1
2 �(ν)√

π�
(
ν ∓ i p + 1

2

) , (3.16)

(
P̃L

(n), P̃L∗
(n)

)
≡ P±i pn

ν− 1
2

(cosh tL)

tL >> 1−−−−−→
2ν− 1

2 (cosh tL)ν− 1
2 �(ν)√

π�
(
ν ∓ i pn + 1

2

) . (3.17)

Consequently, in the superhorizon time scales (tL >> 1) of
region L Eq. (3.14) can be further simplified as:

∑

σ=±1

|χ̃σ |2 =
∑

σ=±1

(
χ̃σ
)†

χ̃σ

tL >> 1−−−−−→ ˜M(p, ν) (cosh tL)2ν−1 (3.18)

where the time independent function ˜M(p, ν) is defined as:

˜M(p, ν) = 22ν−1 (�(ν))2

π

∑

σ=±1

[ (|Aσ
L|2 + |Bσ

L|2)
∣
∣�
(
ν + i p + 1

2

)∣
∣2

+ Aσ
LBσ∗

L
(
�
(
ν − i p + 1

2

))2 + Aσ∗
L Bσ

L
(
�
(
ν + i p + 1

2

))2

+
∞∑

n=0

⎧
⎨

⎩

(
Aσ

LAσ∗
L,(n) + Bσ

LBσ∗
L,(n)

)

�
(
ν − i p + 1

2

)
�
(
ν + i pn + 1

2

)

+
(
Aσ

LBσ∗
L,(n) + Aσ

L,(n)Bσ∗
L

)

�
(
ν − i p + 1

2

)
�
(
ν − i pn + 1

2

)

+
(
Aσ∗

L,(n)Bσ
L + Aσ∗

L Bσ
L,(n)

)

�
(
ν + i pn + 1

2

)
�
(
ν + i p + 1

2

)

⎫
⎬

⎭

+
∞∑

n=0

∞∑

m=0

⎧
⎨

⎩

(
Aσ

L,(n)Aσ∗
L,(m) + Bσ

L,(n)Bσ∗
L,(m)

)

�
(
ν − i pn + 1

2

)
�
(
ν + i pm + 1

2

)

+ Aσ
L,(n)Bσ∗

L,(m)

�
(
ν − i pn + 1

2

)
�
(
ν − i pm + 1

2

)

+ Aσ∗
L,(n)Bσ

L,(m)

�
(
ν + i pn + 1

2

)
�
(
ν + i pm + 1

2

)

}]

.

(3.19)

As a result, in the superhorizon time scales (tL >> 1) of
region L the amplitude of the normalized power spectrum of
axion from Bunch Davies vacuum can be expressed as:

PBD(p, tL) = p3

2π2

H2

sinh2 tL

∑

σ=±1

|χ̃σ |2

tL >> 1−−−−−→
p3

2π2 (cosh tL)2ν−3 H2
˜M(p, ν).

(3.20)

Here, it is important to note that in the superhorizon time
scales (tL >> 1) of region L if we consider the massless
case where we fix the mass parameter to be ν = 3/2, then
the time dependent contribution can be approximated as:
(

(cosh tL)2ν−1

sinh2 tL

)

ν=3/2

tL >> 1−−−−−→ 1. (3.21)

Consequently, in the superhorizon time scales of regionL and
for the massless axion case, the amplitude of the normalized
power spectrum of axion from Bunch Davies vacuum can be
expressed as:

PBD(p, tL) = p3

2π2

H2

sinh2 tL

∑

σ=±1

|χ̃σ |2

tL >> 1, ν = 3/2−−−−−−−−−−−−→
p3

2π2 H2
˜M(p, ν = 3/2).

(3.22)
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This implies that in the massless case, the amplitude of the
vacuum fluctuation gets frozen with respect to the time scale
when the associated modes exit the horizon.

Further to infer the exact wave number dependence of the
amplitude of the normalized power spectrum from Bunch
Davies vacuum we need to know the behaviour of the power
spectrum at very short wavelengths (p, pn >> 1). In this
limit it is expected that the power spectrum should match
the result obtained for spatially flat universe. Note that in
the short wave length approximation the time independent

function ˜M(p >> 1, ν) for any arbitrary mass parameter ν

can be expressed as:

˜M(p >> 1, ν) = 22(ν−1) (�(ν))2

p3π
˜G(p >> 1), (3.23)

where we have defined a new function ˜G(p >> 1) in the
short wave length limit as:

˜G(p) = 1
(

1 + 1
82944p4

)

×
⎡

⎣
(

1 + e−2πp
)2 +

∞∑

n=0

(
p

pn

) 3
2

√
1 + 1

82944p4

√
1 + 1

82944p4
n

×
(

1 + 2
(
e−2πp + e−2πpn

)
+ e−2π(p+pn)

)

+
∞∑

n=0

∞∑

m=0

p3

(pn pm)3/2 ×
(

1 + 1
82944p4

)

√
1 + 1

82944p4
n

√
1 + 1

82944p4
m

×
(

1 + e−π(pm+pn)
)2

⎤

⎦ . (3.24)

The above equation implies that for very large p, pn >> 1
one can rewrite this as, ˜G(p) ∼ 1+· · · , and all the · · · terms
can be considered as small correction terms. Also for the mass
less case (ν = 3/2) and in the short wave length approxima-

tion, the time independent function ˜M(p, ν = 3/2) can be
further simplified as:

˜M(p >> 1, ν = 3/2) = ˜G(p >> 1)

2p3 . (3.25)

Finally, in the superhorizon time scales (tL >> 1) of region
L, the amplitude of the normalized power spectrum of axion
from Bunch Davies vacuum in the short wave length limit
can be expressed as:

PBD(p >> 1, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 H2
˜M(p, ν)

= (2 cosh tL)2ν−3
(

H

2π

)2
(

�(ν)

�
( 3

2

)

)2

˜G(p >> 1).

(3.26)

Also for the massless case (ν = 3/2) in the superhorizon time
scales (tL >> 1) of regionL the amplitude of the normalized
power spectrum of axion from Bunch Davies vacuum in the
short wave length limit can be simplified as:

PBD(p >> 1, tL >> 1) = p3

2π2 H2
˜M(p >> 1, ν = 3/2)

=
(

H

2π

)2
˜G(p >> 1). (3.27)

Now, we generalize the above results for the two
point correlation function and the associated power spectrum
for α vacua. For α vacua the mean square vacuum fluctua-
tion of axion in the short wave length limit can be expressed
as:

〈α| ˜�plm(tL)
(

˜�p′ l ′m′ (tL)
)† |α〉

= H2

sinh2 tL
〈α|
[
dI χ̃ I

]

plm

([
dI χ̃ I

]

p′ l ′m′

)†

|α〉

= H2

sinh2 tL

∑

σ=±1

|χ̃σ |2 δ(p − p
′
) δll ′ δmm′

≡ P(p >> 1, α, tL) δ(p − p
′
) δll ′ δmm′ . (3.28)

where we have defined the amplitude of the normalized
power spectrum of axion in the short wave length limit
as:

P(p >> 1, α, tL)

= p3

2π2 P(p >> 1, α, tL)

= PBD(p >> 1, tL) (cosh 2α − sinh 2α)

= exp(−2α) PBD(p >> 1, tL). (3.29)

In the above equation, PBD(p, tL) is defined as:

PBD(p >> 1, tL) = p3

2π2

H2

sinh2 tL

∑

σ=±1

|χ̃σ |2. (3.30)

We carry out the same approximations as earlier and we note
that in the superhorizon time scales (tL >> 1) of region L
the amplitude of the normalized power spectrum of axion in
the short wave length limit from α vacua can be expressed
as:

P(p >> 1, α, tL >> 1)

= PBD(p >> 1, tL >> 1) (cosh 2α − sinh 2α)

= exp(−2α) PBD(p, tL >> 1), (3.31)
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(a) (b)

(c)

Fig. 6 Features of FOE power spectrum in large wave number region

where the normalized power spectrum in superhorizon scale
for Bunch Davies vacuumPBD(p >> 1, tL >> 1) is defined
in Eq. (3.35). Here it is important to note that, with α = 0
then we can reproduce the results obtained for Bunch Davies
vacuum.

In Fig. 6a, b we have shown the behaviour of the power
spectrum of the mean square vacuum fluctuation computed
from FOE formalism in the short wave length regime for

α = 0 and α = 0.1 and for fixed values of the mass parame-
ter ν(= 3/2, 2, 5/2, 3, 7/2) respectively. In both the cases
we have found almost similar behaviour. Additionally, in
Fig. 6c we have depicted the behaviour of the power spec-
trum with respect to the mass parameter ν with fixed values of
the parameter α(= 0, 0.1, 0.2, 0.3, 0.4). It is clear from this
figure that the power spectrum shows two distinct behaviour
in 1/2 < ν < 1 and ν > 1 region. For 1/2 < ν < 1 region,
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the amplitude of the normalized power spectrum decreases
to a certain value but just after ν = 1 it increases.

On the other hand, to know the exact wavenumber depen-
dence of the amplitude of the normalised power spectrum
from Bunch Davies vacuum in the long wavelength limit
we need to know the behaviour of the power spectrum at
p, pn << 1. In this limit it is expected that the power spec-
trum of axion match with the result obtained for spatially flat

universe. Here the time independent function ˜M(p << 1, ν)

for any arbitrary mass parameter ν can be expressed as:

˜M(p << 1, ν) = 22(ν−1) (�(ν))2

π
˜G(p << 1), (3.32)

where we have defined a new function ˜G(p << 1) in the long
wave length limit as:

˜G(p << 1) = π
∣
∣�
(
ν + 1

2

)∣
∣2

[

1 +
∣
∣�
(
ν + 1

2

)∣
∣2

(
�
(
ν + 1

2

))2

×
{

1 + 3e−πp
∞∑

n=0

e−πpn + 2
∞∑

n=0

∞∑

m=0

e−π(pn+pm )

}]

.

(3.33)

This implies that for very small wave numbers p, pn << 1,

one can write, ˜G(p << 1) ∼ π

|�
(
ν+ 1

2

)
|2 [1 + · · · ], where all

the · · · terms are small correction terms.
Also for the massless case (ν = 3/2) and in the long

wave length approximation, the time independent function
˜M(p << 1, ν = 3/2) can further be simplified as:

˜M(p << 1, ν = 3/2) = ˜G(p << 1)

2
. (3.34)

Finally, in the super horizon time scales (tL >> 1) of region
L the amplitude of the normalized power spectrum of axion
from Bunch Davies vacuum, in the long wave length limit,
can be expressed as:

PBD(p << 1, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 H2
˜M(p << 1, ν)

= (2 cosh tL)2ν−3
(

H

2π

)2

p3

(
�(ν)

�
( 3

2

)

)2

˜G(p << 1),

(3.35)

and for the massless case (ν = 3/2) this simplifies to:

PBD(p << 1, tL >> 1)

= p3

2π2 H2
˜M(p << 1, ν = 3/2)

=
(

H

2π

)2

p3
˜G(p << 1). (3.36)

Here it is important to note that both of Eqs. (3.35) and (3.36)
are valid after horizon exit.

Next, we generalize the result for the two point correlation
function and the associated power spectrum for α vacua. For
α vacua the mean square vacuum fluctuation of axion in the
long wave length limit can be expressed as:

〈α| ˜�plm(tL)
(

˜�p′ l ′m′ (tL)
)† |α〉

= H2

sinh2 tL
〈α|
[
dI χ̃ I

]

plm

([
dI χ̃ I

]

p′ l ′m′

)†

|α〉

= H2

sinh2 tL

∑

σ=±1

|χ̃σ |2 δ(p − p
′
) δll ′ δmm′

≡ P(p << 1, α, tL) δ(p − p
′
) δll ′ δmm′ , (3.37)

where the amplitude of the normalized power spectrum of
axion at long wave length limit is defined as:

P(p << 1, α, tL) = p3

2π2 P(p << 1, α, tL)

= PBD(p, tL) (cosh 2α − sinh 2α)

= exp(−2α) PBD(p << 1, tL), (3.38)

with PBD(p << 1, tL) as defined earlier.
In the super horizon time scales (tL >> 1) of region L

the amplitude of the normalized power spectrum of axion
in the long wave length approximation from α vacua can be
expressed as:

P(p << 1, α, tL >> 1)

= PBD(p << 1, tL >> 1) (cosh 2α − sinh 2α)

= exp(−2α) PBD(p << 1, tL >> 1), (3.39)

where PBD(p << 1, tL >> 1) is defined in Eq. (3.35). It
may be noted that, for α = 0 we get back the results obtained
for Bunch Davies vacuum.

In Fig. 7a–c we have shown the behaviour of the power
spectrum of the mean square vacuum fluctuation computed
from FOE formalism in the small wave number regime. The
values of α and the values of the mass parameter ν used here
are same as those taken for large wave number regime. As
expected, the behaviour for the the two limiting cases are
distinct. However, the characteristics observed for α and ν

dependences for both the cases are almost similar.

3.2 Quantum vacuum fluctuation using reduced density
matrix (RDM) formalism (with mixed state)

In this section, we study the features of the two point cor-
relation function of the quantum vacuum fluctuations and
the associated primordial power spectrum using the reduced
density matrix formalism. In Fig. 8 we have presented a
schematic diagram for the computation algorithm of reduced
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(a) (b)

(c)

Fig. 7 Features of FOE power spectrum in small wave number region

density matrix formalism for mixed quantum state of axion
in de Sitter hyperbolic open chart.

3.2.1 Reduced density matrix (RDM) formalism

We first write down the Fourier mode of the field operator,
which is also the total solution of the field equation for axion
in presence of source contribution. We start directly from the

solution obtained in Eq. (2.20) and rewrite it in terms of the
following matrix equation:

χ I = 1

Np
MI

JP J +
∞∑

n=0

1

Np,(n)

(
M(n)

)I
J P

J
(n) (3.40)
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Reduced Density Matrix (RDM) formalism 
(Mixed state)  

Computation of mean square quantum vacuum 
fluctuation in terms of two point correlation 
function using Bunch Davies and generalised 

vacuum state configuration by tracing out region R

Large wavenumber  
(short wavelength) 

 limit in super horizon 
time scale

Small wavenumber  (long wavelength) 
 limit in super horizon time scale

Solution of the wave function of 
the in L and R region of dS space  

Result exactly matches with the cosmological 
two point correlation function and the power 

spectrum for massless and massive axion 
Result is different compared to the cosmological 

two point correlation function and the power 
spectrum for massless and massive axion

Using this quantum mixed state by tracing 
out region R one can construct reduced 

density matrix and entanglement entropy 
using von Neumann measure in region L

Fig. 8 Schematic diagram for the computation algorithm of reduced density matrix formalism for mixed quantum state of axion in de Sitter
hyperbolic open chart

where for the complementary part of the solution we have
defined the following matrices:

MI
J =

(
ασ
q βσ

q

βσ ∗
q ασ ∗

q

)

, χ I =
(

χσ (t)
χ∗

σ (t),

)

,

P J =
(

Pq

Pq∗
,

)

. (3.41)

Similarly for the particular solution, we define the following
matrices:

(
M(n)

)I
J =

(
ᾱσ
q,n β̄σ

q,n

β̄σ ∗
q,n ᾱσ ∗

q,n

)

, P J
(n) =

(
Pq,n

Pq∗,n

)

, (3.42)

where σ = ±1, q = R,L and I, J = 1, 2, 3, 4.
The redefined normalization constant for the particular

part of the solution Np,(n) can be expressed as, Np,(n) =
2 sinh πpn

√
Npnσ

(
p2 − p2

n

)
. Further using Eq. (3.40) the

Bunch–Davies mode function can be written as:

H

sinh t
aIχ

I

= H

sinh t
aI

[
1

Np
MI

JP J +
∞∑

n=0

1

Np,(n)

(
M(n)

)I
J P

J
(n)

]

,

(3.43)

where aI = (aσ , a†
σ ) represents a set of creation and annihi-

lation operators.
We also define the following operators:

bJ = a(c)
I MI

J , bJ (n) = a(p)
I (n)

(
M(n)

)I
J , (3.44)

where a(c)
I = (a(c)

σ , a(c)†
σ ) and a(p)

I (n) = (a(p)
σ,n , a

(p)†
σ,n ) are the

set of creation and annihilation operators which act on the
complementary and particular part respectively. Thus, the
operator contribution for the total solution is:

aI =
[

a(c)
I +

∞∑

n=0

a(p)
I (n)

]

, (3.45)

where by inverting Eq. (3.44) we have expressed:

a(c)
I = bJ

(
M−1

)I

J
, a(p)

I (n) = bJ (n)

(
M−1

(n)

)I

J
. (3.46)

The inverse matrices are defined as:

(
M−1

)I

J
=
(

γσq δσq

δ∗
σq γ ∗

σq

)

,
(
M−1

(n)

)I

J
=
(

γ̄σq,n δ̄σq,n

δ̄∗
σq,n γ̄ ∗

σq,n

)

,

(3.47)

where σ = ±1, q = R,L and I, J = 1, 2, 3, 4.
For further computation, α-vacua are defined in terms of

Bunch Davies vacuum state as:

|α〉 = exp

(
1

2
tanh α

∑

σ=±1

a†
σaσ

)

|BD〉. (3.48)

It is to be noted that for α = 0 we get, |α = 0〉 = |0〉 = |BD〉.
Moreover, we can also write the R and L vacua as:

|R〉 = |R〉(c) +
∞∑

n=0

|R〉(p),n,
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|L〉 = |L〉(c) +
∞∑

n=0

|L〉(p),n, (3.49)

with subscripts (c) and (p) representing the complementary
and particular part respectively.

Further assuming the bipartite Hilbert space (Hα := HR⊗
HL) one can also write the α-vacua in terms of the R and L
vacuum as:

|α〉 = exp

(
1

2
tanh α

∑

σ=±1

a†
σ aσ

)

exp

⎛

⎝
1

2

∑

i, j=R,L

mi j b
†
i b

†
j + 1

2

∑

i, j=R,L

∞∑

n=0

m̄i j,n b̄†
i,n b̄†

j,n

⎞

⎠ (|R〉 ⊗ |L〉)
︸ ︷︷ ︸

Bunch−Davies contribution

,

(3.50)

where the matrices mi j and m̄i j,n are defined for the com-
plementary and particular part of the solution obtained for
Bunch Davies vacuum state. In other words by setting α = 0
we get the following expression for the Bunch Davies quan-
tum state:

|BD〉 = exp

⎛

⎝
1

2

∑

i, j=R,L

mi j b
†
i b

†
j + 1

2

∑

i, j=R,L

∞∑

n=0

m̄i j,n b̄†
i,n b̄†

j,n

⎞

⎠

× (|R〉 ⊗ |L〉). (3.51)

Also the creation and annihilation operators for the R and
L vacuum are defined in terms of new b type of oscillators
using Bogoliubov transformation as:

aσ =
∑

q=R,L

{
[
γqσ bq + δ∗

qσ b
†
q

]
+

∞∑

n=0

[
γ̄qσ,nb̄q,n + δ̄∗

qσ,nb̄
†
q,n

]
}

∀σ = ±1, (3.52)

a†
σ =

∑

q=R,L

{
[
γ ∗
qσ b

†
q + δqσ bq

]
+

∞∑

n=0

[
γ̄ ∗
qσ,nb̄

†
q,n + δ̄qσ,nb̄q,n

]
}

∀σ = ±1. (3.53)

Here γqσ , δqσ , γ̄qσ,n and δ̄qσ,n are the coefficient matri-
ces. For our further computation we use the definition of
α-vacuum state (and Bunch Davies vacuum state), which is
very useful to compute long range cosmological correlation
functions in de Sitter space. In the context of α-vacua the
creation and annihilation operators are defined in terms of
the constituents of R or L vacuum state as:

dσ =
∑

q=R,L

{[
(
cosh α γqσ − sinh α δqσ

)
bq

+
(

cosh α δ∗
qσ − sinh α γ ∗

qσ

)
b†
q

]

+
[(

cosh α

∞∑

n=0

γ̄qσ,nb̄q,n − sinh α

∞∑

n=0

δ̄qσ,nb̄q,n

)

+
(

cosh α

∞∑

n=0

δ̄∗
qσ,nb̄

†
q,n − sinh α

∞∑

n=0

γ̄ ∗
qσ,nb̄

†
q,n

)]}

∀σ = ±1, (3.54)

d†
σ =

∑

q=R,L

{
[(

cosh α γ ∗
qσ − sinh α δ∗

qσ

)
b†
q

+ (cosh α δqσ − sinh α γqσ

)
bq
]

+
[(

cosh α

∞∑

n=0

γ̄ ∗
qσ,nb̄

†
q,n − sinh α

∞∑

n=0

δ̄∗
qσ,nb̄

†
q,n

)

+
(

cosh α

∞∑

n=0

δ̄qσ,nb̄q,n − sinh α

∞∑

n=0

γ̄qσ,nb̄q,n

)]}

∀σ = ±1, (3.55)

where we use the definition of creation and annihilation oper-
ators in Bunch Davies vacuum as mentioned in Eqs. (3.53)
and (3.52). In this computation it is important to note that,
under Bogoliubov transformation the original matrix γqσ ,
δqσ , γ̄qσ,n and δ̄qσ,n used for Bunch Davies vacuum trans-
form ( for α-vacua) as:

γqσ −→ (
cosh α γqσ − sinh α δqσ

)
,

δqσ −→ (
cosh α δqσ − sinh α γqσ

)
,

γ̄qσ,n −→ (
cosh α γ̄qσ,n − sinh α δ̄qσ,n

)
,

δ̄qσ,n −→ (
cosh α δ̄qσ,n − sinh α γ̄qσ,n

)
. (3.56)

Thus, after the Bogoliubov transformation, α-vacua state can
be written in terms of R and L vacua as:

|α〉 = exp

⎛

⎝
1

2

∑

i, j=R,L

m̃i j b
†
i b

†
j + 1

2

∑

i, j=R,L

∞∑

n=0

¯̃mi j,n b̄†
i,n b̄†

j,n

⎞

⎠

× (|R〉 ⊗ |L〉), (3.57)

Here m̃i j and ¯̃mi j,n represent the entries of the matrices
corresponding to the complementary and particular solu-
tion respectively and we will compute them by demanding
dσ |α〉 = 0, and keeping only linear terms of creation opera-
tors. This directly yields the following:

[
m̃i j

(
cosh α γ jσ − sinh α δ jσ

)

+ (cosh α δ∗
iσ − sinh α γ ∗

iσ

)] = 0, (3.58)
[(

cosh α ¯̃mi j,n γ̄ jσ,n − sinh α m̄i j,n δ̄ jσ,n

)

+ (cosh α δ̄∗
iσ,n − sinh α γ̄ ∗

iσ,n

)] = 0∀ n. (3.59)
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From these two equations, the matrices corresponding to the
complementary and particular part of the solution can be
expressed as:

m̃i j = − (cosh α δ∗
iσ − sinh α γ ∗

iσ

)

× (cosh α γ − sinh α δ)−1
σ j =

(
m̃RR m̃RL

m̃LR m̃LL

)

,

(3.60)
¯̃mi j,n = − (cosh α δ̄∗

iσ,n − sinh α γ̄ ∗
iσ,n

)

× (cosh α γ̄ − sinh α δ̄
)−1
σ j,n =

(
m̄RR,n m̄RL,n

m̄LR,n m̄LL,n

)

.

(3.61)

Substituting the expressions for γ , δ, γn and δn we finally
obtain the entries of the mass matrices for i, j = R,L as:

m̃i j = eiθ
√

2 e−pπ T (ν)
i j√

cosh 2πp + cos 2πν
(
cosh2 α + sinh2 α e−2π(p+iν)

)

(3.62)

¯̃mi j,n = eiθ
√

2 e−pnπ T (ν,n)
i j√

cosh 2πpn+ cos 2πν
(
cosh2 α + sinh2 α e−2π(pn+iν)

)

(3.63)

where we defined the T matrices as:

T (ν)
i j =

(
T (ν)
RR T (ν)

RL
T (ν)
LR T (ν)

LL

)

,

T (ν,n)
i j =

(
T (ν,n)
RR T (ν,n)

RL
T (ν,n)
LR T (ν,n)

LL

)

. (3.64)

and the corresponding entries of the T matrices are given
by:

T (ν)
RR = T (ν)

LL =
[(

cosh2 α + sinh2 α e−2iπν
)

− sinh 2α sinh2 πp e−iπν sec πν
]

cos πν, (3.65)

T (ν)
RL = T (ν)

LR = i
[
cosh2 α + sinh2 α e−2iπν

+ sinh 2α cos πν e−iπν
]

sinh πp, (3.66)

T (ν,n)
RR = T (ν,n)

LL =
[(

cosh2 α + sinh2 α e−2iπν
)

− sinh 2α sinh2 πpn e
−iπν sec πν

]
cos πν,

(3.67)

T (ν,n)
RL = T (ν,n)

LR = i
[
cosh2 α + sinh2 α e−2iπν

+ sinh 2α cos πν e−iπν
]

sinh πpn . (3.68)

For the massless (ν = 3/2) axion case, we obtain the follow-
ing simplified expressions:

m̃i j = eiθ
√

2 e−pπ T (3/2)
i j√

cosh 2πp − 1
(
cosh2 α − sinh2 α e−2πp

)

(3.69)

¯̃mi j,n = eiθ
√

2 e−pnπ T (3/2,n)
i j√

cosh 2πpn − 1
(
cosh2 α − sinh2 α e−2πpn

)

(3.70)

where we have defined the T (3/2) matrices as:

T (3/2)
i j =

(
T (3/2)

RR T (3/2)

RL
T (3/2)

LR T (3/2)

LL

)

,

T (3/2,n)
i j =

(
T (3/2,n)

RR T (3/2,n)

RL
T (3/2,n)

LR T (3/2,n)

LL

)

. (3.71)

and the corresponding entries of theT (3/2) matrices are given
by:

T (3/2)

RR = T (3/2)

LL = 0, (3.72)

T (3/2)

RL = T (3/2)

LR = i sinh πp, (3.73)

T (3/2,n)

RR = T (3/2,n)

LL = 0, (3.74)

T (3/2,n)

RL = T (3/2,n)

LR = i sinh πpn . (3.75)

In the above analysis, we have considered small axion mass
(ν2 > 0) limiting situations with an arbitrary parameter α,
which corresponds to Bunch Davies vacuum state with the
choice α = 0. For completeness, we also consider the large
axion mass (ν2 < 0 where ν → −i |ν|) limiting situation
which is very important to study the imprints of quantum
entanglement in cosmological correlation functions. In this
large axion mass limiting situation, we actually consider
a specific window of SO(1, 3) principal quantum number,
which is bounded within the range 0 < p < |ν|. Conse-
quently, the entries of the coefficient matrix m̃ can be approx-
imated as:

m̃RR = −
√

cosh(|ν| − p)

cosh(|ν| + p)

× 2
[
cosh 2α cosh2 π |ν| − sinh 2α sinh2 πp + 1

2 sinh 2π |ν|]

(e2πp + e2π |ν|) cosh2 α + (e2πp + e2π |ν|) sinh2 α
,

(3.76)
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m̃RL = −
√

cosh(|ν| − p)

cosh(|ν| + p)

× 2 i [(cosh 2α + sinh 2α) cosh π |ν| + sinh π |ν|]
(e2πp + e2π |ν|) cosh2 α + (e2πp + e2π |ν|) sinh2 α

, (3.77)

which for α = 0 yield a simplified expression for the m̃ with
Bunch Davies vacuum state. We note that for general value
of α and for large axion mass (ν2 < 0 where ν → −i |ν|), we
always get real value for m̃RR and imaginary value for m̃RL.
This is an important observation for our further analysis.

From the perspective of cosmological observation in the
superhorizon time scale, we again consider two further lim-
iting situations: (a) large wave number (p >> 1) or small
wave length limit and (b)small wave number (p << 1) or
large wave length limit.

Using these two limiting situations we can simplify the
expression for the entries of the coefficient matrix m̃ con-
sidering both small and large axion mass. We start with the
expressions for small axion mass limit in large wave number
(p >> 1) approximation:

m̃i j ≈ 2 eiθ e−2pπ T̃ (ν)
i j sech2α (3.78)

¯̃mi j,n ≈ 2 eiθ e−2pnπ T̃ (ν,n)
i j sech2α (3.79)

where we have defined the T̃ matrices for p >> 1 limit as:

T̃ (ν)
i j =

(
T̃ (ν)
RR T̃ (ν)

RL

T̃ (ν)
LR T̃ (ν)

LL

)

, T̃ (ν,n)
i j =

(
T̃ (ν,n)
RR T̃ (ν,n)

RL

T̃ (ν,n)
LR T̃ (ν,n)

LL

)

.

(3.80)

and the corresponding entries of the T̃ matrices for p >> 1
limit are given by the following simplified expressions:

T̃ (ν)
RR = T̃ (ν)

LL =
[(

cosh2 α + sinh2 α e−2iπν
)

−1

4
sinh 2α e2pπ e−iπν sec πν

]

cos πν, (3.81)

T̃ (ν)
RL = T (ν)

LR = i
[
cosh2 α + sinh2 α e−2iπν

+ sinh 2α cos πν e−iπν
] 1

2
eπp, (3.82)

T̃ (ν,n)
RR = T̃ (ν,n)

LL =
[(

cosh2 α + sinh2 α e−2iπν
)

−1

4
sinh 2α e2pnπ e−iπν sec πν

]

cos πν, (3.83)

T̃ (ν,n)
RL = T̃ (ν,n)

LR = i

[

cosh2 α + sinh2 α e−2iπν

+ sinh 2α cos πν e−iπν
] 1

2
eπpn . (3.84)

For massless (ν = 3/2) axion, we get the following simpli-
fied expressions:

m̃i j ≈ 2 eiθ e−2pπ T̃ (3/2)
i j sech2α (3.85)

¯̃mi j,n ≈ 2 eiθ e−2pnπ T̃ (3/2,n)
i j sech2α (3.86)

where the T̃ (3/2) matrices (for p >> 1) are given by:

T̃ (3/2)
i j =

(
T̃ (3/2)

RR T̃ (3/2)

RL

T̃ (3/2)

LR T̃ (3/2)

LL

)

,

T̃ (3/2,n)
i j =

(
T̃ (3/2,n)

RR T̃ (3/2,n)

RL

T̃ (3/2,n)

LR T̃ (3/2,n)

LL

)

. (3.87)

and the corresponding entries of the T̃ (3/2) matrices are given
by:

T̃ (3/2)

RR = T̃ (3/2)

LL = 0, (3.88)

T̃ (3/2)

RL = T (3/2)

LR = i

2
eπp, (3.89)

T̃ (3/2,n)

RR = T̃ (3/2,n)

LL = 0, (3.90)

T̃ (3/2,n)

RL = T̃ (3/2,n)

LR = i

2
eπpn . (3.91)

On the other hand, for small axion mass and for large wave
number (p << 1) we have:

m̃i j ≈ eiθ
√

2 e−pπ T̂ (ν)
i j√

cos 2πν
(
cosh2 α + sinh2 α e−2π iν

) (3.92)

¯̃mi j,n ≈ eiθ
√

2 e−pnπ T̂ (ν,n)
i j√

cos 2πν
(
cosh2 α + sinh2 α e−2π iν

) (3.93)

where the T̂ matrices are defined as:

T̂ (ν)
i j =

(
T̂ (ν)
RR T̂ (ν)

RL

T̂ (ν)
LR T̂ (ν)

LL

)

, T̂ (ν,n)
i j =

(
T̂ (ν,n)
RR T̂ (ν,n)

RL

T̂ (ν,n)
LR T̂ (ν,n)

LL

)

(3.94)

and the corresponding entries of the T̂ matrices (for p << 1
) are given by:

T̂ (ν)
RR = T̂ (ν)

LL

=
[(

cosh2 α + sinh2 α e−2iπν
)

− sinh 2α π2 p2 e−iπν sec πν
]

cos πν, (3.95)

T̂ (ν)
RL = T̂ (ν)

LR

= i
[
cosh2 α + sinh2 α e−2iπν

+ sinh 2α cos πν e−iπν
]
πp, (3.96)

T̂ (ν,n)
RR = T̂ (ν,n)

LL

=
[(

cosh2 α + sinh2 α e−2iπν
)

− sinh 2α π2 p2
n e

−iπν sec πν
]

cos πν, (3.97)
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T̂ (ν,n)
RL = T̂ (ν,n)

LR

= i
[
cosh2 α + sinh2 α e−2iπν

+ sinh 2α cos πν e−iπν
]
πpn . (3.98)

For the case of massless (ν = 3/2) axion, we get the follow-
ing simplified expressions:

m̃i j ≈ eiθ
√

2 e−pπ T̂ (3/2)
i j (3.99)

¯̃mi j,n ≈ eiθ
√

2 e−pnπ T̂ (3/2,n)
i j (3.100)

with the T̂ matrices defined as:

T̂ (3/2)
i j =

(
T̂ (3/2)

RR T̂ (3/2)

RL

T̂ (3/2)

LR T̂ (3/2)

LL

)

,

T̂ (3/2,n)
i j =

(
T̂ (3/2,n)

RR T̂ (3/2,n)

RL

T̂ (3/2,n)

LR T̂ (3/2,n)

LL

)

(3.101)

and the corresponding entries of the T̂ (3/2) matrices (for
p << 1 ) are given by:

T̂ (3/2)

RR = T̂ (3/2)

LL = 0, (3.102)

T̂ (3/2)

RL = T̂ (3/2)

LR = iπp, (3.103)

T̂ (3/2,n)

RR = T̂ (3/2,n)

LL = 0, (3.104)

T̂ (3/2,n)

RL = T̂ (3/2,n)

LR = iπpn . (3.105)

For further analysis, it is convenient to change over to a suit-
able basis by tracing over all possible contributions from R
andL region. To achieve this we perform another Bogoliubov
transformation by introducing new sets of operators:

c̃R = ũ bR + ṽ b†
R, c̃L = ¯̃u bL + ¯̃v b†

L,

C̃R,n = Ũn bR,n + Ṽn b
†
R,n, C̃L,n = ¯̃Un bL,n + ¯̃Vn b†

L,n,

(3.106)

satisfying the following conditions:

|ũ|2 − |ṽ|2 = 1, | ¯̃u|2 − | ¯̃v|2 = 1,

|Ũn|2 − |Ṽn|2 = 1, | ¯̃Un|2 − | ¯̃Vn|2 = 1. (3.107)

Using these operators we write the α-vacuum state in terms
of new basis represented by the direct product of R

′
and L

′

vacuum state as:

|α〉 =
[

1 −
(

|γ (α)
p |2 +

∞∑

n=0

|�(α)
p,n|2

)]1/2

× exp

(

γ (α)
p c̃†

R c̃†
L +

∞∑

n=0

�(α)
p,n C̃

†
R,n C̃

†
L,n

)

×
(
|R′ 〉 ⊗ |L′ 〉

)(α)

, (3.108)

where γ
(α)
p and �

(α)
p,n are to be determined shortly. We note

that the the relationship between the new and the old basis is
given by:

(|R〉 ⊗ |L〉) →
(
|R′ 〉 ⊗ |L′ 〉

)(α)

=
[

1 −
(

|γ (α)
p |2 +

∞∑

n=0

|�(α)
p,n |2

)]−1/2

× exp

(

−γ (α)
p c̃†

R c̃†
L −

∞∑

n=0

�(α)
p,n C̃

†
R,n C̃

†
L,n

)

× exp

⎛

⎝
1

2

∑

i, j=R,L

mi j b
†
i b

†
j + 1

2

∑

i, j=R,L

∞∑

n=0

m̄i j,n b̄
†
i,n b̄

†
j,n

⎞

⎠

× (|R〉 ⊗ |L〉) . (3.109)

The commutation relations between the creation and annihi-
lation operators corresponding to the new sets of oscillators
is taken as:

[
c̃i , c̃

†
j

]
= δi j ,

[
c̃i , c̃ j

] = 0 =
[
c̃†
i , c̃

†
j

]
,

[
C̃i,n, C̃

†
j,m

]
= δi jδnm,

[
C̃i,n, C̃ j,m

]
= 0 =

[
C̃†
i,mC̃

†
j,m

]
.

(3.110)

These operations act on the α vacuum state in the following
way:

c̃R|α〉 = γ (α)
p c̃†

L|α〉, c̃R|α〉 = γ (α)
p c̃†

L|α〉,
C̃R,n|α〉 = �(α)

p,n C̃
†
L,n|α〉, C̃R,n|α〉 = �(α)

p,n C̃
†
L,n|α〉.

(3.111)

Further, one can express the new c type annihilation operators
in terms of the old b type annihilation operators as:

c̃J = bI G̃ I
J = bI

(
Ũq Ṽ ∗

q

Ṽq Ũ∗
q

)

,

C̃J (n) = b̄J (n)

(
G̃(n)

)I

J
= b̄J (n)

( ¯̃Uq,n
¯̃V ∗
σq,n¯̃Vq,n
¯̃U∗
q,n

)

. (3.112)

Note that Ũq ≡ diag
(
ũ, ¯̃u

)
, Ṽq ≡ diag

(
ṽ, ¯̃v
)

, ¯̃Uq,n ≡
diag

(
Ũn,

¯̃Un

)
, ¯̃Vq,n ≡ diag

(
Ṽn,

¯̃Vn
)

. From Eqs. (3.106)

and (3.111), we obtain the following sets of homogeneous
equations:
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For complementary solution:

m̃RRũ + ṽ − γ (α)
p m̃RL ¯̃v∗ = 0, (3.113)

m̃RR ¯̃u + ¯̃v − γ (α)
p m̃RLṽ∗ = 0, (3.114)

m̃RLũ − γ (α)
p

¯̃u∗ − γ (α)
p m̃RR ¯̃v∗ = 0, (3.115)

m̃RL ¯̃u − γ (α)
p ũ∗ − γ (α)

p m̃RRṽ∗ = 0, (3.116)

For particular solution:

m̃RR,nŨn + Ṽn − �(α)
p,nm̃RL,n

¯̃V ∗
n = 0,

m̃RR,n
¯̃Un + ¯̃Vn − �(α)

p,nm̃RL,n Ṽ
∗
n = 0, (3.117)

m̃RL,nŨn − �(α)
p,n

¯̃U∗
n − �(α)

p,nm̃RR,n
¯̃V ∗
n = 0,

m̃RL,n
¯̃Un − �(α)

p,nŨ
∗
n − �(α)

p,nm̃RR,n Ṽ
∗
n = 0, (3.118)

Using the relations ṽ∗ = ¯̃v, ũ∗ = ¯̃u, Ṽ ∗
n = ¯̃Vn, Ũ∗

n = ¯̃Un ,
|ũ|2 − |ṽ|2 = 1 and |Ũn|2 − |Ṽn|2 = 1 the solutions of these
equations can be written as:

γ (α)
p = 1√

2|m̃RL|

[(

1 + |m̃RL|4 + |m̃RR|4 − 2|m̃RR|2 − m̃2
RR(m̃∗

RL)2 − m̃2
RL(m̃∗

RR)2

)

±
{(

−1 − |m̃RL|4 − |m̃RR|4 +2|m̃RR|2 + m̃2
RR(m̃∗

RL)2 + m̃2
RL(m̃∗

RR)2
)2 − 4|m̃RL|4

} 1
2
] 1

2

≈ i

√
2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]

(√
cosh 2πp + cos 2πν ± √

cosh 2πp + cos 2πν + 2
) (

cosh2 α + sinh2 α e−2π(p−iν)
)

α = 0−−−→ γ (0)
p = 1

2mRL

[(
1 + m2

RL − m2
RR

)
±
√
(
1 + m2

RL − m2
RR

)2 − 4m2
RL

]

≈ i

√
2√

cosh 2πp + cos 2πν ± √
cosh 2πp + cos 2πν + 2

, (3.119)

�(α)
p,n = 1√

2|m̃RL,n|

[(

1 + |m̃RL,n|4 + |m̃RR,n|4

−2|m̃RR,n|2 − m̃2
RR,n(m̃

∗
RL,n)

2 − m̃2
RL,n(m̃

∗
RR,n)

2
)

±
{(

−1 − |m̃RL,n|4 − |m̃RR,n|4

+2|m̃RR,n|2 + m̃2
RR,n(m̃

∗
RL,n)

2 + m̃2
RL,n(m̃

∗
RR,n)

2
)2 − 4|m̃RL,n|4

} 1
2
] 1

2

≈ i

√
2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]

(√
cosh 2πpn + cos 2πν ± √

cosh 2πpn + cos 2πν + 2
) (

cosh2 α + sinh2 α e−2π(pn−iν)
)

α = 0−−−→ �(0)
p,n = 1

2m̄RL,n

[
(

1 + m̄2
RL,n − m̄2

RR,n

)
±
√
(

1 + m̄2
RL,n − m̄2

RR,n

)2 − 4m̄2
RL,n

]

≈ i

√
2√

cosh 2πpn + cos 2πν ± √
cosh 2πpn + cos 2πν + 2

, (3.120)

where the components m̃RR = m̃LL, m̃RL = m̃LR and
m̃RR,n = m̃LL,n , m̃RL,n = m̃LR,n are defined in Eqs. (3.62–
68) for general α vacua. Also the components without tilde
symbol represent the contribution from α = 0, which is the
Bunch Davies vacuum state.

Further, for the massless (ν = 3/2) axion field we get the
following simplified expressions:

γ
(α,3/2)
p ≈ i

√
2

(√
cosh 2πp − 1 ± √

cosh 2πp + 1
) (

cosh2 α − sinh2 α e−2πp
)

α = 0−−−→ γ
(0,3/2)
p ≈ i

√
2√

cosh 2πp − 1 ± √
cosh 2πp + 1

, (3.121)

�(α)
p,n ≈ i

√
2

(√
cosh 2πpn − 1 ± √

cosh 2πpn + 1
) (

cosh2 α − sinh2 α e−2πpn
)

α = 0−−−→ �(0)
p,n ≈ i

√
2√

cosh 2πpn − 1 ± √
cosh 2πpn + 1

, (3.122)

In the large axion mass (ν2 < 0 where ν → −i |ν|) limit
the two solutions for the γ

(α)
p and �

(α)
p,n for α vacuum are
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given by:

γ (α)
p ≈ 1

2|m̃RL|
[(

1 + |m̃RL|2 − m̃2
RR

)

±
√
(
1 + |m̃RL|2 − m̃2

RR

)2 − 4|m̃RL|2
]

. (3.123)

�(α)
p,n ≈ 1

2|m̃RL,n|
[(

1 + |m̃RL,n|2 − m̃2
RR,n

)

±
√
(
1 + |m̃RL|2 − m̃2

RR

)2 − 4|m̃RL,n|2
]

(3.124)

In this limit, we divide the total window of p into two regions,
given by 0 < p < |ν| and |ν| < p < 	C. In these regions of
interest, the two solutions for γ

(α)
p in presence of α vacuum

can be approximately written as:

|γ (α)
p | ≈

{
e∓π |ν| (1 + tan α) f or 0 < p < |ν|
e∓πp(1+tan α)

(
1+tan α e2π |ν|)

(1+tan2 α e−2πp)
f or |ν| < p < 	C/2π.

(3.125)

and

|�(α)
p,n | =

{
e∓π |ν| (1 + tan α) f or 0 < p < |ν|
e∓πpn (1+tan α)

(
1+tan α e2π |ν|)

(1+tan2 α e−2πpn )
f or |ν| < p < 	C/2π.

(3.126)

Further, in the limit p >> 1 we get the following simplified
results:

γ (α)
p approxi

2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]
sech2α

(√| cosh 2πp| ± √| cosh 2πp| + 4
)

α = 0−−−→ γ (0)
p ≈ i

2√| cosh 2πp| ± √| cosh 2πp| + 4
, (3.127)

�(α)
p,n ≈ i

2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]
sech2α

(√| cosh 2πpn | ± √| cosh 2πpn | + 4
)

α = 0−−−→ �(0)
p,n ≈ i

2√| cosh 2πpn | ± √| cosh 2πpn | + 4
, (3.128)

For massless (ν = 3/2) axion field this simplifies to:

γ
(α,3/2)
p ≈ i

2sech2α
(√| cosh 2πp| ± √| cosh 2πp| + 4

)

α = 0−−−→ γ
(0,3/2)
p ≈ i

2√| cosh 2πp| ± √| cosh 2πp| + 4
,

(3.129)

�
(α,3/2)
p,n ≈ i

2sech2α
(√| cosh 2πpn| ± √| cosh 2πpn| + 4

)

α = 0−−−→ �
(0,3/2)
p,n ≈ i

2√| cosh 2πpn| ± √| cosh 2πpn| + 4
,

(3.130)

On the other hand, in the limit p << 1 we get the following
results:

γ (α)
p ≈ i

√
2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]

(√
cos 2πν + 1 ± √

cos 2πν + 3
) (

cosh2 α + sinh2 α e2π iν
)

α = 0−−−→ γ (0)
p ≈ i

√
2√

cos 2πν + 1 ± √
cos 2πν + 3

, (3.131)

�(α)
p,n ≈ i

√
2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]

(√
cos 2πν + 1 ± √

cos 2πν + 3
) (

cosh2 α + sinh2 α e2π iν
)

α = 0−−−→ �(0)
p,n ≈ i

√
2√

cos 2πν + 1 ± √
cos 2πν + 3

, (3.132)

which, for massless (ν = 3/2) axion field , simplifies to:

γ
(α,3/2)
p ≈ ±i

1√
2

α = 0−−−→ γ
(0,3/2)
p ≈ ±i

1√
2
,

(3.133)

�
(α,3/2)
p,n ≈ ±i

1√
2

α = 0−−−→ �
(0,3/2)
p,n ≈ ±i

1√
2
,

(3.134)

and are very useful information for the computation of spec-
trum of vacuum fluctuation.

Further, the Fourier mode of the total compact solution in
the region L in case of α vacua can be re-expressed in terms
of the oscillators defined in the new basis (c̃, C̃) as well as
the SO(1,3) quantum numbers (p, l,m) as:

˜φL,plm(tL) = H

sinh tL
c̃TI ψ̃I

T

= H

sinh tL

[
1

Np

˜
(
G−1

)I
JP

J +
∞∑

n=0

1

Np,(n)

˜
(
G−1

(n)

)I

J
P J

(n)

]

,

(3.135)

where the total wave function ψ̃I
T is a column matrix and

for the complementary and particular part of the solution the

inverse matrix
˜
(
G−1

)I
J and

˜
(
G−1

(n)

)I

J
are defined as:
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˜
(
G−1

)I
J =

( ˜̄u∗ − ˜̄v∗
− ˜̄v ˜̄u

)

,

˜
(
G−1

(n)

)I

J
=
( ˜̄U∗

(n) − ˜̄V ∗
(n)

− ˜̄V(n)
˜̄U(n)

)

,

ψI,T =
(

ψL,T(tL)

ψL∗,T(tL)

)

. (3.136)

When we trace out the degrees of freedom over the right
part of the Hilbert space, we obtain the following reduced
density matrix for the left part of the Hilbert space:

(ρL(α))p,l,m = TrR|α〉〈α|, (3.137)

where the α vacuum state is written in terms of c̃ type of
oscillators as:

|α〉 ≈
[

1 −
(

|γ (α)
p |2 +

∞∑

n=0

|�(α)
p,n|2

)]1/2

× exp

[

γ (α)
p c̃†

R c̃†
L +

∞∑

n=0

�(α)
p,n C̃

†
R,n C̃

†
L,n

]

×
(
|R′ 〉 ⊗ |L′ 〉

)(α)

, (3.138)

Substituting Eq. (3.138) in Eq. (3.137), we get the expression
for the reduced density matrix for the left part of the Hilbert
space:

(ρL(α))p,l,m

=
(

1 − |γ (α)
p |2

)

1 + f (α)
p

∞∑

k=0

|γ (α)
p |2k ˜|k; p, l,m〉 ˜〈k; p, l,m|

︸ ︷︷ ︸
Complementary part

+ ( f (α)
p )2

1 + f (α)
p

∞∑

n=0

∞∑

r=0

|�(α)
p,n|2r ˜|n, r; p, l,m〉 ˜〈n, r; p, l,m|

︸ ︷︷ ︸
Particular part

.

(3.139)

where f (α)
p is given by

f (α)
p =

( ∞∑

n=0

1

1 − |�(α)
p,n|2

)−1

, (3.140)

and the states ˜|k; p, l,m〉 and ˜|n, r; p, l,m〉 are expressed in
terms of the new quantum state |L′ 〉 as:

˜|k; p, l,m〉 = 1√
k! (c̃

†
L)k |L′ 〉,

˜|n, r; p, l,m〉 = 1√
r ! (C̃

†
L,n)

r |L′ 〉. (3.141)

Note that for α = 0, we get back the result obtained for
Bunch Davies vacuum.

3.2.2 Two point correlation function

In this subsection we explicitly compute the two point cor-
relation function and its significant role to obtain long range
effect in the cosmological correlation using the generalised
α and Bunch Davies vacuum. For this purpose and using the
expression for the reduced density matrix, derived in the pre-
vious subsection, we first compute the mean square quantum
vacuum fluctuation, which is expressed for α vacua as:

TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)

(α)
= exp (−2α)

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(
1 − |γ (α)

p |2
) ∞∑

n=0

|γ (α)
p |2n ˜〈n; p, l,m|φL(tL)φ

†
L(tL) ˜|n; p, l,m 〉

︸ ︷︷ ︸
Complementary part

+ 1
(
f (α)
p

)2

∞∑

r=0

∞∑

s=0

|�(α)
p,r,s |2r ˜〈s, r; p, l,m|φL(tL)φ

†
L(tL) ˜|s, r; p, l,m 〉

︸ ︷︷ ︸
Particular part

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.142)

In the above, we have used the shorthand notation φL(tL) =
φLplm(t) for the field. Note that, setting α = 0 in Eq. (3.142)
we get the result for the Bunch Davies vacuum which is given
by:

TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)

(BD)

=
(

1 − |γ (0)
p |2

) ∞∑

n=0

|γ (0)
p |2n〈n; p, l,m|φL(tL)φ

†
L(tL)|n; p, l,m 〉

︸ ︷︷ ︸
Complementary part

+ 1
(
f (0)
p

)2

∞∑

r=0

∞∑

s=0

|�(0)
p,r,s |2r 〈s, r; p, l,m|φL(tL)φ

†
L(tL)|s, r; p, l,m 〉

︸ ︷︷ ︸
Particular part

.

(3.143)

Here |s, r; p, l,m 〉 is the Bunch Davies counterpart of the
quantum state in the newly Bogoliubov transformed basis
and is obtained by simply setting α = 0 in the definition of
the quantum state introduced in terms of the new oscillators.

The contributions from the complementary and the par-
ticular part, as appearing in the right hand side of Eq. (3.142)
for each n-particle state are found to be:

˜〈n; p, l,m|φL(tL)φ
†
L(tL) ˜|n; p, l,m 〉

= H2

sinh2 tL

1

n! 〈L
′ |(c̃L)n

(
c̃TI ψ̃

†I
T

) (
c̃TJ ψ̃

†J
T

)†
(c̃†

L)n|L′ 〉
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= H2

sinh2 tL
(2n + 1) |ψ̃L

T |2, (3.144)

˜〈s, r; p, l,m|φL(tL)φ
†
L(tL) ˜|s, r; p, l,m 〉

= H2

sinh2 tL

1

r ! 〈L
′ |(C̃ (s)

L )r
(
c̃TI ψ̃

†I
T

) (
c̃TJ ψ̃

†J
T

)†
(C̃ (s)†

L )r |L′ 〉

= H2

sinh2 tL
(2r + 1) |ψ̃L

T |2, (3.145)

where ψ̃L
T is given by:

ψ̃L
T =

(
ψ̃L
T (t)

ψ̃L∗
T (t)

)

=
(
ELP̃L + FLP̃L∗
F∗
LP̃L + E∗

LP̃L∗
)

+
∞∑

n=0

(
EL,(n)P̃L

(n) + FL,(n)P̃L∗
(n)

F∗
L,(n)P̃L

(n) + E∗
L,(n)P̃L∗

(n)

)

, (3.146)

with the entries of the column matrix for the complementary
and particular integral part of the solution being:

EL =
¯̃u
Nc

, (3.147)

FL = −
¯̃v
Nc

, (3.148)

EL,(n) =
¯̃Un

Nc,(n)

, (3.149)

FL,(n) = −
¯̃V

Nc,(n)

. (3.150)

The normalization constants Nc and Nc,(n) for the comple-
mentary part and particular integral part of the solution is
defined as:

Nc =
√

2

π
e− πp

2
√

cosh 2πp + cos2πν, (3.151)

Nc,(n) =
√

2

π
e− πpn

2
√

cosh 2πpn + cos2πν. (3.152)

The expression for ( ¯̃u, ¯̃v) for complementary solution and

(
¯̃Un,

¯̃Vn) for particular solution are given by the following
expressions:

For complementary part:

¯̃u = 1 − γ
(α)
p m̃LR

√

|1 − γ
(α)
p m̃LR|2 − |m̃RR|2

α = 0−−−→

ū = 1 − γ
(0)
p mLR

√

|1 − γ
(0)
p mLR|2 − |mRR|2

, (3.153)

¯̃v = m̃RR
√

|1 − γ
(α)
p m̃LR|2 − |m̃RR|2

α = 0−−−→

¯̃v = mRR
√

|1 − γ
(0)
p mLR|2 − |mRR|2

, (3.154)

For particular part:

¯̃Un = 1 − �
(α)
p,nm̃LR

√

|1 − �
(α)
p,nm̃LR|2 − |m̃RR|2

α = 0−−−→

Ūn = 1 − �
(0)
p,nmLR

√

|1 − �
(0)
p,nmLR|2 − |mRR|2

, (3.155)

¯̃Vn = m̃LR
√

|1 − �
(α)
p,nm̃LR|2 − |m̃RR|2

α = 0−−−→

V̄n = mLR
√

|1 − �
(0)
p,nmLR|2 − |mRR|2

,

Results for generalised α vacua
︸ ︷︷ ︸

Results for Bunch Davies vacuum︸ ︷︷ ︸ . (3.156)

where the expression for (m̃LR, m̃RR) and (γ
(α)
p , �

(α)
p,n) for

the complementary and particular part of the solution are
defined earlier in Eqs. (3.62–68) and Eqs. (3.119–3.120)
respectively. We have used Eqs. (3.113), (3.114), (3.115) and
(3.116) and also have imposed the normalization conditions,
| ¯̃u|2 − ¯̃v|2 = 1 and | ¯̃u|2 − ¯̃v|2 = 1. Note that the structural
form of the equations for α = 0 corresponding to Bunch
Davies vacuum is exactly same as that of α vacua. Only the
significant changes appear when we explicitly consider the
entries of (mLR,mRR) and (γp, �p,n) for the complementary
and particular part of the solution.

Now, substituting Eqs. (3.144) and (3.145) in Eq. (3.142)
we get the following simplified expression for the mean
square quantum vacuum fluctuation for α vacua as:

TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)

(α)

= exp (−2α)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

H2

sinh2 tL
|ψ̃L

T |2
(

1 − |γ (α)
p |2

) ∞∑

n=0

|γ (α)
p |2n (2n + 1)

︸ ︷︷ ︸
Complementary part

+ H2

sinh2 tL
|ψ̃L

T |2 1
(
f (α)
p

)2

∞∑

r=0

∞∑

s=0

|�(α)
p,r,s |2r (2r + 1)

︸ ︷︷ ︸
Particular part

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

= H2

sinh2 tL
|ψ̃L

T |2 exp (−2α)

×
⎡

⎢
⎣

1 + |γ (α)
p |2

1 − |γ (α)
p |2

+ 1
(
f (α)
p

)2

∞∑

s=0

1 + |�(α)
p,s |2

(
1 − |�(α)

p,s |2
)2

⎤

⎥
⎦ . (3.157)
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Setting α = 0 we get the expression for the Bunch Davies
vacuum as:

TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)

(BD)

= H2

sinh2 tL
|ψL

T |2
(

1 − |γ (0)
p |2

) ∞∑

n=0

|γ (0)
p |2n (2n + 1)

︸ ︷︷ ︸
Complementary part

+ H2

sinh2 tL
|ψL

T |2 1
(
f (0)
p

)2

∞∑

r=0

∞∑

s=0

|�(0)
p,r,s |2r (2r + 1)

︸ ︷︷ ︸
Particular part

.

= H2

sinh2 tL
|ψL

T |2
⎡

⎢
⎣

1 + |γ (0)
p |2

1 − |γ (0)
p |2

+ 1
(
f (0)
p

)2

∞∑

s=0

1 + |�(0)
p,s |2

(
1 − |�(0)

p,s |2
)2

⎤

⎥
⎦ .

(3.158)

We note that, to derive this expression we have used the
following identities:

∞∑

n=0

(2n + 1)|γ (α)
p |2n

= 1 + |γ (α)
p |2

(
1 − γ

(α)
p |2

)2 α = 0−−−→
∞∑

n=0

(2n + 1)|γ (0)
p |2n

= 1 + |γ (0)
p |2

(
1 − γ

(0)
p |2

)2 , (3.159)

∞∑

s=0

∞∑

r=0

(2r + 1)|�(α)
p,r,s |2r

=
∞∑

s=0

1 + |�(α)
p,s |2

(
1 − �

(α)
p,s |2

)2 α = 0−−−→
∞∑

s=0

∞∑

r=0

(2r + 1)|�(0)
p,r,s |2r

=
∞∑

s=0

1 + |�(0)
p,s |2

(
1 − �

(0)
p,s |2

)2 . (3.160)

The expression for |ψ̃L
T |2, now comes out to be:

|ψ̃L
T |2 =

(
ψ̃L
T

)†
ψ̃L
T

=
[
(|EL|2 + |FL|2) P̃LP̃L∗ + ELF∗

L

(
P̃L
)2 + E∗

LFL

(
P̃L∗)2

+
∞∑

n=0

{(
ELE∗

L,(n) + FLF∗
L,(n)

)
P̃LP̃L∗

(n)

+
(
ELF∗

L,(n) + EL,(n)F∗
L

)
P̃LP̃L

(n)

+
(
E∗
L,(n)FL + E∗

LFL,(n)

)
P̃L∗

(n)P̃
L∗}

+
∞∑

n=0

∞∑

m=0

{(
EL,(n)E∗

L,(m) + FL,(n)F∗
L,(m)

)
P̃L

(n)P̃
L∗
(m)

+EL,(n)F∗
L,(m)P̃

L
(n)P̃

L
(m) + E∗

L,(n)FL,(m)P̃L∗
(n)P̃

L∗
(m)

}]

(3.161)

Here also by fixing the parameter α = 0 one can get the
expression for the square of the magnitude of the wave func-
tion for Bunch Davies vacuum in the newly defined Bogli-
ubov transformed basis.

Using Eq. (3.161), the amplitude of the normalised power
spectrum of axion from the generalised α vacua can be
expressed in all time scales of region L as:

P(p, α, tL) = p3

2π2 TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)

(α)

= p3

2π2

H2

sinh2 tL
|ψ̃L

T |2 exp (−2α)

×
⎡

⎢
⎣

1 + |γ (α)
p |2

1 − |γ (α)
p |2

+ 1
(
f (α)
p

)2

∞∑

s=0

1 + |�(α)
p,s |2

(
1 − |�(α)

p,s |2
)2

⎤

⎥
⎦

= p3

2π2

H2

sinh2 tL
exp (−2α)

×
⎡

⎢
⎣

1 + |γ (α)
p |2

1 − |γ (α)
p |2

+ 1
(
f (α)
p

)2

∞∑

s=0

1 + |�(α)
p,s |2

(
1 − |�(α)

p,s |2
)2

⎤

⎥
⎦

×
[
(|EL|2 + |FL|2) P̃LP̃L∗ + ELF∗

L

(
P̃L
)2 + E∗

LFL

(
P̃L∗)2

+
∞∑

n=0

{(
ELE∗

L,(n) + FLF∗
L,(n)

)
P̃LP̃L∗

(n)

+
(
ELF∗

L,(n) + EL,(n)F∗
L

)
P̃LP̃L

(n)

+
(
E∗
L,(n)FL + E∗

LFL,(n)

)
P̃L∗

(n)P̃L∗}

+
∞∑

n=0

∞∑

m=0

{(
EL,(n)E∗

L,(m) + FL,(n)F∗
L,(m)

)
P̃L

(n)P̃L∗
(m)

+EL,(n)F∗
L,(m)P̃L

(n)P̃L
(m) + E∗

L,(n)FL,(m)P̃L∗
(n)P̃L∗

(m)

}]
.

(3.162)

However, the above equation is very complicated to extract
any physical information for further cosmological predic-
tions. For this reason we consider the superhorizon time
scales (tL >> 1) of region L, in which the Legendre func-
tions appearing in the complementary part and the particular
integral part of the time dependent solution can be approxi-
mated as the following simplified form:

(
P̃L, P̃L∗) ≡ P±i p

ν− 1
2
(cosh tL)

tL >> 1−−−−−→
2ν− 1

2 (cosh tL)ν− 1
2 �(ν)√

π�
(
ν ∓ i p + 1

2

) , (3.163)
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(
P̃L

(n), P̃L∗
(n)

)
≡ P±i pn

ν− 1
2

(cosh tL)

tL >> 1−−−−−→
2ν− 1

2 (cosh tL)ν− 1
2 �(ν)√

π�
(
ν ∓ i pn + 1

2

) . (3.164)

Consequently, in the superhorizon time scales (tL >> 1) of
region L Eq. (3.162) can be simplified for as:

|ψ̃L
T |2 =

(
ψ̃L
T

)†
ψ̃L
T tL >> 1−−−−−→ ˜Q(p, α, ν) (cosh tL)2ν−1

(3.165)

where the time independent function ˜Q(p, α, ν) for gener-
alised α vacua is defined as:

˜Q(p, α, ν) = 22ν−1 (�(ν))2

π

[ (|EL|2 + |FL|2)

|� (ν + i p + 1
2

) |2

+ ELF∗
L

(
�
(
ν − i p + 1

2

))2 + E∗
LFL

(
�
(
ν + i p + 1

2

))2

+
∞∑

n=0

⎧
⎨

⎩

(
ELE∗

L,(n) + FLF∗
L,(n)

)

�
(
ν − i p + 1

2

)
�
(
ν + i pn + 1

2

)

+
(
ELF∗

L,(n) + EL,(n)F∗
L

)

�
(
ν − i p + 1

2

)
�
(
ν − i pn + 1

2

)

+
(
E∗
L,(n)FL + E∗

LFL,(n)

)

�
(
ν + i p + 1

2

)
�
(
ν + i pn + 1

2

)

⎫
⎬

⎭

+
∞∑

n=0

∞∑

m=0

⎧
⎨

⎩

(
EL,(n)E∗

L,(m) + FL,(n)F∗
L,(m)

)

�
(
ν − i pn + 1

2

)
�
(
ν + i pm + 1

2

)

+ EL,(n)F∗
L,(m)

�
(
ν − i pn + 1

2

)
�
(
ν − i pm + 1

2

)

+ E∗
L,(n)FL,(m)

�
(
ν + i pn + 1

2

)
�
(
ν + i pm + 1

2

)

}]

.

(3.166)

As a result, in the superhorizon time scales (tL >> 1) of
region L the amplitude of the normalised power spectrum of
axion from generalised α vacua can be expressed as:

P(p, α, tL) = p3

2π2

H2

sinh2 tL
|ψ̃L

T |2 exp (−2α)

×
⎡

⎢
⎣

1 + |γ (α)
p |2

1 − |γ (α)
p |2

+ 1
(
f (α)
p

)2

∞∑

s=0

1 + |�(α)
p,s |2

(
1 − |�(α)

p,s |2
)2

⎤

⎥
⎦

tL >> 1−−−−−→
p3

2π2

(cosh tL)2ν−1

sinh2 tL
H2

˜Q(p, ν) exp (−2α)

×
⎡

⎢
⎣

1 + |γ (α)
p |2

1 − |γ (α)
p |2

+ 1
(
f (α)
p

)2

∞∑

s=0

1 + |�(α)
p,s |2

(
1 − |�(α)

p,s |2
)2

⎤

⎥
⎦ .

(3.167)

We note that in the superhorizon time scales (tL >> 1) of
region L if we consider the massless case by fixing the mass
parameter ν = 3/2, then the time dependent contribution can
be approximated as:

(
(cosh tL)2ν−1

sinh2 tL

)

ν=3/2

tL >> 1−−−−−→ 1. (3.168)

From this we infer that for an arbitrary value of the parameter
ν we can write:
(

(cosh tL)2ν−1

sinh2 tL

)

tL >> 1−−−−−→ (cosh tL)2ν−3 . (3.169)

Consequently, in the super horizon time scales (tL >> 1)
of region L considering the massless case (ν = 3/2) the
amplitude of the normalised power spectrum of axion from
generalised α vacua can be expressed as:

P(p, α, tL) = p3

2π2

H2

sinh2 tL
|ψ̃L

T |2 exp (−2α)

×
⎡

⎢
⎣

1 + |γ (α)
p |2

1 − |γ (α)
p |2

+ 1
(
f (α)
p

)2

∞∑

s=0

1 + |�(α)
p,s |2

(
1 − |�(α)

p,s |2
)2

⎤

⎥
⎦

tL >> 1, ν = 3/2−−−−−−−−−−−−→
p3

2π2 H2
˜Q(p, ν = 3/2) exp (−2α)

×
⎡

⎢
⎣

1 + |γ (α)
p |2

1 − |γ (α)
p |2

+ 1
(
f (α)
p

)2

∞∑

s=0

1 + |�(α)
p,s |2

(
1 − |�(α)

p,s |2
)2

⎤

⎥
⎦ .

(3.170)

Like the result in the case of field operator expansion method
derived in the previous section, this result also implies that
in the massless case (ν = 3/2) amplitude of the vacuum
fluctuation gets frozen with respect to the time scale when
the associated modes exit horizon.

Further to know the exact wave number dependence of
the amplitude of the normalised power spectrum from gener-
alised α vacua we need to know the behaviour of the power
spectrum at very short wavelengths (p, pn >> 1). In this
limit it is expected that the power spectrum of axion should
match with the result obtained for spatially flat universe. In
the short wave length approximation the time independent

function ˜Q(p >> 1, α, ν) for any arbitrary mass parameter
ν can be expressed for generalised α vacua as:
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˜Q(p >> 1, α, ν) = 22(ν−1) (�(ν))2

p3π
˜G(p >> 1)

= ˜M(p, ν) ∀α, (3.171)

where we have already defined the function ˜G(p >> 1) in the
earlier section. Here for very large wave number p, pn >> 1

one can write, ˜G(p >> 1) ∼ 1+· · · , where all · · · are small
correction terms. This also implies to the interesting fact that
for large wavenumber limit and for any values of the param-
eter α, the time independent function Q(p >> 1, α, ν) com-
puted for generalised α vacua exactly matches with the result
obtained for Bunch Davies vacua in the earlier section i.e.

˜M(p >> 1, ν). This means that the final result is indepen-
dent of the choice of the parameter α.

For the massless case (ν = 3/2) in the short wave length
approximation, the time independent function Q̃(p >>

1, α, ν = 3/2) can further be simplified to:

˜Q(p >> 1, α, ν = 3/2) = ˜G(p >> 1)

2p3

= ˜M(p >> 1, ν = 3/2) ∀α. (3.172)

Additionally, we note that the following important contribu-
tion appearing in the normalised power spectrum for axion
can be simplified, in the large wave number limit, as:

⎡

⎢
⎣

1 + |γ (α)
p |2

1 − |γ (α)
p |2

+ 1
(
f (α)
p

)2

∞∑

s=0

1 + |�(α)
p,s |2

(
1 − |�(α)

p,s |2
)2

⎤

⎥
⎦

p>>1=

⎡

⎢
⎢
⎢
⎢
⎣

1 +
( ∞∑

s=0

1

)−1

︸ ︷︷ ︸
=0

⎤

⎥
⎥
⎥
⎥
⎦

∀α. (3.173)

Finally, in the super horizon time scales (tL >> 1) of region
L, the amplitude of the normalised power spectrum of axion,
in the short wave length approximation, can be expressed as:

P(p >> 1, α, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 exp (−2α) H2
˜Q(p >> 1, α, ν)

= p3

2π2 (cosh tL)2ν−3 exp (−2α) H2
˜M(p >> 1, ν)

= (2 cosh tL)2ν−3
(

H

2π

)2
(

�(ν)

�
( 3

2

)

)2

˜G(p >> 1).

(3.174)

For the massless case (ν = 3/2), in the same scale and the
same approximation, the above amplitude takes the form:

P(p >> 1, α, tL >> 1)

= p3

2π2 exp (−2α) H2
˜Q(p >> 1, α, ν = 3/2)

= p3

2π2 exp (−2α) H2
˜M(p >> 1, ν = 3/2)

=
(

H

2π

)2

exp (−2α) ˜G(p >> 1). (3.175)

It is important to note that both of Eqs. (3.174) and (3.175)
are valid after horizon exit. From the same results , we also
observe that the normalised power spectrum from generalised
α vacua,in the leading order, computed from reduced density
matrix formalism is exactly same as that obtained in the pre-
vious sub-section, computed using field operator expansion
method.

For completeness, we present the result for the two point
correlation function and the associated power spectrum for
Bunch Davies vacuum by fixing the parameter α = 0 in our
previous equations and they can be expressed as:

PBD(p >> 1, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 H2
˜Q(p >> 1, α = 0, ν)

= p3

2π2 (cosh tL)2ν−3 H2
˜M(p >> 1, ν)

= (2 cosh tL)2ν−3
(

H

2π

)2
(

�(ν)

�
( 3

2

)

)2

˜G(p >> 1).

(3.176)

For for the massless case (ν = 3/2) this can be further sim-
plified to:

PBD(p >> 1, tL >> 1)

= p3

2π2 H2
˜Q(p >> 1, α = 0, ν = 3/2)

= p3

2π2 H2
˜M(p >> 1, ν = 3/2)

=
(

H

2π

)2
˜G(p >> 1). (3.177)

In Fig. 9a, b we have shown the behaviour of the power
spectrum of the mean square vacuum fluctuation computed
from RDM formalism in the large wave number regime. We
have considered α = 0 and α = 0.1 and fixed values of
the mass parameter ν respectively. Additionally, in Fig. 9c
we have depicted the behaviour of the power spectrum with
respect to the mass parameter ν for fixed values of the param-
eter α = 0, 0.1, 0.2, 0.3, 0.4. From the figures, we observe
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(a) (b)

(c)

Fig. 9 Features of RDM power spectrum in large wave number region

that the power spectrum shows two distinctive behaviour in
1/2 < ν < 1 and ν > 1 region. For 1/2 < ν < 1 region the
amplitude of the power spectrum decrease to a certain value
and just after ν = 1 it increases. Also note that in large wave
number regime, the power spectrum obtained from RDM
formalism behaves in the same as way as that obtained from
FOE formalism in the previous section.

On the other hand, to know the exact wave number depen-
dence of the amplitude of the normalised power spectrum
from generalised α vacua in the long wave length approxima-
tion, we need to know the behaviour of the power spectrum
for p, pn << 1. In this regime we expect that the power
spectrum of axion should match with the result obtained
for spatially flat universe. The time independent function
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˜Q(p << 1, α, ν) for the mass parameter ν �= 3/2 can be
expressed for generalised α vacua as:

˜Q(p << 1, α, ν) = 22(ν−1) (�(ν))2

p3π
˜G(p << 1) ∀α,

(3.178)

where the function ˜G(p << 1) is defined for ν �= q/22 as:

˜G(p << 1) = πp

2| cos πν| ∣∣� (ν + 1
2

)∣
∣2

|1 − γ
(α)
p m̃LR|2

|1 − γ
(α)
p m̃LR|2 − |m̃RR|2

×

⎧
⎪⎨

⎪⎩
1 +

|m̃RR|2 +
(

1 − γ
(α)
p m̃LR

)∗
m̃RR +

(
1 − γ

(α)
p m̃LR

)
m̃∗

RR

|1 − γ
(α)
p m̃LR|2

+
∞∑

n=0

√
√
√
√ pn

p

|1 − γ
(α)
p m̃LR|2 − |m̃RR|2

|1 − �
(α)
p,nm̃LR,n|2 − |m̃RR,n|2

1

|1 − γ
(α)
p m̃LR|2

[(
1 − γ (α)

p m̃LR

) (
1 − �(α)

p,nm̃LR,n

)∗ + m̃RRm̃
∗
RR,n

+
(

1 − γ (α)
p m̃LR

)
m̃∗

RR,n +
(

1 − �(α)
p,nm̃LR,n

)
m̃∗

RR +
(

1 − γ (α)
p m̃LR

)∗
m̃RR,n +

(
1 − �(α)

p,nm̃LR,n

)∗
m̃RR

]

+
∞∑

n=0

∞∑

m=0

√
√
√
√
√
√

pn pm
p2

(
|1 − γ

(α)
p m̃LR|2 − |m̃RR|2

)2

(
|1 − �

(α)
p,nm̃LR,n|2 − |m̃RR,n|2

) (
|1 − �

(α)
p,mm̃LR,m |2 − |m̃RR,m |2

)

× 1

|1 − γ
(α)
p m̃LR|2

[(
1 − �(α)

p,nm̃LR,n

) (
1 − �(α)

p,mm̃LR,m

)∗ + m̃RR,nm̃
∗
RR,m

+
(

1 − �(α)
p,nm̃LR,n

)
m̃∗

RR,m +
(

1 − �(α)
p,nm̃LR,n

)
m̃∗

RR,m

+
(

1 − �(α)
p,nm̃LR,n

)∗
m̃RR,m +

(
1 − �(α)

p,nm̃LR,n

)∗
m̃RR,m

]}
(3.179)

Here for very small wave number p, pn << 1 one can write,

˜G(p << 1) ∼ πp

2| cos πν| ∣∣� (ν + 1
2

)∣
∣2

× |1 − γ
(α)
p m̃LR|2

|1 − γ
(α)
p m̃LR|2 − |m̃RR|2

[1 + · · · ] ,

where all · · · are small correction terms. For Bunch Davies
vacuum once we fix α = 0, we find that the function

˜G(p << 1) only depends on the mass parameter ν for mas-
sive axion field.

On the contrary, for the case where ν = n/2 (which also
includes the massless situation ν = 3/2) the expression

˜G(p << 1) diverges due to the overall factor 1/| cos πν|.
But we can avoid such unwanted divergent contributions
by rewriting all the expressions for p, pn << 1 with
ν = n/2 that we have mentioned earlier. In such a situ-
ation for the massless case the time independent function

2 Here q is any positive odd integer.

˜Q(p << 1, α, ν = 3/2) can be further simplified as:

˜Q(p << 1, α, ν = 3/2) = ˜G(p << 1, ν = 3/2)

2p3 ∀α,

(3.180)

where the function ˜G(p << 1) is defined for ν = 3/2 as3:

˜G(p << 1, ν = 3/2)

= π

2

⎧
⎨

⎩
1 +

(
1 ± eiθπp e−pπ

)

|1 ± eiθπp e−pπ |
∞∑

n=0

(
1 ± e−iθπpn e−pnπ

)

|1 ± eiθπpn e−pnπ |

+
∞∑

n=0

∞∑

m=0

√(
1 ± eiθπpn e−pnπ

)

|1 ± eiθπpn e−pnπ |
(
1 ± e−iθπpm e−pmπ

)

|1 ± eiθπpm e−pmπ |

⎫
⎬

⎭

(3.181)

Here for very small wave number p, pn << 1 with ν �= 3/2
and ν = 3/2 one can write,

˜G(p << 1) ∼ π

2
[1 + · · · ] ,

3 Here it is important to note the expression for the time dependent

function ˜G(p << 1) for ν = q/2 (where q is any positive odd integer)
in all cases are same. The only difference is appearing in the expression
for the power spectrum. For ν = 3/2 case the power spectrum is scale
invariant exactly. But for the other values of ν = 1/2, 5/2, 7/2, . . . the
power spectrum is not scale invariant and small deviation from the scale
invariant feature can be observed easily.
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where all · · · are small correction terms. For Bunch Davies
vacuum we get the same result as the function ˜G(p << 1)

for massless axion field (ν = 3/2) is independent of the
parameter α.

Moreover, it is important to note that the following con-
tribution appearing in the normalised power spectrum for
massive (ν �= 3/2) and massless (ν = 3/2) axion field can
be simplified in the small wave number limit as:

⎡

⎢
⎣

1 + |γ (α)
p |2

1 − |γ (α)
p |2

+ 1
(
f (α)
p

)2

∞∑

s=0

1 + |�(α)
p,s |2

(
1 − |�(α)

p,s |2
)2

⎤

⎥
⎦

p<<1≈

⎡

⎢
⎢
⎢
⎢
⎣

(√
cos 2πν+1±√

cos 2πν+3
)2(

cosh2 α+sinh2 α e2π iν
)2

[
cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν

]2 + 2

(√
cos 2πν+1±√

cos 2πν+3
)2(

cosh2 α+sinh2 α e2π iν
)2

[
cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν

]2 − 2

+
1 +

∣
∣
∣
∣

√
2
[
cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν

]

(√
cos 2πν+1±√

cos 2πν+3
)(

cosh2 α+sinh2 α e2π iν
)

∣
∣
∣
∣

2

(

1 −
∣
∣
∣
∣

√
2
[
cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν

]

(√
cos 2πν+1±√

cos 2πν+3
)(

cosh2 α+sinh2 α e2π iν
)

∣
∣
∣
∣

2
)4

( ∞∑

s=0

1

)−1

︸ ︷︷ ︸
=0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

(√
cos 2πν+1±√

cos 2πν+3
)2∣∣cosh2 α+sinh2 α e2π iν

∣
∣2

∣
∣cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν

∣
∣2

+ 2

(√
cos 2πν+1±√

cos 2πν+3
)2∣∣cosh2 α+sinh2 α e2π iν

∣
∣2

∣
∣cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν

∣
∣2

− 2

⎤

⎥
⎥
⎦

∀α and ν �= 3/2, (3.182)
⎡

⎢
⎣

1 + |γ (α,3/2)
p |2

1 − |γ (α,3/2)
p |2

+ 1
(
f (α,3/2)
p

)2

∞∑

s=0

1 + |�(α,3/2)
p,s |2

(
1 − |�(α,3/2)

p,s |2
)2

⎤

⎥
⎦

p<<1≈

⎡

⎢
⎢
⎢
⎢
⎣

1 + 1

2

( ∞∑

s=0

1

)−1

︸ ︷︷ ︸
=0

⎤

⎥
⎥
⎥
⎥
⎦

= 1 ∀α and ν = 3/2. (3.183)

Thus, in the superhorizon time scales (tL >> 1) of region
L the amplitude of the normalised power spectrum of axion
from generalised α vacua in the small wave number limit can
be expressed as:

P(p << 1, α, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 exp (−2α) H2
˜Q(p << 1, α, ν)

×

⎡

⎢
⎢
⎣

(√
cos 2πν+1±√

cos 2πν+3
)2∣∣cosh2 α+sinh2 α e2π iν

∣
∣2

∣
∣cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν

∣
∣2

+ 2

(√
cos 2πν+1±√

cos 2πν+3
)2∣∣cosh2 α+sinh2 α e2π iν

∣
∣2

∣
∣cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν

∣
∣2

− 2

⎤

⎥
⎥
⎦

= (2 cosh tL)2ν−3
(

H

2π

)2
(

�(ν)

�
( 3

2

)

)2

˜G(p << 1)

×

⎡

⎢
⎢
⎣

(√
cos 2πν+1±√
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∣
∣2

∣
∣cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν
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(√
cos 2πν+1±√
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∣
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∣
∣cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν

∣
∣2

− 2

⎤

⎥
⎥
⎦ .

(3.184)

For the massless case (ν = 3/2) in the superhorizon time
scales (tL >> 1) of regionL, the amplitude of the normalised
power spectrum of axion from generalised α vacua in the
small wave number limit can be simplified in the present
context as:

P(p << 1, α, tL >> 1)

= p3

2π2 exp (−2α) H2
˜Q(p << 1, α, ν = 3/2)

=
(

H

2π

)2

exp (−2α) ˜G(p << 1, ν = 3/2). (3.185)

For Bunch Davies vacuum state (α = 0), the mean square
vacuum fluctuation of axion can be expressed as:

PBD(p << 1, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 H2
˜Q(p << 1, α = 0, ν)

×
[(√

cos 2πν + 1 ± √
cos 2πν + 3

)2 + 2
(√

cos 2πν + 1 ± √
cos 2πν + 3

)2 − 2

]

= (2 cosh tL)2ν−3
(

H

2π

)2
(

�(ν)

�
( 3

2

)

)2

˜G(p << 1)

×
[(√

cos 2πν + 1 ± √
cos 2πν + 3

)2 + 2
(√

cos 2πν + 1 ± √
cos 2πν + 3

)2 − 2

]

.

(3.186)

Also for the massless case (ν = 3/2) in the superhorizon time
scales (tL >> 1) of regionL the amplitude of the normalised
power spectrum of axion from Bunch Davies vacuum in the
small wave number limit can be simplified as:

PBD(p << 1, tL >> 1)

= p3

2π2 H2
˜Q(p << 1, α = 0, ν = 3/2)

=
(

H

2π

)2
˜G(p << 1, ν = 3/2). (3.187)
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(a) (b)

(c) (d)

(e)

Fig. 10 Features of RDM power spectrum in small wave number region
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In Fig. 10a, c we have shown the behaviour of the power
spectrum of the mean square vacuum fluctuation computed
from RDM formalism in the small wave number regime for
α = 0 and α = 0.1 and for fixed values of the mass parame-
ter ν = 1, 2, 3, 3, 4, 5 respectively. Moreover, in Fig. 10e we
have presented the behaviour of the power spectrum with
respect to the mass parameter ν with fixed values of the
parameter α = 0, 0.1, 0.2, 0.3, 0.4. For the mass parame-
ter dependence here we get distinctive feature for RDM for-
malism compared to FOE formalism which we discussed in
the last subsection and the NES formalism which we dis-
cuss in the next subsection. From the plot, it is observed
that for ν = 1/2, 3/2, 5/2, 7/2 we get distinctive sharp
peaks with constant and different magnitudes. On the other
hand, in Fig. 10b, d we have shown the behaviour of the
power spectrum in the small wave number regime for α = 0
and α = 0.1 with the fixed values of the mass parameter
ν = 1/2, 3/2, 5/2, 7/2, 9/2. Here as the power spectrum is
independent of the wave number, we get constant magnitude
for different values of the mass parameter ν.

3.3 Quantum vacuum fluctuation with non entangled state
(NES)

In this subsection, we describe the quantum vacuum fluctua-
tion and its cosmological consequences using non entangled
state (NES) formalism. In this formalism we assume that the
wave function of the full de Sitter universe is described in the
region L. So we do not use anyt information from the region
R. In Fig. 11 we have presented a schematic diagram for the
computation algorithm of NES formalism for non entangled
quantum state of axion in de Sitter hyperbolic open chart.

3.3.1 Non entangled state (NES) formalism

In the region L the total wave function of the universe is
described by the non entangled state (NES) and for gener-
alised α vacua it is given by:

φ̃I =
(

φ̃L

φ̃L∗

)

= 1

Ñb

(
P̃L

P̃L∗

)

+
∞∑

n=0

1

Ñb,(n)

(
P̃L ,(n)

P̃L∗,(n)

)

,

(3.188)

where the normalisation factors Ñb and Ñb,(n) are:

Ñb =
√

2p

|� (1 + i p) | , (3.189)

Ñb,(n) =
√

2pn
|� (1 + i pn) | . (3.190)

We can also express the total wave function of the universe
in terms of the oscillator mode expansion as given by:

φ̃L(tL) = H

sinh tL

[

bI φ̃I(tL) +
∞∑

n=0

bI,(n)φ̃
I
(n)(tL)

]

.

(3.191)

3.3.2 Two point correlation function

Using the above wave function we can further derive the
mean square vacuum fluctuation through the following two
point correlation function:

〈L|φ̃L
plm φ̃

†L
p′ l ′m′ |L〉 = H2

sinh2 tL
|φ̃L |2 exp (−2α) δ(p − p

′
)δll ′ δmm′

= P(p, α, tL)δ(p − p
′
)δll ′ δmm′ , (3.192)

where P(p, α, tL) is the power spectrum for non entangled
state involving generalised α vacua. We can also define the
normalised power spectrum for non entangled state as:

P(p, α, tL) = p3

2π2 P(p, α, tL)

= p3

2π2

H2

sinh2 tL
|φ̃L |2 exp (−2α) . (3.193)

To quantify the normalised power spectrum for non entangled
state, it is crcial to derive the expression for the square of the
magnitude of the total wave function of the universe in the
region L, which is given by:

|φ̃L |2 = 1

|Ñb|2
P̃L∗P̃L +

∞∑

n=0

1

NbN ∗
b,(n)

(
P̃L∗

(n)P̃L + P̃L∗P̃L
(n)

)

+
∞∑

n=0

1

N ∗
bNb,(n)

(
P̃L∗

(n)P̃L + P̃L∗P̃L
(n)

)

+
∞∑

n=0

∞∑

m=0

1

Nb,(m)N ∗
b,(n)

(
P̃L∗

(n)P̃L
(m) + P̃L∗

(m)P̃L
(n)

)
.

(3.194)

Further substituting the expressions for the normalisation fac-
tors, the above equation can be recast as:

|φ̃L |2 = 1

2p
|�(1 + i p)|2P̃L∗P̃L

+
∞∑

n=0

1√
4ppn

|�(1 + i p)||�(1 − i pn)|

×
(
P̃L∗

(n)P̃L + P̃L∗P̃L
(n)

)

+
∞∑

n=0

1

4
√
ppn

|�(1 − i p)||�(1 + i pn)|
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Non entangled state (NES) formalism 

Computation of mean square quantum vacuum 
fluctuation in terms of two point correlation 
function using Bunch Davies and generalised 

vacuum state configuration in region L

Large wavenumber  
(short wavelength) 

 limit in super horizon 
time scale

Small wavenumber  (long wavelength) 
 limit in super horizon time scale

Solution of the total wave function of the universe 
in L region of dS space

Result exactly matches at leading order with the 
cosmological two point correlation function and the 
power spectrum for massless and massive axion 

Result is different compared to the cosmological 
two point correlation function and the power 

spectrum for massless and massive axion

von Neumann measure of 
entanglement entropy is 

zero for NES

Fig. 11 Schematic diagram for the computation algorithm of NES formalism for non entangled quantum state of axion in de Sitter hyperbolic
open chart

×
(
P̃L∗

(n)P̃L + P̃L∗P̃L
(n)

)

+
∞∑

n=0

∞∑

m=0

1√
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|�(1 − i pn)||�(1 + i pm)|

×
(
P̃L∗

(n)P̃L
(m) + P̃L∗

(m)P̃L
(n)

)
. (3.195)

Consequently, the normalised power spectrum for non entan-
gled state with generalised α vacua can be written as:

P(p, α, tL) = p3

2π2

H2

sinh2 tL

[
1

2p
|�(1 + i p)|2P̃L∗P̃L

+
∞∑

n=0

1√
4ppn
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)

+
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×
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(n)P̃L + P̃L∗P̃L
(n)

)

+
∞∑

n=0

∞∑

m=0

1

4
√
pn pm

|�(1 − i pn)||�(1 + i pm)|

×
(
P̃L∗

(n)P̃L
(m) + P̃L∗

(m)P̃L
(n)

)]
. (3.196)

However, to extract further physical information from
Eq. (3.162) for cosmological predictions, we consider the
superhorizon time scales (tL >> 1) of region L. In this limit,
the Legendre functions as appearing in the complementary
part and the particular integral part of the time dependent
solution can be approximated to the following simplified
form:
(
P̃L, P̃L∗) ≡ P±i p

ν− 1
2
(cosh tL)

tL >> 1−−−−−→
2ν− 1

2 (cosh tL)ν− 1
2 �(ν)√

π�
(
ν ∓ i p + 1

2

) , (3.197)

(
P̃L

(n), P̃L∗
(n)

)
≡ P±i pn

ν− 1
2

(cosh tL)

tL >> 1−−−−−→
2ν− 1

2 (cosh tL)ν− 1
2 �(ν)√

π�
(
ν ∓ i pn + 1

2

) . (3.198)

Thus, in the superhorizon time scales (tL >> 1) of region L,
Eq. (3.195) can be further simplified as:

|φ̃L|2 tL >> 1−−−−−→ ˜K(p, α, ν) (cosh tL)2ν−1 (3.199)

where the time independent function ˜K(p, α, ν) for gener-
alised α vacua is defined
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as:

˜K(p, α, ν) = 22ν−1 (�(ν))2

π
×
[

|�(1 + i p)|2
2p|� (ν + i p + 1

2

) |2

+
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n=0
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4
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2
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(
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2

)

+
∞∑

n=0

∞∑

m=0

|�(1 − i pn)||�(1 + i pm)| + |�(1 + i pn)||�(1 − i pm)|
4
√
pn pm �

(
ν − i pn + 1

2

)
�
(
ν + i pm + 1

2

)

]

.

(3.200)

Also in the super horizon time scale (tL >> 1) we get the
following simplification in the normalised power spectrum
for non entangled state:

P(p, α, tL) = p3

2π2

H2

sinh2 tL
|φ̃L |2 exp (−2α)

tL >> 1−−−−−→
p3

2π2

(cosh tL)2ν−1

sinh2 tL

H2
˜K(p, ν) exp (−2α) . (3.201)

In this limit, for the massless case (ν = 3/2), the time depen-
dent contribution can be approximated into the following
simplified form:
(

(cosh tL)2ν−1

sinh2 tL

)

ν=3/2

tL >> 1−−−−−→ 1. (3.202)

This implies that for an arbitrary value of the parameter ν

one can write:
(

(cosh tL)2ν−1

sinh2 tL

)

tL >> 1−−−−−→ (cosh tL)2ν−3 . (3.203)

Consequently, in the superhorizon time scales (tL >> 1) of
region L and for the massless case (ν = 3/2), the amplitude
of the normalised power spectrum can be expressed as:

P(p, α, tL) = p3

2π2

H2

sinh2 tL
|φ̃L |2 exp (−2α)

tL >> 1, ν = 3/2−−−−−−−−−−−−→
p3

2π2

H2
˜K(p, ν = 3/2) exp (−2α) . (3.204)

Like our result derived in the previous section, this result also
implies that for the massless case (ν = 3/2), the amplitude
of the vacuum fluctuation gets frozen with respect to the time
scale when the associated modes exit horizon.

Further, to know the exact wavenumber dependence of
the amplitude of the normalised power spectrum from gener-
alised α vacua, we need to know the behaviour of the power
spectrum at very short wavelengths (p, pn >> 1). In this
limit, it is expected that the power spectrum of axion in the
non entangled case should match with the result obtained
for spatially flat universe. The time independent function

˜K(p, α, ν) in this limit and for arbitrary mass parameter ν

can be expressed as:

˜K(p >> 1, α, ν) = 22(ν−1) (�(ν))2

p3π
˜U(p >> 1) ∀α,

(3.205)

where the function ˜U(p >> 1) is defined as:

˜U(p >> 1)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 +
∞∑

n=0

(
p

pn

) 3
2 +

∞∑

n=0

∞∑

m=0

p3

(pn pm)
3
2

︸ ︷︷ ︸
Quantumm correction factor for axion in short wave length limit

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(3.206)

Thus, for very large wave number (p, pn >> 1), we can
write, ˜U(p) ∼ 1 + · · · , where all · · · are small correction
terms. This also implies that for large wavenumber and for
any value of the mass parameterα, the time independent func-
tionU(p, α, ν), computed with generalised α vacua, matches
with the result obtained for Bunch Davies vacua in the pre-

vious subsection at the leading order in ˜M(p, ν). Also for
the massless case (ν = 3/2) the time independent function

˜K(p, α, ν = 3/2) in the short wave length limit can further
be simplified as:

˜K(p >> 1, α, ν = 3/2) = ˜U(p >> 1)

2p3 ∀α. (3.207)

Finally, in the superhorizon time scales (tL >> 1) of region
L the amplitude of the normalised power spectrum of axion
from generalised α vacua for non entangled state in short
wave length limit can be expressed as:

P(p >> 1, α, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 exp (−2α) H2
˜K(p >> 1, α, ν)

= (2 cosh tL)2ν−3
(

H

2π

)2
(

�(ν)

�
( 3

2

)

)2

× exp (−2α) ˜U(p >> 1). (3.208)

For the massless case (ν = 3/2) in the superhorizon time
scales (tL >> 1) of regionL, the amplitude of the normalised
power spectrum in short wave length limit can be simplified
to:

P(p >> 1, α, tL >> 1)

= p3

2π2 exp (−2α) H2
˜K(p >> 1, α, ν = 3/2)
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=
(

H

2π

)2

exp (−2α) ˜U(p >> 1). (3.209)

Note that both the Eqs. (3.208) and (3.216) are valid after
horizon exit. From these results we also observe that the
power spectrum computed from non entangled state formal-
ism is same, at the leading order approximation, as that com-
puted from the FOE and RDM formalism, computed in ear-
lier subsections. This is true in the large wavenumber limit
of superhorizon time scale in region L.

The result for the two point correlation function and the
associated power spectrum for Bunch Davies vacuum can be
obtained by setting α = 0 in the above equation and is found
to be:

PBD(p >> 1, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 H2
˜K(p >> 1, α = 0, ν)

= (2 cosh tL)2ν−3
(

H

2π

)2
(

�(ν)

�
( 3

2

)

)2

˜U(p >> 1).

(3.210)

For the massless case (ν = 3/2) it reduces to:

PBD(p >> 1, tL >> 1)

= p3

2π2 H2
˜K(p >> 1, α = 0, ν = 3/2)

=
(

H

2π

)2
˜U(p >> 1). (3.211)

In Fig. 12a, b we have presented the behaviour of the power
spectrum of the mean square vacuum fluctuation computed
inNES formalism for the large wave number regime. This is
shown for α = 0 and α = 0.1 and for fixed values of the mass
parameter ν = 3/2, 2, 5/2, 3, 7/2 respectively. For both the
values of α, we get almost similar behaviour. In Fig. 12c we
have shown the behaviour of the power spectrum with respect
to the mass parameter ν with fixed values of the parameter
α = 0, 0.1, 0.2, 0.3, 0.4. Here for 1/2 < ν < 1 region
and ν > 1 region mass parameter dependence show two
distinctive features. In 1/2 < ν < 1 region amplitude of the
normalised power spectrum initially decrease and then just
after ν = 1 the amplitude of the power spectrum increase.

However, to examine the behaviour of the power spectrum
in the long wavelength region and in the superhorizon time
scale (tL >> 1), we take the limit p << 1. In the long

wave length limit, the time independent function ˜K(p, α, ν)

for any arbitrary mass parameter ν can be expressed (for α

vacua) as:

˜K(p << 1, α, ν) = 22(ν−1) (�(ν))2

pπ
˜U(p << 1) ∀α,

(3.212)

where the function ˜U(p << 1) is given by:

˜U(p << 1)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 +
(

|� (ν + 1
2

) |
�
(
ν + 1

2

)

)2 { ∞∑

n=0

√
p

pn
+

∞∑

n=0

∞∑

m=0

p√
pn pm

}

︸ ︷︷ ︸
Quantum correction factor for axion in long wave length limit

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(3.213)

For the massless case (ν = 3/2), this can be further simplified
to:

˜K(p << 1, α, ν = 3/2) = ˜U(p << 1)

2p
∀α. (3.214)

Moreover, in the superhorizon time scales (tL >> 1) of
region L, the amplitude of the normalised power spectrum (
for α vacua ) for non entangled state (in the long wave length
limit) can be expressed as:

P(p << 1, α, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 exp (−2α) H2
˜K(p << 1, α, ν)

= (2 cosh tL)2ν−3
(

H

2π

)2

p2

× exp (−2α)

(
�(ν)

�
( 3

2

)

)2

˜U(p << 1). (3.215)

Also, for the massless case (ν = 3/2), this reduces to:

P(p << 1, α, tL >> 1)

= p3

2π2 exp (−2α) H2
˜K(p << 1, α, ν = 3/2)

=
(

H

2π

)2

p2 exp (−2α) ˜U(p << 1). (3.216)

The result for Bunch Davies vacuum is obtained by fixing
α = 0 in above equation and is expressed as:

PBD(p << 1, tL >> 1)

= p3

2π2 (cosh tL)2ν−3 H2
˜K(p << 1, α = 0, ν)

= (2 cosh tL)2ν−3
(

H

2π

)2

p2

(
�(ν)

�
( 3

2

)

)2

˜U(p << 1)

(3.217)
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(a) (b)

(c)

Fig. 12 Features of NES power spectrum in large wave number region

which for the massless case (ν = 3/2) reduces to:

PBD(p << 1, tL >> 1)

= p3

2π2 H2
˜K(p << 1, α = 0, ν = 3/2)

=
(

H

2π

)2

p2
˜U(p << 1). (3.218)

In Fig. 13a, b, we have shown the behaviour of the power
spectrum of the mean square vacuum fluctuation in NES
formalism in the small wave number regime for α = 0
and α = 0.1 with fixed values of the mass parameter
ν = 3/2, 2, 5/2, 3, 7/2 respectively. Note that in both the
cases we find almost similar behaviour. Also, in Fig. 13c
we have shown the behaviour of the power spectrum with
respect to the mass parameter ν with fixed values of α =
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(a) (b)

(c)

Fig. 13 Features of NES power spectrum in small wave number region

0, 0.1, 0.2, 0.3, 0.4. In this case we again observe two dis-
tinct regions of mass parameter dependence.

We have explicitly presented the comparison among FOE,
RDM and NES formalism for α vacua in Table 1. The same
table is valid for Bunch Davis vacuum when α = 0. We
have quoted the differences, among the findings from these
formalism, for the primordial power spectrum from mean
square vacuum fluctuation at large and small scales.

4 Summary

To summarize, in this work, we have addressed the following
issues:

• We have explicitly studied the power spectrum of mean
squared vacuum fluctuation for axion field using the con-
cept of quantum entanglement in de Sitter space. The
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Table 1 Comparison between FOE, RDM and NES formalism for α vacua

Feuatures FOE RDM NES

Wave function Here we solve the wave function in
L region of dS space

Here we solve the wave function in
L and R region of dS space

Here we only solve the wave
function in L region of dS space

Quantum state Here we deal with entangled
quantum state

Here we deal with mixed quantum
state

Here we deal with non-entangled
quantum state

Quantum number
dependence

Power spectrum is only dependent
on SO(1,3) quantum number p
and independent on l,m

Power spectrum is only dependent
on SO(1,3) quantum number p
and independent on l,m

Power spectrum is only dependent
on SO(1,3) quantum number p
and independent on l,m

Time scale for computation Analysis is performed on
superhorizon time scale

Analysis is performed on
superhorizon time scale

Analysis is performed on
superhorizon time scale

Power spectrum spectrum at
large wave number

Leading order term is
( H

2π

)2
exp(−2α) and the next

order effects are different from
RDM and NES for massless
axion (ν = 3/2)

Leading order term is
( H

2π

)2
exp(−2α) and the next

order effects are different from
FOE and NES for massless axion
(ν = 3/2)

Leading order term is
( H

2π

)2
exp(−2α) and the next

order effects are different from
FOE and RDM for massless
axion (ν = 3/2)

Power spectrum at small at
small wave number

Leading order term is
( H

2π

)2
p3 exp(−2α) and the

next order effects are different
from RDM and NES for massless
axion (ν = 3/2)

Leading order term is
H2

8π
exp(−2α) and the next order

effects are different from FOE
and NES for massless axion
(ν = 3/2)

Leading order term is
( H

2π

)2
p2 exp(−2α) and the

next order effects are different
from FOE and RDM for massless
axion (ν = 3/2)

effective action for the axion field, used here, has its ori-
gin from Type IIB String theory compactified to four
dimensions. . For our analysis, we have chosen two
initial vacuum states i.e. Bunch Davies and a gener-
alised class of α vacua. The power spectrum of mean
squared vacuum fluctuation is computed using three dis-
tinctive formalisms: (1) Field operator expansion (FOE),
(2) Reduced density matrix (RDM) and (3) Non entan-
gled state (NES). In all three cases, the computation has
been done starting with two open charts in hyperbolic
manifold of de Sitter space consisting of two regions: L
andR. Though the starting point is same, the construction
of these three formalisms are different from each other
and have their own physical significance. Each of the for-
malism has been discussed in text of the papers and some
details of approximations for them are presented in the
appendix. Similarities and differences from each other
are presented in a table.

• In case of FOE formalism we solve for the wave func-
tion in the region L and using this solution we compute
the general expression for the mean square vacuum fluc-
tuation and its quantum correction in terms of two point
correlation function. The result is evaluated at all momen-
tum scales. We considered two limiting approximation in
the characteristic momentum scales, i.e. large wave num-
ber (small wave length in which the corresponding scale
is smaller than the curvature radius of the de Sitter hyper-
bolic open chart) regime and small wave number (long
wave length in which the corresponding scale is larger
than the curvature radius of the de Sitter hyperbolic open
chart) regime. We have observed distinctive features in

the power spectrum of of mean squared vacuum fluctua-
tion in these two different regimes. In the large wave num-
ber (small wave length) regime we found that the leading
order result for the power spectrum is consistent with the
known result for observed cosmological correlation func-
tion in the super horizon time scale. The correction to the
leading order result that we computed for the power spec-
trum can be interpreted as the sub-leading effect in the
observed cosmological power spectrum. This is a strong
information from the perspective of cosmological obser-
vation since such effects, possibly due to quantum entan-
glement of states, can play a big role to break the degener-
acy of the observed cosmological power spectrum in the
small wave length regime. On the other hand, in the long
wave length regime we found that the power spectrum
follows completely different momentum dependence in
the super horizon time scale. Since in this regime and in
this time scale, at present, we lack adequate observational
data on power spectrum we are unable to comment on
our result with observation. But our result for the power
spectrum in long wave length limit and super horizon time
scale can be used as a theoretical probe to study the phys-
ical implications and its observational cosmological con-
sequences in near future. Our result also implies that the
mean square vacuum fluctuation for axion field, in super
horizon time scale, gets enhanced in long wave length
regime and freezes in the small wave length regime. We
also observe that for a massive axion, the power spec-
trum is nearly scale invariant in all momentum scales.
On the other hand, for massless axion we observe exact
scale invariance only in large wave number (small wave
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length) regime and for the Bunch Davies initial quan-
tum state. For generalised α initial state, we find slight
modification in the corresponding power spectrum of the
mean square vacuum fluctuation. The modification factor
is proportional to exp(−2α) which is valid for all values
of the parameter α. It also implies that for large value
of the parameter α we get additional exponential sup-
pression for the power spectrum. This information can
be used to distinguish between the role of Bunch Davies
vacuum (α = 0) and any α vacua quantum initial state
during analysis of observational data.

• In RDM formalism, the wave function for the axion field
is solved in L and R regions of the de Sitter open chart.
This solution has been used to compute the mean square
vacuum fluctuation and its quantum correction for both
Bunch Davies and α vacuum state. Corresponding results
are evaluated at all momentum scales by partially tracing
out all the information from the region R. Like in the
case of FOE, we considered the small and large wave-
length approximations in the characteristic momentum
scales and found distinct features in the corresponding
power spectrum. In the small wave length regime again
the leading order result, in super horizon time scales
matched with known result (same as FOE). However, the
sub-leading order result for the power spectrum is differ-
ent from the result obtained from FOE formalism which
distinguishes the two approaches. Moreover, in the long
wave length regime the power spectrum has completely
different momentum dependence compared to FOE for-
malism. We also notice that the enhancement of mean
square vacuum fluctuation for axion field, in long wave
length regime, is different (slower) in nature compared
to FOE formalism but the freezing in short wavelength
regime is of same nature. The observation on scale invari-
ance of power spectrum in this formalism remains similar
to that in FOE formalism.

• In the last formalism i.e.NES, the wave function of axion
field is solved in the region L of the de Sitter hyperbolic
open chart. With the help of this solution, t we com-
puted the mean square vacuum fluctuation using Bunch
Davies and α vacuum state configuration. The corre-
sponding result is evaluated at all momentum scales. Like
the previous two cases, here also we reverted to two
limiting approximations i.e. large wave number (small
wave length ) regime and small wave number (long wave
length) regime. We again observed distinctive behaviour
in the power spectrum in these two different regimes. In
the large wave number (small wave length) regime, the
leading order result for power spectrum matches with
the known result for observed cosmological correlation
function just as the cases of FOE and RDM formalism.
However, the sub-leading order result s completely dif-
ferent FOE as well as RDM formalism. Thus, it is the

sub-leading terms which distinguish these formalisms
from each other and they can be confronted with future
observational data. On the other hand, in the small wave
number (long wave length) regime, even the leading
order result for the power spectrum differs, in momentum
dependence, compared to the result obtained from FOE
and RDM formalism. Also the nature of enhancement of
the mean square vacuum fluctuation in NES formalism
is found to be different from that in FOE and RDM for-
malism but the nature of freezing and the observation on
scale invariance of power spectrum remains same in all
the three cases.

• For completeness, we discuss the actual reason for the
results obtained for the power spectra from quantum
entangled state as appearing in FOE formalism and the
mixed state which is used to construct the RDM formal-
ism. To do so, we consider two subsystems, L and R
using which one can construct the quantum mechanical
state vector of axion field as |�〉axion. In our computa-
tion, these subsystems are defined in the region L and R
respectively in the de Sitter hyperbolic open chart. Now
using this state vector of axion field we can define the
density matrix as:

ρaxion = |�axion〉〈�axion|, (4.1)

in both the subsystems, L and R for FOE and RDM for-
malism and only the system L for NES formalism. Using
this density matrix we can express the expectation value
(for the total system) of a quantum mechanical operator
Õaxion, applicable for FOE and RDM formalism, as:

Tr
(
ρaxionÕaxion

)

=
∑

L

∑

R

〈L,R|�axion〉〈�axion|Õaxion|L,R〉

≡ 〈�axion|Õaxion|�axion〉
≡ 〈Õaxion〉. (4.2)

This is an important observation as it is related to the
measurement and quantification of any physical cosmo-
logical observable in the quantum regime. But in the case
of NES formalism one can rewrite Eq. (4.2) as:

Tr
(
ρaxionÕaxion

)

=
∑

L

∑

R

〈L,R|�axion〉〈�axion|Õaxion|L,R〉

=
∑

L

∑

R

∑

L′

∑

R′
〈L,R|�axion〉

× 〈�axion|L′
,R

′ 〉〈L′
,R

′ |ÕL
axion|L,R〉

=
∑

L

∑

R

∑

L′

∑

R′
〈L,R|�axion〉
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× 〈�axion|L′
,R

′ 〉〈L′ |ÕL
axion|L〉δRR′

=
∑

L

∑

R

∑

L′
〈L,R|�axion〉

× 〈�axion|L′
,R

′ 〉〈L′ |ÕL
axion|L〉

= Tr
(
ρL
axionÕL

axion

)
, (4.3)

where the operator ÕL
axion solely in the regionL is defined

by the following expression for NES formalism:

〈L′
,R

′ |ÕL
axion|L,R〉 = 〈L′ |ÕL

axion|L〉〈R′ |R〉
= 〈L′ |ÕL

axion|L〉δRR′ . (4.4)

Also in NES formalism the density matrix ρL
axion for the

region L is described by the following expression:

ρL
axion = TrRρaxion

=
∑

L

∑

L′
|L〉
(
∑

R

〈L,R|�axion〉〈�axion|L′
,R

′ 〉
)

〈L′ |

=
∑

L

∑

L′
|L〉
(
∑

R

�axion(L,R)�∗
axion(L

′
,R

′
)

)

〈L′ |. (4.5)

This implies that in NES formalism, the physical operator
is solely described by the information from the region L
and consequently the expectation value of such operator
satisfy the following condition:

〈Õaxion〉 = Tr
(
ρaxionÕaxion

)

= Tr
(
ρL
axionÕL

axion

)
= 〈ÕL

axion〉. (4.6)

The above analysis can help us to explain the differences
between the power spectra of mean square vacuum fluc-
tuation obtained from FOE, RDM and NES formalism on
large scale (or small wave number or large wave length
regime). It clearly points towards the fact that in FOE and
RDM formalism the creation and annihilation operators
for axion field includes new set of creation and annihi-
lation operators coming from the Bogoliubov transfor-
mation from one quantum basis to the other. This means
that the field operator in the FOE formalism also involves
these extra creation and annihilation operators even if
the computation is being performed on a particularly
specified temporal slice defined in the region L of the
Hilbert space. On the other hand, after applying the par-
tial trace over the degrees of freedom from the region R,
the mixed quantum state, using which we formulate the
RDM formalism, is prepared by the creation and annihi-
lation operators in the regionL of the Hilbert space. Thus,

in RDM formalism, the field operator is only defined in
the region L and not in the region R of the Hilbert space.
This implies that the field operator defined before par-
tially tracing over the degrees of freedom from region R
for FOE formalism is different from the field operator in
region L used in RDM formalism since for this case we
have performed the partial trace over the degrees of free-
dom in region R. Thus, any general quantum mechanical
operator defined in the framework of FOE is not same as
that of RDM formalism.
Before we conclude, we point out that apart from the
quantification of the mean square vacuum fluctuation in
the formalisms we discussed here, we have also computed
the entanglement entropy using von Neumann measure
and the Renyi entropy in our previous work [24,25].
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A Quantum correction to the power spectrum in FOE
formalism

At the superhorizon time scales (tL >> 1) of region L one
can write the amplitude of the FOE power spectrum as:
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∑

σ=±1

|χ̃σ |2 =
∑

σ=±1

(
χ̃σ
)†

χ̃σ

tL >> 1−−−−−→ ˜M(p, ν) (cosh tL)2ν−1 (A.1)

where the time independent function ˜M(p, ν) is defined as:

˜M(p, ν) = 22ν−1 (�(ν))2

π
×
∑

σ=±1

[ (|Aσ
L|2 + |Bσ

L|2)
∣
∣�
(
ν + i p + 1

2
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}]

. (A.2)

A.1 For large wave number

Further to know the exact wave number dependence of the
amplitude of the normalized power spectrum from Bunch
Davies vacuum we need to know the behaviour of the power
spectrum at very short wavelengths (p, pn >> 1). After tak-
ing this limit it is expected that the power spectrum of axion
match with the result obtained for spatially flat universe. In
general for an arbitrary value of the mass parameter ν, we get
the following approximated contributions in the short wave-
length limit (p, pn >> 1), which are explicitly appearing
in the expression for the amplitude of the normalized power
spectrum from Bunch Davies vacuum:

∑

σ=±1

|Aσ
L|2

∣
∣�
(
ν + i p + 1

2

)∣
∣2

p>>1≈ πe−πp

2p4 |� (i p)|2 , (A.3)

∑

σ=±1

|Bσ
L|2

∣
∣�
(
ν + i p + 1

2

)∣
∣2

p>>1≈ πe−5πp

2p4 |� (i p)|2 , (A.4)

∑

σ=±1

Aσ
LBσ∗

L
(
�
(
ν − i p + 1

2

))2

p>>1≈ πe−3πp

2p4 |� (i p)|2 , (A.5)

∑

σ=±1

Aσ∗
L Bσ
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Further, we apply Stirling’s formula to approximate Gamma
functions for large wavenumbers p, pn >> 1 to simplify the
expression for the power spectrum:
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Consequently, we get the following simplified expressions in
large wavenumber (p, pn >> 1) limit:
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As a result, in the short wave length approximation the time

independent function ˜M(p >> 1, ν) for any arbitrary mass
parameter ν can be expressed as:

˜M(p >> 1, ν) = 22(ν−1) (�(ν))2

p3π
˜G(p >> 1), (A.33)

where we define a new function ˜G(p >> 1) in the short wave
length limit as given by:
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A.2 For small wave number

Similarly to know the exact wavenumber dependence of the
amplitude of the normalised power spectrum from Bunch
Davies vacuum in the long wavelength limit we need to know
the behaviour of the power spectrum for p, pn << 1. In this
limit it is expected that the power spectrum of axion should
match with the result obtained for spatially flat universe. In
general for an arbitrary value of the mass parameter ν, we get
the following approximated contributions in the long wave-
length limit (p, pn << 1), which are explicitly appearing
in the expression for the amplitude of the normalised power
spectrum from Bunch Davies vacuum:
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As a result, the time independent function ˜M(p << 1, ν)

for any arbitrary mass parameter ν can be expressed as:

˜M(p << 1, ν) = 22(ν−1) (�(ν))2
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˜G(p << 1), (A.49)

where we define a new function ˜G(p << 1) in the long wave
length limit as given by:
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B Quantum correction to the power spectrum in RDM
formalism

At the super horizon time scales (tL >> 1) of region L one
can write the amplitude of the RDM power spectrum as:
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T |2 =

(
ψ̃L
T

)†
ψ̃L
T

tL >> 1−−−−−→ ˜Q(p, α, ν) (cosh tL)2ν−1 (B.1)

where the time independent function ˜Q(p, α, ν) for gener-
alised α vacua is defined as:
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(B.2)

B.1 For large wave number

Further to know the exact wave number dependence of the
amplitude of the normalised power spectrum from gener-
alised α vacua we need to know the behaviour of the power
spectrum at very short wavelengths (p, pn >> 1). After tak-
ing this limit it is expected that the power spectrum of axion
should match with the result obtained for spatially flat uni-
verse. In general for an arbitrary value of the mass parameter
ν, we get the following approximated contributions in the
short wavelength limit (p, pn >> 1), which are explicitly
appearing in the expression for the amplitude of the nor-

malised power spectrum from generalised α vacua:
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Further, we apply Stirling’s formula to approximate Gamma
functions for large wavenumbers p, pn >> 1 to simplify the
expression for the power spectrum:
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Consequently, we get the following simplified expressions
for large wavenumber p, pn >> 1 limit in the case of gen-
eralised α vacua:
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As a result, in the short wave length approximation the

time independent function ˜Q(p >> 1, α, ν) for any arbitrary
mass parameter ν can be expressed for generalised α vacua
as:

˜Q(p >> 1, α, ν) = 22(ν−1) (�(ν))2

p3π
˜G(p >> 1)

= ˜M(p, ν) ∀α, (B.33)
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where we have already defined the function ˜G(p >> 1) in
the earlier section of the Appendix.

B.2 For small wave number

Similarly to know the exact wave number dependence of
the amplitude of the normalised power spectrum from gener-
alisedα vacua in the long wave length approximation we need
to know the behaviour of the power spectrum at p, pn << 1.
After taking this limit it is expected that the power spec-
trum of axion should match with the result obtained for
spatially flat universe. In general for an arbitrary value of
the mass parameter ν, we get the following approximated
contributions in the in the long wave length approxima-
tion, which are explicitly appearing in the expression for the
amplitude of the normalised power spectrum from gener-
alised α vacua:
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where all the entries of the right hand side of the above expres-
sions for p, pn << 1 are explicitly computed earlier in this
paper.

As a result, the time independent function ˜Q(p << 1, α, ν)

for the mass parameter ν �= q/2 (where q is any half integer)
can be expressed for generalised α vacua as:

˜Q(p << 1, α, ν)

= 22(ν−1) (�(ν))2
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where the function ˜G(p << 1) is defined for ν �= 3/2 as:
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On the other hand, if we set ν = q/2 (including the mass-
less case for ν = 3/2) in the previous expressions obtained

for general ν then due to the presence of the overall factor
1/| cos πν| the final expression for the power spectrum in
small wave number limit diverges. This is very obvious from
the obtained expressions but one can be able to avoid such
unwanted divergent contributions very easily. To serve this
purpose let us rewrite all the expressions for p, pn << 1
with ν = q/2 that we have mentioned earlier:

|EL|2
∣
∣�
(
ν + i p + 1

2

)∣
∣2

p<<1≈ π

2
(B.50)

|FL|2
∣
∣�
(
ν + i p + 1

2

)∣
∣2

p<<1≈ 0 (B.51)

ELF∗
L

(
�
(
ν − i p + 1

2

))2

p<<1≈ 0 (B.52)

E∗
LFL

(
�
(
ν + i p + 1

2

))2

p<<1≈ 0 (B.53)

ELE∗
L,(n)

�
(
ν − i p + 1

2

)
�
(
ν + i pn + 1

2

)

p,pn<<1≈ π

2

(
1 ± πp e−pπ eiθ

)

|1 ± πp e−pπ eiθ |
(
1 ± πpn e−pnπe−iθ

)

|1 ± πpn e−pnπ eiθ |
(B.54)

FLF∗
L,(n)

�
(
ν − i p + 1

2

)
�
(
ν + i pn + 1

2

)
p,pn<<1≈ 0 (B.55)

ELF∗
L,(n)

�
(
ν − i p + 1

2

)
�
(
ν − i pn + 1

2

)
p,pn<<1≈ 0 (B.56)

EL,(n)F∗
L

�
(
ν − i p + 1

2

)
�
(
ν − i pn + 1

2

)
p,pn<<1≈ 0 (B.57)

E∗
L,(n)FL

�
(
ν + i p + 1

2

)
�
(
ν + i pn + 1

2

)
p,pn<<1≈ 0 (B.58)

E∗
LFL,(n)

�
(
ν + i p + 1

2

)
�
(
ν + i pn + 1

2

)
p,pn<<1≈ 0 (B.59)

EL,(n)E∗
L,(m)

�
(
ν − i pn + 1

2

)
�
(
ν + i pm + 1

2

)

pn ,pm<<1≈ π

2

(
1 ± πpn e−pnπ eiθ

)

|1 ± πpn e−pnπ eiθ |
(
1 ± πpm e−pmπ eiθ

)

|1 ± πpm e−pmπ eiθ |
(B.60)

FL,(n)F∗
L,(m)

�
(
ν − i pn + 1

2

)
�
(
ν + i pm + 1

2

)
pn ,pm<<1≈ 0 (B.61)

EL,(n)F∗
L,(m)

�
(
ν − i pn + 1

2

)
�
(
ν − i pm + 1

2

)
pn ,pm<<1≈ 0 (B.62)

Eσ∗
L,(n)FL,(m)

�
(
ν + i pn + 1

2

)
�
(
ν + i pm + 1

2

)
pn ,pm<<1≈ 0 (B.63)

123



   67 Page 48 of 50 Eur. Phys. J. C            (2020) 80:67 

Also for the massless case (ν = 3/2) the time independent

function ˜Q(p << 1, α, ν = 3/2) can be further simplified
as:

˜Q(p << 1, α, ν = 3/2)

= ˜G(p << 1, ν = 3/2)

2p3 ∀α, (B.64)
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˜G(p << 1, ν = 3/2)

= π

2

⎧
⎨

⎩
1 +

(
1 ± eiθπp e−pπ

)

|1 ± eiθπp e−pπ |
∞∑

n=0

(
1 ± e−iθπpn e−pnπ

)

|1 ± eiθπpn e−pnπ |

+
∞∑

n=0

∞∑

m=0

√(
1 ± eiθπpn e−pnπ

)

|1 ± eiθπpn e−pnπ |
(
1 ± e−iθπpm e−pmπ

)

|1 ± eiθπpm e−pmπ |

⎫
⎬

⎭

(B.65)

C Quantum correction to the power spectrum in NES
formalism

At the superhorizon time scales (tL >> 1) of region L the
amplitude of the NES power spectrum can be expressed as:

|φ̃L|2 tL >> 1−−−−−→ ˜K(p, α, ν) (cosh tL)2ν−1 (C.1)

where the time independent function ˜K(p, α, ν) for gener-
alised α vacua is defined as:
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(C.2)

C.1 For large wave number

Further, to know the exact wave number dependence of the
amplitude of the normalised power spectrum from gener-
alised α vacua we need to know the behaviour of the power

spectrum at very short wavelengths (p, pn >> 1). After tak-
ing this limit it is expected that the power spectrum of axion in
the non entangled case should match with the result obtained
for spatially flat universe. In general for an arbitrary value
of the mass parameter ν, we get the following approximated
contributions in the short wavelength limit (p, pn >> 1),
which are explicitly appearing in the expression for the ampli-
tude of the normalised power spectrum from generalised α

vacua:
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As a result, the time independent function ˜K(p, α, ν) in the
short wave length limit for any arbitrary mass parameter ν

can be expressed for generalised α vacua as:

˜K(p >> 1, α, ν) = 22(ν−1) (�(ν))2

p3π
˜U(p >> 1) ∀α,

(C.6)

where the function ˜U(p >> 1) is defined as:
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Here for very large wave number p, pn >> 1 one can write,
˜U(p) ∼ 1 + · · · , where all · · · are small correction terms.
This also implies to the nice fact that for large wave number
limit for any values of the parameter α the time indepen-
dent function U(p, α, ν) computed for generalised α vacua
is exactly matches with the result obtained for Bunch Davies

vacua in the earlier section at the leading order in ˜M(p, ν).
Also for the massless case (ν = 3/2) the time independent

function ˜K(p, α, ν = 3/2) in the short wave length limit can
be further simplified as:

˜K(p >> 1, α, ν = 3/2) = ˜U(p >> 1)

2p3 ∀α. (C.8)
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C.2 For small wave number

Similarly to see the behaviour of the power spectrum in
the long wavelength region in the super horizon time scale
(tL >> 1) we take the limit p << 1 and further expand
the expression for the power spectrum in p. In general for
an arbitrary value of the mass parameter ν, we get the fol-
lowing approximated contributions in the long wavelength
limit (p, pn << 1), which are explicitly appearing in the
expression for the amplitude of the normalised power spec-
trum from generalised α vacua:
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As a result, in the long wave length limit the time independent

function ˜K(p, α, ν) for any arbitrary mass parameter ν can
be expressed for generalised α vacua as:
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pπ
˜U(p << 1) ∀α,

(C.12)

where the function ˜U(p << 1) is defined in the long wave
length limit as:

˜U(p << 1)

=
⎡

⎣1 +
(

|� (ν + 1
2

) |
�
(
ν + 1

2

)

)2 { ∞∑

n=0

√
p

pn
+

∞∑

n=0

∞∑

m=0

p√
pn pm

}⎤

⎦ .

(C.13)

Also for the massless case (ν = 3/2) the time independent

function ˜K(p, α, ν = 3/2) can be further simplified as:

˜K(p << 1, α, ν = 3/2) = ˜U(p << 1)

2p
∀α. (C.14)
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