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Abstract: In this work, our prime focus is to study the one to one correspondence be-
tween the conduction phenomena in electrical wires with impurity and the scattering events
responsible for particle production during stochastic inflation and reheating implemented
under a closed quantum mechanical system in early universe cosmology. In this connection,
we also present a derivation of quantum corrected version of the Fokker Planck equation
without dissipation and its fourth order corrected analytical solution for the probability
distribution profile responsible for studying the dynamical features of the particle creation
events in the stochastic inflation and reheating stage of the universe. It is explicitly shown
from our computation that quantum corrected Fokker Planck equation describe the par-
ticle creation phenomena better for Dirac delta type of scatterer. In this connection, we
additionally discuss Itô, Stratonovich prescription and the explicit role of finite temperature
effective potential for solving the probability distribution profile. Furthermore, we extend
our discussion of particle production phenomena to describe the quantum description of
randomness involved in the dynamics. We also present a computation to derive the expres-
sion for the measure of the stochastic non-linearity (randomness or chaos) arising in the
stochastic inflation and reheating epoch of the universe, often described by Lyapunov Expo-
nent. Apart from that, we quantify the quantum chaos arising in a closed system by a more
strong measure, commonly known as Spectral Form Factor using the principles of Random
Matrix Theory (RMT). Additionally, we discuss the role of out of time order correlation
function (OTOC) to describe quantum chaos in the present non-equilibrium field theoretic
setup and its consequences in early universe cosmology (stochastic inflation and reheating).
Finally, for completeness, we also provide a bound on the measure of quantum chaos ( i.e.
on Lyapunov Exponent and Spectral Form Factor) arising due to the presence of stochastic
non-linear dynamical interactions into the closed quantum system of the early universe in
a completely model-independent way.
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1 Introduction

Quantum fields in an inflationary background [1–25] or during reheating [26–32] gives rise to
the burst of particle production, which has been extensively studied in ref. [33–35]. This has
been studied to a great extent in the background of the inflationary scenario of the universe
in ref. [36–38]. Such phenomena has been compared to that of the scattering problem
in quantum mechanics with a specific effective potential arising due to the impurity in the
conduction wire, which can approximately be solved using the well known WKB technique
[34, 36] 1. It is important to note that such particle production events are completely
random (or chaotic) when the evolution is non-adiabatic or tachyonic in nature.

 

  

  

  

Slow-rolling

inflaton

Inflation          

Figure 1. This schematic diagram shows the correspondence between the conduction phenomena
in electrical wires with impurity to that of the cosmological random particle-creation events during
the non-adiabatic stage of the early universe.

A non-adiabatic change in the time dependent effective mass profiles of the fields (wich
is actually coming from integrating out the heavy degrees of freedom from the UV complete
theory and after path integration finally one gets the time dependent effective coupling
parameters between fields) as the background evolution of the fields passes through special
points in field space produces these burst of particle creation in (quasi) de Sitter space time.

1In the context of cosmology conformal time dependent effective mass profile exactly mimics the role of
impurity potential in electrical conduction wire. Due to such one to one correspondence the time evolution
equation (i.e. Klien Gordon equation) of the Fourier modes corresponding to the quantum fluctuation
in the context of primordial cosmology can be described in terms of the Schrodinger equation in electrical
conduction wire with specific impurity potential. We have investigated this possibility in detail in this paper.
Additionally, it is important to note that such time dependent effective mass profiles are also important to
study the role of quantum critical quench and eigen state thermalization [] during the reheating epoch of
universe.
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There lies a physical and mathematical equivalence between such cosmological events to that
of the stochastic random phenomena occuring in mesoscopic systems where fluctuations
in physical quantities play a significant role of producing stochastic randomness in the
system under consideration. Now, let us mention about the cosmological systems which
have been considered to be rather non-linear and dissipative due to the significant amounts
of quantum fluctuations in the effective coupling terms (or in the time dependent effective
mass profile) of the interactions between the fields. Important reviews on the non-linear and
dissipative effects arising in the context of cosmology were put forward in the refs. [9, 39–
41]. In this paper we explicitly discuss bout the various non-linear and dissipative effects in
cosmological set up that arises in (quasi) de-Sitter space with m2 > 0, where the term m2

represents the effective mass squared of the created particle in (qusi) de-Sitter background.
In this connection it is important to note that, the massless scalar field gets ”thermalize”
due to the effective time dependent interaction in the (quasi) de-Sitter background. The
cosmological events that we talk about in this paper are identified with those of the particle
production stochastic random events. In this paper, we present the dynamical features of
inherent chaos (stochastic randomness) in the physical system and its connection with the
quantum mechanics in detail. The model is exactly similar to that of ”massless scalar field”
interacting with a scatterer in the background which are treated to be the heavy fields
and are mainly responsible for cosmological particle production in (qusi) de-Sitter space
(see[36]). In this context, when the free massless scalar field interacts with the the heavy
field in the background space time, it mimics the role of thermalization phenomena of the
field which occurs during the epoch of reheating of the universe.

Random
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Figure 2. Overview of the computational strategy of the whole paper and how different parts are
inter-related.

The specific problem we will discuss here is similar to one presented in ref. [42]. This
problem is similar to that of a scattering problem in presence of impurity in quantum me-
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chanics where the Schödinger equation yields approximate solutions to the wave-function of
the particle which encounters a effective impurity potential barrier V (x) of a given strength.
The similarity in the following model is drawn between the current carrying electrons re-
sponsible for conduction in electrical wires to that of the particle creation in cosmology as
a result of the non-adiabatic random events occurring in the early (inflation and reheating)
stage of the universe. In this present problem for the sake of simplicity we consider an one
dimensional conducting electrical wire, which implies that the current carrying electrons in
the electrical wire has only a single propagating degree of freedom. As mentioned earlier,
this has been considered to reduce clutter in our computation. But the similar problem
can be generalized to more complicated situation 2. Since, a current carrying wire consists
of a large number of impurities,these impurities act like the potential barriers V (x), which
are randomly distributed across the wire. Therefore, the motion of the electrons while
confronting these scatterers gets hindered due to the presence of these randomly placed
scatterers. One of the most important outcome of such an event is known as Anderson
Localization as appearing in the context of condensed matter systems. Usually this is char-
acterized by probability density of the localized wave-function:

|ψ(x)|2 ∼ exp (|x|/ξ) , (1.1)

with ξ being the localization length of the quntum mechanical wave-function ψ(x). This
phenomena of Anderson Localization usually occurs due to the interference of the waves
scattered from the impurities present in the conduction wire. By formulating cosmological
particle production as a random scattering problem, it has been shown in [42] that Anderson
localization maps to a problem of estimating exponential particle production, as given by:

|φk(τ)|2 ∼ exp (µkτ) , (1.2)

where µk is the mean particle production rate which is characterized by the conformal time
dependent scalar field φk(τ). A striking similarity has been observed between such scatter-
ing problems in conducting wires to that of the burst of particle production in cosmological
random events shown in ref. [42]. In such cases, it has been observed that the solving a
scattering problem in quantum mechanics using Schrödinger equation is similar to solving a
Klein-Gordon equation for a massless scalar field in presence of a conformal time-dependent
effective mass squared coupling parameter m2(τ). In this context the scalar field with time-
dependent mass m2(τ) mimics the role of coupling strength parameter which characterizes
the scattering to the massless scalar field in (quasi) de Sitter background. For more details
see refs. [43–45]. Moreover, such stochasticity in a cosmological set up arises due to the
stochastic time evolution of Hubble parameter H(t), so that the inflaton (or the field par-
ticipating in reheating) evolves with time stochastically due to the quantum fluctuations in
the FLRW background. In the similar context the role of interacting scalar field has been
studied to a great deal in ref. [43].

In this context,we have presented the the amount by which the quantum mechanical
system deviates with respect to the initial conditions. This means that more the value of
this exponent, more is the chaos or stochastic randomness in the system under consideration

2For an example, one can generalize the same prescription in three space dimensions.
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in this paper. This exponent plays a significant role in our scenario as the number of
particles produces in a given scattering event per unit time is random in nature. In a
system of randomly spaced scatterers chaos emerges out of the random scattering events
that an electron encounters while drifting across the wire with some drift velocity v within
the conducting wire. The number that quantifies this increase in stochastic randomness
or chaos in the system is the Lyapunov Exponent. In refs. [42, 43], particle production
phenomena in cosmological non-adiabatic events has been exclusively studied which yields
the fact that the particle occupation number depends on Floquet indices µk, which finally
controls the number of produced particles with the following number density:

nk(τ) =

∫ ∞
0

dk k2 exp [2m(τ)µkτ ] , (1.3)

as well as the variances in the field fluctuation. The quantum fluctuations in the inflationary
state of the universe results in the randomization of these bursts of particle production.
The number density has been a random variable which is rendered stochastic due to the
scattering events in the context of early universe cosmology. Our main objective in this
paper to quantify this characteristic number for the massless scalar field having a conformal
time-dependent mass coupling with it. One of the prime reasons for finding a signature of
chaos in such a system is the well known thermalization phenomena, which means that the
FLRW background which embeds the massless scalar field into it is being thermalized by
the massive field in interaction with the FLRW set up, which constantly being giving rise to
a burst of particle production in the context of early universe cosmology. The scalar fields
that we considering in our paper are said to be massive or heavy fields (m ≥ H) which
mimics the role of the scatterers in the Schrödinger problem in quantum mechanics where
the strength of the effective potential or the scatterer is given by the probability distribution
function of the effective potential function. We draw a picturesque landscape by considering
three distinct mass profiles:

m2(τ) =



m2
0

2
[1− tanh(ρτ)] , Profile I

m2
0 sech2(ρτ) , Profile II

m2
0 Θ(−τ). Profile III

, (1.4)

which exactly mimics the role of cosmological scatterers in early universe. We thereby
investigate the momentum scale dependent behaviour of the Lyapunov exponent. In this
context, the incoming momenta of the mode functions of the quantized massless scalar field
having random interactions with the scatterer. In the following class of model, the Bogoli-
ubov coefficients arise due to the interaction between massless scalar field with the heavy
field. These Bogoliubov coefficients gives the information about the transmission coefficient
viz.a.viz in similar problem to that of a scattering problem in quantum mechanics, that we
solve using the well known WKB approximation technique 3. These WKB solutions are ex-

3To find approximate solution of the Schrödinger equation (or in other words the Klien-Gordon field
equation) in presence of an arbitrary impurity effective potential, (or the conformal time dependent mass
coupling parameter) WKB approximation method plays crucial role [46, 47].
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tremely useful as it tell us the dynamical feature of the particle production in cosmological
scattering events.

In continuation with this, we discuss about the epoch of reheating which occurs after
the end of inflationary stage of the universe which finally results in the stochastic random
burst of particle production. The dynamics of these stochastic random bursts of particle
production can be well understood by using a Fokker-Planck equation, which gives us a
statistical interpretation of the number density of particles created per scattering event.
Since, the number of particles created in a given non-adiabatic event is not discrete in
nature but rather its random, which means that there must be a probability distribution
function associated with the particle number. The various dynamical features of this type
of probability distribution and its physical consequences has been studied in ref. [42]. It
has been phenomenologically proposed in ref. [42] that such probability density function
would necessarily is Gaussian one. The occupation number of the produced particles, nk,
executes a drifting Brownian motion and a Fokker-Planck (FP) equation that evolves the
probability distribution, P (nk; τ), emerging out of this Brownian motion has been studied
in ref. [42]. We further compute the analytical expressions for the mean, variance and
other higher order moments which are commonly known as, skewness and kurtosis and such
additional statistical higher order moments are very useful to study the exact mathematical
form and asymptotic limits of the probability distribution function. The evolution of mean,
variance, skewness and kurtosis finally gives a coarse-grained analysis of the Fokker-Planck
dynamics to more corrected orders of magnitude in quantum regime. We show in this paper
explicitly that though Gaussianity is an inherent part of the probability density function,
but the consideration of the higher order moments in the Fokker-Planck equation tells us
that the density function may not be a Gaussian one but with some higher-order corrections
entailed into it due to the quantum mechanical origin. Therefore, to a greater extent we
extend the more corrected quantum version of the Fokker-Planck equation used to describe
the dynamics of the probability distribution function used in ref. [42] that tells us the
dynamics of the bursts of particle production in these random scattering events. The more
quantum corrected version tells us that the probability amplitude of the particle production
in the scattering events is more than a Log normal distribution. The distribution profile
of the probability distribution function depends largely on the profile of the scatterer, i.e.,
the effective potential V (x) in the Schrödinger-like equation. While calculating the Fokker-
Planck dynamics we observe that the skewness gives us a clue about the rate at which
the particle production occurs meaning that longer the trailing part of the profile more is
the number density of particles in the scattering event for a given time in the frame of
the observer, whereas, kurtosis tells us the width of the probability distribution function
which is essentially the amplitude with which the particle production phenomena occurs,
which more suggestively tells us about the standard deviation of the density function from
Gaussianity. This may be a signature of non-gaussianity that arises in various models in
early universe cosmology.

In this connection it is important to note that, such stochastic approaches to the early
universe scenario have been studied in details in [48, 49], where the authors give an account
of how chaos arises in the context of eternal inflation. As any rapidly oscillating classical
field looses its energy by creating pairs of elementary particles, these particles interact with
each other and comes to a state of showing thermal behaviour at some temperature T . This
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implies that we must eliminate the necessary assumption of the universe being in thermal
equilibrium. This means that the inflating universe is rather thermal in the sense that
the particle creation events that occurs during the quantum fluctuation in the randomly
distributed scalar fields φ which results in a chaotic model of the inflationary scenario of the
universe thereby leading to a generation of stochastic idea of the particle creation events
during the thermalization of the quantum states of the field randomly distributed over the
space-time. These particle creation events are more phenomenologically associated with
one of the fundamental ideas in out-of-equilibrium statistical mechanics known as Fokker-
Planck equation which gives the rate of the particle production during theses random events
in stochastically emerging space-time along with the distribution function that this rate
charts out. In ref. [42], such a phenomenon of particle creation events by the randomly
spaced scatterers in due context of cosmology has been shown where the the statistics of
the produced particles as a function of time which is the probability distribution function
P (nk, τ) has been predicted to be following a Log-Normal distribution. The entire process
have been carried out with the delta-scatterers which are localized in space-time.

Following ref. [42], in this paper we give a more improved quantum corrected version
of the same approach to the probability density function of the particle production events
and our prediction from the results show that the higher order quantum correction terms
being included into the Fokker-planck equation introduces an approximation to the theory.
This tells us that the number of particles produced in a given non-adiabatic event during
the reheating stage of the universe is quantized, which would mean that the rate of particle
production in a given event gives rise to a discrete set of occupation number nk. Further-
more, the quantum corrected terms obtained by deriving the Fokker-Planck equation takes
the general form, which is linear in nk being the first order in τ . Using this information
we calculate further the leading order, second and third order terms in the Fokker-Planck
equation. Hence, we derive the analytic expression of the quantum corrected version of
Fokker-Planck equation. We also calculate the various higher moments in order to get an
overview of the nature of the solution of the quantum corrected Fokker-Planck equation
which are - standard deviation, skewness and kurtosis which gives the hint of how the prob-
ability density function deviates from its Gaussian nature when the higher order quantum
corrections are taken into account in the computation. This in turn may will be another
indirect signature of the primordial non-Gaussianity in cosmology other than obtaining the
signatures provided by the 3-point functions from scalar fluctuations.

Apart from that, we discuss about spectral form factor (SFF), which measures the ran-
dom distribution of eigen values of the energy hamiltonian of a chaotic system. For this
computation of SFF we use the principles of random matrix theory (RMT) in this paper.
In the present context an upper bound on SFF denotes the saturartion of eigen value dis-
tribution hence supports the ref. [50] for quantum chaotic system. Within the framework of
quatum physics chaotic system can be characterised using only some additional constraints.
This theoretical approach is discussed in refs. [51–55] and the authors use the theory of
random matrices to characterise quantum mechanical system. In this method, any arbitary
complicated many-body Hamiltonian can be replaced by matrix of random numbers drawn
from a gaussian statistical ensemble. This random matrix approach towards quantum me-
chanics help to characterize and understand the underlying features of the chaotic random
system. After studying the behaviour of SFF with time one can further comment that
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whether it is valid for a cosmological particle production event (semi-classical) or not. For
our purpose we discuss generalized version of SFF for different even order polynomial struc-
ture of random potential and then extend that result to describe the cosmological particle
production events [56, 89]. For any random potential we can use this method of SFF and we
can deal with scatterer of any arbitrary type. For any such scatterer we can get a bound on
randomness in the chaotic system characterised by SFF. Also using specific transfer matrix
for different conformal time dependent effective mass profiles which are precisely known
in this paper, we can finally compute Lyapunov exponent which also measure stochastic
randomness.

Also it is important to note that in ref. [42], the scatterers were considered to be some
localized potential functions in space-time. On the contrary the choice of our specific time
dependent mass profiles mimics the role of thermaized fields or effective potential functions,
which are playing the role of scatterers in this context. We see that the choice of these
time dependent mass profiles leads to particle production which is chaotic in nature and
therefore, to determine the rise of chaos in such a system we quantify as well as analyse
chaos by a well known quantities known as the , Lyapunov exponent[58] and Spectral Form
Factor (SFF) [59]. Here fusing the principles of random matrix theory (RMT) we provide a
generalized bound on randomness (or stochasticity) for any general random scaterrer whose
potential can be expressed in terms of an even polynomial. More precisely, we provide a
possible method to compute the degree of randomness in a chaotic system and from that
one can check the bound on chaos.

The plan of the paper is as follows - In section 2 we discuss about the model which is
responsible for the quantum description of chaos during the cosmological particle production
and have similarities with the quantum mechanical problem of electrical conducting wire
with impurities. In section 3, we have presented the analytical expressions for the Bogoli-
ubov coefficients, transmisson and reflection coefficients, Lyapunov exponent, conductance,
resistance for different time dependent mass profile. We have discussed the correspondence
between In section 5 the specific role of Spectral Form Factor (SFF) to quantify chaos in
the context of particle production rate is discussed. In section 6 the particle production
event with quntum corrected Fokker-Planck equation is discussed by taking contribution
upto fourth order and also different higher order moments from the quantum corrected
probability density function are explicitly computed. Finally, in section 7 we conclude with
the future prospect and physical impacts of our work.

Additionally it is important to note that, throughout this paper, we use natural system
of units, ~ = c = 1.

2 Modelling randomness in cosmology

The background model which we consider in this section to quantify quantum chaos in
cosmology consists of a massless scalar field interacting with coupled with a background
scalar field with conformal time dependent mass profile which in principle have heavier or
comparable to the Hubble scale (m ≥ H) [46, 60, 61]. It is important to note that such
heavy mass profiles play significant role in finding various cosmological correlation functions
and also can be treated as an additional probe to break the degeneracy between various
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models of inflation from the perspective of implementing cosmological perturbation theory
in (quasi) de Sitter background. We know that in usual set up of primordial cosmological
perturbation such heavy fields are not appearing in the low energy effective field theory
action. For that case in the simplest situation we actually start with an one field set up
where the kinetic term is canonical in nature and the field is minimally coupled with the
background gravity which is treated to be classical usually. Also such field has an effective
structure of the interaction potential which play crucial role to study the time dynamics
in FLRW cosmological background. Here specifically the field is treated to be massless
compared to the Hubble scale (m << H). However, this is not the complete story yet.
To explain this let us start with a Ultra Violet (UV) complete set up of quantum field
theory (QFT) such as string theory in higher dimensions. There are various examples of
string theory from which one can start the computation, which are - Type II A, Type II B,
Heterotic, M - theory etc. Also the low energy extension of such theories (supergravity) are
also useful for the computation in the context of cosmology. Here it is important to note
such all such theories contain massive (m >> H), intermediate mass (m ≈ H) and massless
(m << H) fields in the matter multiplet. To write down an effective field theory one need to
integrate out all such heavy degrees of freedom from the UV complete version of the action.
After doing dimensional reduction along with applying various compactification techniques
one can derive various types of effective field theories at cosmological scale where the effective
couplings of various relevant and irrelevant Wilsonian operators have time dependent profile
in FLRW background and in such a case from the relevant quadratic operator one can also
get the time dependent effective mass which is in general heavy (m ≥ H). It is further
important to mention here that, such heavy fields can give rise to non vanishing one point
function for scalar (curvature) perturbation in cosmology, which carries the signature of
Bell’s inequality violation in primordial universe [[46, 61–66]]. Also it is important to note
that such Bell violating set up can be explained using the theory of quantum entanglement
in (quasi) de Sitter background and can give rise to non-vanishing quantum information
theoretic measure i.e. Von Neumann entropy, Rényi entropy, quantum discord, logarithmic
entangled negativity [[67–70]] etc. Additionally, one can get correct expression for two point
function and also the three point function from scalar (curvature) perturbation, which will
show significant effect in estimating primordial non-Gaussianity from single field models of
inflation. Apart from this one can consider a simplest situation in four space-time dimensions
where the cosmological dynamics is explained in terms of two interacting scalar fields. The
light field (m << H) is participating in inflation and the other heavy field (m >> H) is
participating to explain the dynamics of reheating. If we path integrate out the reheating
degrees of freedom then we get an effective field theory of inflation which is exactly same as
we have explained earlier. But here one can consider the other possibility as well in which
one can path integrate out the light inflaton degrees of freedom and write down an effective
field theory to describe reheating in terms of the heavy fields (m ≥ H). In such a description
this reheating field have mass and in the effective field theory description one can write down
some time dependent coupling in terms of the integrated inflaton degrees of freedom and the
mass of the reheating field appearing in the coefficient of the relevant quadratic operator. In
this description such time dependent coupling is treated to be the time dependent effective
mass parameter profile which is considered in the present discussion. So it is evident from
this discussion that using both the effective field theory of inflation and reheating one can
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actually explain the origin of such time dependent effective mass profiles in four dimensions.
However, in this paper since our objective is to study the cosmological particle production
phenomena, we will mostly focus on the reheating epoch of the universe.

The dynamics of this fluctuating scalar field 4 in FLRW cosmological background with
a time-dependent coupling obeys the following Klein-Gordon equation 5:[

d2

dτ 2
+
(
k2 +m2(τ)

)]
φk(τ) = 0 , (2.1)

where m2(τ) is the time dependent mass of the scalar field with which is originating from
the effective field theory (EFT) of massless scalar field coupled with other heavy degrees of
freedom by following the two possibilities:

1. In EFT time dependent couplings are appearing after path integrating out the massive
degrees of freedom. This prescription is usually used to construct a most generic
EFT of inflation.

2. In EFT time dependent couplings are appearing after path integrating out the massless
degrees of freedom. This prescription is usually used to construct a most generic
EFT of reheating.

Here φk(τ) is the associated Fourier mode of the fluctuating scalar field with momentum k,
where it plays the role of wave number in the present context.

In this paper, our prime objective is to find a precise equivalence between the dynamics
of this scalar field resulting in stochastic particle production in cosmological events during
reheating and the similarity with the dynamics of the electron transport in conduction wires.
To establish this equivalence we start with the fact that the above mentioned Klein-Gordon
equation for the fluctuating scalar field in (quasi) de Sitter background shows a striking
similarity with the time-independent one dimensional Schrödinger equation appearing in
the context of quantum mechanical system which describes the space evolution of electron
inside a wire in presence of impurity as given by:[

d2

dx2
+ E − V (x)

]
ψ(x) = 0, (2.2)

where, V (x) corresponds to the time-dependent potential which is appearing appearing as
an outcome of impurity in the electrical wire and plays the similar role of negative of the

4Here it is important to note that, for inflation this scalar field is actually massless and in the effective
field theory description one can construct the time dependent effective mass profile. On the other hand,
in the context of reheating the scalar field is massive and in the effective field theory description one can
construct time dependent effective mass in terms of the original mass of the reheating field and other degrees
of freedom which are integrated out from the original theory.

5Here we have assumed that the effective sound speed parameter, cS = 1, which indirectly implies the
fact that for background time evolution we are considering a single scalar field with canonical kinetic term
minimally coupled to the gravity. Effective mass of the scalar field is m(τ), which has time dependent
profile. However, one can generalize this prescription for any general non-canonical single field (i.e.P (X,φ)
theory) theoretic framework where the effective sound speed parameter cS 6= 1.
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Scattering in conduction wire Cosmological particle creation

Symbol Physical interpretation Symbol Physical interpretation

x Distance τ Conformal time

V(x) Potential -m2(τ) Time Dependent mass parameter

Ψ(x) Wave Function φk(τ) Mode function in Fourier space

Ns No. of Scatterers Ns No. of non-adiabatic events

∆x Distance between scatterers ∆τ Time between non-adiabatic events

ξ Localization length µk Mean particle production rate

ρ(x) Resistance nk(τ) Particle occupation number

E Energy eigen value k2 Wave number of Fourier modes

Nc Number of channels Nf Number of fields

Table 1. A brief overview of the connection between the scattering problem in quantum mechanics
to that of cosmological particle creation events.

square of time-dependent mass profile as appearing in the context of cosmology i.e. −m2(τ).
Also E represents the energy eigen value which mimics the role of the wave number squared
i.e. k2. Finally, ψ(x) represents the wave function of the quantum mechanical system under
consideration which is similar to the Fourier modes of the time dependent fluctuating scalar
field in the context of cosmology i.e. φk(τ). The above set up can be re-expressed in terms
of solving a transfer matrix problem since the scatterers can be thought as potential profiles
in Schrödinger problem in quantum mechanics with the incoming and outgoing modes of
the scalar field related to each other with the Bogoliubov coefficients. A complete overview
of the connection between the variables that quantify the scattering problem in the context
of quantum mechanics to the one in the cosmological particle production problem has been
shown in table (1).

It is very well known fact that the conductance of the electrical wire is related to the
transmission probability of electrons across the wire and this can be obtained by explicitly
solving the time-independent Schrödinger equation (see Eq (2.3)) in the presence of the
impurities. Before going to the further details of the computation here we begin by reviewing
the scattering problem by a single impurity localized at the position x = xj. To the left
(L) and the right (R) of the impurity potential, the wave-function can be written as a
linear combination of right-propagating waves (exp (ikx)) and the left-propagating waves
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(exp (−ikx)) as:

ψ∆(x) = β∆ exp (ikx) + α∆ exp (−ikx) where ∆ = L,R, (2.3)

This is essentially a scattering problem in the context of quantum mechanics in which
the impurities act as interaction potentials or scatterers across which the electrons get
transmitted within the conduction wire. The map between the Bogoliubov coefficients
(βR, αR) from the right (R) side and the Bogoliubov coefficients (βL, αL) from the left (L)
side can be expressed in terms of the following Bogoliubov transformation equation as:

BR =Mj BL, (2.4)

where we define:

B∆ =

β∆

α∆

 where ∆ = L,R, (2.5)

and in this context the transfer matrix for the j-th scatterer Mj is given by the following
expression:

Mj =


1
t∗j

−r∗j
t∗j

−rj
tj

1
tj

 , (2.6)

which is essentially an unitary matrix related the incoming and the outgoing wave functions
and their normalization coefficients.

Ultimately, using this methodology our objective is to connect several impurities to-
gether. This is particularly very easy to describe in terms of the transfer matrix approach,
since the total transfer matrix across Ns number of scatterers is simply given by the simple
matrix multiplication of the individual transfer matrices as given by the following expression:

M≡M(Ns) =
Ns∏
j=1

Mj =MNs ⊗MNs−1 ⊗ ......⊗M3 ⊗M2 ⊗M1. (2.7)

For our choice of convenience of symbols we will drop the term Ns for the Ns num-
ber of scatterers and hence we will be considering this to be equal to M. In Fig:3 we
show the electron(wave) encounter a potential(impurity or scatterer).It transmit and reflect
through it.From simalirty of Klein-Gordon equation and the time-independent one dimen-
sional Schrödinger equation we calculate R and T for particle production event. Further,
let us consider the simplest possibility of having two (Ns = 2) scatterers across which the
transmission probability can be written as:

T =
T1T2

|1−
√
R1R2eiθ|2

, (2.8)
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Figure 3. This diagram shows that incoming wave of electron encounter a scatterer and it partially
passes through it with T(transmisson probability) and partially reflected back with R(reflection
probability).

where the transmission and reflection coefficients for the j − th scatterer can be expressed
as:

Tj = t∗j tj, Rj = r∗j rj ∀j = 1, 2. (2.9)

and additionally eiθ is the overall phase factor which describes the shift in phase between
the reflecting waves across the scatterers due to the presence of impurities. If the distance
between the two impurities is random in nature and uniformly distributed over a region with
the assumption, k∆x >> 1 (where ∆x = x2 − x1 is the distance between the scatterers),
then the phase θ is also uniformly distributed over the interval 0 < θ < 2π. Using this fact
explicitly we take logarithm on both sides of the above equation and further doing average
over the phase within the interval 0 < θ < 2π we finally get 6:

〈log T 〉θ = log T1 + log T2 + 2〈log
∣∣∣1−√R1R2e

iθ
∣∣∣〉θ︸ ︷︷ ︸

=0

= log

(
2∏
j=1

Tj

)
=

2∑
j=1

log Tj. (2.11)

The phase-averaged logarithm of the total transmission probability across Ns number of

6Following this discussion, one can generalize this statement for Ns number of scatterers as:

〈log T 〉θ = log

Ns∏
j=1

Tj

 =

Ns∑
j=1

log Tj . (2.10)
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scatterers then further simply can be written as:

〈log T 〉θ = log

(
Ns∏
j=1

Tj

)
=

Ns∑
j=1

log Tj = −Nsγ, (2.12)

where γ is known as the Lyapunov exponent, which is defined as:

γ = −N−1
s

Ns∑
j=1

log Tj = −N−1
s log

(
Ns∏
j=1

Tj

)
= −N−1

s 〈log T 〉θ. (2.13)

This actually determines the rise of chaos in the system. Using this information the typical
transmission probability is defined as:

Ttyp ≡ exp (〈log T 〉θ) =
Ns∏
j=1

Tj = exp (−Nsγ) = exp (L/ξ) , (2.14)

which corresponds to the most probable transmission probability in the ensemble of random
potentials. Also it is important to note that,

L ≡ Ns∆x = Ns (xNs − x1) , (2.15)

represents the total length of the conduction wire. Here the localization length is defined as:

ξ ≡ ∆x

γ
= −L

(
Ns∑
j=1

log Tj

)−1

= −L

(
log

(
Ns∏
j=1

Tj

))−1

= −L (〈log T 〉θ)−1 . (2.16)

In one spacial dimension, the localization length is of the same order as the transport mean
free path as pointed in ref. [73, 74]. If the mean distance between scatterers, ∆x, and the
average logarithm of the transmission probability per scattering, γ, are fixed, then the total
transmission probability decays exponentially with the length L of the conduction wire 7.
This is commonly known as Anderson localization [75].

Naturally, it is well known that the resistance of the conduction wire scales inversely
with the total transmission probability. At zero temperature, all one-dimensional conduction
wire are therefore can be treated as an insulator, which is independent of the strength of
the impurities appearing in the wire. However, the mathematical structure of the total
transmission probability T is preserved for Ns number of such scatterers and this can be
shown as:

M =


1
t∗Ns

−r∗Ns
t∗Ns

−rNs
tNs

1
tNs

⊗ · · · ⊗


1
t∗3

−r∗3
t∗3

−r3
t3

1
t3

⊗


1
t∗2

−r∗2
t∗2

−r2
t2

1
t2

⊗


1
t∗1

−r∗1
t∗1

−r1
t1

1
t1

 .

(2.17)

7 Equivalently, here one can say that it exponentially decays with the number of scatterers.
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For a one-dimensional non relativistic electron in conduction wire under the influence
of certain potential V (x) evolution of the wave function ψ(x, t) is given by:[

d2

dx2
+ E − V (x)

]
ψ(x) = 0, (2.18)

with the Hamiltonian for this particle is given by:

H =
p2

2m
+ V (x) (2.19)

If we consider the particle is initially prepared in presence of potential V (x) wave-packet
take the specific form of ψ(x, t). The final stationary density distribution |ψ(x, t)|2 at long
time carries important information both in their average and fluctuations. The quantum
mechanical wave can tunnel through potential hills and reflect for by small fluctuations. So
the initial wave packet split on each potential fluctuations into a transmitted and a reflected
part. After huge number of scattering instances this reduce to a random walk problem and
on average the motion at long times will have the diffusion constant in it. This is exactly
the case of electron is propagating in a conduction wire. At long times average dynamics
[76] of the wave packet freeze and it takes the shape as given by the equation

|ψ(z, t)|2 ∝ exp

(
−|z|
ξ

)
, (2.20)

Here, ξ is the localization length as discussed in Eq:-2.16. An electron in random potential
is normally studied using statistical ensemble of random one-electron matrix Hamiltonians.
Using Tight Binding approximation in orthogonalised lattice-site basis representation. The
diagonal matrix elements are chosen from a flat probability distribution of width W,the
strength of disorder. The off-diagonal hopping matrix elements for every pair of nearest-
neighbour sites and represented by 2x2 matrix where potential take the form,

V = t0.I + iµt.σ = t0.I + iµ(tx.σx + ty.σy + tz.σz) (2.21)

where, I, σx, σy, σz are identity and Pauli spin matrices forming the complete basis set.
Here µ is the random spin-orbit coupling strength, tx, ty, tz are independent random variables
taken from uniform distribution on interval [−1/2, 1/2]. The metal-insulator transformation
occur at specific values. Below that mobility edges appear in band separating localised states
near edges from extended states near band center.

The tight-binding random matrix ensembles (TBME) classified scheme is possible on
symmetry. Orthogonal Ensemble in random potential..Localisation and mobility occur in
all 3-D tight-binding ensembles and in 2-D for symplectic and unitary classes. From this
distinction one found striking similarities with symmetry classification of Gaussian random
matrix ensemble. The Gaussian ensemble belongs to high dimensionality limit of TBME
and always metallic. So the metallic phase is well approximated by Gaussian random matrix
theory. From our discussion on RMT we use the Nearest Neighbour Spacing Distribution
function [P(ω)see-Eq5.1] and measure it in units of mean level spacing ∆. Around the
mobility edge and intermediate law from P (ω) can be obtained. Anderson localization in
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this context mimics quantum chaotic transition. The fluctuations for the density of states
are partially responsible for the conductance fluctuations. Although average density of
states is insensitive to Anderson transition its higher order moments are sensitive to it. On
an other approach we can relate Anderson localization to RMT using Lyapunov Exponents.
Equation 2.13 and 2.16 relates Anderson localization to Lyapunov exponents. Now statistical
property of the Lyapunov spectrum with large number of degrees of freedom can be described
universally by RMT. [77] As described in [77], the spectrum of Lyapunov exponents is well
approximated by the following expression:

ρ(λ, t) =
3

4λ
3
2
max

√
λmax − |λ| (2.22)

Here λmax is the time independent parameter which approximately equals to bound of
Lyapunov exponent. This equation shows striking similarity with Wigner law [Eq:-5.146]. In
this approach we can also show the connection between Anderson localization and RMT. But
there is a striking difference also. Random matrix theory takes all its entries from Gaussian
random variables but for electronic models [Scattering matrix theory] matrix ensemble have
short-ranged and sparse random matrix with most of the matrix elements having main
diagonal non-zero.

3 Randomness from conduction wire to cosmology: Dynamical
study with time dependent protocols

In this section, our objective is to explain the various features from the time dependent
effective mass profiles which are related to the quantum mechanical scattering problem in
conduction wire as mentioned earlier. These features are appended bellow:

1. Lyapunov exponent: It actually quantify the amount of chaos appearing in the
quantum mechanical systems that we are studying in the context of early universe
cosmology. In our discussion it tells us the degree of randomness in the stochastic
particle production. In our case, the chaos emerges due to the random scattering
events which are non adiabatic and we call these as cosmological scattering events
leading to particle production. In this section, we discuss about Lyapunov exponent
and try to discuss their behaviour for the different time dependent mass profiles. In
thus context, Lyapunov exponent is defined as [42, 79]:

λ = −log T, (3.1)

where, T is the transmission coefficient given by the following expression:

T = t∗t = |t|2, (3.2)

with t and t∗ being the transmission amplitude of the incoming and the outgoing wave.
In the present discussion, the transmission coefficient can be expressed as:

T = |t|2 =
1

|α|2
, (3.3)
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where β and α are the Bogoliubov coefficients. Also, it is important to note that, in
the present context one can define the reflection coefficient as:

R = r̃∗r̃ = |r̃|2 =
|β|2

|α|2
, (3.4)

where r̃ and r̃∗ being the reflection amplitude of the incoming and the outgoing wave.
Finally from Eq (6.176) and Eq (3.4), we get the following conservation equation:

R + T = |r̃|2 + |t|2 =
1 + |β|2

|α|2
= 1, (3.5)

where we have used the following normalization condition for the Bogoliubov coeffi-
cients, as given by:

|α|2 − |β|2 = 1. (3.6)

2. Conductance: It quantify the degree of support of the flow of electron inside an
electrical conduction wire. this is exactly reciprocal of resistance. In the present con-
text, conductance refers to the ability of the massless scalar fields to transmit through
the massive fields which are the specific heavy mass profiles that we have discussed
above. This may be more suggestive in telling us about the interaction of the massless
scalar field with the massive fields. More value of conductance refers to the larger
transmitivity of the background fields through the scatterers and vice-versa. Thus,
conductance also carries a valuable information about the transmission coefficient of
the scalar field interacting with the scatterer. In this context, the conductance can be
expressed as:

G = exp (−2λ) = T 2 = |t|4 =
1

|α|4
, (3.7)

where λ is the Lyapunov exponent, T is the transmission coefficient, |t| is the transmis-
sion amplitude of the incoming/outgoing wave and β, α are the Bogoliubov coefficients
as mentioned above.

3. Resistance: It quantify the degree of oppose of the flow of electrons inside an electri-
cal conduction wire. It is the property by the virtue of which the scatterers (which are
the time dependent mass profiles in our case) resist the massless scalar field to tunnel
through them. In other words, it is the same Schrödinger formulation in quantum me-
chanics where the incoming wave interacts with a potential barrier and the strength of
the barrier is the measurement of resistance to the tunneling of the incoming particle
through it. This means that more the resistance to the incoming wave, more is the
lower is the transmission probability across the barrier. Resistance is defined as the
reciprocal of conductance G(k), which gives:

r(k) =
1

G(k)
= exp (2λ) =

1

T 2
=

1

|t|4
= |α|4 . (3.8)
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We will discuss details of these features for three different mass profiles as mentioned in
Eq (1.4). All of these mass profiles that we choose here mimics the role of scatterers inside
the conduction wire. Such scatterers provide the way for scattering events to occur resulting
in random particle production in cosmological space-time.

To study the cosmological particle creation problem during early epoch of universe
(specifically during reheating) we use the analogy with the quantum mechanical scattering
problem inside an electrical conduction wire in presence of time dependent effective mass
profile we will perform the computation in (quasi) de Sitter space using FLRW spatially
flat metric.

Here we consider a massive free scalar field with time-dependent mass 8:

S = −1

2

∫
d4x
√
−g(gµν∂µχ ∂νχ−m2(τ)χ2)

=
1

2

∫
d3x dτ a2(τ)

[(
∂χ(x, τ)

∂τ

)2

− a2(τ)
{

(∇χ(x, τ))2 +m2(τ)(χ(x, τ))2
}]

=
1

2

∫
d3k

(2π)3
dτ a2(τ)

[∣∣∣∣dχk(τ)

dτ

∣∣∣∣2 − a2(τ)(k2 +m2(τ))|χk(τ)|2
]
, (3.9)

where the scalar field satisfies the following constraint:

χ(−k, τ) = χ∗(k, τ), (3.10)

and the Fourier transform of the field is defined as:

χ(x, τ) =

∫
d3k

(2π)3
χk(τ) eik.x. (3.11)

Also in the (quasi) de Sitter background the scale factor a(τ) can be expressed in terms of
conformal time as 9:

a(τ) =


− 1

Hτ
, De Sitter

− 1

Hτ
(1 + ε) , Quasi De Sitter

, (3.13)

where ε is the slow-roll parameter in quasi de Sitter space, which is defined as:

ε = − 1

H2

dH

dt
= − 1

a(τ)H2

dH

dτ
≈ ε̄

a(τ)
= −Hε̄τ. (3.14)

8Here it is important to note that our approach is similar to that of used in refs. [58, 78] to explain the
time dynamics of quantum quench.

9In de Sitter and quasi de Sitter space one can compute the relation between the conformal time (τ) and
the physical time (t) as given by the following expressions:

τ =

∫
dt

a
=


− 1

Ha
= − 1

H
exp(−Ht) , De Sitter

− 1

Ha
(1 + ε) = − 1

H
(1 + ε) exp(−Ht) , Quasi De Sitter

, (3.12)

– 18 –



Here, we define a new slow-roll parameter with respect to the conformal time:

ε̄ = − 1

H2

dH

dτ
. (3.15)

Now we use the following field redefinition in Fourier space:

φk(τ) ≡ a(τ) χk(τ). (3.16)

Consequently, the scalar field action as stated in Eq (3.17) can be recast in terms of the
newly defined field φk(τ) as:

S =
1

2

∫
d3k

(2π)3
dτ

(∣∣∣∣dφk(τ)

dτ
− 1

a(τ)

da(τ)

dτ
φk(τ)

∣∣∣∣2 − (k2 +m2(τ))|φk(τ)|2
)
, (3.17)

Further, varying the above action with respect to the redefined field φ∗k(τ) we get the
following equation of motion:[

d2

dτ 2
+

1

a(τ)

da(τ)

dτ

d

dτ
+

(
k2 +m2(τ)−

(
1

a(τ)

da(τ)

dτ

)2
)]

φk(τ) = 0. (3.18)

Further, Eq (3.18) can be simplified for de Sitter and quasi de Sitter space as:

De Sitter : [
d2

dτ 2
− 1

τ

d

dτ
+

(
k2 +m2(τ)− 1

τ 2

)]
φk(τ) = 0. (3.19)

Quasi De Sitter :[
d2

dτ 2
− 1

τ

(
1− 2ε2

1 + ε

)
d

dτ
+

(
k2 +m2(τ)− 1

τ 2

(
1− 2ε2

1 + ε

)2
)]

φk(τ) = 0. (3.20)

It is important to note that, the main contribution to particle production is originating from
the excitations of the field with k/a >> m >> H, at the stage of oscillations. Therefore, in
the first approximation we can neglect the expansion of the Universe, taking the scale factor
a(τ) as a constant during reheating. We call it reheating approximation. Consequently,
one can approximately write Eq (3.18) in the following simplified form 10:[

d2

dτ 2
+
(
k2 +m2(τ)

)]
φk(τ) = 0. (3.22)

The Fourier modes of the scalar field follow the equation of motion in as stated in Eq 3.22,
with every Fourier mode satisfying the Schrödinger equation where −m2(τ) playing the role
of a potential. In Fig:4 the particle produced show fluctuation from ground state and from

10Here it is important to note that, since the scale factor a(τ) is approximately a constant during reheating
(reheating approximation), then conformal time (τ) and the physical time (t) is related through the
following coordinate rescaling transformation:

τ =

∫
dt

a
=
t

a
. (3.21)
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Figure 4. This diagram shows that ground state flactuations from the past can in future be
amplified which can be measured by the coefficient α whereas particle excitation from ground
state can be measured by β.

calculating the Bogoliubov coefficients we predicted all its properties. For the solution we
refer to ref. [36], for the field φk(τ) can be expressed in two distinctive ways, as given by:

φk(τ) = ain(k)uin(k, τ) + a†in(−k)u∗in(−k, τ)

= aout(k)uout(k, τ) + a†out(−k)u∗out(−k, τ), (3.23)

where uin,in(k, τ) and uin,out(k, τ) are the ‘ingoing’ and ‘outgoing’ wave-functions. Also, the
in- and out- oscillators are related to each other through the Bogoliubov coefficients α(k)
and β(k)

ain(k) = α∗(k)aout(k)− β∗(k)a†out(−k),

aout(k) = α(k)ain(k) + β∗(k)a†in(−k), (3.24)

Now, we calculate the various electrical properties and also the expression for the Lyapunov
exponent to quantify quantum chaos for the various time dependent effective mass profiles
which are equivalent to the impurity potential term in the time Independent Schrödinger
Equation describing a scattering problem inside a conduction wire.

3.1 Protocol I: m2(τ) = m2
0(1− tanh(ρτ))/2

Here we start with the following mass profile:

m2(τ) = m2
0(1− tanh(ρτ))/2. (3.25)

The corresponding Schrödinger problem for this potential function can be solved by using
the potential function as given bellow:

V (τ) = −m2(τ) = −m2
0(1− tanh(ρτ))/2. (3.26)
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Figure 5. Conformal time dependent behaviour of the mass profile I and its corresponding
potential used in Schrödinger scattering problem is explicitly shown here. Here we fix ρ = 1.

In fig. (5(a)) and fig. (5(b)), we have explicitly shown the conformal time dependent be-
haviour of the mass profile under consideration and also the corresponding potential used
in Schrödinger scattering problem.

We can find the following explicit solutions for uin(k, t) and uout(k, t), as given by:

uin(k, τ) =
e−iωinτ√

2ωin
2F1

(
iω−
ρ
,−iω+

ρ
; 1− iωin

ρ
;−e2ρτ

)
, (3.27)

uout(k, τ) =
e−iωoutτ√

2ωout
2F1

(
iω−
ρ
,
iω+

ρ
;
iωout
ρ

+ 1;−e−2ρτ

)
, (3.28)

where we define ω±, ωin and ωout in the following:

ωin =
√
k2 +m2

0, ωout = |k|, ω± =
1

2
(ωout ± ωin). (3.29)

3.1.1 Bogoliubov coefficients

For this specific mass profile the Bogoliubov coefficients can be expressed as:

α(k) =

√
ωout
ωin

Γ
(
− iωout

ρ

)
Γ
(

1− iωin
ρ

)
Γ
(
− iω+

2ρ

)
Γ
(

1− iω+

2ρ

) , β(k) =

√
ωout
ωin

Γ
(
iωout
ρ

)
Γ
(

1− iωin
ρ

)
Γ
(
iω−
2ρ

)
Γ
(

1 + iω−
2ρ

) . (3.30)

In fig. (6(a)) and fig. (6(b)), we have shown the variation of the Bogoliubov Coefficients
with wave number k.
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Figure 6. Wave number dependence of the Bogoliubov coefficients from the mass profile I is
shown here. Here we fix ρ = 1.

3.1.2 Optical properties: Reflection and transmission coefficients

For this specific mass profile the transmission and reflection coefficients can be expressed
as:

T =
1

|α(k)|2
=

ωin
ωout

|Γ
(
− iω+

2ρ

)
Γ
(

1− iω+

2ρ

)
|2

|Γ
(
− iωout

ρ

)
Γ
(

1− iωin
ρ

)
|2
, (3.31)

R =
|β(k)|2

|α(k)|2
=
|Γ
(
iωout
ρ

)
|2

|Γ
(
− iωout

ρ

)
|2

|Γ
(
− iω+

2ρ

)
Γ
(

1− iω+

2ρ

)
|2

|Γ
(
iω−
2ρ

)
Γ
(

1 + iω−
2ρ

)
|2
. (3.32)

In fig. (7(a)) and fig. (7(b)), we have shown the variation of the transmission and reflection
coefficients with wave number k.

3.1.3 Chaotic property: Lyapunov exponent

For this specific mass profile the Lyapunov exponent can be expressed as:

λ(k) = − log T = 2 log |α(k)| = 2 log

∣∣∣∣∣∣
√
ωout
ωin

Γ
(
− iωout

ρ

)
Γ
(

1− iωin
ρ

)
Γ
(
− iω+

2ρ

)
Γ
(

1− iω+

2ρ

)
∣∣∣∣∣∣ . (3.33)

In fig. 8, we observe that with increase in wave number k the Lyapunov exponent
decreases. This shows that the Lyapunov exponent is dependent on the momenta values of
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Figure 7. Wave number dependence of transmission and reflection coefficients for the mass profile
I is shown here. Here we fix ρ = 1.
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Figure 8. Wave number dependence of Lyapunov exponent is shown for mass profile I. Here we
fix ρ = 1.

the fields interacting with the massive field acting as a scatterer. Furthermore, we discover
that for the mass profile I, the chaos in the event reduces with increase in the wave number.
This suggests that lesser the number of fields interacting with the massive field more is the
chaos in the quantum system considered in this paper. Since, a negative value of Lyapunov
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Exponent pulls a system out of chaos, this further tells us that the Lyapunov exponent is
inversely related to the number of background fields interacting with the scatterer or the
massive field. This may be interpreted in the following way in the context of Schrödinger
problem in quantum mechanics that a higher value of wave number k of the incoming wave
would be able to cross a potential barrier of a given strength and would be able to get
transmitted through the barrier and the pulse won’t damp easily than that of a wave with
lower k value. This means that the scatterer acts as a definitive medium which allows only
certain wave numbers to pass through thus reducing the chaos in the system.

3.1.4 Conduction properties: Conductance and Resistance

For the given mass profile the expression for conductance and resistance can be expressed
as:

G(k) = exp(−2λ(k)) = 2 log

∣∣∣∣∣∣
√
ωin
ωout

Γ
(
− iω+

2ρ

)
Γ
(

1− iω+

2ρ

)
Γ
(
− iωout

ρ

)
Γ
(

1− iωin
ρ

)
∣∣∣∣∣∣ (3.34)

r(k) = exp(2λ(k)) = 2 log

∣∣∣∣∣∣
√
ωout
ωin

Γ
(
− iωout

ρ

)
Γ
(

1− iωin
ρ

)
Γ
(
− iω+

2ρ

)
Γ
(

1− iω+

2ρ

)
∣∣∣∣∣∣ (3.35)
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Figure 9. Wave number dependence of conductance and resistance for the mass profile I is shown
here. Here we fix ρ = 1.

In fig. 9(a) we have shown the variation of conductance with wave number k. This figure
shows that with increase in the momenta value of the massless scalar field, the conductance
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also increases. Now, accounting for m0 values, we see that for m0 = 1 the conductance
shoots up at a much lower k value than that of m0 = 2 and m0 = 3. This suggests that
for m0 = 1 the field has a much higher transmission probability than that of m0 = 2 and
m0 = 3. An increase in transmission probability gives a direct evidence of the conductance
value. Therefore, we conclude that for m0 = 1 the field has more conductance value in
comparison to m0 = 2 and m0 = 3. We also conclude that larger the momenta value,
more is the transmission coefficient and thereby shoots up the conductance of the system.
This means that an incoming wave with large momenta value would eventually cross a
barrier potential field thereby increasing the conductance of the system as the transmission
probability would be much higher than an incoming wave with lower momenta value.

In fig. 9(b) we have shown the variation of resistance with wave number. We observe
that with an increase in the value of k the resistance starts decreasing which suggests that
with an increase in momenta value the transmission probability across the scatterer. This
may be viewed in accordance with the potential barrier in the Schrödinger equation in
quantum mechanics also starts increasing thereby allowing the incoming wave to tunnel
through the barrier thereby increasing the transmission probability and hence,reducing the
resistance. We also observe that with an increase in k value the resistance reduces less
rapidly for m0 = 1 than that of m0 = 3 and m0 = 2. Whereas, it reduces more rapidly for
m0 = 3 suggesting that higher the value of the constant m0 lower is the value of resistance
offered.

3.2 Protocol II: m2(τ) = m2
0 sech2(ρτ)
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Figure 10. Conformal time dependent behaviour of the mass profile II and its corresponding
potential used in Schrödinger scattering problem is explicitly shown here. Here we fix ρ = 1.
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Here we consider the following mass profile:

m2(τ) = m2
0 sech2(ρτ). (3.36)

The corresponding Schrödinger problem for this potential function can be solved by using
the potential function as given bellow:

V (τ) = −m2(τ) = −m2
0 sech2(ρτ). (3.37)

In fig. (10(a)) and fig. (10(b)), we have explicitly shown the conformal time dependent
behaviour of the mass profile under consideration and also the corresponding potential used
in Schrödinger scattering problem.

Now using the coordinate transformation y = e2ρτ [58, 78] one can recast the equation of
motion, analogous to the time independent Schrödinger equation takes the following form:

φ′′k(y) +
φ′k(y)

y
+

(
k2

4ρ2y
+

m2
0

ρ2(1 + y)2

)
φk(y) = 0. (3.38)

The solution of this equation is given by:

u(k, τ) = e−ikτ (1 + e2ρτ )α
[
C1 e

2ikτ
2F1

(
α, ik

ρ
+ α, 1 + ik

ρ
,−e2ρτ

)
+ C2 2F1

(
α,− ik

ρ
+ α, 1− ik

ρ
,−e2ρt

)]
,

(3.39)

where we define a parameter α as:

α =
1

2
+

1

ρ

√
4m2

0 + ρ2 (3.40)

3.2.1 Bogoliubov coefficients

Now we fix C1 = 1 and C2 = 0, which gives the incoming solution uin(k). Further taking
the t → +∞ limit and using Bogoliubov transformation we can express incoming solution
in terms of the outgoing solution as given by:

uin(k) = α(k)uout(k) + β(k)u∗out(k), (3.41)

where α(k) and β(k) are the Bogoliubov coefficients, which are defined as:

α(k) =
Γ( ik

ρ
+ 1)Γ( ik

ρ
)

Γ( ik
ρ
− α + 1)Γ( ik

ρ
+ α)

, β(k) = i sin(πα)cosech

(
πk

ρ

)
. (3.42)

In fig. (11(a)) and fig. (11(b)), we have shown the variation of the Bogoliubov coefficients
with wave number k.

3.2.2 Optical properties: Reflection and transmission coefficients

For this specific mass profile the transmission and the reflection coefficients can be expressed
as:

T (K) =
1

| Γ( ik
ρ

+1)Γ( ik
ρ

)

Γ( ik
ρ
−α+1)Γ( ik

ρ
+α)2
|2
, R(k) =

|i sin(πα)cosech
(
πk
ρ

)
|2

| Γ( ik
ρ

+1)Γ( ik
ρ

)

Γ( ik
ρ
−α+1)Γ( ik

ρ
+α)
|2

. (3.43)

In fig. (12(a)) and fig. (12(b)), we have shown the variation of the transmission and
reflection coefficients with wave number k.
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Figure 11. Wave number dependence of the Bogoliubov coefficients are shown here for mass
profile II. Here we fix ρ = 1.
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Figure 12. Transmission and Reflection Coefficient for mass profile m2(t) = m2
0sech

2(ρτ)
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3.2.3 Chaotic property: Lyapunov exponent

The Lyapunov exponent for this case may be given as:

λ = − log T = 2 log |α(k)| = 2 log

∣∣∣∣∣ Γ( ik
ρ

+ 1)Γ( ik
ρ

)

Γ( ik
ρ
− α + 1)Γ( ik

ρ
+ α)2

∣∣∣∣∣ . (3.44)
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Figure 13. This shows the variation of Lyapunov exponent with momenta values for mass
profiles with m0 = 1, m0 = 2 and m0 = 3

In fig. 13, we have shown the wave number dependence of Lyapunov exponent. Here we
observe that with increase in k value the Lyapunov exponent decreases. This implies that
the Lyapunov exponent is dependent on the momenta values of the fields interacting with
the massive field acting as a scatterer. Furthermore, we also discover that for this mass
profile II, the chaos in the event reduces with increase in the k value.

3.2.4 Conduction properties: Conductance and Resistance

For this specific mass profile the expression for the conductance and resistance can be
computed as:

G(k) = exp(−2λ(k)) =

∣∣∣∣∣ Γ( ik
ρ

+ 1)Γ( ik
ρ

)

Γ( ik
ρ
− α + 1)Γ( ik

ρ
+ α)2

∣∣∣∣∣
4

, (3.45)

r(k) = exp(2λ(k)) =

∣∣∣∣∣Γ( ik
ρ
− α + 1)Γ( ik

ρ
+ α)2

Γ( ik
ρ

+ 1)Γ( ik
ρ

)

∣∣∣∣∣
4

. (3.46)

In fig. 14(a) we have shown the wave number dependence of conductance. We observe
that for m0 = 1 conductance starts increasing at a larger value of k than that of m0 = 2
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Figure 14. Wave number dependence of conductance and resistance for the mass profile II is
shown here. Here we fix ρ = 1.

and m0 = 3. But, in contrast to the variation of conductance with momenta k in the above
figure, here the conductance starts increasing rapidly for m0 = 3 than that for m0 = 1
which suggests that the transmission probability for m0 = 3 is much higher than m0 = 1
and m0 = 2, thereby making it more conductive than the other two.

In fig. 14(b), we have shown the wave number dependence of resistance. Here like the
first mass profile the resistance for m0 = 3 falls more rapidly than that of m0 = 2 and
m0 = 1. This suggests that for the given mass profile II, as the value of m0 increases, the
value of resistance also decreases. But unlike the first mass profile, the resistance for m0 = 3
falls more rapidly suggesting that for m0 = 3 this specific mass profile offers more resistance
than the first one. Therefore, we conclude that for the same values of m0 this mass profile
offers less resistance in comparison to the first mass profile.

3.3 Protocol III: m2(τ) = m2
0 Θ(−τ)

Here we consider the following time dependent mass profile:

m2(τ) = m2
0 Θ(−τ). (3.47)

This Θ function in τ makes the mass profile a quenched one.

The corresponding Schrödinger problem for this potential function can be solved by
using the potential function as given bellow:

V (τ) = −m2(τ) = −m2
0 Θ(−τ). (3.48)
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Figure 15. Conformal time dependent behaviour of the mass profile II and its corresponding
potential used in Schrödinger scattering problem is explicitly shown here.

In fig. (15(a)) and fig. (15(b)), we have explicitly shown the conformal time dependent
behaviour of the mass profile under consideration and also the corresponding potential used
in Schrödinger scattering problem.

3.3.1 Bogoliubov coefficients

For this specific mass profile the Bogoliubov coefficients can be expressed as:

α(k) =
1

2

|k|+ ωin√
|k|ωin

, β(k) =
1

2

|k| − ωin√
|k|ωin

. (3.49)

with the solution of the incoming and the outgoing waves are given by the following expres-
sions:

uin(k, t) =
e−iωint√

2ωin
, uout(k, t) =

e−iωoutt√
2ωout

. (3.50)

In fig. (17(a)) and fig. (16(b)), we have shown the variation of the transmission and reflection
coefficients with wave number k.

3.3.2 Optical properties: Refeclection and transmission coefficients

For this specific mass profile the transmission and the reflection coefficients can be computed
as:

T (k) =

∣∣∣∣∣2
√
|k|ωin

|k|+ ωin

∣∣∣∣∣
2

, R(k) =

∣∣∣∣∣2
√
|k|ωin

|k| − ωin

∣∣∣∣∣
2

. (3.51)
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Figure 16. Wave number dependence of Bogoliubov coefficients for mass profile II is shown here.
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Figure 17. Wave number dependence of the transmission and reflection coefficients for mass
profile III is shown here.

In fig. (17(a)) and fig. (17(b)), we have shown the variation of the transmission and
reflection coefficients with wave number k.
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3.3.3 Chaotic property: Lyapunov exponent

The Lyapunov in this case is written as:

λ = −2 log T = 2 log |α(k)| = 2 log

∣∣∣∣∣12 |k|+ ωin√
|k|ωin

∣∣∣∣∣ . (3.52)
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Figure 18. Variation of Lyapunov exponent is shown with respect to the wave number.

From fig. 18 we observe that with increase in wave number the Lyapunov exponent
decreases more like a rectangular hyperbolic fashion. In comparison to the other two mass
profiles where the reduction in the value of the Lyapunov exponent is much less rapid in
comparison to this mass profile discussed here. This suggests that since, the mass profile is
a heavyside theta function, which is a quenched mass protocol, the Lyapunov exponent also
gives a similar like profile. This shows that the Lyapunov exponent is dependent on the wave
number of the fields interacting with the massive field acting as a scatterer. Furthermore,
we discover that for this given mass profile, the chaos in the event reduces with increase
in the k value. So, in this case the Lyapunov exponent decays much rapidly than the first
two mass profiles. Next, we will try to find an upperbound of Lyapunov exponent using the
definition of [80]
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3.3.4 Conduction properties: Conductance and Resistance

For this specific mass profile the expression for the conductance and resistance can be written
as:

G(k) = exp(−2λ(k)) =

∣∣∣∣∣2
√
|k|ωin

|k|+ ωin

∣∣∣∣∣
4

, (3.53)

r(k) = exp(2λ(k)) =

∣∣∣∣∣12 |k|+ ωin√
|k|ωin

∣∣∣∣∣
4

, (3.54)
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Figure 19. Wave number dependence of conductance and resistance for the mass profile III is
shown here.

In fig. 19(a), we have shown the wave number dependence of conductance. This figure
shows that with increase in the wave number of the massless scalar field, the conductance
also increases. Now, accounting for m0 values, we see that for m0 = 1 the conductance
shoots up at a much lower k value than that of m0 = 2 and m0 = 3. This suggests that
for m0 = 1 the field has a much higher transmission probability than that of m0 = 2 and
m0 = 3. An increase in transmission probability gives a direct evidence of the conductance
value. Therefore, we conclude that for m0 = 1 the field has more conductance value in
comparison to m0 = 2 and m0 = 3.

In fig. 19(b), unlike the mass profile I the resistance for m0 = 1 falls more rapidly than
that of m0 = 2 and m0 = 3. This suggest that for the given mass profile, as the value of m0

increases, the value of resistance also increases suggesting that heavier the field gets lesser
is the transmission probability of the incoming wave to tunnel through it thereby reducing
the value of conductance for this specific mass profile.
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4 Quantum chaos from out of time ordered correlators (OTOC)

4.1 Chaos bound in out-of-equilibrium quantum field theory (OEQFT) and its
application to cosmology

We know that in the context of quantum field theory it is possible to achieve the following
universal bound on the Lyapunov exponent [50] 11 12:

Universal chaos bound in OEQFT : λ ≤ 2πkBT

~
=

2π

~β
, (4.2)

where kB is the Boltzmann constant and T is the temperature associated with the dynamical
system. This upper bound of the Lyapunov exponent is treated as the saturation bound
of chaos 13. Our aim is to establish this bound in the context of cosmology and study its
further consequences. This bound was first proposed in the context of quantum information
theory of balck hole [81–84]. Additionally it is important that, the bound on the Lyapunov
exponent saturates in the context of Sachdev-Ye-Kitaev (SYK) model [56, 85–92], which
describes the quantum features of Majorana fermions in presence of infinitely long range
disorder. Saturation of the Lyapunov exponent implies that SYK model mimics a quantum
description of black hole via AdS/CFT correspondence. In the strict classical limit ~ → 0
the Lyapunov exponent take any values, which is consistent with the requirement.

To give an explicit derivation of the chaos bound on Lyapunov exponent in the context
of cosmology let us follow the steps appended below:

1. Let us start with a completely mathematical problem described by a time dependent
function g(τ), which satisfy the following set of properties:

(a) In the complex plane g(τ+ iT ) is analytic in the half strip described within τ > 0
and −β

4
≤ T ≤ β

4
. In this context, τ and T represent the real and imaginary part

of the complex number τ + iT after analytical continuation in complex plane.

11For this specific discussion only we keep the Planck’s constant ~ and the Boltzmann constant kB in our
computation. But for the rest of the paper we fix ~ = 1 and kB = 1 for which the parameter β can be
written as, β = 1/T . In such a situation chaos bound is given by, λ < 2π/β.

12In the context of weakly coupled gauge theory one can introduce ’t Hooft coupling λT which is inde-
pendent of N and in such a theory the Lyapunov exponent is given by the following expression:

Lyapunov exponent in gauge theory : λG =
λT
β

= λT kBT =
~λT
2π

2πkBT

~
< λ (4.1)

13Considering the bulk contribution weakly coupled with string theory with large radius of curvature one
can show that the perturbative stringy correction to the Einsyein gravity computation of the scrambling
can give rise to the following first order corrected expression for the Lyapunov exponent []:

Stringy correction : λ =
2π

β

1− µ2

2
L2
s + · · ·︸ ︷︷ ︸

Stringy correction

 , (4.3)

where Ls is the stringy length scale and µ2 is a specific constant which is appearing in the shock wave
equation propagating along the horizon.
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(b) The function g(τ) is completely real at T = 0.

(c) After analytical continuation the function in the complex plane satisfy the fol-
lowing constraint:

|g(τ + iT )| ≤ 1, (4.4)

which is perfectly valid in the complete half strip.

2. Next, we actually conformally map the entire half strip to a unit thermal circle in the
complex plane, which can be done using the following Möbius transformation:

Möbius transformation : z =
1−∆β(τ + iT )

1 + ∆β(τ + iT )
, (4.5)

where ∆β(τ + iT ) is the temperature dependent function in the complex plane, de-
scribed by the following expression:

∆β(τ + iT ) := sinh

(
2π

β
(τ + iT )

)
. (4.6)

In fig. (20(a)), we have shown the behaviour of the amplitude of the complex number

(a) |z| with β = 1.
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Figure 20. Parametric dependence |z| and z(T = 0) at different temperatures.

z with respect to the parameters (τ, T ) in 3D plot. Finally, to check the consistency
with Schwarz-Pick inequality we have plotted the complex number z at T = 0 in
fig. (20(b)).

3. Further using Eq (4.4) one can further say that the complex function g(z) is an analytic
function from one to one conformal map from unit disk to unit disk.
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4. A variant of the Schwarz lemma can be represented as a invariant contribution under
analytic automorphisms on the unit disk, which implies the bijective holomorphic
mappings of the unit disc to itself. This specific variant is known as the SchwarzPick
theorem.

5. Now the hyperbolic metric in complex plane is defined as:

ds2 = 4
dzdz̄

(1− |z|2)2 =

(
2|dz|

(1− |z|2)

)2

. (4.7)

Further using this metric and applying SchwarzPick theorem one can write:

SchwarzPick inequality :
|dg|

(1− |g(z)|2)
≤ ds =

2|dz|
(1− |z|2)

. (4.8)

6. Further applying the fact that the function g(τ) is real at T = 0 and using Eq (4.8)
we get the following simplified result:

1

1− g2(τ)

∣∣∣∣dg(τ)

dτ

∣∣∣∣ ≤ [ 1

1− |z|2

∣∣∣∣dzdτ
∣∣∣∣]
T=0

=
π

β
coth

(
2πτ

β

)
. (4.9)

7. Further, rearranging Eq (4.9) we get the following final result:

1

(1− g(τ))

∣∣∣∣dg(τ)

dτ

∣∣∣∣ ≤ 1

2
(1 + g(τ))

2π

β
coth

(
2πτ

β

)
, (4.10)

which is the outcome of Schwarz-Pick inequality and very very useful to prove the
universal chaos bound in OEQFT.

Now it is important to note that in this context,

1

2
(1 + g(τ)) coth

(
2πτ

β

)
≤ 1 +

β

2π
O
(

exp

(
−4πτ

β

))
. (4.11)

This further implies that:

1

(1− g(τ))

∣∣∣∣dg(τ)

dτ

∣∣∣∣ ≤ 2π

β
+O

(
exp

(
−4πτ

β

))
. (4.12)

Now at very large time scale (τ → ∞) or at very high temperature (β = 1/T → 0)
one can neglect the contribution from the second sub-leading term. As a result we get
the following inequality:

1

(1− g(τ))

∣∣∣∣dg(τ)

dτ

∣∣∣∣ ≤ 2π

β
, (4.13)

8. Further, we take the following phenomenological function:

g(τ) = 1− k exp[~λτ ], (4.14)
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where k is constant and λ is the Lyapunov exponent. This function satisfy all the
requirements that we have mentioned earlier explicitly. Further substituting this func-
tion in the result obtained in Eq (4.10) we get the following simplified result 14:

λ ≤ 2π

~β
, (4.15)

which proves the Universal chaos bound in OEQFT.

9. This bound on the Lyapunov exponent is an unique feature of all classes of OEQFT set
up. It has a very strong impact in the context of early universe cosmology, specifically
during reheating epoch. By knowing specific time dependent couplings in the context
of effective field theory (EFT) it is possible to give an estimate of Lyapunov exponent
in such OEQFT set up. We will show this feature in the next section for three
known model of interactions appearing in EFT. In such a situation one can give
an estimate of the upper bound on reheating temperature using this bound, which is
again obviously an universal bound itself. The earlier study in the context of reheating
actually predicts a very crude estimate of reheating temperature which is based on
the assumption that reheating is extremely model dependent. It actually means that
to write an EFT of reheating we need to know the all interacting relativistic degrees
of freedom in a specific model. In this framework the total energy density during
reheating can be expressed in terms of total number of relativistic degrees of freedom
by the following expression:

ρreh =
π2

30
g∗(Treh)T 4

reh. (4.16)

Using this expression of energy density during reheating epoch one can able to express
the reheating temperature as:

Treh =

(
30

π2g∗(Treh)

)1/4

ρ
1/4
reh ≈

(
30

π2g∗(Treh)

)1/4

V
1/4

reh , (4.17)

where g∗(Treh) is the effective number of total relativistic degrees of freedom present
in the thermal bath at temperature T = Treh and Vreh is the scale of reheating which
can be obtained by fixing the field value at φ = φreh for a specific model. Counting all
the degrees of freedom in the particle physics model one can fix g∗(Treh) in the present
context. To find the reheating constraint from the prescribed set up let us further
introduce the number of e-foldings at the epoch of reheating, which is defined as:

Nreh =

∫ te

treh

H dt = Ntotal − ∆̃N ≈ − 1

M2
p

∫ φe

φreh

V (φ)

V ′(φ)
dφ, (4.18)

where Ntotal is the total number of e-foldings which is defined as:

Ntotal =

∫ te

ti

H dt− 1

M2
p

∫ φe

φi

V (φ)

V ′(φ)
dφ ∼ O(60− 70)︸ ︷︷ ︸

From Planck observation

. (4.19)

14Henceforth we set ~ = 1 for which the bound is translated to λ ≤ 2π
β , which we will use for the further

application purposes.
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Here te, ti and treh are the representative time to specify end of inflation, starting of
inflation and time scale at the end of reheating respectively. Similarly φe and φreh

are the field values at the end of inflation and reheating respectively, which can be
computed for a given known model of inflation. Also it is important to note that in
this context, ∆̃N is defined as:

∆̃N = Ntotal −Nreh = ∆N − (Nreh −Ncmb) =⇒ ∆N − ∆̃N = (Nreh −Ncmb) .(4.20)

Here ∆N is defined as:

∆N = Ntotal −Ncmb. (4.21)

From different models of inflation one can explicitly compute e-foldings at horizon
exit, which is given by the following expression:

Ncmb =

∫ te

tcmb

H dt ≈ − 1

M2
p

∫ φe

φcmb

V (φ)

V ′(φ)
dφ ∼ O(8− 10)︸ ︷︷ ︸

From Planck observation

. (4.22)

Consequently, the value of ∆N from observation can be estimated as:

∆N ∼ O(52− 60). (4.23)

Now, to give a numerical estimate of the reheating temperature let us consider the
following simplest monomial model:

eV (φ) = V0

(
φ

Mp

)p
, (4.24)

where V0 fix the overall scale of the potential and p is the degree of the monomial
which depends on the characteristic of the model. For this model the field value
during reheating can be expressed as:

φreh =

√
2pNreh +

(
φe
Mp

)2

Mp. (4.25)

The reheating scale is quantified in terms of the number of e-foldings as:

V (φreh) = V0

(
φreh

Mp

)p
= V0

[
2pNreh +

(
φe
Mp

)2
]p/2

. (4.26)

Consequently, for the monomial model the reheating temperature can be quantified
as:

Reheating bound from model : (4.27)

Treh =

(
30

π2g∗(Treh)

)1/4

V
1/4

0

[
2pNreh +

(
φe
Mp

)2
]p/8

< V
1/4

inf .

– 38 –



Here Vinf is the scale of inflation which is quantified by the following expression:

Upper bound on inflationary scale : V
1/4

inf ≤ 1.67× 1016GeV

(
r(k∗)

0.064

)1/4

.(4.28)

As a result, we get the following bound on the reheating temperature:

Upper− bound on reheating temperature from inflation :

Treh ≤ 1.67× 1016GeV
(
r(k∗)
0.064

)1/4

, (4.29)

which is true for any models of inflation. From the Planck 2018+BICEP2/Keck Array
BK14 data the upper bound on the tensor-to-scalar ratio (primordial gravitational
waves) is restricted to:

r(k∗) < 0.064, (4.30)

where k∗ ∼ 0.05Mpc−1 is the pivot scale of momentum. This implies that the upper
bound of reheating temperature from the Planck 2018+BICEP2/Keck Array BK14
data is given by:

Treh ≤ 1.67× 1016GeV. (4.31)

Here to writing down this expression for reheating temperature it is important to
consider the following assumption:

(a) Contribution from the kinetic term of the field which is mainly responsible for
reheating is neglected.

(b) We also assume that reheating is described by scalar field.

This further implies that depending on the background particle physics model reheat-
ing temperature actually varies in a wide range and one cannot able to determine
exactly its value as there is no such universal bound available earlier in this con-
text. This is the main shortcoming of the phenomenological prediction of reheating
temperature in the context of early universe cosmology.

On the other hand, just only considering the dynamical details of quantum chaos one
can express the reheating temperature in terms of the Lyapunov exponent:

Universal lower− bound‘on reheating temperature : Treh ≥
λ

2π
, (4.32)

which is an universal lower bound on reheating temperature in the present context
of discussion as it is not involve any model dependence from the background theory.
This implies that the universal bound on quantum chaos in OEQFT restrict us to fix
an universal model independent lower bound on reheating temperature. Combing the
obtained bound in this paper and the upper bound obtained from inflation one can
restric the reheating temperature within a specified range. Additionally, the present
analysis helps us put an unique upper bound on the Lyapunov exponent in terms of
the scale of inflation (or tensor-to-scalar ratio) as:

λ ≤ V
1/4

inf = 1.67× 1016GeV

(
r(k∗)

0.064

)1/4

. (4.33)

– 39 –



4.2 Out of time ordered correlators (OTOC) in OEQFT

4.2.1 What is OTOC?

Now it is important to note that the universal bound on quantum chaos can be achieved by
computing the out of time ordered correlators (OTOC), which in general can be expressed
in terms of commutators. In the study of quantum chaos, specifically in the context of
Butterfly effect one can introduce two time dependent operators W (τ) and V (τ

′
) from which

one can define a commutator, [W (τ), V (0)], where the operators are in general Hermitian
in nature and they have introduced with time separation ∆τ = τ − τ

′
= τ with τ

′
= 0.

This commutator actually captures the effect of perturbation by the operator V (0) on the
later time measurement on the operator W (τ) and the converse statement is also true. The
time dependence of the operator W (τ) in this context of discussion can be expressed in the
Heisenberg representation as:

W (τ) = exp [iHτ ] W (0) exp [−iHτ ] . (4.34)

The strength of such chaotic effect is characterised by the following measure:

Quantum OTOC : C(τ) := −〈 [W (τ), V (0)]2︸ ︷︷ ︸
Four point quantum operator

〉, (4.35)

where the expectation value is in general the thermal averaged 15, which is defined as:

C(τ) = −〈[W (τ), V (0)]2〉 = − 1

Z
Tr {exp(−βH) [W (τ), V (0)]} . (4.36)

Here Z is the partition function which is defined as:

Z = Tr {exp[−βH]} , (4.37)

and H is the Hamiltonian of the chaotic system under consideration. Here it is impor-
tant to note that to construct the chaotic OTOC measure instead of using the two point
operator, [W (τ), V (0)] (commutator), here we have actually used the four point quantum
operator, [W (τ), V (0)]2 (square of the commutator). The specific reason for such choice is
following. To describe this let us first assume that we replace the commutator bracket by
the Poisson bracket by considering the semi-classical limiting situation. In such a case the
Poisson bracket shows typically an exponential growth, exp[λτ ], where λ is the Lyapunov
exponent. But the signature of its coefficient can be anything, either positive or negative.
Now further if we take the thermal averaging over this two point operator then both the
contributions are cancelled each other in the semi-classical limit and will not contribute to
describe chaos. From the quantum mechanical perspective, the two point thermal averaged
operator, 〈[W (τ), V (0)]〉 actually captures the description of correlation between the quan-
tum Hermitian operators W (τ) and V (0)., which decays in the large time limit (τ → ∞)
and cannot describe the chaotic behaviour. On the other hand, the four point quantum op-
erator after transforming it to the Poission bracket in the semi-classical picture don’t show

15Thermal averaging is a very important concept in the context of AdS/CFT correspondence as the dual
description of the quantum field theory of balck holes can be treated as a thermal bath which have Hawking
temperature.
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any ambiguity in the signature of the co-efficient as it takes only positive value. After taking
thermal average we get non vanishing result using which one can describe quantum chaos. In
the quantum mechanical picture the four point thermal averaged operator, 〈[W (τ), V (0)]2〉
not decays exponentially at the leading order in the large time limit (τ →∞).

Now, in the quantum mechanical description of the Butterfly effect predicts the following
result:

C(τ) ∼ 2〈V (0)V (0)W (τ)W (τ)〉 = 2〈V (0)V (0)〉〈W (τ)W (τ)〉 for τ →∞, (4.38)

for any mathematical structure of the operators V (0) and W (t). Here it is important to
note that, V (0)W (τ)W (τ)V (0) contribution is not directly effected by the quantum chaos.

Also it is important to note that, in the present context for the sake of simplicity we
additionally assume that:

〈V (0)〉 = 0, (4.39)

〈W (τ)〉 = 0, (4.40)

i.e. both the one point function or the thermal averaged expectation values of these operators
vanishes.

4.2.2 Estimation of scrambling and dissipation time scales from OTOC

In the context of quantum chaos two important time scales are associated:

1. Scrambing time:
Here the associated time scale where the operator C(τ) is relevant is known as the
scrambling time scale τ∗. Sometimes in literature this is known as the Ehrenfest time
scale. A possible distinction between the classical and quantum description of chaos
can be described by the Ehrenfest time scale in which the previously mentioned OTOC
don’t grow with respect to the associated time scale and saturates at the same scale.
In the next section we have provided a alternative chaos bound on OTOC (i.e. SFF in
our case) from which we have further give an estimate of the bound on the Ehrenfest
time scale.

2. Dissipation time:
Another time scale for chaos is the exponential decay time scale τd in which the
two point thermal correlation function behaves like 〈V (0)V (τ)〉. Sometimes in this
literature it is known as the dissipation time scale or the collision time scale. In the
context of strongly coupled quantum field theories at finite temperature it is expected
that the dissipation time scale τd ∼ β. It is also expected that for large time limit the
more general form of the OTOC during this time scaled as:

〈V (0)V (0)W (τ)W (τ)〉 ∼ 〈V (0)V (0)〉〈W (τ)W (τ)〉+O(exp[−τ/τd]) + · · · , (4.41)

where · · · represent higher order terms which are more suppressed by the dissipation
time scale τd.
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In the present context, additionally one can predict the connection between the quantum
mechanical operator C(τ) and quantum chaos by considering the semi-classical limit of a
chaotic system which involves a single particle. To demonstrate this argument one can
consider semi-classical billiards as a toy example. In the semi-classical limit one can take,
V (0) = p(0), W (τ) = q(τ), where p and q is the generalized momentum and coordinate
respectively. As a result in the semi-classical limiting approximation one can map the
previously defined commutator bracket to the Poisson bracket, as given by:

[q(τ), p(0)] =⇒ i~ {q(τ), p(0)}PB = i~
∂q(τ)

∂q(0)
, (4.42)

which can be treated as the classical analogous version of the quantum mechanical Butterfly
effect. It is also expected that for such a system the nearby dynamical trajectories scale
as, q(τ) ∼ q(0) exp [λτ ] , where λ is the Lyapunov exponent. It is in principle divergent
in nature for large time limiting situation. Now at the dissipation time scale τd it is also
expected that, τd ∼ 1/λ, for which the nearby trajectory is convergent and is of the order of
e. On the other hand, the prescribed OTOC can approximately expressed in semi-classical
limit as 16:

Semi− classical OTOC : C(τ) ∼ ~2

(
∂q(τ)

∂q(0)

)2

= ~2 exp [2λτ ] . (4.47)

16Classical result: Here one can perform the exact classical computation of OTOC to check whether
the quantum and classical descriptions give the same result or not. In the case of billiards, the Possion
bracket is given by, {q(τ), p(0)}PB ∼ exp[λτ ]. One can explicitly show that in this context the Lyapunov

exponent can be expressed as, λ ∼ v√
A

= p(0)√
A
, where A = πR2 + 4aR is the area of the stadium and v is

the velocity of the particle. Then the classical OTOC can be expressed as:

C(τ) =
1

Zcl

∫
d2q

2π

d2p(0)

2π
exp

[
−βp2(0) +

2p(0)√
A

]
=

1

Zcl

∫ ∞
0

dp

2π
p exp

[
−β
(
p(0)− τ

β
√
A

)2

+
τ2

β2A

]

=

{
1 +

√
πτ√
Aβ

exp

[
τ2

Aβ2

](
erf

(
τ

2
√
Aβ

)
+ 1

)}
, (4.43)

where Zcl is the classical partition function defined as:

Zcl =

∫
d2q

2π

d2p(0)

2π
e−βp

2(0) =

∫ ∞
0

dp

2π
p exp

[
−β (p(0))

2
]

=
1

4πβ
. (4.44)

Further taking A = 1 for simplicity we get:

Classical OTOC : C(τ) =

{
1 +

√
πτ

2
√
β

exp

[
τ2

4β2

](
erf

(
τ

2
√
β

)
+ 1

)}
(4.45)

Further taking the limit t >>
√
β we get the following simplified answer for classical OTOC for billiards:

Classical OTOC : C(τ) =

√
πτ√
β

exp

[
τ2

4β2

]
for t >>

√
β . (4.46)

This result implies that in classical OTOC and in semi-classical (or quantum) OTOC the time dependence
is completely different. In the case of classical OTOC it shows faster growth with respect to the result
obtained for quantum OTOC.
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Figure 21. Time dependent behaviour of semi-classical and classical OTOC for billiards.

In fig. (21(a)) and fig. (21(b)), we have shown the variation of the time dependent
behaviour of semi-classical and classical OTOC for billiards, which show they are different
in both the cases.

Now at the scrambling time scale, τ∗ and dissipation time scale, τd the OTOC approxi-
mately in the semi-classical limit scaled as:

C(τ∗) ∼ 1, C(τd) ∼ ~2e2, (4.48)

from which the scrambling time scale, τ∗ can be estimated as:

τ∗ ∼
1

λ
ln

1

~
. (4.49)

This further implies that, in the semi-classical limit the scrambling time scale, τ∗ and dissi-
pation time scale, τd are related by the following expression:

τ∗ ∼ τd ln 1
~ , (4.50)

which explicitly shows that both the time scales for quantum chaos is different from each
other and the fractional difference is given by the following expression:

τd − τ∗
τd

= 1− ln
1

~
= ln ~, (4.51)

which is actually a large amount of hierarchy at the semi-classical limit as ~→ 0.
Now, the OTOC in the present context actually quantify the temporal growth of the

Hermitian quantum mechanical operator W (τ) is is introduced earlier in this section. In
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the general prescriptions of quantum field theory (QFT) such OTOC can be expressed in
terms of the addition of simple type of operators, which span the quantum basis. Now, if
the OTOC is large 17 then in such a situation with non-local interactions the scrambling
time scale, τ∗ can be estimated as:

t∗ ∼ lnNbit for C(τ)→∞, (4.52)

where Nbit is the number of qubits. Similarly for local interactions he scrambling time
scale, τ∗ can be estimated by computing the separation between the quantum operators
W and V . Additionally it is important to note that, quantization of a classical chaotic
system may accommodate positive Lyapunov exponent from the OTOC mentioned earlier.
To quantify quantum chaos also the nearest neighbour distribution (NDD) for the spectrum
of the energy is alternatively used 18. Except Lyapunov exponent, in the present context of
discussion OTOC (in our discussion it is SFF) play crucial role to quantify quantum chaos
to explain dynamical features in the early epoch of universe.

5 Quantum chaos from RMT: An alternative treatment in cos-
mology

In this section, we will try to generalize spectral form factor (SFF) for any order of even
polynomial potential. To serve this purpose, one can create such ensemble, such that all
possible interaction between energy levels of many-body Hamiltonian would be accounted
for by various matrices in the ensemble. If the Hamiltonian is time-reversal symmetric the
required distribution will be invariant under orthogonal transformation. Else, it is invariant
under unitary transformation.

In the thermodynamic limit (N →∞) eigen value of density of random matrices showed
a universal behaviour characterised by Wigner’s Semicircle law. The results seemed to be
applicable to a varied class of quantum system displaying chaotic behaviour. Chaos was
also a hallmark of a few-body Hamiltonian (N finite), but better diagnostic for quantum
systems was devised in which nearest neighbour spacing distribution (NNSD) of eigenvalues
of the system will be chaotic if distribution is Wigner Dyson type:

P (ω = En+1 − En) = Aβω
βe(−βω), (5.1)

Here it is important to note that, here β is fixed at, β = 1 for Gaussian orthogonal ensemble
and β = 2 for Gaussian unitary ensemble. In the present context of discussion Spectral Form
Factor (SFF) is a tool for characterising spectrum ( i.e. discreteness of energy spectrum) of
quantum system under consideration and defined by the following expression:

SFF = |Z(β + iτ)|2 =
∑
m,n

e−β(Em+En)e−it(Em−En). (5.2)

17In the present context large OTOC (C(τ) implies that the quantum operator for chaos W (τ) completely
destroy the effect of the initial factor exp[iHτ ] and the final factor exp[−iHτ ] to cancel their contribution
in the definition of the operator W (τ).

18In the context of integrable and non-integrable quantum mechanical system nearest neighbour distri-
bution (NDD) is described by Poisson and Wigner functional.
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Here Z(β) is the partition function of the quantum system and β = 1/T . For β = 0, the
expression pick out contribution only form the difference between nearest neighbour energy
eigenvalues at very late times. SFF when averaged over Gaussian random matrices, has
very particular behaviour at large N with intial decay followed by a linear rise and then
after a critical point saturation.This approach can relate a saturation limit for large N which
can be treated as bound on chaos. Additionally, it is important to note that quantifying
chaos through finding SFF is very useful when one cannot have a specific time dependent
mass profile during cosmological particle production. In terms of scattering problem in the
conduction wire if we don’t know precisely the structure of interaction potential, then one
can quantify chaos in terms of SFF rather than using Lyapunov exponent, as we have used
in the previous section. Here we will discuss general approach to find SFF to quantify chaos
for various even polynomial potential.

5.1 Quantifying chaos using RMT

Gaussian matrix ensemble is a collection of large number of matrices which are filled with
random numbers picked arbitarily from a Gaussian probability distribution. See refs. [93, 94]
for more details.

Element of matrix Type of ensemble Relation

Elements are real Gaussian Orthogonal Ensemble time reversal symmetric Hamiltonian

Elements are complex Gaussian Unitary Ensemble broken time reversal symmetric Hamiltonian

Elements are quaternion Gaussian Sympletic Ensemble -

Table 2. Properties of Gaussian matrix ensemble in Random Matrix Theory (RMT).

In table (2), we have explicitly mentioned the properties of the each elements of the
Gaussian matrix ensemble in Random Matrix Theory (RMT).

Further, the joint probability distribution of such random matrix, which is characterized
by the Gaussian potential is given by the following expression:

P (M)dM = exp

(
−1

2
trM2

)
dM = exp

(
−1

2

N∑
i=1

x2
ii

)
exp

(
−

N∑
i 6=j

x2
ii

)
N∏

i0j=1

dxij, (5.3)

where N represents the rank of the matrix M . If we consider any ensemble of matrices to
keep this measure invariant under similarity transformation:

M → U−1MU, (5.4)

such that it satisfies the following constraint:

P (U−1MU) = P (M). (5.5)
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Here U being an orthogonal or unitary matrix. Then for most generalized enesemble one
can implemet the concepts of time independent Random Matrix Theory [95] in the present
context of discussion. Now here integrating over the random matrix measure one can con-
struct the following expression for the partition function for the Gaussian matrix ensemble,
as given by:

–Z =

∫
dM e−Tr(V (M). (5.6)

Further, using similarity transformation one can diagonalize the random matrix M as:

M = U−1DU. (5.7)

On the other hand, ensemble in basis of eigenvalues of the matrix the partition function can
be written as:

–Z =
N∏
i=1

∫
dλi e

−N2S(λ1,....λN ) (5.8)

where the action S(λi) is defined as 19:

S(λ1, ....λN) =
1

N

N∑
i=1

V (λi) + β
N∑
i<j

log |λi − λj|. (5.9)

Here we fix β = 1 for GOE and β = 2 for GUE. The overall 1/N come from scaling of
eigenvalues by factor

√
N . To find a solution we nee to extermise the action w.r.t λi, such

that we get:

dS

dλi
= 0 ⇐⇒ V ′(λi) =

2

N

∑
j 6=i

1

λi − λj
. (5.10)

Now we need the method of resolvents to derive the expression for the partition function
(Z(β)) in the present context. In continum limit of eigenvalues we can use density of states
(eigen values) ρ(λ), which gives the number of eigen values lying in between λ and λ+ dλ.
Therefore, saddle point of V ′(λi) is given by the following expression:

V ′(λi) = 2Pr

(∫
du

ρ(u)

λ− u

)
(5.11)

19This formalism is very very useful when we can’t able specify the particle interaction in the effective
action. More precisely, in this situation when we really don’t have any information about the particle
interaction one can’t able to define the action in terms of the usual language. Additionally it is important
to note that, in our computation we consider that gravitational background is classical and non dynamical.
However it will not explicitly appearing in the action for the distribution of eigen values of random matri-
ces. Also during reating since one can neglect the contribution from the expansion of our universe, then
considering only the representative action for random distribution is sufficient enough for our discussion
when we don’t have any knowledge about the particle interactions at the level of action. In such a situation
gravitational background is treated to be not evolving with time during reheating.

– 46 –



Here Pr represents the principal part of the integral. Solution of the principal part of the
integral Eq (5.11) gives the eigen value density ρ(u) at large N limit.

Now, we can define resolvent as given by:

ω(x) =
1

N

N∑
i=1

1

x− λi
(5.12)

further, using Eq (5.12) we compute the following function:

ω2(x) +
1

N
ω′(x) =

1

N2

[
N∑
i=1

1

x− λi

]2

− 1

N2

N∑
i=1

1

(x− λi)2

=
1

N2

[
N∑
i=1

1

x− λi

N∑
i 6=j=1

λj − λi
(x− λi)(x− λj)

]

=
1

N2

[
N∑
i=1

1

x− λi

N∑
i 6=j=1

1

(λi − λj)

]
(5.13)

Next, we use the following resolvent identities for our computation performed in this paper:

R(Z;A)−R(ω;A) = (Z − ω)R(Z;A)R(ω;A), (5.14)

R(Z;A)−R(Z;B) = R(Z;A)(B − A)R(Z;B). (5.15)

Here R denotes the resolvent and A,B both defined over same linear space. Consequently,
Eq (5.13) can be recast into the following simplified form:

ω(x)2 +
1

N
ω′(x) =

1

N

N∑
i=1

V ′(λi)

x− λi
+

1

N

N∑
i=1

V ′(x)− V ′(λi)
x− λi

= V ′(x)ω(x)− ρ(x). (5.16)

Here we define:

ρ(x) =
N∑
i=1

V ′(x)− V ′(λi)
x− λi

, ω =
1

N

N∑
i=1

1

x− λi
=

1

N

Ψ′

Ψ
, (5.17)

which implies that, here ω′ can be expressed as:

ω′ =
1

N

(
Ψ′′

Ψ
− Ψ′

Ψ2

)
. (5.18)

Finally, in terms of newly defined function Ψ as stated in Eq (5.17), one can further recast
Eq (5.16) as:

1

N2

Ψ′2

Ψ2
+

1

N2

(
Ψ′′

Ψ
− Ψ′

Ψ2

)
= V ′(x)

1

N

Ψ′

Ψ
− ρ(x). (5.19)
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Further, comparing the two equivalent definition of ω(x) we get the following differential
equation for Ψ in terms of the eigen values of the random matrix, as given by:

Ψ′

Ψ
=

N∑
i=1

1

x− λi
. (5.20)

Therefore , the solution for Ψ(x) is given by the following characterestic polynomial :

Ψ(x) =
N∏
i=1

(x− λi) = det(x I−M). (5.21)

Here it is important to note that, the solution obtained in large N limit can be compared
with the solution obtained using WKB approximation in Schrödinger equation. Then we
can neglect the term 1

N
ω′(x) in Eq 5.16 and write down the following approximated algebraic

equation of ω(x), given by:

ω2(x)− V ′(x)ω(x) + ρ(x) = 0 (5.22)

where we have introduced two new quantities ω(x) and ρ(x), which are defined as:

ω(x) = lim
N→∞

ω(x), (5.23)

ρ(x) = lim
N→∞

ρ(x). (5.24)

Then solution of ω(x) is given by the following expression:

ω(x) ≡ ω±(x) =
1

2

[
V ′(x)±

√
(V ′(x))2 − 4ρ(x)

]
. (5.25)

Here for our discussion ω+(x) is redundant and only acceptable solution for our purpose is
given by the following expression:

ω(x) ≡ ω−(x) =
1

2

[
V ′(x)−

√
(V ′(x))2 − 4ρ(x)

]
. (5.26)

Additionaly, it important to mention that in large N limit we can write, ρ(x) = ρ(x) =
V ′′(x), where ρ(x) is the density of eigen values from Wigner’s semi-circle law. Consequently,
the solution obtained in Eq (5.26) can be recast in the following simplified form in the large
N limit as:

ω̂(x) ≡ lim
N→∞

ω(x) ≡ lim
N→∞

ω−(x) =
1

2

[
V ′(x)−

√
(V ′(x))2 − 4V ′′(x)

]
. (5.27)

This implies that, just by knowing the even polynomial structure of the potential V (x)
one can able to find out the solution for the distribution of ω(x) in terms of the random
variable x. In this context, which further implies that the Wigner’s semicircle law is defined
as the probability density function of eigen values of many random matrices is a semi-circle
as N → ∞. On the other hand, for finite N , Schrödinger equation gives the corrections
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comparing with calculated result obtained in Eq (5.27), which is given by the following
expression:

ω(x) ≡ ω−(x) = 1
2
√

2

√
4ω̂(x) + 1

[
1−

√
16((ω̂(x))2+V ′′ (x))

(4ω̂(x)+1)

] 1
2

×

1−
√

1− 4ρ(x)

(4ω̂(x)+1)

[
1−

√
16((ω̂(x))2+V

′′
(x))

(4ω̂(x)+1)

]
 . (5.28)

In fig 22 density function ρ(λ) for quadratic or Gaussian potential is plotted against λ with
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2πρ(λ)

Figure 22. Schematic representation of Wigner semicircle law for Gaussian random matrices.

scaling factor 1
2a

.The semicircle nature predicted from Eq. (5.146).
Consequently, one can write:

S[ρ] =

∫
R

dx ρ(x)V (x)−
∫

R2

dx dx′ ρ(x) ρ(x′) log |x− x′|+ L

(
1−

∫
R

dx ρ(x)

)
,(5.29)

where, L is the Lagrange multiplier and 1 denotes the total density.
Now, we can generalize it to normal matrix model whose eigen value belongs to Vi (union

of contours). To characterize this here we introduce filling functions, which are described
by the symbol εi and consider the contours as:

γ−n
−1

=
d∏
i=1

εnii . (5.30)

Here
d∑
i=1

= N, (5.31)
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where d =dimension and ni eigen values are integrated over γi.
Further, we define

εi =
ni
N
. (5.32)

Consequently, from Eq (5.30) one can write:

γi =
∑
i,j

Ci,jγj ⇐⇒ εi =
∑
i,j

Cijεj. (5.33)

–Z

(∑
n

Cnγ
n−1

)
=
∑
n

Cn –Z(γn
−1

) where Cn ∈ C, (5.34)

which will be helpful for further computation.
Now, for a contour, which is represented by:

γ =
d∑
i=1

Ci γi ε H1(e−V (λ)dλ) (5.35)

one can write:
1

N !
–Z(γN) =

∑
n

∏d
i=1C

ni
i∏d

i=1 ni!
–Z(γ−n

−1

). (5.36)

Consequently, Eq (5.29) can be recast into the following simplified form:

S[ρ] =

∫
γ

dx ρ(x) V (x)−
∫
γ2
dx dx′ ρ(x) ρ(x) log |x− x′|+

∑
i

Ci

(
εi −

∫
γi

dxρ(x)

)
.(5.37)

Now the Fourier transform of the density function ρ(x) can be written as:

ρ̃(k) =

∫
R

dx eikx ρ(x), (5.38)

using which the second term of Eq (5.37) can be written in Fourier space as:

−
∫

R×R

dx dx′ ρ(x) ρ(x′) log |x− x′| =
∫

R

dk

|k|
ρ̃(k) ρ̃(−k) =

1

2

∫ ∞
0

dk

k
|ρ̃(k)|2 (5.39)

Now we know that the saddle points can be computed by imposing the following condition:

δS

δρ̃(x)
= 0. (5.40)

During this computation one can further define the effective random potential, which is
given by the following expression:

Veff(x) = L = V (x)− 2

∫
R

dx′ ρ(x′) log |x− x′|. (5.41)
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Then one can recast Eq (5.37) in terms of the effective potential as:

S[ρ] =

∫
R

dx ρ(x) Veff(x) +
∑
i

Ci

(
εi −

∫
γi

dxρ(x)

)
. (5.42)

Further imposing the saddle point condition we get:

V ′(x) = 2

∫
R

dx′

x− x′
ρ(x′), (5.43)

which can be further written in terms of the eigen values of the random matrices as:

V ′(λi) =
∑
j

1

λi − λj
. (5.44)

Therefore within supp of ρρ one can write:

ω(x) =

∫
supp ρ

dx′

x− x′
ρ(x′) (5.45)

V ′(x) = ω(x+ i0) + ω(x− i0). (5.46)

On the other hand outside the supp of ρ since ρ(x)→ 0, then in the large N limit one can
write:

ω̂(x) ≡ lim
N→∞

ω(x) =
1

x
+O

(
1

x2

)
. (5.47)

Therefore jump (discontinuity) on real line along the support ρ(x) is given by the following
expression:

∆ω(x) = ω̂(x)− ω(x) =
1

x
+O

(
1

x2

)
−
∫
suppρ

dx′

x− x′
ρ(x′). (5.48)

Then using Eq (5.48), we get the following simplified expression for the jump (discontinuity)

ω(x+ i0)− ω(x− i0) =
1

(x+ i0)
+O

(
1

(x+ i0)2

)
−
∫

supp ρ

dx′

x− i0− x′
ρ(x′) = 2πi ρ(x− i0) .

(5.49)
Now one can introduce a new function P (x) of random variable x as:

P (x) = V ′(x)ω(x)− ω(x)2 (5.50)

which is analytic on C as it gives zero value of the jump. This is explicitly shown in the
following:

P (x+ i0)− P (x− i0) = V ′(x+ i0)ω(x+ i0)− ω(x+ i0)2 − V ′(x− i0)ω(x− i0) + ω(x− i0)2

= V ′(x)[ω(x+ i0)− ω(x− i0)]

− [ω(x+ i0)− ω(x− i0)][ω(x+ i0) + ω(x− i0)]

= 0 onsupportof ρ (5.51)
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Additionally, it is important to note that, using the previous results we get:

ω(λ+ i0) =
1

2
V ′(λ)− iπρ(λ), (5.52)

ω(λ− i0) =
1

2
V ′(λ) + iiπρ(λ) (5.53)

Here the most general solution for the density function is given by the following expression 20:

ρ(λ) =
1

2π
M(λ)

√
−σ(λ), (5.55)

where both M(λ) and σ(λ) are polynomial in λ are defined as:

M(λ) =
∞∑
k=1

an−kλ
2(n−k), σ(λ) =

n∏
i=1

(λ− a2i−1)(λ− a2i), (5.56)

Here we consider n number of intervals on which ρ(λ) is supported and a2i−1 and a2i are
the end point.

Further we consider a general case where instead of the specific form of the mass profile
we only know the polynomial structure of interaction random potential V (M) which is
characterized in terms of the random matrix M . For our purpose we take it to be even
polynomial potential written in the following general form:

V (M) =
∞∑
i=1

C2iM
2i = C2M

2 + C4M
4 + C6M

6 + ..... (5.57)

Here after digonalizing the random matrix M we get its eigen values λ1, λ2, .............λN ,
from which we can compute the distribution of this eigen values for large N limit and it
turns out to be w be the density function ρ(λ), which is already introduced earlier.

Now let us consider that the degree of the polynomial P , σ and M are:

deg(P ) = 2k, deg(σ) = 2n, deg(M) = 2k − n− 1. (5.58)

Now considering n = 1 and n = 2 we get:

For n = 1 : deg(P ) = 2k, deg(σ) = 2, deg(M) = 2k − 2, (5.59)

For n = 2 : deg(P ) = 2k, deg(σ) = 4, deg(M) = 2k − 3. (5.60)

For n = 1 we also get the following simplified expressions for the polynomial M(λ) and
σ(λ):

M(λ) =
∞∑
k=1

a1−kλ
2(1−k), (5.61)

σ(λ) = λ2 − 4a2. (5.62)

20Additionally, it is important to note that the the density function satisfy the following normalization
condition: ∫

supp µ

dµ ρ(µ) = 1 (5.54)
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Consequently, for n = 1 we get the following expression for the density function on semi-
circle:

ρ(λ) =
1

π

√
4a2 − λ2

∞∑
k=1

a1−kλ
2(1−k). (5.63)

Now we use this ρ(λ) in ω(λ+ i0) and Taylor expand in the limit λ→∞ we get:

ω(λ→∞) =
1

λ
+O

(
λ2
)
, (5.64)

which implies that all coefficients of λr for r > 0 is zero and this gives n number of equations.
This finally gives the full equation of M(λ) in terms of the coefficients C2i. Solving these
equations we get:

1

2

(
−2λ+

4a2

λ
+

4a4

λ2
+

8a6

λ5
+O

(
1

λ

)6
)
∞∑
k=1

an−kλ
2(n−k) +

∞∑
i=1

2i C2i λ
2i−1 =

1

λ
. (5.65)

Further equating the coefficients on both sides of the Eq (5.65) we get:

2nC2n − 2an−1 = 0, (5.66)

4a2an−1 − 2an−2 + 2(n− 1)C2n−2 = 0 (5.67)

4a4an−1 + 4a2an−2 − 2an−3 + 2(n− 2)C2n−4 = 0, (5.68)

and it will continue upto term by term giving all an and we get the unique polynomial
M(λ). We will verify this generalization for n = 1, 2, 3, 4, 5 and check their SFF in this
work accordingly. For more general discussions see ref. [71, 72] also.

5.2 OTOC in Random Matrix Theory (RMT)

In earlier section we have have introduced OTOC and its application to cosmology. In this
subsection, we will discuss about OTOC appearing in the context of RMT.

5.2.1 Two point OTOC

For this purpose, we start with two point correlation functions for the GUE which is de-
scribed by the following equation:

〈O1(0)O2(τ)〉GUE ≡
∫
dH 〈O1(0)O2(τ)〉, (5.69)

where the operator O2(τ) in Heisenberg picture can be expressed as:

O2(τ) = exp[−iHτ ]O2(0) exp[iHτ ]. (5.70)

Here it is important to note that the GUE measure dH is represented by the Hamiltonian
H., which is invariant under the following unitary conjugation operation, which is described
by:

dH = d(UHU †) ∀ U. (5.71)
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Here U is the unitary matrix. Consequently, the GUE two point correlation function can
be further expressed as:

〈O1(0)O2(τ)〉GUE =

∫ ∫
dH dU 〈O1U exp[−iHτ ]U †O2U exp[iHτ ]U †〉, (5.72)

where dU is the Haar measure appearing in this context. After integrating over the Haar
measure we get the following expression for the GUE two point correlation function:

〈O1(0)O2(τ)〉GUE = 〈O1〉〈O2〉+
SFF(τ)− 1

I2 − 1
〈〈O1O2〉〉C , (5.73)

where the connected two point correlation function 〈〈O1O2〉〉 is defined as:

〈〈O1O2〉〉C = 〈O1O2〉 − 〈O1〉〈O2〉. (5.74)

Now we consider a special case where O1 and O2 are described Pauli operators. In such a
situation, the GUE two point correlation function can be expressed as:

〈O1(0)O2(τ)〉GUE =


SFF(τ)− 1

I2 − 1
, O1 = O2

0 , O1 6= O2

, (5.75)

where SFF(τ) is the two point Spectral Form Factor (SFF) which we have defined explicitly
earlier. Further, one can consider the situation where SFF(τ) >> 1 and O2(τ) = O†1(τ).
For this case the GUE two point correlation function is simplified to the following expression:

〈O1(0)O2(τ)〉GUE ∼
SFF(τ)

I2
. (5.76)

Here I represents the 2n dimensional Hilbert space in the present computation. To derive
this above mentioned expression we have not assumed any additional assumption expect
the fact that the Haar measure of GUE dH is invariant. This is a very useful information
to study the physical characteristics of chaotic Hamiltonian at macroscopic scales.

5.2.2 Four point OTOC

Now we discuss about the four point OTOC for the GUE prescription. Here the fourth
point OTOC can be expressed in terms of fourth Haar moment:

〈O1(0)O2(τ)O3(0)O4(τ)〉GUE =

∫ ∫
dH dU 〈O1U exp[−iHτ ]U †O2U

exp[iHτ ]U †O3U exp[−iHτ ]U †O4U exp[iHτ ]U †〉,
(5.77)

where we consider (4!)2 = 576 terms in this expression for four point OTOC. Now we
consider a special situation, where all these operators appearing in the expression for the
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four point OTOC for GUE are described by Pauli operators. In such a case, the four point
OTOC for GUE can be simplified as:

〈O1(0)O2(τ)O3(0)O4(τ)〉GUE ' 〈O1O2O3O4〉 × SFF4(τ)
I4 , (5.78)

where SFF4(τ) is the four point SFF for GUE, which is defined by the following expression:

SFF4(τ) ≡ 〈Z(τ)Z(τ)Z∗(τ)Z∗(τ)〉GUE

=

∫
Dλ

∑
i,j,k,l

exp[i(λi + λj + λk + λm)τ ]

= I4J
4
1 (2τ)

τ 4
+
τ

2
(τ − 2)

∼ I6

π2τ 6
+
τ

2
(τ − 2), (5.79)

and this is derived only by considering the leading order behaviour of four point SFF. Here
additionally it is important to note that if we fix:

〈O1O2O3O4〉 = I. (5.80)

This will give rise to non-zero expression for the four point OTOC for GUE. For other
situations, where

〈O1O2O3O4〉 = 0, (5.81)

we get zero contribution to the four point OTOC for GUE.
One can further generalise this statement for any arbitrary 2p point OTOC for GUE,

which is given by the following expression:

〈O1(0)Q1(τ) · · · Op(0)Qp(τ)〉GUE ' 〈O1Q1 · · · OpQp〉 ×
SFF2p(τ)

I2p
. (5.82)

Generalizing the previous argument one can conclude that the final result for the 2p point
OTOC for GUE is non zero when we have the following constraint:

〈O1Q1 · · · OpQp〉 = I. (5.83)

Here one can further show that for the GUE we get:

〈O1(0)O2(τ)O3(2τ)O4(τ)〉GUE ' 〈O1(0)O2(τ)O3(0)O4(τ)〉GUE ' 〈O1O2O3O4〉 ×
SFF4(τ)

I4
,

(5.84)
which indirectly implies that GUE is not sensitive to the fact that the operators as appear-
ing in this context are out-of-time ordered or something else. Additionally, it is important
to note that, if we compute the expression for the OTOC correlation function for a specified
class of Hamiltonian operators, which are in general invariant under the operation of con-
jugation on the unitary matrix U . In such a situation from OTOC one can further express
the OTOC in terms of SFF. This is a very well known technique in the study of many
-body QFT systems, where particularly to study the underlying physics of thermalization
and quantum quench []. In the next subsection we will provide an analytical proof of the
equivalence of the two point SFF and the two point OTOC, which can be further generalized
to any arbitrary 2p point correlation functions.
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5.3 Spectral Form Factor (SFF) from OTOC

From the traditional perspective the idea of quantum chaos is used in the context of study
of spectral aspects of statistical field theory. Recent developments are made in the context
of black hole theory and quantum information theory where using OTOC one can quantify
quantum chaos. However in this paper our one of the prime objective to apply the concept of
quantum chaos to study early universe cosmology, which is obviously another new direction
of future research area. In this subsection, our air is to give a formal proof which establish
the connection between Spectral Form Factor (SFF) and OTOC in OEQFT. First of all we
consider a limit where β = 1/T = 0 in which distribution of quantum operator insertions
around a thermal circular path is very straightforward.

Let us consider a quantum mechanical Hamiltonian operator H operating on an I = 2n

dimensional Hilbert space and consists of n number of quantum bits (qbits). Next, we
consider the two point correlation function 〈O(0)O†(τ)〉 using which one define the following
averaged two point correlation function:∫

dO 〈O(0)O†(τ)〉 : ≡ 1

I

∫
dO Tr

(
O exp[−iHτ ]O† exp[iHτ ]

)
=

1

I3

I2∑
k=1

Tr
(
Ok exp[−Hτ ]O†k exp[iHτ ]

)
. (5.85)

Here we assume that O is the Unitary operator which is integrated over a Haar measure
on U(2n). Also it is important to note that the integral over the Haar measure can be
translated in terms of the Pauli operators Ok and I2 = 22n = 4n represts the total number
of Pauli operators for this quantum n qubit system.

Further, it is important to note that, to derive the expression for SFF from the present
context additionally we need the first moment of the Haar ensemble, which is defined as:∫

dO ODO† =
1

I
Tr(D) I, (5.86)

which can be be equivalently expressed in terms of the language of Pauli operator as:∫
dO OkmOln =

1

I
δknδ

l
m. (5.87)

Next using Eq (5.87) in Eq (5.85), we get the following simplified result:

Quantum averaged OTOC =

∫
dO 〈O(0)O†(τ)〉

=
1

I2
|Tr(exp[−iHτ ])|2

=
1

I2
SFF(τ) ∝ Two point SFF., (5.88)

where the two point SFF at infinite temperature is defined in terms of the quantum Hamil-
tonian H as:

SFF = | exp[−iHτ ]|2. (5.89)
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Here the result obtained in Eq (5.88) implies that the quantum averaged OTOC is propor-
tional to the two point SFF at infinite temperature of the present context.

This prescription can be further generalised to make the connection between any ar-
bitrary 2p point quantum OTOC and 2p point SFF in this context. To establish this
connection let us consider a 2p point quantum OTOC, which is described by:

〈O1(0)Q1(τ) · · · Op(0)Qp(τ〉 with O1Q1 · · · OpQp = I. (5.90)

Now taking the average over such 2p point OTOC we get:∫
dO1dQ1 · · · dOk−1dQk 〈O1(0)Q1(τ) · · · Op(0)Qp(τ)〉 =

1

I2p
|Tr(exp[−iHτ ])|2p

=
1

I2p
SFF2p(τ), (5.91)

where Qp is defined as:

Qp = O†p · · · Q
†
1O
†
1. (5.92)

Here one can consider a special case where

Qp = O†p ∀ p. (5.93)

Consequently, the average over such 2p point OTOC can be further simplified to the fol-
lowing form:∫

dO1dO2 · · · dOk−1dOk 〈O1(0)O†1(τ) · · · Op(0)O†p(τ)〉 =
1

Ip+1
Tr(exp[−iHτ ])pTr(exp[ipHτ ])︸ ︷︷ ︸ .

(5.94)
Here it is important to note that the terms appearing in the ︸︷︷︸ are not symmetric because

the operator O1(0)O†1(τ) · · · Op(0)O†p(τ) is an non-Hermitian quantum operator. This result
establishes a direct connection between the spectral physics in statistical field theory and
other physical observables. Apart from theoretical perspective one can use two point SFF as
a good estimator for experimental measure. For this purpose one can consider the following
standard deviation (or experimental estimation error) of the unitary operator O given by:

σO =
√

Var(O) =

√∫
dO|O(0)O†(τ)|2 −

∣∣∣∣∫ dOO(0)O†(τ)

∣∣∣∣2 = O
(

1

I

)
. (5.95)

By choosing the Haar unitary operator O as a random Clifford operator one can find a good
estimator of two point SFF.

To give the similar proof at finite temperature let us consider the energy eigenvalue
representation of OTOC, which is given by the following expression:

C(τ) =
1

|Z(β)|2
∑
n,m

cn,m(τ) exp[−β(En + Em)], (5.96)

where the time dependent expansion coefficient can be expressed as:

cn,m(τ) = −〈n|[e−iHτ , x]2|m〉 = exp [−i(En − Em)τ ] . (5.97)
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Here we have used the fact that, H|n〉 = En|n〉. Consequently we get:

Quantum OTOC C(τ) = 1
|Z(β)|2

∑
n,m exp[−β(En + Em)] exp [−i(En − Em)τ ]

= |Z(β+iτ)|2
|Z(β)|2 = Two point SFF. (5.98)

This establishes the connection between OTOC and two point SFF at finite temperature

5.4 Two point SFF and thermal Green’s function in RMT

In this subsection our prime objective is to explicitly compute the expression for SFF for
different even polynomial potential of random matrices. This is very useful to quantify
chaos when we have no information about the interaction or time dependent effective mass
profile which will finally give rise to scattering in conduction wire in presence of impurity
or cosmological particle creation during reheating.

Let us now consider a Thermofield Double State (TDS) associated with canonical quan-
tum mechanical state at finite temperature. The time evolution of the TDS can be expressed
as:

|Ψ(β, τ)〉TDS =
1√
Z(β)

∑
n

exp

[
−β

2
H

]
exp[iHτ ]. (5.99)

Using this information one can define Spectral Form Factor (SFF) as:

SFF = |TDS〈Ψ(β, 0|Ψ(β, τ)〉TDS|2 =
1

|Z(β)|2
∑
m,n

e−β(Em+En)e−iτ(Em−En) =
|Z(β + iτ)|2

|Z(β)|2
.(5.100)

Here En and Em correspond to the n -th and m -th level of the quantum system under
consideration. Here the Boltzmann factor β = 1/T , where T is the temperature associated
to the system. Apart from temperature dependent Boltzmann factor the definition of SFF
also involves involves conformal time τ , which we have define in earlier section of this paper
and during reheating τ ∝ t. Here t is the physical time scale and the proportionality factor
is constant in space time.

Now at very high temperature (β = 1/T → 0) and low temperature (β = 1/T → ∞)
we get the following limiting behaviour of SFF, as given by:

SFF =


∑
m,n

e−iτ(Em−En) , β = 1/T → 0

0 , β = 1/T →∞

, (5.101)

It is also observed that in τ →∞ limiting situation the nearest neighbour energy spacings
contribute only to the quantification of SFF. This implies that the concept of SFF also
helps in understanding the time dynamics of the quantum system under consideration and
also very useful tool to analyze the discreteness in energy spectrum. Chaotic system satisfy
Wigner’s formula which makes SFF a good observable for quantifying chaos.

In usual prescriptions, SFF is averaged over an statistical ensemble of random matrix.
This is a very particular feature of SFF and can be directly linked to the quantification
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of quantum chaos. Before going to discuss further here it is important to note that, all
distribution for eigenvalues are different from each other but quite similar at small scales.
This is a very crucial information for the computation of SFF to quantify chaos.

Now in the present context we define a new function G(β, τ), which is represented by
the following expression:

G(β, τ) =
〈|Z(β + iτ)|2〉GUE

〈Z(β)〉2GUE

=

∫
supp ρ

dλ dµ e−β(λ+µ) e−iτ(λ−µ)〈D(λ)D(µ)〉GUE∫
supp ρ

dλ dµ e−β(λ+µ)〈D(λ)〉〈D(µ)〉GUE

.(5.102)

Here, D(λ) = ρ(λ) =eigen value density. In the present context, G(β, τ) characterize the
two point correlation function which measures SFF.

Now, one can divide the total Green’s function G in two parts (connected and discon-
nected part of the Green’s function), as given by:

G(β, τ) = Gdc(β, τ) +Gc(β, τ), (5.103)

where disconnected part of the Green’s function Gdc and connected part of the Green’s
function Gc can be expressed as:

Gdc(β, τ) =

[
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]
=

∫
dλ dµ e−β(λ+µ) e−iτ(λ−µ) 〈D(λ)〉〈D(µ)〉∫

dλ dµ e−β(λ+µ) 〈D(λ)〉〈D(µ)〉
.

(5.104)

Gc(β, τ) = G(β, τ)−Gdc(β, τ) =

[
〈|Z(β + iτ)|2〉GUE

〈Z(β)〉2GUE

]
−
[
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]
=

∫
dλ dµ e−β(λ+µ) e−iτ(λ−µ) 〈D(λ)D(µ)〉c∫

dλ dµ e−β(λ+µ) 〈D(λ)〉〈D(µ)〉
. (5.105)

Now, for further analysis we consider the high temperature limit (β = 1/T → 0) and
also can divide the total Green’s function G in two parts (connected and disconnected part
of the Green’s function), as given by:

G(β → 0, τ) = G(τ) = Gdc(τ) +Gc(τ), (5.106)

where disconnected part of the Green’s function Gdc and connected part of the Green’s
function Gc can be expressed as:

Gdc(τ) =

[
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]
β=0

=

∫
dλ dµ e−iτ(λ−µ) 〈D(λ)〉〈D(µ)〉∫

dλ dµ 〈D(λ)〉〈D(µ)〉
. (5.107)

Gc(τ) = G(τ)−Gdc(τ) =

[
〈|Z(β + iτ)|2〉GUE

〈Z(β)〉2GUE

]
β=0

−
[
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]
β=0

=

∫
dλ dµ e−iτ(λ−µ) 〈D(λ)D(µ)〉c∫

dλ dµ 〈D(λ)〉〈D(µ)〉
. (5.108)
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Here we define the connected two-point correlation function, which is given by the following
expression:

〈D(λ)D(µ)〉c ≡ (〈D(λ)D(µ)〉 − 〈D(λ)〉〈D(µ)〉). (5.109)

To quantify this explicitly one can define the eigen value density function D(λ) in the
neighbourhood of extremum of level density (ρ(λ)) as:

D(λ) = D(λ) + δD(λ), (5.110)

where D(λ) is the average of the eigen value density function over the statistical ensemble
of eigen values of the random matrices and δD(λ) represents the quantum fluctuation on
D(λ).

Consequently, using this fact the two point correlation function reduced to the following
form:

〈D(λ)D(µ)〉c = 〈δD(λ)δD(µ)〉 (5.111)

and using this connected part of the Green’s function Gc can be further simplified as:

Gc(τ) = G(τ)−Gdc(τ) =

∫
dλ dµ e−iτ(λ−µ) 〈δD(λ)δD(µ)〉∫

dλ dµ 〈D(λ)〉〈D(µ)〉
. (5.112)

Additionally, it is important to note that, the mean level density can be normalised in a
semi circle using the following two conditions:∫ 2a

−2a

dλ D(λ) = N, (5.113)∫ 2a

−2a

dλ ρ(λ) = 1. (5.114)

Here D(λ) actually represents the number of eigen values lying between the small interval
(λ, λ + dλ) and in the present context it is proportional to O(

√
N). On the other hand,

ρ(λ) is the density which we get by extremising the action and treated to be free from all
factor of N and all eigen values which are just O(1). In this context, the two variables λ
and σ are related by the follwing expression:

λ =
√
Nσ. (5.115)

To compute the Gdc and Gc part of SFF explicitly let us first start with the one poin
function on the semi-circle as given by:

〈Z(β ± iτ)〉nGUE =

∫
dλ e∓iτλ e−βλ 〈ρ(λ)〉nGUE =

∫ 2a

−2a

dλ e∓iτλ e−βλ ρ(λ). (5.116)

At high temperature (β = 1/T → 0) this result can be simplified as::

[〈Z(β ± iτ)〉nGUE]β=0 =

∫
dλ e∓iτλ 〈ρ(λ)〉nGUE =

∫ 2a

−2a

dλ e∓iτλ ρ(λ). (5.117)
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On the other hand at very low temperature limit (β = 1/T →∞) we get: simplified as::

[〈Z(β + iτ)〉nGUE]β→∞ → 0. (5.118)

Here it is important to note that, for different polynomial random potential we will get
different expressions for the integral measure. Now we need to find the specific point after
which properties of SFF drastically changes. We define this points as critical points. For
general even order polynomial potential one can write down the following expression for the
density function of the eigenvalues of the random matrices:

ρ(λ) =
1

π

√
4a2 − λ2

n∑
k=1

an−kλ
2(n−k) ∀ even n (5.119)

Further substituting Eq (5.119) in Eq (5.116) we get the following simplified expression for
the one point function on the semi-circle:

〈Z(β ± iτ)〉nGUE =
1

π

∫ 2a

−2a

dλ e∓iτλ e−βλ
√

4a2 − λ2

n∑
k=1

an−kλ
2(n−k) ∀ even n

=
n∑
k=1

an−k a
2
(
−a2

)−2k
4n−k

[(
e2iπk + e2iπn

)
a2(k+n)Γ

(
−k + n+

1

2

)
× 1F̃2

(
−k + n+

1

2
;
1

2
,−k + n+ 2; a2(β ± iτ)2

)
+ a(β ± iτ)

(
a2k(−a)2n − (−a)2ka2n

)
Γ(−k + n+ 1)

× 1F̃2

(
−k + n+ 1;

3

2
,−k + n+

5

2
; a2(β ± iτ)2

)]
∀ even n.

(5.120)

where 1F̃2 (A;B,C;D) is the regularized Hypergeometric function.

Repeating the same calculation in high temperature (β = 1/T → 0) limit we get:

[〈Z(β ± iτ)〉nGUE]β=0 =
1

π

∫ 2a

−2a

dλ e∓iτλ
√

4a2 − λ2

n∑
k=1

an−kλ
2(n−k) ∀ even n

=
n∑
k=1

an−k
e−2iπk4n−ka−2k+2n+2

√
πΓ(−k + n+ 2)Γ

(
−k + n+ 5

2

)
×
[{

(−1)2k + (−1)2n
}

Γ

(
−k + n+

1

2

)
Γ

(
−k + n+

5

2

)
× 1F2

(
−k + n+

1

2
;
1

2
,−k + n+ 2;−a2τ 2

)
∓ 2iaτ

{
(−1)2k + (−1)2n+1

}
Γ(−k + n+ 1)Γ(−k + n+ 2)

× 1F2

(
−k + n+ 1;

3

2
,−k + n+

5

2
;−a2τ 2

)]
∀ even n. (5.121)
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For different polynomial potentials we can actually calculate the expansion coefficients an−k
and get the exact form of Z(β ± iτ).

At finite temperature the disconnected part of the Green’s function (Gdc(β, τ)) can be
expressed as:

Gdc(β, τ) =
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2
=

{
n∑
q=1

an−q
(
−a2

)−2q
4−q

[(
e2iπq + e2iπn

)
a2(q+n)Γ

(
−q + n+

1

2

)
× 1F̃2

(
−q + n+

1

2
;
1

2
,−q + n+ 2; a2β2

)
+ aβ

(
a2q(−a)2n − (−a)2qa2n

)
Γ(−q + n+ 1)

× 1F̃2

(
−q + n+ 1;

3

2
,−q + n+

5

2
; a2β2

)]}−2

×

{
n∑
k=1

an−k
(
−a2

)−2k
4−k

[(
e2iπk + e2iπn

)
a2(k+n)Γ

(
−k + n+

1

2

)
1F̃2

(
−k + n+

1

2
;
1

2
,−k + n+ 2; a2(β + iτ)2

)
+a(β + iτ)

(
a2k(−a)2n − (−a)2ka2n

)
Γ(−k + n+ 1)

1F̃2

(
−k + n+ 1;

3

2
,−k + n+

5

2
; a2(β + iτ)2

)]}
×

{
n∑

m=1

an−m
(
−a2

)−2m
4−m

[(
e2iπm + e2iπn

)
a2(m+n)Γ

(
−m+ n+

1

2

)
× 1F̃2

(
−m+ n+

1

2
;
1

2
,−m+ n+ 2; a2(β − iτ)2

)
+ a(β − iτ)

(
a2m(−a)2n − (−a)2ma2n

)
Γ(−m+ n+ 1)

× 1F̃2

(
−m+ n+ 1;

3

2
,−m+ n+

5

2
; a2(β − iτ)2

)]}
∀ even n,m. .(5.122)

Further taking high temperature limit we get the following simplified expression for SFF as
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given by:

Gdc(τ) =

[
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]
β=0

=
1

N2

{
n∑
k=1

an−k
e−2iπk4n−ka−2k+2n+2

√
πΓ(−k + n+ 2)Γ

(
−k + n+ 5

2

)
×
[{

(−1)2k + (−1)2n
}

Γ

(
−k + n+

1

2

)
Γ

(
−k + n+

5

2

)
× 1F2

(
−k + n+

1

2
;
1

2
,−k + n+ 2;−a2τ 2

)
− 2iaτ

{
(−1)2k + (−1)2n+1

}
Γ(−k + n+ 1)Γ(−k + n+ 2)

× 1F2

(
−k + n+ 1;

3

2
,−k + n+

5

2
;−a2τ 2

)]}
×

{
n∑

m=1

an−k
e−2iπm4n−ma−2m+2n+2

√
πΓ(−m+ n+ 2)Γ

(
−m+ n+ 5

2

)
×
[{

(−1)2m + (−1)2n
}

Γ

(
−m+ n+

1

2

)
Γ

(
−m+ n+

5

2

)
× 1F2

(
−m+ n+

1

2
;
1

2
,−m+ n+ 2;−a2τ 2

)
+ 2iaτ

{
(−1)2m + (−1)2n+1

}
Γ(−m+ n+ 1)Γ(−m+ n+ 2)

× 1F2

(
−m+ n+ 1;

3

2
,−m+ n+

5

2
;−a2τ 2

)]}
(5.123)

Next, we will consider late time limiting behaviour of the one point function, which can be
expressed as:

lim
τ→∞
〈Z(β ± iτ)〉nGUE ≡ 〈Z(β ± i∞)〉nGUE (5.124)

and at the high temperature (β = 1/T → 0) limit we get:

lim
τ→∞

[〈Z(β ± iτ)〉nGUE]β=0 ≡ 〈Z(0± i∞)〉nGUE (5.125)

Now, it is important to note from the previous discussion on SFF that, the connected
part of the Green’s function Gc part of SFF depends on the two point corelation function
〈δD(λ)δD(µ)〉 and from RMT the exact from of this two-point function near the centre of
spectrum (mean) of the eigen values is known and can be expressed in the following form:

〈δD(λ)δD(µ)〉 = −sin2[N(λ− µ)]

(πN(λ− µ))2
+

1

πN
δ(λ− µ) (5.126)

which can be derived using the method of orthogonal polynomials for Gaussian ensembles.
This is true for any polynomial potential measure whose matrix (operator) is of single
trace. Various polynomial potentials change only the eigen value distribution near edges of
the distribution. There are two parts and they give different measures:
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1. 1/N2 part with sine squared function gives the ramp and have subdomiant contribu-
tion.

2. 1/N part with Delta function gives the plateau and dominant.

Next, using Eq (5.126) in Eq (5.112) we get the following simplified expression for the
connected part of the Green’s function Gc as given by:

Gc(τ) = G(τ)−Gdc(τ) =
1

N2

∫
dλ dµ e−iτ(λ−µ)

[
−sin2[N(λ− µ)]

(πN(λ− µ))2
+

1

πN
δ(λ− µ)

]
.(5.127)

where we have used the fact that:∫
dλ dµ 〈D(λ)〉〈D(µ)〉 = N2. (5.128)

To perform the integral present in the expression for Gc we further substitute, λ + µ =
E, λ− µ = ω. Consequently, the measure can be expressed as, dλ dµ = dE dω. Then at
high temperature using this fact Eq (5.127) can be recast as:

Gc(τ) = G(τ)−Gdc(τ) =
1

N2

∫ ∞
−∞

∫ ∞
−∞

dE dω e−iτω
[
− 1

π2

sin2[Nω]

(Nω)2
+

1

πN
δ(ω)

]
.(5.129)

Then, at finite temperature the connected part of the Green’s function can be written as:

Gc(β, τ) = G(β, τ)−Gdc(β, τ)

=
1

N2

∫ ∞
−∞

∫ ∞
−∞

dE dω e−βEe−iτω
[
− 1

π2

sin2[Nω]

(Nω)2
+

1

πN
δ(ω)

]
=

2π

N2
δ(β)

∫ ∞
−∞

dω e−iτω
[
− 1

π2

sin2[Nω]

(Nω)2
+

1

πN
δ(ω)

]
, (5.130)

where δ(β) is the Dirac Delta Function, which is defined as:

δ(β) =
1

2π

∫ ∞
−∞

dE e−βE. (5.131)

Since the integral over E gives trivial Diarc Delta function we choose our working region
for which E = 0 (at hight temperature limit). Then the remaining integrand is only over ω
and it finally gives:

S(τ) = N2Gc(τ) =

∫ ∞
−∞

dω e−iτω
[
− 1

π2

sin2[Nω]

(Nω)2
+

1

πN
δ(ω)

]
. (5.132)

which gives us finally the following simplified expression:

S(τ) =


τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

1

πN
, τ > 2πN

, (5.133)
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From the obtained result it is clearly observed that we get the linear growth in the region
τ < 2πN and the constant plateau type behaviour in the region τ > 2πN . Also it is
important to note that change in behaviour from region τ < 2πN to region τ > 2πN is
abrupt. To show the behaviour of SFF explicitly we define argument of sin function as:

x ≡ N(λ− µ) = Nω = constant (5.134)

as we choose N →∞ and ω → 0. In this limiting situation we get the following results:

1. For large x(>> 1), sinx
x
→ 0 and only the Dirac Delta function remains intact. So

in this specific limit the vanishing of sin term implies that the oscillatory fluctuations
don’t contribute in the final expression for SFF. This limiting situation is called spectral
rigidity.

2. For small x(<< 1), sinx
x
→ 1. In this limiting situation the integral gets maximum

contribution from the ω = 0 region. And this part contributes in ramp region.

We can also measure dip-time and it will give the change of decay behaviour exactly at
the critical point. A direct relation between fall-off behaviour of the SFF and the edge
behaviour of level density, at critical points can be established using Paley-Wiener Theorem
[59].

Now we consider a function g(ζ) which is defined on a compact spatial support and its
Fourier transform F (η) has a lower bound on the rate of decay is given by the following
expression:

|F (η)| 6 (1 + η)−NγN (5.135)

Here N is a rational number and γN is a real constant. A direct relation between the decay
of the SFF and the edge effect of mean level density is given by the following expression:

|〈Z(±iτ)〉| 6 1

(±τ)n
(4a)

∣∣∣∣∫ 2a

−2a

dn

dλn
(ρ(λ)) dλ

∣∣∣∣ (5.136)

For the proof of this statement see ref. [59]. For decay behaviour of SFF at late time we
use asymptotic behaivour of the solution appearing in the ref. [96].

Now to compute SFF we need to add both connected and disconnected part of the
Green’s function G(= Gc + Gdc). Therefore, for different even polynomial potential we get
finally the following expression for SFF at finite temperature:

SFF(β, τ) ≡ G(β, τ) =


Gdc(β, τ) +

τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

Gdc(β, τ) +
1

πN
, τ > 2πN

,

(5.137)
where SFF(τ) is defined with proper normalization.
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After substituting the expression for Gdc(β, τ) we get the following expression for the
SFF at finite temperature:

SFF(β, τ) ≡

{
n∑
q=1

an−q
(
−a2

)−2q
4−q

[(
e2iπq + e2iπn

)
a2(q+n)Γ

(
−q + n+

1

2

)
× 1F̃2

(
−q + n+

1

2
;
1

2
,−q + n+ 2; a2β2

)
+ aβ

(
a2q(−a)2n − (−a)2qa2n

)
Γ(−q + n+ 1)

× 1F̃2

(
−q + n+ 1;

3

2
,−q + n+

5

2
; a2β2

)]}−2

×

{
n∑
k=1

an−k
(
−a2

)−2k
4−k

[(
e2iπk + e2iπn

)
a2(k+n)Γ

(
−k + n+

1

2

)
1F̃2

(
−k + n+

1

2
;
1

2
,−k + n+ 2; a2(β + iτ)2

)
+a(β + iτ)

(
a2k(−a)2n − (−a)2ka2n

)
Γ(−k + n+ 1)

1F̃2

(
−k + n+ 1;

3

2
,−k + n+

5

2
; a2(β + iτ)2

)]}
×

{
n∑

m=1

an−m
(
−a2

)−2m
4−m

[(
e2iπm + e2iπn

)
a2(m+n)Γ

(
−m+ n+

1

2

)
× 1F̃2

(
−m+ n+

1

2
;
1

2
,−m+ n+ 2; a2(β − iτ)2

)
+ a(β − iτ) (a2m(−a)2n − (−a)2ma2n) Γ(−m+ n+ 1)

× 1F̃2

(
−m+ n+ 1;

3

2
,−m+ n+

5

2
; a2(β − iτ)2

)]}

+


τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

1

πN
, τ > 2πN

(5.138)

Further taking the high temperature limit we get the following simplified expression for SFF
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as given by:

SFF(τ) ≡ 1

N2

{
n∑
k=1

an−k
e−2iπk4n−ka−2k+2n+2

√
πΓ(−k + n+ 2)Γ

(
−k + n+ 5

2

)
×
[{

(−1)2k + (−1)2n
}

Γ

(
−k + n+

1

2

)
Γ

(
−k + n+

5

2

)
× 1F2

(
−k + n+

1

2
;
1

2
,−k + n+ 2;−a2τ 2

)
− 2iaτ

{
(−1)2k + (−1)2n+1

}
Γ(−k + n+ 1)Γ(−k + n+ 2)

× 1F2

(
−k + n+ 1;

3

2
,−k + n+

5

2
;−a2τ 2

)]}
×

{
n∑

m=1

an−m
e−2iπm4n−ma−2m+2n+2

√
πΓ(−m+ n+ 2)Γ

(
−m+ n+ 5

2

)
×
[{

(−1)2m + (−1)2n
}

Γ

(
−m+ n+

1

2

)
Γ

(
−m+ n+

5

2

)
× 1F2

(
−m+ n+

1

2
;
1

2
,−m+ n+ 2;−a2τ 2

)
+ 2iaτ {(−1)2m + (−1)2n+1}Γ(−m+ n+ 1)Γ(−m+ n+ 2)

× 1F2

(
−m+ n+ 1;

3

2
,−m+ n+

5

2
;−a2τ 2

)]}

+



τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

1

πN
, τ > 2πN

(5.139)

5.5 SFF for even polynomial random potentials

5.5.1 For Gaussian random potential

Let us start our discussion with Gaussian random potential given by:

V (M) =
1

2
M2. (5.140)

Now for a single interval (n = 1) with end points −2a and 2a (semi-circle) we get:

ω(λ+ i0) =
λ

2
+ ia0

√
4a2 − λ2. (5.141)
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and we get the following expression for density function for eigen value of the random matrix
M as given by:

ρ(λ) =
1

π

√
4a2 − λ2 a0. (5.142)

Further, Taylor expanding ω(λ+ i0) we get the following expression:

4a0a
6

λ5
+

2a0a
4

λ3
+

2a0a
2

λ
+

(
1

2
− a0

)
λ+O

((
1

λ

)6
)

=
1

λ
. (5.143)

Then comparing the both the sides of above expression we get:

a0 = 1/2, (5.144)

a = 1. (5.145)

Then the density function in terms of the eigen value of random matrix M is given by the
following expression:

ρ(λ) =
1

2π

√
4a2 − λ2. (5.146)

and one point function of the partition function in presence of the Gaussian random potential
can be expressed as:

〈Z(β ± iτ)〉 =
1

2π

∫ 2a

−2a

dλ
√

4a2 − λ2 e∓iτλ e−βλ = a2
0F̃1

(
2; a2(β ± iτ)2

)
, (5.147)

where 0F̃1 (A;B) is the regularized Hypergeometric function. Now here substituting τ = 0
we get:

〈Z(β)〉 =
1

2π

∫ 2a

−2a

dλ
√

4a2 − λ2 e−βλ = a2
0F̃1

(
2; a2β2

)
. (5.148)

Further taking high temperature limit we get the following simplified expression for the
one point function:

[〈Z(β ± iτ)〉]β=0 =
1

2π

∫ 2a

−2a

dλ
√

4a2 − λ2 e∓iτλ = ±aJ1(±2aτ)

τ
, (5.149)

which can be further simplified by taking the limit T =
√
Nτ →∞ as:

[〈Z(β ± iT )〉]β=0 = − 1√
π
a2

(
± 1

aT

)3/2

cos

(
1

4
(±8aT + π)

)
. (5.150)

Now for the quadratic random potential disconnected part of the Green’s function can be
computed at finite temperature as:

Gdc(β, τ) =
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2
=

0F̃1 (2; a2(β + iτ)2) 0F̃1 (2; a2(β + iτ)2)(
0F̃1 (2; a2β2)

)2 , (5.151)
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which can be further simplified in the high temperature limiting situation as:

Gdc(τ) =

[
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]
β=0

= −a
2

τ 4

J1(2aτ)J1(−2aτ)

N2
. (5.152)

Further taking the limit T =
√
Nτ →∞ we get the following simplified result:

Gdc(T ) =

[
〈Z(β + iT )〉〈Z(β − iT )〉

〈Z(β)〉2

]
β=0

= (−1)3/2 a4

2N2π

(
1

aT

)3

cos

(
1

2
(8aT + π)

)
. (5.153)

Now to compute SFF we need to add both connected and disconnected part of the Green’s
function G(= Gc + Gdc). Therefore, for quadratic polynomial potential we get finally the
following expression for SFF at finite temp:

SFF(β, τ) ≡



0F̃1 (2; a2(β + iτ)2) 0F̃1 (2; a2(β + iτ)2)(
0F̃1 (2; a2β2)

)2

+
τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

0F̃1 (2; a2(β + iτ)2) 0F̃1 (2; a2(β + iτ)2)(
0F̃1 (2; a2β2)

)2

+
1

πN
, τ > 2πN

, (5.154)

where SFF(β, τ) is defined with proper normalization and in our prescription it gives the
total Green’s function as mentioned above. Further simplifying the result for high temper-
ature limit we get the following expression for SFF, as given by:

SFF(τ) ≡


−a

2

τ4
J1(2aτ)J1(−2aτ)

N2
+

τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

−a
2

τ4
J1(2aτ)J1(−2aτ)

N2
+

1

πN
, τ > 2πN

, (5.155)

Further taking the limit T =
√
Nτ →∞ we get the following simplified result for SFF:

SFF(T ) ≡


(−1)3/2

a4

2N2π

(
1

aT

)3

cos

(
1

2
(8aT + π)

)
+

T
(2π)2N5/2

− 1

N
+

1

(πN)
, T < 2πN3/2

(−1)3/2
a4

2N2π

(
1

aT

)3

cos

(
1

2
(8aT + π)

)
+

1

πN
, T > 2πN3/2

.

(5.156)
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(a) SFF for gaussian potential at β = 10.

a=0.1,β=100,N=1000

0 1000 2000 3000 4000 5000 6000 7000

0.0

0.2

0.4

0.6

0.8

1.0

τ(time)

SFFat finite temperature for gaussian potential

(b) SFF for gaussian potential at β = 100.
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(c) SFF for gaussian potential at β = 200.
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(d) SFF for gaussian potential at β = 1000.

Figure 23. Spectral Form Factor for Gaussian potential at different finite temperature[β] with
N = 1000 and a = 0.1

From fig. 23(a), fig. 23(b), fig. 23(c) and fig. 23(d) we see that SFF at finite temperature
decays with increasing τ and reach zero. But with changing β, SFF values remains almost
same initially (for higher β or lower temperature).
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For both the plots we have shown that SFF decays to zero for finite temperature. In
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(a) SFF for gaussian for a = .1, N = 100
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(b) SFF for gaussian for a = .1, N = 1000
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(c) SFF for gaussian for a = .1, N = 10000

Figure 24. Time variation of SFF for different N at β = 0. Here we used a scale factor SFF +
0.01137

fig. 24(a), fig. 24(b), fig. 24(c) it is observed that SFF with variation in N get saturated at
different value of τ . But with increasing N the value of the saturation point, will decrease.
Subtracting the change of axis[SFF |τ=0] we get the predicted bound of SFF.
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5.5.2 For Quartic random potential

Here we consider quartic random potential which can be written as:

V (M) =
1

2
M2 + gM4. (5.157)

For a single interval (n = 1) with end points -2a and 2a (semi-circle) we get the following
expression for density function for eigen value of the random matrix M as given by:

ρ(λ) =
1

π

√
4a2 − λ2

(
a1λ

2 + a0

)
. (5.158)

Now, for the quartic random potential ω(λ+ i0) can be expressed as:

ω(λ+ i0) =
1

2

(
2C2λ+ 4gλ3

)
+ i
√

4a2 − λ2
(
a1λ

2 + a0

)
. (5.159)

Now Taylor expanding ω(λ+ i0) near λ→∞ gives the following expression:(
2a1a

2 − a0 +
1

2

)
λ+ λ3 (2g − a1) +

10a1a
8 + 4a0a

6

λ5

+
4a1a

6 + 2a0a
4

λ3
+

2a1a
4 + 2a0a

2

λ
+O

((
1

λ

)6
)

=
1

λ
. (5.160)

Therefore equating both sides of the above equation gives:

a1 = 2g, (5.161)

a0 = 4a2g +
1

2
, (5.162)

along with the following constraint condition:

12ga4 + a2 = 1. (5.163)

Then the density function in terms of the eigen value of random matrix M is given by the
following expression:

ρ(λ) =
1

π

(
1

2
+ 4ga2 + 2gλ2

) √
4a2 − λ2. (5.164)

Further solving the constraint we get:

a2 =

√
48g + 1− 1

24g
. (5.165)

and Here a2 has imaginary value for g 6 − 1
48

and the critical value is given by:

gc = − 1

48
. (5.166)
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(a) ρ(λ) for quartic potential for different g.
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(b) ρ(λ) for quartic potential for different g.

Figure 25. Eigen value distribution curve of density function for quartic potential for different
parameter values. Here we fix a = 1.

In fig. 25(a) and fig. 25(b) density function ρ(λ) for quartic potential is plotted with a = 1.
The curve follows from Eq. (5.164). When g = 0 it matches with Wigner law. For g > 0
the curve shows a plateau region whereas for g < 0 it preserve the semicircular nature with
minor deviation.The plateau region denotes the deviation from Wigner law even at very
less effect of quartic term (as g is chosen to be small). The plateau region though converge
with semicircle at end point. At gc = − 1

48
the curve deviates but converge to semicircle at

end points where as for g < gc the curve never converge to semicircle one supporting its
non-existence. (See eq. (5.166) for details.).

Now we will calculate the one point function of the partition function for quartic random
potential, which is given by the following expression:

〈Z(β ± iτ)〉 =
1

π

∫ 2a

−2a

dλ

(
1

2
+ 4ga2 + 2gλ2

) √
4a2 − λ2 e∓iτλ e−βλ

=
a

(β ± iτ)2

[(
24a2g + 1

)
(β ± iτ)I1(2a(β ± iτ))− 24agI2(2a(β ± iτ))

]
, (5.167)

where In(x) is the modified Bessel function of first kind with order n.

Further taking the high temperature limit we get the following simplified expression for
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the one point function:

[〈Z(β ± iτ)〉]β=0 =
1

π

∫ 2a

−2a

dλ

(
1

2
+ 4ga2 + 2gλ2

) √
4a2 − λ2 e∓iτλ

=
a

τ 2

[
±
(
24a2g + 1

)
τI1(±2aτ)− 24agI2(±2aτ)

]
. (5.168)

Therefore the first term vanishes exactly at the critical point gc = − 1
48

which gives:

a2 =
1

24gc
= 2 . (5.169)

Now taking the limit T =
√
Nt → ∞ we get finally the following simplified result for the

one point function:

[〈Z(β ± iT )〉]β=0 = − 1

(±T )3/2

√
a

π

[(
24a2g + 1

)
cos
(
±2aT +

π

4

)
±

24g sin
(
±2aT + π

4

)
T

]

+O

(
1

(±T )
7
2

)
. (5.170)

Now for the quartic random potential disconnected part of the Green’s function can be
computed at finite temperature as:

Gdc(β, τ) =
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

=
β4

(β2 + τ 2)2

1

[(24a2g + 1) βI1(2aβ)− 24agI2(2aβ)]2

×
[(

24a2g + 1
)

(β + iτ)I1(2a(β + iτ))− 24agI2(2a(β + iτ))
]

×
[(

24a2g + 1
)

(β − iτ)I1(2a(β − iτ))− 24agI2(2a(β − iτ))
]
, (5.171)

which can be further simplified in the high temperature limiting situation as:

Gdc(τ) =

[
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]
β=0

=
a2

N2τ 4

[(
24a2g + 1

)
(iτ)I1(2a(iτ))− 24agI2(2a(iτ))

]
×
[(

24a2g + 1
)

(−iτ)I1(2a(−iτ))− 24agI2(2a(−iτ))
]
, . (5.172)

Further taking the limit T =
√
Nτ →∞ we get the following simplified result:

Gdc(T ) =

[
〈Z(β + iT )〉〈Z(β − iT )〉

〈Z(β)〉2

]
β=0

=
i

T 3

a

N2π

{[(
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)
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(

2aT +
π

4

)
+

24g sin
(
2aT + π
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]
+O
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1
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×
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(

2aT − π
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24g sin
(
2aT − π
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)
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]
+O

(
1
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2

)}
. (5.173)
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Now to compute SFF we need to add both connected and disconnected part of the Green’s
function G(= Gc + Gdc). Therefore, for quartic polynomial potential we get finally the
following expression for SFF at finite temp:

SFF(β, τ) ≡



β4

(β2 + τ 2)2

1

[(24a2g + 1) βI1(2aβ)− 24agI2(2aβ)]2

×
[(

24a2g + 1
)

(β + iτ)I1(2a(β + iτ))− 24agI2(2a(β + iτ))
]

×
[(

24a2g + 1
)

(β − iτ)I1(2a(β − iτ))− 24agI2(2a(β − iτ))
]

+
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(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN
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(β2 + τ 2)2

1
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×
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24a2g + 1
)

(β + iτ)I1(2a(β + iτ))− 24agI2(2a(β + iτ))
]

×
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24a2g + 1
)

(β − iτ)I1(2a(β − iτ))− 24agI2(2a(β − iτ))
]

+
1

πN
, τ > 2πN

,

(5.174)
where SFF(β, τ) is defined with proper normalization and in our prescription it gives the
total Green’s function as mentioned above. Further simplifying the result for high temper-
ature limit we get the following expression for SFF, as given by:

SFF(τ) ≡



a2

N2τ 4

[(
24a2g + 1

)
(iτ)I1(2a(iτ))− 24agI2(2a(iτ))

]
×
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]

+
1

πN
, τ > 2πN

,

(5.175)
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Further taking the limit T =
√
Nτ →∞ we get the following simplified result for SFF:

SFF(T ) ≡
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T 3
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+

24g sin
(
2aT + π

4

)
T

]
+O

(
1

(T )
7
2

)}

×

{[(
24a2g + 1

)
cos
(

2aT − π

4

)
−

24g sin
(
2aT − π

4

)
T

]
+O

(
1

(−T )
7
2

)}

+
T

(2π)2N5/2
− 1

N
+

1

(πN)
, T < 2πN3/2

i

T 3

a

N2π

{[(
24a2g + 1

)
cos
(

2aT +
π

4

)
+

24g sin
(
2aT + π

4

)
T

]
+O

(
1

(T )
7
2

)}

×

{[(
24a2g + 1

)
cos
(

2aT − π

4

)
−

24g sin
(
2aT − π

4

)
T

]
+O

(
1

(−T )
7
2

)}

+
1
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(5.176)

Further simplifying the result for high temperature limit we get the following expression
for SFF, as given by:

SFF(τ) ≡



a2

N2τ 4

[(
24a2g + 1

)
(iτ)I1(2a(iτ))− 24agI2(2a(iτ))

]
×
[(

24a2g + 1
)

(−iτ)I1(2a(−iτ))− 24agI2(2a(−iτ))
]

+
τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

a2

N2τ 4

[(
24a2g + 1

)
(iτ)I1(2a(iτ))− 24agI2(2a(iτ))

]
×
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24a2g + 1
)

(−iτ)I1(2a(−iτ))− 24agI2(2a(−iτ))
]

+
1

πN
, τ > 2πN

,

(5.177)
From fig. 26(a) and fig. 26(b), we see that SFF at finite temperature decays with

increasing τ and reach zero. But with changing β SFF values remains almost same initially
(for higher β or lower value of temperature).

From both the figures we have shown that SFF decays to zero for finite temperature. In

– 76 –



a=0.1,β=10,g=10,N=1000

0 2000 4000 6000 8000 10000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

τ(time )

SFFat finite temperature for quartic potential

(a) SFF for quartic potential at β = 10.
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(b) SFF for quartic potential at β = 100.

Figure 26. Spectral Form Factor for quartic potential at different finite temperature[β] with
N = 1000 and a = 0.1

fig. 27(a), fig. 27(b) and fig. 27(c), it is observed that SFF with variation in N get saturated
at different value of τ . But with increasing N the value of the saturation point, will decrease.
Subtracting the change of axis[SFF |τ=0] we get the predicted bound of SFF.

5.5.3 For Sextic random potential

In this subsection we consider sextic random potential, as given by the following expression:

V (M) =
1

2
M2 + gM4 + hM6. (5.178)

For a single interval (n = 1) with end points -2a and 2a (semi-circle) we get the following
expression for the density function in terms of the eigen value of random matrix M :

ρ(λ) =
1

π

√
4a2 − λ2

(
a2λ

4 + a1λ
2 + a0

)
. (5.179)

Also for sextic potential ω(λ+ i0) can be expressed as:

ω(λ+ i0) =
1

2

(
4gλ3 + 6hλ5 + λ

)
+ i
√

4a2 − λ2
(
a2λ

4 + a1λ
2 + a0

)
. (5.180)

In fig. 28(a) and fig. 28(b) for sextic potential behaviour of density function ρ(λ) is shown.
The curve follows from Eq. (5.185). Again choosing g = h = 0 will produce the Wigner
law. Deviating g and h by small amount shows deviation from Wigner semicircle law. For
g > 0, h > 0 the curve shows plateau region though merge with semicircle at end points.
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(a) SFF for gaussian for a = .1, N = 100 with
SFF |τ=0 = 0.0068169 as origin
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(b) SFF for gaussian for a = .1, N = 1000 with
SFF |τ=0 = 0.00068169 as origin

a=0.1,N=10000

0 20000 40000 60000 80000

0.00000

0.00005

0.00010

0.00015

τ(time)

Spectral FormFactor for Quartic Potential

(c) SFF for gaussian for a = .1, N = 10000 with SFF |τ=0 = 0.000068169
as origin

Figure 27. Time variation of SFF for different N. Here we shift reference axis[SFF] to SFF |τ=0

But choosing g < 0, h < 0 and g = 0 and h < 0 show deviation from semicircle and don’t
converge even at end points.
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(a) ρ(λ) for sextic potential for different g, h.
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(b) ρ(λ) for sextic potential for different g, h.

Figure 28. Eigen value distribution curve of density function for sextic potential for different
parameter values. Here we fix a = 1.

Further expanding ω(λ+ i0) near λ→∞ we get:

λ3
(
2a2a

2 − a1 + 2g
)

+

(
2a2a

4 + 2a1a
2 − a0 +

1

2

)
λ

+
4a2a

6 + 2a1a
4 + 2a0a

2

λ
+ λ5 (3h− a2) +O

((
1

λ

)3
)

=
1

λ
. (5.181)

Therefore, equating both the sides of the above equation we get:

a2 = 3h, (5.182)

a1 = 2g + 6a2h, (5.183)

a0 = 18a4h+ 4a2g +
1

2
. (5.184)

along with we get one additional constraint condition, as given by:

60a6h+ 12ga4 + a2 = 1

Then, for the sextic random potential we get the following simplified expression for the
density function in terms of the eigen value of the random matrix M , as given by:

ρ(λ) =
1

π

√
4a2 − λ2

(
18a4h+ λ2

(
6a2h+ 2g

)
+ 4a2g + 3hλ4 +

1

2

)
. (5.185)
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Solving the constraint condition we get, a2 in terms of g and h. The real root for a2 is given
by the following expression:

a2 =
F(g, h)

30h
− 180h− 144g2

1080hF(g, h)
− g

15h
. (5.186)

where we define the function F(g, h) as:

F(g, h) =
3

√
−8g3 + 5

√
−144g3h2 − 3g2h2 + 270gh3 + 2025h4 + 5h3 + 15gh+ 225h2. (5.187)

Here we can check that putting h = 0 the constraint condition reduces to the following
simplified form:

12ga4 + a2 = 1 (5.188)

and the solution of this equation is given by the following expression:

a2 =

√
48g + 1− 1

24g
. (5.189)

Here the critical value with h = 0 is given by:

gc = − 1

48
, (5.190)

which is exactly same result as obtained for quartic potential in the previous subsection.

Now the expression for the one point function for partition function at finite temperature
can be computed as:

〈Z(β ± iτ)〉 =
1

π

∫ 2a

−2a

dλ
√

4a2 − λ2

(
18a4h+ λ2

(
6a2h+ 2g

)
+ 4a2g + 3hλ4 +

1

2

)
e∓iτλ e−βλ

=
a

(β ± iτ)4
[(β ± iτ)I1(2a(β ± iτ))(

360a2h+ β2
(
180a4h+ 24a2g + 1

)
± 2iβτ

(
180a4h+ 24a2g + 1

)
−τ 2

(
180a4h+ 24a2g + 1

))
−24aI2(2a(β ± iτ))

(
30h+ (β ± iτ)2

(
15a2h+ g

))]
(5.191)

Further in the high temperature limit the one point function for partition function can be
simplified as:

[〈Z(β ± it)〉]β=0 =
1

π

∫ 2a

−2a

dλ
√

4a2 − λ2

(
18a4h+ λ2

(
6a2h+ 2g

)
+ 4a2g + 3hλ4 +

1

2

)
e∓iτλ

=
a

τ 4

[
(J1(±2aτ)((±τ)3(180a4h+ 24a2g + 1)∓ 360a2hτ)

− 24J2(±2aτ)(τ 2(15a2h+ g)− 30h))
]

(5.192)
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Next, simplifying the result for one point function in the limit T =
√
Nτ →∞ we get:

[〈Z(β ± iT )〉]β=0 =

√
a

π

1

(±T )
3
2

[
−
(
1 + 24a2g + 180a4h

)
cos
(π

4
± 2aT

)
± 24a

g + 15a2h

T
sin
(π

4
± 2aT

)
+

360a2h

T 2
cos
(π

4
± 2aT

)
+O

(
1

T 4

)]
(5.193)

Now for the quadratic random potential disconnected part of the Green’s function can be
computed at finite temperature as:

Gdc(β, τ) =
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

=
β8

(β2 + τ 2)4

[
βI1(2aβ)

(
360a2h+ β2

(
180a4h+ 24a2g + 1

))
−24aI2(2aβ)

(
30h+ β2

(
15a2h+ g

))]−2

× [(β + iτ)I1(2a(β + iτ))(
360a2h+ β2

(
180a4h+ 24a2g + 1

)
+ 2iβτ

(
180a4h+ 24a2g + 1

)
−τ 2

(
180a4h+ 24a2g + 1

))
−24aI2(2a(β + iτ))

(
30h+ (β + iτ)2

(
15a2h+ g

))]
× [(β − iτ)I1(2a(β − iτ))(

360a2h+ β2
(
180a4h+ 24a2g + 1

)
− 2iβτ

(
180a4h+ 24a2g + 1

)
−τ 2

(
180a4h+ 24a2g + 1

))
−24aI2(2a(β − iτ))

(
30h+ (β − iτ)2

(
15a2h+ g

))]
, (5.194)

which can be further simplified in the high temperature limiting situation as:

Gdc(τ) =

[
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]
β=0

=
a2

N2τ 8

[
(J1(2aτ)(τ 3(180a4h+ 24a2g + 1)− 360a2hτ)

− 24J2(2aτ)(τ 2(15a2h+ g)− 30h))
]

×
[
(J1(−2aτ)((−τ)3(180a4h+ 24a2g + 1) + 360a2hτ)

− 24J2(−2aτ)(τ 2(15a2h+ g)− 30h))
]
. (5.195)
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Further taking the limit T =
√
Nτ →∞ we get the following simplified result:

Gdc(T ) =

[
〈Z(β + iT )〉〈Z(β − iT )〉

〈Z(β)〉2

]
β=0

=
i

T 3

a

N2π

[
−
(
1 + 24a2g + 180a4h

)
cos
(π

4
+ 2aT

)
+ 24a

g + 15a2h

T
sin
(π

4
+ 2aT

)
+

360a2h

T 2
cos
(π

4
+ 2aT

)
+O

(
1

T 4

)]
×
[
−
(
1 + 24a2g + 180a4h

)
cos
(π

4
− 2aT

)
− 24a

g + 15a2h

T
sin
(π

4
− 2aT

)
+

360a2h

T 2
cos
(π

4
− 2aT

)
+O

(
1

T 4

)]
. (5.196)

Now to compute SFF we need to add both connected and disconnected part of the Green’s
function G(= Gc + Gdc). Therefore, for sextic polynomial potential we get finally the
following expression for SFF at finite temp:

SFF(β, τ) ≡ β8

(β2 + τ 2)4

[
βI1(2aβ)

(
360a2h+ β2

(
180a4h+ 24a2g + 1

))
−24aI2(2aβ) (30h+ β2 (15a2h+ g))]

−2
[(β + iτ)I1(2a(β + iτ))

(360a2h+ β2 (180a4h+ 24a2g + 1) + 2iβτ (180a4h+ 24a2g + 1)

−τ 2 (180a4h+ 24a2g + 1))− 24aI2(2a(β + iτ)) (30h+ (β + iτ)2 (15a2h+ g))]

× [(β − iτ)I1(2a(β − iτ))

(360a2h+ β2 (180a4h+ 24a2g + 1)− 2iβτ (180a4h+ 24a2g + 1)

−τ 2 (180a4h+ 24a2g + 1))− 24aI2(2a(β − iτ)) (30h+ (β − iτ)2 (15a2h+ g))]

+


τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

1

πN
, τ > 2πN

(5.197)

where SFF(β, τ) is defined with proper normalization and in our prescription it gives the
total Green’s function as mentioned above.

Further simplifying the result for high temperature limit we get the following expression
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for SFF, as given by:

SFF(τ) ≡ a2

N2τ 8

[
(J1(2aτ)(τ 3(180a4h+ 24a2g + 1)− 360a2hτ)

− 24J2(2aτ)(τ 2(15a2h+ g)− 30h))
]

× [(J1(−2aτ)((−τ)3(180a4h+ 24a2g + 1) + 360a2hτ)

− 24J2(−2aτ)(τ 2(15a2h+ g)− 30h))
]

+


τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

1

πN
, τ > 2πN

(5.198)

Further taking the limit T =
√
Nτ →∞ we get the following simplified result for SFF:

SFF(T ) ≡ i

T 3

a

N2π

[
−
(
1 + 24a2g + 180a4h

)
cos
(π

4
+ 2aT

)
+ 24ag+15a2h

T sin
(
π
4

+ 2aT
)

+ 360a2h
T 2 cos

(
π
4

+ 2aT
)

+O
(

1
T 4

)]
×
[
− (1 + 24a2g + 180a4h) cos

(
π
4
− 2aT

)
− 24ag+15a2h

T sin
(
π
4
− 2aT

)
+ 360a2h

T 2 cos
(
π
4
− 2aT

)
+O

(
1
T 4

)]
+


T

(2π)2N5/2
− 1

N
+

1

(πN)
, T < 2πN3/2

1

πN
, T > 2πN3/2

(5.199)

From fig. 29(a) and fig. 29(b), we see that SFF at finite temperature decays with increasing
τ and reach zero. But with changing β SFF values remains almost same initially (for higher
β).

In fig. 30(a), fig. 30(b), fig. 30(c), it is observed that SFF with variation in N get
saturated at different value of τ . But with increasing N the value of the saturation point,
will decrease. Subtracting the change of axis[SFF |τ=0] we get the predicted bound of SFF.

5.5.4 For Octa random potential

Here we consider octa random potential, as given by the following expression:

V (M) =
1

2
M2 + gM4 + hM6 + kM8. (5.200)

For a single interval (n = 1) with end points -2a and 2a (semi-circle) we get the following
expression for the density function in terms of the eigen value of the random matrix M , as
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(a) SFF for sextic potential at β = 10.
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(b) SFF for sextic potential at β = 100.

Figure 29. Spectral Form Factor for sextic potential at different finite temperature[β] with
N = 1000 and a = 0.1

given by:

ρ(λ) =
1

π

√
4a2 − λ2

(
a3λ

6 + a2λ
4 + a1λ

2 + a0

)
. (5.201)

Then the function ω(λ+ i0) can be expressed as:

ω(λ+ i0) =
1

2

(
4gλ3 + 6hλ5 + 8kλ7 + λ

)
+ i
√

4a2 − λ2
(
a3λ

6 + a2λ
4 + a1λ

2 + a0

)
.(5.202)

Further Taylor expanding ω(λ+ i0) near λ→∞ we get:

λ5
(
2a3a

2 − a2 + 3h
)

+λ3
(
2a3a

4 + 2a2a
2 − a1 + 2g

)
+

(
4a3a

6 + 2a2a
4 + 2a1a

2 − a0 +
1

2

)
λ

+
10a3a

8 + 4a2a
6 + 2a1a

4 + 2a0a
2

λ
+ λ7 (4k − a3) +O

((
1

λ

)3
)

=
1

λ
. (5.203)

Therefore, equating both the sides of the above equation we get:

a3 = 4k, (5.204)

a2 = 3h+ 8a2k, (5.205)

a1 = 24a4k + 6a2h+ 2g, (5.206)

a0 =
1

2

(
160a6k + 36a4h+ 8a2g + 1

)
, (5.207)
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(a) SFF for sextic for a = .1, N = 100 with
SFF |τ=0 = 0.0068169 as origin.
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(b) SFF for sextic for a = .1, N = 1000 with
SFF |τ=0 = 0.00068169 as origin
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(c) SFF for sextic for a = .1, N = 10000 with SFF |τ=0 = 0.000068169
as origin

Figure 30. Time variation of SFF for different N at β = 0.Here we shift reference axis[SFF] to
SFF |τ=0

along with an additional constraint condition:

a2 + 12a4g + 60a6h+ 280a8k = 1 (5.208)
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Solution of this constraint equation gives a2 in terms of g, h and k. Since the solutions for
a2 are very complicated, we have not explicitly mentioned them here. Instead of writing
full solution here we can check that putting h = 0 the constraint condition reduces to the
following simplified form:

12ga4 + a2 = 1 (5.209)

and the solution of this equation is given by the following expression:

a2 =

√
48g + 1− 1

24g
. (5.210)

Here the critical value with h = 0 and k = 0 is given by the following expression:

gc = − 1

48
, (5.211)

which is exactly same result as obtained for quartic and sextic (with h = 0) potential in the
previous subsections.

Then, the final expression for the density function in terms of the eigen value of the
random matrix M can be written as:

ρ(λ) =
1

π

√
4a2 − λ2

(
80a6k + 6a4

(
3h+ 4kλ2

)
+ a2

(
4g + 6hλ2 + 8kλ4

)
+ 2gλ2 + 3hλ4 + 4kλ6 +

1

2

)
. (5.212)

In fig. 31(a) and fig. 31(b) for octic potential behaviour of density function ρ(λ) is shown.
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(a) ρ(λ) for octa potential for different g,h,k
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Figure 31. Eigen value distribution curve of density function for quartic and octa potential for
different parameter values. Here we fix a = 1.

– 86 –



The curve follows from Eq. (5.212). Again choosing g = h = k = 0 will produce the Wigner
law. Deviating g, h and k by small amount shows deviation from Wigner semicircle law.
For g = 0, h > 0, k > 0 the curve shows plateau region though merge with semicircle at
end points. But choosing g > 0, h < 0, k < 0 and g > 0, h > 0, k < 0 show deviation
from semicircle and don’t converge even at end points. On the other hand, if we choose
g > 0, h > 0, k > 0 then we get a valley region lying between two peaks of the maxima of
the density distribution of eigen values of the random matrices under consideration. The
same behaviour can be obtained by fixing g > 0, h < 0, k > 0, g = h = k = 1 and
g = 0, h >> 0, k >> 0. Only slight difference can be visualised in the peak heights of the
maxima and also in the spread in the valley region. But in all such cases in between it
will not at all match with the Wigner semicircle law, but converge to the end points of the
Wigner semi-circle , which is obtained by setting g = h = k = 0.

Next, we compute the expression for the one point function of the partition function at
finite temperature, which can be expressed as:

〈Z(β ± iτ)〉 =
1

π

∫ 2a

−2a

dλ
√

4a2 − λ2
(
80a6k + 6a4

(
3h+ 4kλ2

)
+ a2

(
4g + 6hλ2 + 8kλ4

)
+ 2gλ2 + 3hλ4 + 4kλ6 +

1

2

)
e∓iτλ e−βλ

=
1

(β ± iτ)6

[
−24a2I2(2(β ± iτ) |a|)

(
15a2hτ 4 + β4

(
140a4k + 15a2h+ g

)
± 4iβ3τ

(
140a4k + 15a2h+ g

)
− 6β2

(
140a4kτ 2 + 5h

(
3a2τ 2 − 1

)
− 140a2k + gτ 2

)
∓ 4iβτ

(
140a4kτ 2 + 15h

(
a2τ 2 − 1

)
− 420a2k + gτ 2

)
+ 140k

(
a4τ 4 − 6a2τ 2 + 12

)
+ gτ 4 − 30hτ 2

)
+ |a| (β ± iτ)3I1(2(β ± iτ) |a|)

(
−1120a6kτ 2 + 60a4

(
112k − 3hτ 2

)
+ 24a2

(
15h− gτ 2

)
+ β2

(
1120a6k + 180a4h+ 24a2g + 1

)
±2iβτ

(
1120a6k + 180a4h+ 24a2g + 1

)
− τ 2

)
+ 20160k |a|3 (β ± iτ)I1(2(β ± iτ) |a|)

]
,

(5.213)

where In(x) is the modified Bessel function of first kind with n th order.

Further, considering the high temperature limiting situation we get the following sim-
plified expression for the one point function of the partition function:

[〈Z(β ± iτ)〉]β=0 =
1

π

∫ 2a

−2a

dλ
√

4a2 − λ2
(
80a6k + 6a4

(
3h+ 4kλ2

)
+ a2

(
4g + 6hλ2 + 8kλ4

)
+ 2gλ2 + 3hλ4 + 4kλ6 +

1

2

)
e∓iτλ

=
a

τ 6

[
±J1(±2aτ)(1120a6kτ 5 + 60a4τ 3(3hτ 2 − 112k)

+24a2(gτ 5 − 15hτ 3 + 840kτ) + τ 5)

−24J2(±2aτ)(−30τ 2(28a2k + h) + τ 4(140a4k + 15a2h+ g) + 1680k)
]
. (5.214)
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Next, simplifying the result for one point function in the limit T =
√
Nτ →∞ we get:

[〈Z(β ± iT )〉]β=0 =

√
a

π

1

(±T )
3
2

[(
1120a6k + 180a4h+ 2a2g + 1

−
(

6720a4k + 360a2h

T 2

))
cos
(π

4
± 2aT

)
∓ 24

(
140a4k + 15a2h+ g

T
−
(

840a2k + 30h

T 3

))
sin
(π

4
± 2aT

)]
+O

(
1

(±T )
11
2

)
. (5.215)

Now for the octic random potential disconnected part of the Green’s function can be com-
puted at finite temperature as:

Gdc(β, τ) =
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2
=

β12

(β2 + τ 2)6
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−1120a6kτ 2 + 60a4

(
112k − 3hτ 2

)
+ 24a2

(
15h− gτ 2

)
+ β2

(
1120a6k + 180a4h+ 24a2g + 1

)
+ 2iβτ

(
1120a6k + 180a4h+ 24a2g + 1

)
− τ 2

)
+ 20160k |a|3 (β + iτ)I1(2(β + iτ) |a|)
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]
(5.216)
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which can be further simplified in the high temperature limiting situation as:

Gdc(τ) =

[
〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]
β=0

=
a2

N2τ 12

×
[
J1(2aτ)(1120a6kτ 5 + 60a4τ 3(3hτ 2 − 112k)

+ 24a2(gτ 5 − 15hτ 3 + 840kτ) + τ 5)

−24J2(2aτ)(−30τ 2(28a2k + h)

+ τ 4(140a4k + 15a2h+ g) + 1680k)
]

×
[
−J1(−2aτ)(1120a6kτ 5 + 60a4τ 3(3hτ 2 − 112k)

+ 24a2(gτ 5 − 15hτ 3 + 840kτ) + τ 5)

−24J2(−2aτ)(−30τ 2(28a2k + h)

+ τ 4(140a4k + 15a2h+ g) + 1680k)
]
. (5.217)

Further taking the limit T =
√
Nτ →∞ we get the following simplified result:

Gdc(T ) =

[
〈Z(β + iT )〉〈Z(β − iT )〉

〈Z(β)〉2

]
β=0

=
i

T 3

a

N2π

×
[(

1120a6k + 180a4h+ 2a2g + 1
)

cos
(π

4
± 2aT

)
∓ 24

(
140a4k + 15a2h+ g

T

)
sin
(π

4
± 2aT

)
−
(

6720a4k + 360a2h

T 2

)
cos
(π

4
± 2aT

)
± 24

(
840a2k + 30h

T 3

)
sin
(π

4
± 2aT

)]
×
[(

1120a6k + 180a4h+ 2a2g + 1
)

cos
(π

4
± 2aT

)
∓ 24

(
140a4k + 15a2h+ g

T

)
sin
(π

4
± 2aT

)
−
(

6720a4k + 360a2h

T 2

)
cos
(π

4
± 2aT

)
± 24

(
840a2k + 30h

T 3

)
sin
(π

4
± 2aT

)]
.

(5.218)

Now to compute SFF we need to add both connected and disconnected part of the Green’s
function G(= Gc+Gdc). Therefore, for octic polynomial potential we get finally the following
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expression for SFF at finite temp:

SFF(β, τ) ≡ β12

(β2 + τ 2)6

[
−24a2I2(2β |a|)

(
β4
(
140a4k + 15a2h+ g

)
+ 6β2

(
5h+ 140a2k

)
+ 1680k

)
+ |a| β3I1(2(β) |a|) (6720a4k + 360a2h+ β2 (1120a6k + 180a4h+ 24a2g + 1))

+ 20160k |a|3 βI1(2(β) |a|)
]−2 × [−24a2I2(2(β + iτ) |a|) r

(15a2hτ 4 + β4 (140a4k + 15a2h+ g) + 4iβ3τ (140a4k + 15a2h+ g)

− 6β2 (140a4kτ 2 + 5h (3a2τ 2 − 1)− 140a2k + gτ 2)

− 4iβτ (140a4kτ 2 + 15h (a2τ 2 − 1)− 420a2k + gτ 2)

+ 140k (a4τ 4 − 6a2τ 2 + 12) + gτ 4 − 30hτ 2)

+ |a| (β + iτ)3I1(2(β + iτ) |a|) (−1120a6kτ 2 + 60a4 (112k − 3hτ 2)

+ 24a2 (15h− gτ 2) + β2 (1120a6k + 180a4h+ 24a2g + 1)

+ 2iβτ (1120a6k + 180a4h+ 24a2g + 1)− τ 2)

+ 20160k |a|3 (β + iτ)I1(2(β + iτ) |a|)
]

× [−24a2I2(2(β − iτ) |a|) (15a2hτ 4 + β4 (140a4k + 15a2h+ g)

− 4iβ3τ (140a4k + 15a2h+ g)− 6β2 (140a4kτ 2 + 5h (3a2τ 2 − 1)− 140a2k + gτ 2)

+ 4iβτ (140a4kτ 2 + 15h (a2τ 2 − 1)− 420a2k + gτ 2)

+ 140k (a4τ 4 − 6a2τ 2 + 12) + gτ 4 − 30hτ 2)

+ |a| (β − iτ)3I1(2(β − iτ) |a|) (−1120a6kτ 2 + 60a4 (112k − 3hτ 2)

− 24a2 (15h− gτ 2) + β2 (1120a6k + 180a4h+ 24a2g + 1)

− 2iβτ (1120a6k + 180a4h+ 24a2g + 1)− τ 2)

+ 20160k |a|3 (β − iτ)I1(2(β − iτ) |a|)
]

+



τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

1

πN
, τ > 2πN

(5.219)
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where SFF(β, τ) is defined with proper normalization and in our prescription it gives the
total Green’s function as mentioned above.

Further simplifying the result for high temperature limit we get the following expression
for SFF, as given by:

SFF(τ) ≡ a2

N2τ 12

[
J1(2aτ)(1120a6kτ 5 + 60a4τ 3(3hτ 2 − 112k)

+ 24a2(gτ 5 − 15hτ 3 + 840kτ) + τ 5)

−24J2(2aτ)(−30τ 2(28a2k + h) + τ 4(140a4k + 15a2h+ g) + 1680k)
]

× [−J1(−2aτ)(1120a6kτ 5 + 60a4τ 3(3hτ 2 − 112k)

+ 24a2(gτ 5 − 15hτ 3 + 840kτ) + τ 5)

−24J2(−2aτ)(−30τ 2(28a2k + h) + τ 4(140a4k + 15a2h+ g) + 1680k)
]

+


τ

(2πN)2
− 1

N
+

1

(πN)
, τ < 2πN

1

πN
, τ > 2πN

(5.220)

Further taking the limit T =
√
Nτ →∞ we get the following simplified result for SFF:

SFF(T ) ≡ i

T 3

a

N2π

[(
1120a6k + 180a4h+ 2a2g + 1

)
cos
(π

4
± 2aT

)
∓ 24

(
140a4k + 15a2h+ g

T

)
sin
(π

4
± 2aT

)
−
(

6720a4k + 360a2h

T 2

)
cos
(π

4
± 2aT

)
± 24

(
840a2k + 30h

T 3

)
sin
(π

4
± 2aT

)]
×
[
(1120a6k + 180a4h+ 2a2g + 1) cos

(
π
4
± 2aT

)
∓ 24

(
140a4k + 15a2h+ g

T

)
sin
(π

4
± 2aT

)
−
(

6720a4k + 360a2h

T 2

)
cos
(π

4
± 2aT

)
± 24

(
840a2k + 30h

T 3

)
sin
(π

4
± 2aT

)]

+


T

(2π)2N5/2
− 1

N
+

1

(πN)
, T < 2πN3/2

1

πN
, T > 2πN3/2

.

(5.221)

From fig. 32(a), fig. 32(b) and fig. 32(c), we see that SFF at finite temperature decays with
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(a) SFF for octa potential at β = 10.
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(b) SFF for octa potential at β = 100.
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(c) SFF for octa potential at β = 200.

Figure 32. Spectral Form Factor for sextic potential at different finite temperature[β] with
N = 1000 and a = 0.1

increasing τ and reach zero. But with changing β SFF values remains almost same initially
(For higher β).

In fig 33(a), fig 33(b) and fig 33(c), it is observed that SFF with variation in N get
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(a) SFF for octa for a = .1, N = 100 with SFF |τ=0 =
0.0068169 as origin
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(b) SFF for octa for a = .1, N = 1000 with
SFF |τ=0 = 0.00068169 as origin
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(c) SFF for octa for a = .1, N = 10000 with SFF |τ=0 = 0.000068169 as
origin

Figure 33. Time variation of SFF for different N at β = 0.Here we shift reference axis[SFF] to
SFF |τ=0

saturated at different value of τ . But with increasing N the value of the saturation point,
will decrease.Subtracting the change of axis[SFF |τ=0] we get the predicted bound of SFF.
From these plots we can say that time variation of SFF follow oscillatary pattern initially
but after certain time it has linear decaying amplitude for dominance of linear part. Then
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after τ > 2πN region SFF abruptly saturated due to second part of the connected part of
the total Green’s function Gc. On the other hand, for τ < 2πN region SFF is decaying in
amplitude and increasing with time. After τ > 2πN region the function will be constant
thereafter.

Here it is important to note that, depending on the specific structure of the even poly-
nomial random potential the upper bound on chaos very slightly changes (i.e. the amplitude
for saturation of SFF is almost at the same order of magnitude for different even polynomial
random potentials). But the late time behaviour for different random potentials are almost
same as it shows complete saturation with respect to time. The saturation depends only on
value of N . Also it is import to note from the plots that, for each even polynomial potential
sudden transition from the random oscillatory behaviour to the perfect saturation of SFF
take place at the unique time, τ = 2πN .

5.5.5 Estimation of dip-time scale from SFF

Now we introduce the concept of dip-time which denotes the change in fall-off behaviour of
SFF near the critical points. It is estimated by comparing the initial fall-off behaviour with
late time behaviour of the curve from which it starts the linear increase (ramp part).

For different even polynomial random model (see Eq (5.150 ) , Eq (5.170) , Eq (5.193),

Eq (5.215)), we see that the fall off behaviour varies with τ−
N
2 . Consequently, the discon-

nected part of the Green’s function (Gdc) fall off as τ−N and we tabulated different fall off
behaviour with linear increase rate in table. 3. Physical time t, conformal time τ and newly
define time scale are dined as 21:

T =
√
Nτ ≈

√
N
t

a
∝
√
N t, (5.223)

which specifically depends on different values of N , where it represents order of the even
polynomial used in our paper to compute SFF.

21Here to define the new time scale T we assume that the reheating approximation is perfectly valid.
This implies that we can really neglect the expansion of the universe. This further pointing towards the
fact the conformal time (τ) and the physical time (t) are related by the following expression:

τ = t/a ∝ t, (5.222)

where during reheating we have assumed that the conformal and physical time are almost same and the
proportionality constant is the inverse of the scale factor a−1, which is independent of both the time scales
discussed in this paper. .
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Potential 1st critical point 2nd Critical point 3rd Critical point 4th critical point

Gaussian τ−3 = τ
N2 - - -

Quartic τ−3 = τ
N2 τ−5 = τ

N2 - -

Sextic τ−3 = τ
N2 τ−5 = τ

N2 τ−7 = τ
N2 -

Octa τ−3 = τ
N2 τ−5 = τ

N2 τ−7 = τ
N2 τ−9 = τ

N2

Table 3. Fall-off behaviour near critical points for different even polynomial random potential.

Equation of τ τ in order of N t in order of N

τ−3 = τ
N2 τ = O(

√
N) t = O(1)

τ−5 = τ
N2 τ = O(N

1
3 ) t = O(N−

1
6 )

τ−7 = τ
N2 τ = O(N

1
4 ) t = O(N−

1
4 )

τ−9 = τ
N2 τ = O(N

1
5 ) t = O(N−

3
10 )

Table 4. Order of magnitude estimation of conformal time (τ) and physical time (t) in terms of
the order of polynomial N

From table 3, we get the proper estimation of dip time for different even order polynomial
random potential at different critical point. Further, in table 4, we get an order of magnitude
estimation of conformal time (τ) and physical time (t) in terms of the order of polynomial
N .

In the next section we will discuss about quantum correction of Fokker-Planck equation
in the context of comological particle production. Here it is important to note that, particle
production in cosmology can be treated as a chaotic random event and through our calcu-
lation we get quantum corrections due to the non-Gauaaian contribution in the probability
distribution function. In this context the system can be treated as semiclassical. As a re-
sult, SFF shows a saturating behaviour on large time limit which implies that randomness
in eigen value density has a upper bound though it is chaotic [59]. This relate that particle
production also can have an upper bound which also confirmed using the computation of
Lyapunov exponent.
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5.6 Universal bound on quantum chaos from SFF and its application to cos-
mology

In the previous subsection we have explicitly computed the analytical expression for SFF
for generalized even polynomial random potential at finite temperature (β = 1/T=finite)
in Eq:. (5.138) and at very high temperature (β = 1/T → 0) in Eq. (5.139). Now in this
subsection our prime objective is to compute the analytical bound on SFF at long time
interval i.e. τ →∞. To derive the bound on SFF we first use the asymptotic behaviour of
HypergeomtericPFQ regularized function, which is given below:

lim
τ→∞ 1F̃2

[
−m+ n+ 1;

3

2
,−m+ n+

5

2
; a2(β ± iτ)2)

]
= 0 ∀k = 1, 2, · · · , n, (5.224)

lim
τ→∞ 1F̃2

[
−m+ n+

1

2
;
1

2
,−m+ n+ 2; a2(β ± iτ)2)

]
= 0 ∀k = 1, 2, · · · , n. (5.225)

This asymptotic behaviour of the HypergeomtericPFQ regularized function remains same
in the high temperature limit (β = 1/T → 0) also.

Consequently, the asymptotic behaviour of the disconnected part of the Green’s function
can be expressed at finite temperature as well as in the limit β → 0 with finite N as:

lim
τ→∞

Gdc(β, τ) = 0 ∀τ(→∞) > 2πN. (5.226)

lim
τ→∞

lim
β→0

Gdc(β, τ) = 0 ∀τ(→∞) > 2πN. (5.227)

Similarly, the asymptotic behaviour of the connected part of the Green’s function can be
expressed at finite temperature as well as in the limit β → 0 with finite N as:

lim
τ→∞

Gc(β, τ) =
1

πN
∀τ(→∞) > 2πN. (5.228)

lim
τ→∞

lim
β→0

Gc(β, τ) = 0 ∀τ(→∞) > 2πN. (5.229)

Finally, adding the contribution from the disconnected and connected part of the Green’s
function in the asymptotic limit (τ →∞) we get the following simplified expression for SFF
at finite N as given by:

SFF(β, τ →∞) = lim
τ→∞

(Gdc(β, τ) +Gc(β, τ)) =
1

πN
> 0 ∀τ(→∞) > 2πN (Finite N), β ≤ ∞ .

(5.230)
Also in the high temperature limit with finite N we get:

SFF(β → 0, τ →∞) = lim
τ→∞

lim
β→0

(Gdc(β, τ) +Gc(β, τ)) = 0 ∀τ(→∞) > 2πN (Finite N), β ≥ 0 .

(5.231)
Here we considered the part of SFF only after τ > 2πN with finite N as we are considering
τ → ∞ asymptotic limit. The main obstruction of the taking τ → ∞ asymptotic limit in
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the τ < 2πN with finite N divergent contribution in the connected part of the total Green’s
function Gc as given by:

lim
τ→∞

Gc(β, τ) = lim
τ→∞

(
τ

(2πN)2
− 1

N
+

1

πN

)
→∞ ∀τ(→∞) < 2πN (Finite N).

(5.232)
On the other hand, for the disconnected part of the Green’s function we get the same result
as obtained for τ(→∞) > 2πN with finite N case.

As a result, it gives divergent contribution to SFF at finite N is given by:

SFF(β, τ →∞)→∞ ∀τ(→∞) < 2πN (Finite N) . (5.233)

For this reason, we will concentrate on the finite contribution on SFF coming from τ(→
∞) > 2πN with finite N region.

Finally, adding both the contribution from connected and disconnected part of the
total Green’s function for the asymptotic region τ(→∞) > 2πN (Finite N) with 0 ≤ β(=
1/T ) ≤ ∞ we get the following upper and lower bound on SFF, as given by:

Bound on SFF : 0 ≤ SFF ≤ 1

πN
∀τ(→∞) > 2πN (Finite N), 0 ≤ β(= 1/T) ≤ ∞ .

(5.234)
On the other hand, with large N limit one can consider the τ < 2πN region for the

computation of the bound on SFF. To justify this statement we take the τ →∞ asymptotic
limit in the τ < 2πN with large N gives finite contribution in the connected part of the
total Green’s function Gc as given by:

lim
τ→∞

Gc(β, τ) = lim
τ→∞

(
τ

(2πN)2
− 1

N
+

1

πN

)
' − 1

N

(
1− 1

π

)
< 0 ∀τ(→∞) < 2πN (Large N).

(5.235)
Similarly, for the disconnected part of the Green’s function we get the same result as ob-
tained for τ(→∞) > 2πN in previous case.

Finally, adding both the contribution from connected and disconnected part of the
total Green’s function for the asymptotic region τ(→∞) < 2πN (Large N) with 0 ≤ β(=
1/T ) ≤ ∞ we get the following upper and lower bound on SFF, as given by:

Bound on SFF : − 1

N

(
1− 1

π

)
≤ SFF ≤ 0 ∀τ(→∞) < 2πN (Large N), 0 ≤ β(= 1/T) ≤ ∞ .

(5.236)
Combining Eq. (5.234) and Eq. (5.236) we can write for all range of τ the following bound
on SFF:

Bound on SFF from theory : − 1

N

(
1− 1

π

)
≤ SFF ≤ 1

πN
∀τ, 0 ≤ β(= 1/T) ≤ ∞ .

(5.237)
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(a) For quartic a = .1, N = 1000, β = 0.001
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(b) For gaussian a = .1, N = 103, β = 1
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(c) For quartic a = .1, N = 10, β = 10

Figure 34. Gdc at different N and β

In Fig:-34(a),34(c),34(b) we have shown the nature of Gdc with different parameter. For
all the cases Gdc decays to zero at τ →∞ which matches our analytical conclusion.Here we
differentiate the τ < 2πN and τ > 2πN region with different color. In fig. 35 we show the
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(a) For gaussian with a = 0.1, N = 1012, β = 10
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(b) For gaussian with a = 0.1, N = 10000, β = 0.001
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(c) For gaussian with a = 0.1, N = 1000, β = 10
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(d) For gaussian with a = 0.1, N = 1000, β = 100

Figure 35. Different nature of SFF at finite[β 6= 0] and Infinite temperature[β = 0]

behaviour of SFF with temperature and time for large and small N. At higher τ (Fig. ??),??
SFF decays with τ and at last goes to 1

πN
. Else (Fig:-35(a),35(b),35(c),35(d)) SFF increases

with τ for τ < 2πN and at last saturate to 1
πN

. Now from the analytical solution we know
that for large τ or large β Gdc doesn’t contribute to the SFF as the Gc has τ

(2πN)2
term.But

for higher N and low τ there should be a minima( 1
πN
− 1

N
) for this function within the range

τ < 2πN . As soon as the point τ = 2πN is crossed the function change its form and get
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saturated. This way of calculation of bound conclude that nature of SFF at late τ shows
same nature independent of type of potential. For infinite temperature SFF saturate at
same level and at same τ value- for different potential with same N . For finite temperature
it decays to zero irrespective of nature of potential. SFF is a measure of quantum chaos in
a dynamical system. Bound on SFF prove that whatever be the interaction, every system
at infinite temperature with same N saturated at same value. But at finite temperature
randomness in the system decays to zero at late time and the system equilibriate within
itself.

Here we consider Gaussian (Eq. (5.154)), quartic (Eq. (5.174),Eq. (5.176), Eq. (5.177)),
sextic (Eq. (5.197), Eq. (5.198), Eq. (5.199)), octa (Eq. (5.219), Eq. (5.220), Eq. (5.221))
potential and applying same limit to get the SFF.

Here we have Bessel’s Function of first kind (Ik(2aτ) in which taking asymptotic time
limit we get:

lim
τ→∞

Ik(2aτ)

τn
= 0 ∀ k = 1, 2, · · · , n. (5.238)

Here n is order of the polynomial random potential. As a result for finite N and large N we
get the bound on SFF s mentioned earlier. Here it is important to note that, our prescribed
bound on SFF is also the same as the saturation value of SFF for different potential for
finite N and large N .

6 Randomness from higher order Fokker-Planck equation: A prob-
abilistic treatment in cosmology

6.1 Cosmological scattering problem

Here we discuss about the cosmological scattering problem due to the particle creation in the
context of early universe physics (mostly during reheating epoch). For detailed derivation
of the results see refs. [42, 98], which we have followed in this discussion mostly. As we have
already discussed in the first half of the paper that, the Klein-Gordon equation, which is
the dynamical master equation of the particles created during reheating can be solved in
the same way as Schrödinger problem by formulating it as scattering problem in presence
of an impurity potential inside a conduction wire[99] and can be related to the phenomena
of chaos [43, 44, 100, 101]. In this section our prime objective is to establish this connection
including the possible quantum effects (corrections) and we will try to develop a formalism
to explain the quantum analogue of the chaos during cosmological particle creation.

To serve this purpose let us start with the solution of the Fourier mode of the field
(created particle during reheating) after j- th non-adiabatic event, which can be expressed
as:

Fourier mode solution after j− th event : xj(τ) =
1√
2π

[βje
ikτ + αje−ikτ ], (6.1)

where βj and αj are the Bogoliulov coefficients. For the vacuum solution we set the initial
condition as:

Vacuum initial condition : β0 = 0, α0 = eiδ at τ = 0, (6.2)
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where δ is a phase factor. Now the vacuum initial condition implies:

xj(τ = 0) = x0 =
1√
2π

[β0 + α0]. (6.3)

In this context the Bogoliulov coefficients satisfy following normalization condition:

Normalization : W [xjx
∗
j ] =

(
xj
dx∗j
dτ
− x∗j

dxj
dτ

)
= i =⇒ |αj|2 − |βj|2 = 1 ∀j = 1, 2, · · · , N .

(6.4)
This is analogous with scattering in presence of an impurity inside the conduction wire. Here
we can relate Bogoliubov coefficients before and after the non-adiabatic event by transfer
matrix as:  βj

αj


︸ ︷︷ ︸

Co−efficient matrix for j−th event

=

M11 M12

M21 M22


︸ ︷︷ ︸

Transfer matrix ≡Mj

 βj−1

αj−1


︸ ︷︷ ︸

Co−efficient matrix for (j−1)−th event

∀j = 1, · · · , N

(6.5)
When the wavelength of incoming mode is much larger than coherence interval of the non-
adiabatic event, then the time dependent mass profile evolution m2(τ), can’t be resolved in
wave. For this purpose, we take the following Dirac Delta profile of time dependent mass
function:

m2(τ) =
N∑
j=1

mjδD(τ − τj) , (6.6)

which is localized at time τ = τj. Here j represents the number of non-adiabatic events and
the total number of the events can be expressed as:

N∑
j=1

1 = N (6.7)

Now, it is important to note that, these solutions will satisfy the following two fold junction
conditions:

Condition I : xj(τj) = xj−1(τj) (6.8)

Condition II : x
′

j(τj) = x
′

j−1(τj)−mjxj−1(τj) (6.9)

In the present context, the transfer matrix Mj can be expressed as:

Mj =

M11 M12

M21 M22

 = I + iλj

 1 e−2ikτj

−e2ikτj −1

 , (6.10)
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where λj is defined as:

λj =
mj

2k
. (6.11)

Therefore in this computation the transmission and reflection co-efficient can be expressed
as:

Tj = |tj|2 =
1

(1− iλj)(1 + iλj)
=

1

1 + λ2
j

=
1

1 +
m2
j

4k2

(6.12)

Rj = |rj|2 =
−(iλj)(iλj)

(1− iλj)(1 + iλj)
=

λ2
j

1 + λ2
j

=

m2
j

4k2

1 +
m2
j

4k2

. (6.13)

Further, the local change in occupation number nj can be written in terms of transmission
co-efficient as:

nj = T−1
j − 1 = λ2

j =
Rj

Tj
=
m2
j

4k2
. (6.14)

Further, assuming the local change of occupation number is large only for k << mj i.e.
λj >> 1/2 then the transfer matrix can be simplified to the following polar form as:

Mj =

 eiθj
√

1 + nj ei(2φj−θj)
√

1 + nj

e−i(2φj−θj)
√

1 + nj e−iθj
√

1 + nj

 (6.15)

where the phase factors θj and φj are defined as:

θj = tan−1(λj) = tan−1
(mj

2k

)
, (6.16)

φj = tan−1(λj)− kτj +
π

4
= tan−1

(mj

2k

)
− kτj +

π

4
. (6.17)

Further, using the transfer matrix in polar form we define the transmission, reflection prob-
ability and the total occupation number as:

tj = eiθj
√

(1 + nj)−1 =
√
Tj e

iθj , (6.18)

rj = −
√
nj(1 + nj)−1e2i(θj−φj) = −

√
1− Tje2i(θj−φj) = −

√
Rje

2i(θj−φj), (6.19)

nj = T−1
j − 1 =

Rj

Tj
. (6.20)

Adiitionally, it is important to note that, the total occupation number before (n(j)) and
after (n(j − 1)) the j-th scattering are related by the following expression:

n(j) = n(j − 1) + λ2
j

[
1 + 2n(j − 1) + 2

√
n(j − 1)[1 + n(j − 1)]

]
cos ∆j

+ 2λj
√
n(j − 1)(1 + n(j − 1)) sin ∆j (6.21)
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where ∆j is the phase factor which is defined in terms of the Bogoliubov coefficients of the
(j − 1) th events as:

∆j ≡= −arg[αj−1] + arg[βj−1]− 2kτj. (6.22)

Now the vacuum initial condition demands that,

n(0) = 0, (6.23)

which further implies the following equation for n(−1):

A n2(−1) +B n(−1) + C = 0. (6.24)

where we define A, B and C as:

A =
[(

1 + 2λ2
0 cos ∆0

)2 − 4λ2
0 (λ0 cos ∆0 + sin ∆0)2

]
, (6.25)

B =
[
2λ2

0 cos ∆0

(
1 + 2λ2

0 cos ∆0

)
− 4λ2

0 (λ0 cos ∆0 + sin ∆0)2] , (6.26)

C = λ4
0 cos2 ∆0. (6.27)

Using Eq (6.24) the solution for n(−1) can be written as:

n(−1) =
1

2A

[
−B ±

√
B2 − 4AC

]
. (6.28)

Similarly using Eq (6.21) recursively one can find out the expressions for occupation number
for many scattering processes.

Alternatively, using the concept of transfer matrices one can also compute the occupa-
tion number in the present context. To serve this purpose one can first write down the total
transfer matrices for Ns number of scatterer as:

M(Ns) =
Ns∏
i=1

Mi = MNs ...M2M1. (6.29)

Using this the total occupation number can be expressed as:

n(Ns) = [M(Ns)]
∗
11M(Ns)11 − 1. (6.30)

To model a phenomenological situation where width is finite, the scattering event is relevant
and consider ”sech” scatterers:

m2(τ) =
N∑
j=1

mj

2wj
sech2

(
τ − τj
wj

)
. (6.31)

Now, if we take the limit wj → ∞ then we get back the Dirac Delta mass profile as given
by:

m2(τ) = lim
wj→∞

N∑
j=1

mj

2wj
sech2

(
τ − τj
wj

)
=

N∑
j=1

mjδD(τ − τj). (6.32)

Further, using the results obtained for transmission co-efficient we finally get the following
simplified expression for the total occupation number:

nj =
cos2(1

2
π
√

1 + 2mjwj)

sinh2(πkwj)
. (6.33)
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6.2 Fokker Planck Equation

In this subsection our prime objective is to construct Fokker Planck equation from the basic
principles. To serve this purpose we start with the concept of probability density, which
can be expressed in terms of Smoluchowski equation:

Smoluchowski Equation :

P (M ; τ + δτ) =

∫ ∞
−∞

P (M1, τ)P (M2, δτ)dM2 = 〈P (M1, τ)〉M2 (6.34)

It actually explain the probability density for particle position of Brownian motion in a
random system. For a Markovian process one can further express this in terms of Chapman-
Kolmogorov equation where the probability density is conditional. It is important to note
that, Smoluchowski equation describes a two point conditional probability distribution sat-
isfying the following criteria:

P2(Y1, t1|Y3, t3) =

∫ ∞
−∞

dY2 P2(Y1, t1|Y2, t2)P3(Y1, t1;Y2, t2|Y3, t3) for t1 < t2 < t3. (6.35)

where we have added a small interval δτ to an existing interval τ to construct the probability
density function. in such a situation the transfer matrix for the elongate interval can be
expressed as:

M = MδτMτ = Mτ+δτ . (6.36)

Here it is important to note that, to write this expression we have used the following set of
rules:

1. First of all, we identify, M1 = Mτ and M2 = Mδτ .

2. Then we apply the composition law

M = M2M1. (6.37)

3. Finally, we write M1 = Mτ as:

M1 = M−1
2 M = M + δM(M,M2). (6.38)

This implies:

δM = (M−1
2 − 1)M. (6.39)

Then, the time evolution of the probability density function can be expressed as:

∂τP (M, τ) =
〈δM〉M2

δτ
∂MP (M, τ) +

〈δMδM〉M2

δτ
∂M∂MP (M, τ) + ... (6.40)

This gives �Fokker Planck equation upto different order for occupation number n after ap-
propriate parameterization of the transfer matrices and a marginalization over certain pa-
rameters.
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Additionally it is important to note that, in order to reduce the complexity of the
computation we suppress the wave number (k) dependence in our obtained results. As
a consequence, the Smoluchowski equation as stated in Eq (6.1) can be simplified to the
following form:

P (n, θ, φ; τ + δτ) =

∫
dn2

dφ2

2π

dθ2

2π
P (n1, θ1, φ1; τ)P (n2, θ2, φ2; δτ) = 〈P (n1, θ1, φ1; τ)〉δτ .(6.41)

Now, we Taylor expand both side after writing [n1, θ1, φ1] in terms of [n, θ.φ].
Here one can write the occupation umber n1 as:

n1 = T−1
1 − 1 = [M1]∗11[M1]11 − 1 ≡ n+ δn, (6.42)

θ1 = − i
2
ln

[
[M1]11

[M1]∗11

]
≡ θ + δθ. (6.43)

where the perturbed part of the occupation number δn can be expressed as:

δn ≡ n2(1 + 2n)− 2
√

(1 + n2)(1 + n)n2n cos 2(φ2 − θ) ≡ f(φ2 − θ). (6.44)

In this context, the right hand side of the above equation represents the perturbed Hamil-
tonian. Here we use perturbation theory to find the eigenvalues of occupation number n1 in
terms of the eigenvalues of occupation number n and the matrix elements of the perturbed
part δn in the preferred choice of basis which diagonalizes the matrix n. Additionally, it is
important to note that, the explicit expression for the perturbed angular parameter δθ is
not very significant for our discussion. Instead of this, the angular difference (φ2 − θ) play
crucial role to quantify the perturbed contribution to the occupation number.

Now, the conditional probability of getting Y at time t + τ in terms of probability of
getting nearby to Y − ξ at time t and then to Y in time τ is given by:

P2(Y0|Y, t+ τ) =

∫ ∞
−∞

dξ P2(Y0|Y − ξ, t)P2(Y − ξ|Y, τ). (6.45)

On the other hand, using Taylor series expansion of P2(Y0|Y, t+ τ) around τ = 0 we get:

P2(Y0|Y, t+ τ) ≈ P2(Y0|Y, t) +
∂P2(Y0|Y, t)

∂t
τ . (6.46)

Here it is important to note that, in Taylor series expansion of the probability density
function P2(Y0|Y, t + τ) we truncate the series by considering upto the second term in the
series.

Further, comparing the right hand sides of Eq (6.45) and Eq (6.46), we finally get the
second term of the Taylor expansion as given by:

∂P2(Y0|Y, t)
∂t

τ = −P2(Y0|Y, t) +

∫ ∞
−∞

P2(Y0|Y − ξ, t)P2(Y − ξ|Y, τ)dξ (6.47)

Next using Eq (6.45) in Eq (6.47) we get the following simplified result for the second term
of the Taylor expansion as given by:

∂P2(Y0|Y, t)
∂t

τ = −
∫ ∞
−∞

P2(Y0|Y, t)P2(Y − |Y − ξ, τ)dξ

+

∫ ∞
−∞

P2(Y0|Y − ξ, t)P2(Y − ξ|Y, τ)dξ (6.48)
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Now in this context the normalization condition for the probability density function can be
written as: ∫ ∞

−∞
P2(Y |Y − ξ, τ)dξ = 1. (6.49)

From Eq (6.48) we observe that it has scattering out and scattering in contributions respec-
tively.

Now, we can determine P2 ≡ P (n2, θ2, φ2; δτ) by the condition that it maximizes the
Shannon entropy:

Shannon Entropy :

S = −〈lnP2(n2, θ2, φ2; δτ)〉δτ − g1 [〈1〉δτ − 1]︸ ︷︷ ︸
Constraint I

− g2 [〈n2〉δτ − µδτ ]︸ ︷︷ ︸
Constraint II

+ g3 [〈U(θ2)〉δτ − αδτ ]︸ ︷︷ ︸
Constraint III

.

(6.50)

using the principles of maximum entropy ansatz. In the above expression, g1, g2 and g3 are
the Lagrange multipliers. Here it is important to note that, U(θ2) is an arbitrary function
of θ2 which has an extremum at the location θ2 = 0 and can be explicitly determined by im-
posing additional constraint conditions i.e. symmetry arguments, consistency requirements
and available knowledge of the microscopic sector of the system under consideration.

To apply the concept of maximum entropy ansatz we choose the following set of con-
straints, which are helpful to minimize Shannon entropy in the present computation:

1. Constraint I:
First of all, we talk about the Constraint I, which will fix the normalization condition
of the probability density distribution as given by:

〈1〉δτ = 1. (6.51)

This is obtained by setting the co-efficient of the Lagrange multiplier g1 to zero.

2. Constraint II:
Using the Constraint II, it is possible to fix the local mean particle production rate ,
which is quantitatively defined as:

〈n2〉δτ
δτ

= µ. (6.52)

This is obtained by setting the co-efficient of the Lagrange multiplier g2 to zero.

3. Constraint III:
Finally the Constraint III demands that:

lim
δτ→0

Mτ+δτ →Mτ , (6.53)

which basically implies that the addition of infinitesimal interval can’t correspond to
a finite significant change in transfer matrix.
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To establish this statement we start with the following transfer matrix written in the
polar form for j = 2:

M2 =

 eiθ2
√

1 + n2 ei(2φ2−θ2)
√

1 + n2

e−i(2φ2−θ2)
√

1 + n2 e−iθ2
√

1 + n2

 (6.54)

Now in the limit δτ → 0 we have:

lim
δτ→0

n2 = 0, lim
δτ→0

e±iθ2 = 1, lim
δτ→0

e±i(2φ2−θ2) = 0. (6.55)

Consequently the transfer matrix can be simplified as:

lim
δτ→0

M2 =

 1 0

0 1

 = I. (6.56)

To impose this specific non-trivial constraint we assume that the following condition
is satisfied:

〈U(θ2)〉δτ = αδτ =⇒ lim
δτ→0
〈U(θ2)〉 = fixed, (6.57)

where U(θ2) is a real valued and positive definite arbitrary function. This is possible
if the function U(θ2) has an extremum at θ2 = 0 where eiθ2 = 1. One can choose
various types of function which can satisfy these constraints. For an example, as a
phenomenological choice one can consider the following functional form:

U(θ2) =
[
(eiθ2 − 1)(e−iθ2 − 1)

]p
= |eiθ2 − 1|2p = 4 sin2p θ2

2
∀ p = 1, 2, 3, · · · .(6.58)

As a result, the probability density function reaches its maximum at θ2 = 0 when
the time interval δτ → 0. Further, extremizing the expression for the Shannon en-
tropy we get the following expression for the probability density distribution function
P (n2, θ2, φ2; δτ) as given by:

P2 = P (n2, θ2, φ2; δτ) =

(
1

K(g2)
e−g2n2

)(
1

K(g3)
e−g3U(θ2)

)
, (6.59)

where we introduce two new functions K(g2) and K(g3) which are defined as:

K(g2) ≡
∫ ∞

0

dn2 e
−g2n2 =

1

g2

, (6.60)

K(g3) ≡
∫
dθ2

2π
e−g3U(θ2). (6.61)
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Further using Eq (6.52) and Eq (6.57), we get the following simplified expression for
the probability density function: P (n2, θ2, φ2; δτ) as given by:

Maximum Entropy Ansatz : P2 = P (n2, θ2, φ2; δτ)

=

(
1

µδτ
e−

n2
µδτ

)(
1

K(αδτ)
e−g3αδτU(θ2)

)
= P (n2; δτ)P (θ2; δτ)

= P (n2, θ2; δτ), (6.62)

which implies that the probability density function is independent of φ2 after applying
the maximum entropy ansatz. For weak scattering, this corresponds to scattering to
scattering events being uniformly distributed. Now if we consider large number of
scatterings, then applying Central Limit Theorem one can show that the final result
is not sensitive to the probability density function P2. In this discussion we have
explicitly provided the mathematical form of the probability density function, which
is not very important to derive the Fokker-Planck equation.

Now if we use the fact that the probability density distribution function P2 is completely
independent of φ2 one can further express the Smoluchowski equation in the following sim-
plified form:

P (n, θ, φ; τ + δτ) ≡ P (n, θ; τ + δτ) =

∫
P (n, θ, τ)P (dn+ dn

′
, dθ + dθ

′
; δτ)dn

′
dθ
′

= 〈P (n+ δn, θ + δθ; τ)〉δτ (6.63)

Further, integrating both sides of the above equation with respect to the parameter θ we
get the following simplified expression:

P (n; τ + δτ) =
∫
dθ P (n, θ; τ + δτ)

=

∫
dθ 〈P (n+ δn, θ + δθ; τ)〉δτ

= 〈P (n+ δn; τ)〉δτ (6.64)

where during performing the integration over θ we explicitly use the information that the
infinitesimal change in θ i.e. δθ is not functionally dependent on θ.

Now, using Taylor expansion of 〈P (n+ δn; τ)〉δτ with respect to the infinitesimal occu-
pation number δn we get:

〈P (n+ δn; τ)〉δτ = 〈P (n; τ)〉δτ +
∞∑
q=1

1

q!

∂qP (n; τ)

∂nq
〈(δn)q〉δτ

= 〈P (n; τ)〉δτ +
∂P (n; τ)

∂n
〈δn〉δτ +

1

2!

∂2P (n; τ)

∂n2
〈(δn)2〉δτ + · · ·

= 〈P (n; τ)〉δτ +

{
∂P (n; τ)

∂n

∂〈δn〉δτ
∂τ

+
1

2!

∂2P (n; τ)

∂n2

〈(δn)2〉δτ
δτ

}
δτ + · · · , (6.65)
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where in this context we have:

〈P (n; τ)〉δτ = P (n, τ). (6.66)

On the other hand, taking Taylor expansion of the probability density function P (n; τ +δτ)
with respect to the infinitesimal time interval δτ we get:

P (n; τ + δτ) = P (n; τ) +
∞∑
q=1

1

q!

∂qP (n; τ)

∂τ q
(δτ)q

= P (n; τ) +
∂P (n; τ)

∂τ
δτ +

1

2!

∂2P (n; τ)

∂τ 2
(δτ)2 + · · · , (6.67)

Further, substituting Eq (6.65) and Eq (6.67) in Eq (6.64) and equating both the sides we
get:

∂P (n; τ)

∂τ
=
∂P (n; τ)

∂n

〈δn〉δτ
δτ

+
1

2

∂2P (n; τ)

∂n2

〈(δn)2〉δτ
δτ

+ ... (6.68)

Consequently, using Eq (6.44) one can define the following statistical moments:

〈δn〉δτ = (1 + 2n)〈n2〉 = µδτ(1 + 2n) (6.69)

〈(δn)2〉δτ = 2n(n+ 1)〈n2〉+ (1 + 6n+ 6n2)〈n2〉2

= 2n(n+ 1)µδτ + (1 + 6n+ 6n2)(µδτ)2. (6.70)

Here it is important to note that, for proper truncation of the moments we assume that the
particle production rate is small locally i.e. µδτ < 1. For this reason the second factor is
ignored in 〈(δn)2〉δτ and finally we get:

Fokker Planck Equation :
1

µk

∂P (n; τ)

∂τ
= (1 + 2n)

∂P (n; τ)

∂n︸ ︷︷ ︸
Drift term

+n(1 + n)
∂2P (n; τ)

∂n2︸ ︷︷ ︸
Diffusion term

,

(6.71)
where in the mean particle production rate (defined earlier) we have restored the Fourier
mode dependence i.e. µ = µk. On the other hand, in the occupation number we have
ignored the Fourier mode dependence. For more details see ref. [102]. Additionally, it is
important to note that in presence of diffusion one can derive the Fokker-Planck equation
from Langevin equation of the following mathematical form:

Langevin Equation I :
dn(τ)

dτ
= a(n) + b(τ), (6.72)

where a(n) is defined in terms of an external deterministic force f(n) and contribution from
frictional damping (which is characterised by the damping coefficient γ) as:

a(n) =
f(n)

mγ
= 0, (6.73)
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and b(τ) is the Gaussian random function (also known as Gaussian white noise), which
satisfies the following criteria:

〈b(τ)〉 = 0, (6.74)

〈b(τ)b(τ
′
)〉 = 2D(n)δ(τ − τ ′). (6.75)

In our prescription, the diffusion coefficient D(n) is given by the following expression:

Diffusion Coefficient (Einstein′s Relation) : D(n) =
kT

η
= n(1 + n). (6.76)

Here it is important to note that, in a most generalised situation b(τ) has a finite microscopic
autocorrelation time for which it is a coloured noise defined as:

〈b(τ)b(τ
′
)〉 = g(τ − τ ′), (6.77)

where g(τ − τ ′) is an arbitrary function of the time interval τ − τ ′ . In such a situation it
describes a non-Markovian process.

One can also recast the Langevin equation in the following alternative form:

Langevin Equation II :
dn(τ)

dτ
= a(n) +

√
D(n0) b(τ), (6.78)

where, the Gaussian white noise satisfies the following criteria:

〈b(τ)〉 = 0, (6.79)

〈b(τ)b(τ
′
)〉 = 2δ(τ − τ ′). (6.80)

However, due to the presence of Dirac Delta function in the two point correlation function
the white noise function b(τ) is singular and consequently the factor

√
D(n) b(τ) is not

defined in this context. This will finally lead to Itô vs. Stratonovitch dilemma. For an
infinitesimal time interval [τ, τ + ε], in the present context the occupation number n0, is
defined as a function of a new parameter Q:

n0 = n(τ) + (1−Q) [X(τ + ε)− x(τ)] = y + (1−Q) [X(τ + ε)− y] 0 ≤ Q ≤ 1. (6.81)

Now we define:

Bε =

∫ τ+ε

τ

dτ
′
b(τ

′
), (6.82)

using which we finally get the following results:

〈Bε〉 = 0, (6.83)

〈BεBε〉 = 2. (6.84)

1. Itô prescription:
According to this prescription one can write:

n(τ + ε) = y + εa(y) +
√
D(y)

∫ τ+ε

τ

dτ
′
b(τ

′
)

= y + εa(y) +
√
D(y) Bε, (6.85)
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which is true for Q = 1. Now using the Chapman-Kolmogorov equation in the present
context we get:

P (n, τ + ε|y, τ) =
〈
δ
(
n− y − εa(y)−

√
D(y) Bε

)〉
'

(
1− ε∂a(n)

∂n
− Bε

∂(
√
D(n))

∂n
+
B2
ε

2

∂2D(n)

∂n2

)
×
〈
δ
(
n− y − εa(y)−

√
D(y) Bε

)〉
. (6.86)

Here upto the order ε we use the following fact:

a(n) = a(y) +O(ε). (6.87)

Also we have used the following well known identity of Dirac Delta function, as given
by:

δ(f(y)) =
1

|f ′(y)|
δ(y − y0), where f(y0) = 0. (6.88)

Now, we expand the Dirac Delta function in the powers of ε, as given by:

δ
(
n− y − εa(y)−

√
D(y) Bε

)
= δ(n− y) +

[
εa(n) +

√
D(y) Bε

]
δ
′
(x− y)

+
1

2

[
εa(n) +

√
D(y) Bε

]2

δ
′′
(x− y) + · · · (6.89)

where it is important to note that we have Taylor expanded the Dirac Delta function
of the order of B2

ε , this is because of the reason that Bε ∼ O(
√
ε). Hence we use this

result in Chapman-Kolmogorov equation and we get the following simplified integral:

P (n; τ + ε|n0) =

∫
dy P (y, τ |n0)

〈[(
1− ε∂a(n)

∂n

−Bε
∂(
√
D(n))

∂n
+
B2
ε

2

∂2D(n)

∂n2

)
δ(y − n)

+
(
εa(n) +

√
D(n)Bε

)
δ
′
(y − n) +

D(n)B2
ε

2
δ
′′
(y − n)

]〉
(6.90)

Further, performing the integration and using Eq (6.83) and Eq (6.84) we finally get
the following simplified result of this integral:

P (n; τ + ε|n0) = P (n; τ |n0) + ε
∂P (n; τ |n0)

∂τ

= P (n; τ |n0) + ε

{
− ∂

∂n
(a(n)P (n, τ |n0))

+
∂2

∂n2
(D(n)P (n, τ |n0))

}
+O(ε2). (6.91)
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So for Q = 1 the Fokker-Planck equation can be written starting from Langevin
equation II in the following form:

Fokker Planck Equation (From Itô) :

∂P (n; τ)

∂τ
= − ∂

∂n
(a(n)P (n; τ)) +

∂2

∂n2
(D(n)P (n; τ)) , (6.92)

where we have used the notation P (n; τ |n0) ≡ P (n; τ) for simplicity.

2. Generalized Itô prescription:
In this situation for general Q one can write:

〈n(τ + ε)− y〉 = ε
[
a(y) + (1−Q)D

′
(y)
]
. (6.93)

Further, we have to make the following substitution:

a(y) −→ a(y) + (1−Q)D
′
(y). (6.94)

This will finally lead to the following Fokker Planck equation:

Fokker Planck Equation (For Generalized Itô) :

∂P (n; τ)

∂τ
= − ∂

∂n
(a(n)P (n; τ)) +

∂

∂n

(
(D(n))1−Q ∂

∂n

(
(D(n))QP (n; τ)

))
, (6.95)

where in the present situation the Stratonovich prescription corresponds to Q = 1/2.
However, for our problem, we consider the simplest situation , where a(n) = 0, Q = 0
and D(n) = n(1 + n).

Now integrating the Langevin equation II over a small time interval ε we get:

n(τ + ε)− n(τ) = εa(n(τ)) +

∫ τ+ε

τ

dτ
′ √

D(n(τ ′) b(τ
′
). (6.96)

Now to deal with the product
√
D(n(τ) b(τ) one can use various prescriptions and that will

finally lead to different form of Fokker Planck equations. One of the possibility is to apply
Stratonovich prescription, using which we can compute the integral as 22:

I(n; τ |ε) =

∫ τ+ε

τ

dτ
′ √

D(n(τ ′)) b(τ
′
) =

√
D

(
[n(τ) + n(τ + ε)]

2

) ∫ τ+ε

τ

dτ
′
b(τ

′
).(6.98)

This will correspond to the following form of Fokker Planck equation, as given by:

Fokker Planck Equation (From Stratonovitch) :

∂P (n; τ)

∂τ
= − ∂

∂n
(a(n)P (n; τ)) +

∂

∂n

(√
D(n)

∂

∂n

(√
D(n)P (n; τ)

))
, (6.99)

22In case of Itô prescription one can recast the integral I(n; τ |ε) in to the following form:

I(n; τ |ε) =

∫ τ+ε

τ

dτ
′
√
D(n(τ ′)) b(τ

′
) =

√
D (n(τ))

∫ τ+ε

τ

dτ
′
b(τ

′
). (6.97)
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Further, one can write the Fokker-Planck equation in terms of a continuity equation, given
by the following expression:

Continuity Equation :
∂P (n; τ)

∂τ
= −∂J(n; τ)

∂n
, (6.100)

where the Fokker-Planck current is defined as:

Fokker−Planck current (From Itô) :

J(n; τ) = µk

(
a(n)−D(n)

∂

∂n

)
P (n; τ), (6.101)

Fokker−Planck current (From Stratonovitch) :

J(n; τ) = µk

(
a(n)P (n; τ)−

√
D(n)

∂

∂n

(√
D(n)P (n; τ)

))
, (6.102)

Fokker−Planck current (From Our Paper) :

J(n; τ) = −µk
(
n(1 + n)

∂

∂n

)
P (n; τ). (6.103)

Additionally, it is important to note that the Fokker-Planck equation explicitly mimics the
role of a Schrödinger equation, provided the real time should be replaced by imaginary time
in the present context. and such an analogy usually used to describe the convergence to the
equilibrium. To establish this statement let us start with the time dependent Schrödinger
equation for an electron moving in one dimension conduction wire in presence impurity
potential V (x), as given by:

Schrödinger Equation :

[
− 1

2m

∂2

∂x2
+ V (x)

]
ψ(x, t) = Hψ(x, t) = i

∂ψ(x, t)

∂t
. (6.104)

Now changing t = −iτ , x = n, ψ(x, τ) = P (n; τ) we get:

∂

∂n

(
D(n)

∂P (n; τ)

∂n

)
=
∂P (n; τ)

∂τ
= −∂J(n; τ)

∂n
. (6.105)

Further taking, V = 0 one can identify the above equation as diffusion equation and identify
the diffusion coefficient as:

Diffusion Coefficient : D(n) =
1

2m
=
kT

η
= n(1 + n). (6.106)

Now if we consider the contribution from the impurity potential is non vanishing then one
can write:

Generalized Fokker Planck Equation :

∂

∂n

(
D(n)

{
∂P (n; τ)

∂n
+ β P (n; τ)

∂V (n)

∂n

})
=
∂P (n; τ)

∂τ
= −∂J(n; τ)

∂n
. (6.107)
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then for equilibrium we set the Fokker-Planck current is zero 23, for which we get finally the
following result: {

∂P (n)

∂n
+ β P (n)

∂V (n)

∂n

}
= 0, (6.108)

from which we get the following Boltzmann probability distribution function for equilibrium:

P (n) = P0 exp(−βV (n)), (6.109)

where P0 = P (n = 0) is the normalization constant for the probability distribution.
Now in the situation where the Fokker Planck current is non-vanishing one can use the

following solution ansatz to solve the most Generalized Fokker Planck Equation, as given
by:

Solution Ansatz : P (n; τ) = exp

(
−β

2
V (n)

)
W (n; τ) . (6.110)

Using this ansatz one can write the following expression:{
∂P (n; τ)

∂n
+ β P (n; τ)

∂V (n)

∂n

}
= exp

(
−β

2
V (n)

){
∂W (n; τ)

∂n
+
β

2
W (n; τ)

∂V (n)

∂n

}
.

(6.111)
Further, substituting this result in the Generalized Fokker Planck Equation we get the
following partial differential equation for the unknown function W (n; τ), as given by:

∂

∂n

(
D(n) exp

(
−β

2
V (n)

){
∂W (n; τ)

∂n
+
β

2
W (n; τ)

∂V (n)

∂n

})
= exp

(
−β

2
V (n)

)
∂W (n; τ)

∂τ
, (6.112)

which can be recast in to the following simplified form:

∂

∂n

(
D(n)

∂W (n; τ)

∂n

)
− U(n)W (n; τ) =

∂W (n; τ)

∂τ
, (6.113)

where the effective potential U(n) is defined as:

Effective Potential :

U(n) =

[
β2

4
D(n)

(
∂V (n)

∂n

)2

− β

2
D(n)

(
∂2V (n)

∂n2

)
− β

2

(
∂D(n)

∂n

)(
∂V (n)

∂n

)]
.(6.114)

Now let us only consider the time independent part of the Generalized Fokker Planck equa-
tion for which the wave function for the equilibrium is described by the following expression:

∂

∂n

(
D(n)

∂ψ0(n)

∂n

)
= U(n)ψ0(n), (6.115)

23Here it is important to note that, in one dimension J=constant directly implies J=0. But in the case
of higher dimension one can get stationary out-of-equilibrium currents.
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where the solution is given by:

ψ0(n) = Neq exp

(
−β

2
V (n)

)
, (6.116)

where Neq is the normalization constant which can be fixed by the following normalization
condition of the equilibrium wave function:∫

dn |ψ0(n)|2 = 1 =⇒ |Neq| =
1√∫

dn exp(−βV (n))
, (6.117)

where ψ0(n) physically represents the ground state wave function with energy eigen value
E0 = 0. All the exicied state have energy eigen value Ep > 0 (for p > 1). To get the time
dependence of the evolution equation we use the initial condition at time τ = 0 in terms
of complete set of eigenfunctions ψp(n) = 〈n|p〉, which satisfy the following eigen value
equation:

− ∂

∂n

(
D(n)

∂ψp(n)

∂n

)
+ U(n)ψp(n) = Epψp(n), (6.118)

which implies the following result:

W (n, 0|n0) =
∑
p

Cpψp(n). (6.119)

Here the expansion coefficient of the basis is defined as:

Cp =

∫
dn ψp(n)W (n, 0|n0) = ψp(n0) exp

(
β

2
V (n0)

)
= 〈n|n0〉 exp

(
β

2
V (n0)

)
, (6.120)

where we have used the following expression:

W (n, 0|n0) = exp

(
β

2
V (n0)

)
δ(n− n0). (6.121)

Now for the time dependent part the solution of the Generalized Fokker Planck equation
can be written as:

W (n, τ |n0) =
∑
p

Cpψp(n) exp (−Epτ)

=
∑
p

exp

(
β

2
V (n0)

)
〈n|p〉 exp (−Epτ) 〈p|n0〉 (6.122)

= exp

(
β

2
V (n0)

)
〈n| exp

(
−
[
− ∂

∂n

(
D(n)

∂

∂n

)
+ U(n)

]
τ

)
|n0〉.

Then the probability distribution function can be expressed as:

P (n; τ) = exp

(
−β

2
[V (n)− V (n0)]

)
〈n| exp

(
−
[
− ∂

∂n

(
D(n)

∂

∂n

)
+ U(n)

]
τ

)
|n0〉.

(6.123)
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In this paper we investigate the physical outcomes of the simplest possibility where V (n) =
V (n0) = 0 and U(n) = 0 for which one can write the following simplified expression:

P (n; τ) = 〈n| exp

(
−
[
− ∂

∂n

(
D(n)

∂

∂n

)]
τ

)
|n0〉. (6.124)

Now from Eq (6.127), one can write down the Fokker Planck equation in terms of the
following operator equation:

D̂FPP (n; τ) = 0, (6.125)

where D̂FP is the Fokker Planck operator represented by:

D̂FP ≡
[
(1 + 2n)

∂

∂n
+ n(1 + n)

∂2

∂n2
− 1

µk

∂

∂τ

]
=

[
∂

∂n

(
n(n+ 1)

∂

∂n

)
− 1

µk

∂

∂τ

]
. (6.126)

Now, we consider a special case where n >> 1, which gives the most simplest outcome in
the present context. In such a situation one can approximately write down the following
simplified form of the Fokker Planck equation, as given by:

1

µk

∂P (n; τ)

∂τ
= 2n

∂P (n; τ)

∂n
+ n2∂

2P (n; τ)

∂n2
=

∂

∂n

(
n2∂P (n; τ)

∂n

)
, (6.127)

To solve this partial differential equation in the n >> 1 limit we use method of separation
of variable, using which we can write:

P (n; τ) = P1(n)P2(τ). (6.128)

Further, using Eq (6.128) we get the following two sets of independent differential equations,
as given by: [

n2 d
2

dn2
+ 2n

d

dn
+ q

]
P1(n) = 0, (6.129)[

d

dτ
+ q

]
P2(τ) = 0. (6.130)

Solution of Eq (6.145) and Eq (6.146) is given by:

P1(n) =
[
A n−

1
2(
√

1−4q+1) +B n
1
2(
√

1−4q−1)
]
, (6.131)

P2(τ) = C e−qτ , (6.132)

where we define a new constant:

q = µkQ
2. (6.133)

Additionally, A, B and C are arbitrary constants, which can be determined after imposing
appropriate boundary conditions.
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Consequently, the most general total solution for the probability density function in the
limit n >> 1 can be expressed as:

P (n; τ) =
∞∑
q=0

[
A1 n

− 1
2(
√

1−4q+1) +B1 n
1
2(
√

1−4q−1)
]
e−qτ , (6.134)

where we define A1 and B1 as:

A1 = AC, B1 = BC. (6.135)

Now, after imposing the boundary condition it can be shown that in the large n limit
(n → ∞) the solution obtained in Eq (6.150) can be expressed in terms of the following
log-normal distribution. To check that explicitly, let us write the probability distribution
as the Fourier transformation with respect to the occupation number n, which is given by:

P (n; τ |n′ ; τ ′) =
1

2π

∫
dk eiknP̄ (k; τ |n′ ; τ ′). (6.136)

Using this one can write down the Fokker Planck equation in the Fourier space as:

∂P̄ (k; τ)

∂τ
= µk

(
2ink − k2n2

)
P̄ (k; τ), (6.137)

which is obviously a simplest version of the Fokker Planck equation as it contains a single
derivative with respect to time τ . Now, one can choose the initial condition such that the
probability distribution function at time τ

′
is given by the following expression:

P (n; τ
′ |n′ ; τ ′) = δ(n− n′). (6.138)

This is only true when the probability distribution function after Fourier transform at time
τ = τ

′
can be written as:

P̄ (k; τ
′ |n′ ; τ ′) = e−ikn

′

. (6.139)

Then solution of Eq (6.137) can be expressed after imposing the initial condition as:

P̄ (k; τ |n′ ; τ ′) = eµk(2ink−k2n2)(τ−τ ′ )−ikn′ . (6.140)

Hence substituting back the above mentioned result into the definition of Fourier transfor-
mation and setting the initial condition n

′
= 0 and τ

′
= 0 and further considering n → ∞

limit we get the following result for the probability distribution function, as given by:

P (n; τ) =
1

n

1

σ
√

2π
exp

[
−(lnn− µkτ)2

2σ2

]
, (6.141)

which is precisely a log-normal distribution function and σ is standard deviation of the
log-normal distribution, which can be expressed as:

σ =
√

2µkτ . (6.142)
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Figure 36. Evolution of the log normal probability density function with respect to the logarithm
of the occupation number per mode ln(1 + nk), for a fixed time for nk >> 1.

One can explain the physics of this obtained result in the large n limit . In the earlier section
we have discussed that the averaging over the phase factor of lnn can be expressed in terms
of the logarithms of the occupation number of particles produced in each scattering events.
Further using Central Limit Theorem, one can further interpret that lnn follows Gaussian
profile (on the other hand, one can also say that in such a case n follows a log-normal
distribution). But this physical explanation is only valid for large n limiting approximation.
In figure (36), we have shown the Evolution of the log normal probability density function
with respect to the logarithm of the occupation number per mode ln(1+nk), for a fixed time
(µkτ=fixed). Additionally, it is important to note that from the plot that for very large
value of the occupation number n (large n limit) the log normal profile shows Gaussian
features perfectly, which indicates the initial assumption regarding large n was consistent.

Now, we consider another special case where n << 1 in the present context. In such
a situation one can approximately write down the following simplified form of the Fokker
Planck equation, as given by:

1

µk

∂P (n; τ)

∂τ
=
∂P (n; τ)

∂n
+ n

∂2P (n; τ)

∂n2
=

∂

∂n

(
n
∂P (n; τ)

∂n

)
, (6.143)

To solve this partial differential equation in the n << 1 limit we use method of separation
of variable, using which we can write:

P (n; τ) = P1(n)P2(τ). (6.144)

Further, using Eq (6.144) we get the following two sets of independent differential equations,
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as given by: [
n
d2

dn2
+

d

dn
+ w

]
P1(n) = 0, (6.145)[

d

dτ
+ w

]
P2(τ) = 0. (6.146)

Solution of Eq (6.145) and Eq (6.146) is given by:

P1(n) = [D lnn+ E − nw] , (6.147)

P2(τ) = F e−wτ , (6.148)

where we define a new constant:

w = µkW
2. (6.149)

Additionally, D, E and F are arbitrary constants, which can be determined after imposing
appropriate boundary conditions.

Consequently, the most general total solution for the probability density function in the
limit n >> 1 can be expressed as:

P (n; τ) =
∞∑
w=0

[D1 lnn+ E1 − nw] e−wτ , (6.150)

where we define D1 and E1 as:

D1 = DF, E1 = EF. (6.151)

Further using the Fourier transformation with respect to the occupation number n as men-
tioned in Eq (6.136), we get the following simplified expression for the Fokker Planck equa-
tion in n << 1 limit:

∂P̄ (k; τ)

∂τ
= µk

(
ik − k2n

)
P̄ (k; τ), (6.152)

which is obviously a simplest version of the Fokker Planck equation as it contains a single
derivative with respect to time τ . Further imposing the previously used boundary condition
for the limit n >> 1 in the present context we get the following result for the probability
distribution function in the Fourier transformed space, as given by:

P̄ (k; τ |n′ ; τ ′) = eµk(ik−k2n)(τ−τ ′ )−ikn′ . (6.153)

Hence substituting back the above mentioned result into the definition of Fourier transfor-
mation and setting the initial condition n

′
= 0 and τ

′
= 0 and further considering n → 0

limit we get the following result for the probability distribution function, as given by:

P (n; τ) =
1

2
√
µknτπ

exp

[
−(n+ µkτ)2

4µknτ

]
, (6.154)
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Figure 37. Evolution of the probability density function with respect to the the occupation
number per mode nk, for a fixed time in the limit nk << 1.

which is not a log normal distribution function in n << 1 limit. One can explain the physics
of this obtained result in the small n limit . In this situation one can observe deviations in
the profile function. The prime reason for such deviations in small n limit is appearing due
to the fact that, the total transmission probability is bounded by unity. In other words, on
can say that this is only possible when n is bounded by zero in this context of discussion.
In figure (37), we have shown the evolution of the probability density function with respect
to the occupation number per mode nk, for a fixed time (µkτ=fixed). Additionally, it is
important to note that for very small values of the parameter n we have observed from
the plot that the deviation from Gaussian feature is observed. In other words, one can
interpret that the deviation from log normal probability distribution function corresponds
to the significant non-Gaussian features at small values of n. Apart from this one can also
comment on the quantum mechanical origin of higher order non-Gaussian contributions
appearing in Fokker Planck equation which are more appropriate at small values of n. In
the next subsection we will discuss about the physical impacts of this additional higher
order contributions in detail.

6.3 Corrected probability distribution profiles: Quantum effects from non-
Gaussianity

In this subsection we get different order correction to the Fokker Planck equation that we
have derived by Taylor expansion. As we already know that the Taylor expansion of the
probability density distribution function is taken with respect to time τ . On the other hand,
using Maximum entropy ansatz we have considered the Taylor expansion of the ensemble
average of the distribution function with respect to the occupation number n. After that
we equate both the results and comparing the coefficient of δτ from the both sides of the
expansion (see previous Eq (6.68) for more details). Now without truncating both the sides
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of this expression one can get additional contributions in δτ and in its higher order. If
we do the comparison including such additional contributions then it will give rise to cor-
rected version of the Fokker Planck equation valid upto higher orders. Further solving these
sets of differential equation order by order one can explicitly justify the validity of all such
corrections in the Fokker Planck equation. In this paper we have investigated this possi-
bility by considering the contributions upto fourth order. All such higher order correction
terms are very useful to describe the non-Gaussian effects appearing during the process of
cosmological particle production during reheating phase of early universe. On top of that,
one can explain the origin of such higher order contributions in the quantum mechanical
ground as it produces non vanishing significant effects in the expression for the higher order
statistical moments directly originating from the various quantum mechanical correlations
(one-point, two-point, three-point etc.) computed during cosmological particle production
at the epoch of reheating of early universe. More precisely, the deviation from Gaussianity
(in other words the deviation from log-normal distribution) in the present context can be
directly linked with the quantum mechanical effects appearing during reheating epoch of
early universe and for this reason one can interpret the higher order corrected version of
the Fokker Planck equation as a quantum corrected Fokker Planck equation. Since in this
paper we have provided the analytical correction upto the fourth order, one can say that in
this derivation we have actually provided the fourth order quantum corrected Fokker Planck
equation. The details of this derivations are explicitly discussed in the following subsub sec-
tions, where doing the analysis we justify order by order that how such specific corrections
will modify the log-normal distribution and its impact in the quantum mechanical ground.

6.3.1 First order contribution

In this context, our prime objective is to find out the first order contribution to the Fokker
Planck equation and to solve this equation analytically, which will help us to understand the
background physics related to the present formalism. To serve this purpose we equate both
the sides of Eq (6.68) after Taylor expansion and compare coeeficient of δτ . Consequently,
we get the following partial differential equation:

First order Fokker Planck Equation :

1

µk

∂P (n; τ)

δτ
= (1 + 2n)

∂P (n; τ)

∂n
+ n(1 + n)

∂2P (n; τ)

∂n2
. (6.155)

Now to solve this partial differential equation we apply method of separation of variable,
using which we can write the total solution in the following form:

P (n; τ) = P1(n)P2(τ). (6.156)

Further, using the solution ansatz stated in Eq (6.156) we get the following sets of indepen-
dent differential equations, as given by:[

n(n+ 1)
d2

dn2
+ (2n+ 1)

d

dn
+m1

]
P1(n) = 0, (6.157)

dP2(τ)

dτ
+m1P2(τ) = 0. (6.158)
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Solution of Eq (6.157) and Eq (6.158) is given by:

P1(n) = C1P 1
2

(−1+
√

1−4m1)(1 + 2n) + C2Q 1
2

(−1+
√

1−4m1)(1 + 2n), (6.159)

P2(τ) = C3 e
−τµkm1 . (6.160)

Here C1, C2 and C3 are arbitrary integration constants which can be obtained by imposing
appropriate boundary conditions. Additionally, we introduce a constant m1 which is defined
as:

m1 = m2. (6.161)

which will follow certain constraints in the present context.
It is important to note that, to get real valued solution the constant m1 satisfy the

following condition:

1

2
[−1 +

√
1− 4m1] ≡ N ∈ Z > 0 =⇒ m1 =

1

4

[
1− (2N + 1)2

]
, (6.162)

as Legendre polynomial has general form PN(x) with condition that N should be an integer
greater than zero. For different values of N we get different m1 following Eq (6.162).

Consequently, the most general solution of probability distribution function P (n; τ) is
given by the following expression:

First order solution :P (n; τ) =
∞∑
N=0

[D1PN(1 + 2n) +D2QN(1 + 2n)] e−
τ
4
µk[1−(2N+1)2],

(6.163)
where we define two new constants, D1 and D2 by the following expressions:

D1 = C1C3, D2 = C2C3. (6.164)

Here it is important to note that, this solution on limit n → ∞ converge to log-normal
distribution as we have discussed earlier. In further section we will compare this result with
obtained higher order calculations. From Eq (6.162), we see that the quantization property
of m1 eventually help us to predict the quantum nature of the present set-up. In other
words, one can interpret N as a quantum number given by 24:

Quantum number I : N = 0, 1, 2, · · · ,∞ ∈ Z. (6.165)

Further using Eq (6.162), one can further introduce another quantum number m1 given by
the following expression:

Quantum number II : m1 = 0,−2,−6, · · · ,∞. (6.166)

Further using the Fourier transformation with respect to the occupation number n as men-
tioned in Eq (6.136), we get the following simplified expression for the Fokker Planck equa-
tion in n << 1 limit:

∂P̄ (k; τ)

∂τ
= µk

(
(2n+ 1)ik − k2n(n+ 1)

)
P̄ (k; τ), (6.167)

24In the present context, N actually mimics the role of principle quantum number. Also m1 is another
quantum number which is derived from N using Eq (6.162).
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which is obviously a simplest version of the Fokker Planck equation as it contains a single
derivative with respect to time τ . Further imposing the previously used boundary condition
used for the limit n >> 1 and n << 1 in the present context we get the following result for
the probability distribution function in the Fourier transformed space, as given by:

P̄ (k; τ |n′ ; τ ′) = eµk((2n+1)ik−k2n(n+1))(τ−τ ′ )−ikn′ . (6.168)

Hence substituting back the above mentioned result into the definition of Fourier transfor-
mation and setting the initial condition n

′
= 0 and τ

′
= 0 we get the following result for

the probability distribution function, as given by:

P (n; τ) =
1

2
√
µkn(n+ 1)τπ

exp

[
−n
(
µk(n+ 1)τ +

1

4µkτ(n+ 1)
+ 1

)]
, (6.169)

which is coming from the first order contribution in the Fokker Planck equation. This
expression is actually equivalent to the result obtained in Eq (6.163).
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Figure 38. Evolution of the first order contribution to the probability density function with
respect to the the occupation number per mode nk, for a fixed time.

In figure (38), we have shown the evolution of the probability density function with
respect to the occupation number per mode, for a fixed time (µkτ=fixed). For very small
values of the parameter n we have observed from the plot that the deviation from Gaussian
feature is observed.

6.3.2 Second order contribution

In this context, our objective is to find out the contributions coming from second order in
the Fokker Planck equation and to solve this equation numerically 25. To serve this purpose

25Including the contributions from second order we will see that the Fokker Planck equation can not
solvable analytically.
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we equate both sides of Eq (6.68) after Taylor expansion and compare the coefficient of δτ 2.
Consequently, we get the following partial differential equation:

Second order Fokker Planck Equation :

n2

2
(1 + n)2 ∂

4P (n; τ)

∂n4
+ 2n

(
1 + 3n+ 2n2

) ∂3P (n; τ)

∂n3

+
(
1 + 6n+ 6n2

) ∂2P (n; τ)

∂n2
=

1

µ2
k

∂2P (n; τ)

∂τ 2
. (6.170)

Now to solve this partial differential equation we apply method of separation of variable,
using which we can write the total solution in the following form:

P (n; τ) = P1(n)P2(τ). (6.171)

Further, using the solution ansatz stated in Eq (6.171) we get the following sets of indepen-
dent differential equations, as given by:[

n2

2
(1 + n)2 d4

dn4
+ 2n

(
1 + 3n+ 2n2

) d3

dn3
+
(
1 + 6n+ 6n2

) d2

dn2
−m2

2

]
P1(n) = 0,(6.172)[

d2

dτ 2
−m2

2µ
2
k

]
P2(τ) = 0. (6.173)

It is important to note that, the analytical solution of P1(n) is not possible for any arbitrary
values of the constant m2, except the special case m2 = 0. For this reason we use numerical
technique to solve Eq (6.172). On the other hand Eq (6.173) is exactly solvable in the
present context and the solution can be written as:

P2(τ) =
[
C3e

τm2µk + C4e
−τm2µk

]
, (6.174)

where C3 and C4 are two arbitrary constants which can be fixed by choosing proper boundary
conditions.

Now we solve Eq (6.172) numerically for different values of m2 along with given initial
condition and also we consider the special case m2 = 0 where we solve this equation analyt-
ically. Here it important to mention that, since arbitrary values of m2 is allowed, one can
consider integer as well as non integer values at the level of solution of differential equation.
However, the only physically acceptable solution restrict us to only consider the integer
values of m2 because such second order corrected solution of the Fokker Planck equation
is directly related to the quantum effects as we have mentioned earlier. As a result such
integer values of m2 can be interpreted as the (principal) quantum number i. e.

Quantum Number III : m2 = 0,±1,±2, · · · ,±∞ ∈ Z. (6.175)

For numerical solution we take the following assumptions:

P1(n = 0.001) = 100,

[
dP1(n)

dn

]
n=0.001

= 100,

[
d2P1(n)

dn2

]
n=0.001

= 100,[
d3P1(n)

dn3

]
n=0.001

= 100. (6.176)
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(c) Second order corrected distribution for m2 = 1
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(d) Second order corrected distribution LogLog plot
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Figure 39. Evolution of probability distribution function obtained from the second order cor-
rected Fokker-Planck equation with the occupation number n for different value of m2. Here we
use the initial conditions as mentioned in Eq (6.176).

Here we assume that the particle production rate at low n(= 0.001) has a constant value
and its derivatives also have same constant value for a given m2. Getting the numerical
solution we plot (P2(n, τ) vs n) them for some particular range of n.

From figure 39 we can say that for m2 = ±2,±3 second order corrected probability
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distribution function almost overlap at lower values of the occupation number n but deviate
significantly as n increases to large number. As a consequence, for low value of n particle
production rate is independent on m2 but as n increases they significantly deviate. It
also implies that for higher values of n the integer m2 constrains particle production rate.
For m2 = ±1 we found that the second order corrected probability distribution function
significantly deviates from log normal (Gaussian) distribution and both of them explicitly
show the signature of non-Gaussianity is the second order corrected distribution function.
Finally, we have shown that for m2 = 0 the amount of deviation from log normal (Gaussian)
distribution is small compared to results obtained from the other values of m2.

Now we discuss about the analytical solution of Eq (6.172) for the special case when
we fix m2 = 0. In this situation one can recast the Eq (6.172) in to the following simplified
form: [

n2

2
(1 + n)2 d4

dn4
+ 2n

(
1 + 3n+ 2n2

) d3

dn3
+
(
1 + 6n+ 6n2

) d2

dn2

]
P1(n) = 0 (6.177)

Then analytical solution of Eq (6.177) can be written as:

P1(n) = −C1

∞∑
i=0

2Γ
(
i− i

√
7

2
+ 1

2

)
Γ
(
i− 1

2
i(
√

47 + i)
)

Γ
(
i+ 1

2
(
√

47 + i)i+ 1
)
ni−

i
√
7

2
+ 1

2

(−2i+
√

7i+ 1)i!Γ(i− i
√

7 + 1)Γ
(
−1

2
i(
√

47 + i)
)

Γ
(
1 + 1

2
i(
√

47 + i)
)

× 2F̃1

(
3

2
− i
√

7

2
, i− i

√
7

2
− 1

2
; i− i

√
7

2
+

3

2
;−n

)

+C2

∞∑
i=0

∞∑
j=0

∞∑
m=0

Γ(c)2u+1
√
π2−b−1((

√
π2−b−1)Γ(b+ u+ 1))

(u− 1)Γ(a)Γ(b1)Γ(b2)Γ
(

1
2
(b+ u+ 1)

)
Γ
(

1
2
(b+ u+ 2)

)
×

2j(−1)m+u
2

+1ni+m+u−1
2

+1Γ
(

1
2
(b+ u+ 1) + i

)
Γ
(

1
2
(b+ u+ 2) + i

)
i!j!m!

(
i+m+ u−1

2
+ 1
)

Γ
(
b+ i+ 3

2

)
Γ(c+ j +m)

× Γ(b1 +m)Γ(b2 + n)Γ(a+ j +m). (6.178)

where a, b, c, b1, b2 and u are all functions of i which is summed over and we have introduced
them to use shorthand notation. In this context the functional dependence of all of these i
dependent parameters are given by the following expressions:

a = a(i) =
1

2

(
−1 + i

√
7
)
, b = b(i) =

1

2
i
(√

47 + i
)
,

c = c(i) =
1

2

(
1 + i

√
7
)
, b1 = b1(i) =

1

2

(
3− i

√
7
)
,

b2 = b2(i) =
1

2

(
4i+ 2

√
7i+

√
47i+ 1

)
, u = u(i) = i

√
7. (6.179)

The solution contains generalized Hypergeometric PFQ Regularized function. Also C1 and
C2 are arbitrary constant of integration which can be evaluated by imposing appropriate
initial conditions.
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For m2 = 0 the total probability distribution function can be expressed as:

P (n; τ) =

−C1

∞∑
i=0

2Γ
(
i− i

√
7

2
+ 1

2

)
Γ
(
i− 1

2
i(
√

47 + i)
)

Γ
(
i+ 1

2
(
√

47 + i)i+ 1
)
ni−

i
√
7

2
+ 1

2

(−2i+
√

7i+ 1)i!Γ(i− i
√

7 + 1)Γ
(
−1

2
i(
√

47 + i)
)

Γ
(
1 + 1

2
i(
√

47 + i)
)

× 2F̃1

(
3

2
− i
√

7

2
, i− i

√
7

2
− 1

2
; i− i

√
7

2
+

3

2
;−n

)

+C2

∞∑
i=0

∞∑
j=0

∞∑
m=0

Γ(c)2u+1
√
π2−b−1((

√
π2−b−1)Γ(b+ u+ 1))

(u− 1)Γ(a)Γ(b1)Γ(b2)Γ
(

1
2
(b+ u+ 1)

)
Γ
(

1
2
(b+ u+ 2)

)
×

2j(−1)m+u
2

+1ni+m+u−1
2

+1Γ
(

1
2
(b+ u+ 1) + i

)
Γ
(

1
2
(b+ u+ 2) + i

)
i!j!m!

(
i+m+ u−1

2
+ 1
)

Γ
(
b+ i+ 3

2

)
Γ(c+ j +m)

× Γ(b1 +m)Γ(b2 + n)Γ(a+ j +m)]

×
[
C3e

τm2µk + C4e
−τm2µk

]
. (6.180)

For the special case m2 = 0 and considering the large n limit (n → ∞) the Eq (6.177)
reduces to the following form:[

n4

4

d4

dn4
+ 2n3 d

3

dn3
+ 3n2 d

2

dn2

]
P1(n) = 0 (6.181)

After solving Eq (6.64) we get the following solution in the large n limit:

P1(n) =

[
1

6

(
C5

n2
+

3C6

n

)
+ C7n+ C8

]
, (6.182)

where C5, C6, C7 and C8 are the arbitrary constants of integration which can be evaluated
by imposing appropriate initial condition.

In the large n limit with m2 = 0 the total probability distribution function can be
expressed as:

P (n; τ) =

[
1

6

(
C5

n2
+

3C6

n

)
+ C7n+ C8

] [
C3e

τm2µk + C4e
−τm2µk

]
, (6.183)

which shows huge deviation from log normal (Gaussian) distribution.
Further using the Fourier transformation with respect to the occupation number n as

mentioned in Eq (6.136), we get the following simplified expression for the Fokker Planck
equation at the second order:

∂2P̄ (k; τ)

∂τ 2
= µ2

k

[
n2

2
(1 + n)2k4 − 2ink3(1 + 3n+ 2n2)− k2(1 + 6n+ 6n2)

]
P̄ (k; τ),(6.184)

which is obviously a simplest version of the Fokker Planck equation as it contains only two
derivative with respect to time τ . In the present context we get the following result for the
probability distribution function in the Fourier transformed space, as given by:

P̄ (k; τ |n′ ; τ ′) = C1 exp
[
G(k;n

′
) (τ − τ ′)

]
+ C2 exp

[
−G(k;n

′
) (τ − τ ′)

]
, (6.185)
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where G(k;n
′
) is defined as:

G(k;n
′
) = µk

√{
(n′)2

2
(1 + n′)2k4 − 2in′k3(1 + 3n′ + 2(n′)2)− k2(1 + 6n′ + 6(n′)2)

}
.(6.186)

Additionally, C1 and C2 are arbitrary constants which is fixed by the following two fold
boundary conditions, as given by:

P (n; τ |n′ = 0; τ
′
= τ) = δ(n), (6.187)(

∂P (n; τ |n′ ; τ ′)
∂τ

)
n′=0,τ ′=τ

= −δ(n)

n
, (6.188)

which are necessary to solve the above mentioned second order differential equation.
As a result, we get the following set of constraints equations:

C1 + C2 = 1,

C1 − C2 = − 1

iµkkn
, (6.189)

Solving these equations we get:

C1 =
1

2

(
1− 1

iµkkn

)
, (6.190)

C2 =
1

2

(
1 +

1

iµkkn

)
. (6.191)

Using this solution we get the following probability distribution function in Fourier space
with n

′
= 0 and τ

′
= 0, as given by:

P̄ (k; τ) = cos(µkkτ)− sin(µkkτ)
µkkn

. (6.192)

Hence substituting back the above mentioned result into the definition of Fourier transfor-
mation and setting the initial condition n

′
= 0 and τ

′
= 0 we get the following result for

the probability distribution function, as given by:

P (n; τ) =
1

2π

∫ ∞
−∞

dk exp[ikn]

(
cos(µkkτ)− sin(µkkτ)

µkkn

)
. (6.193)

However this integral is not convergent within −∞ < k <∞. For this reason we introduce
a momentum cut-off −ΛC < k < ΛC . Consequently, we get the following regularised
expression for the probability distribution function:

P (n; τ) =
n sin(ΛCn) cos(ΛCµkτ)− µkτ cos(ΛCn) sin(ΛCµkτ)

π(n2 − µ2
kτ

2)

− 1

4πµkn
[i(Ci(−ΛC(n+ µkτ))− Ci(ΛC(n+ µkτ))− Ci(ΛCµkτ − nΛC)

+ Ci(ΛC(n− µkτ))− 2iSi(ΛC(n+ µkτ)) + 2iSi(ΛC(n− µkτ)))] . (6.194)

which is coming from the second contribution in the Fokker Planck equation.
In figure (40(a)) and figure (40(b)), we have shown the evolution of the probability den-

sity function with respect to the occupation number per mode, for a fixed time (µkτ=fixed).
From this plot we have observed irregular oscillations with deviation from Gaussian feature.
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Figure 40. Evolution of the second order contribution to the probability density function with
respect to the the occupation number per mode nk, for a fixed time.

6.3.3 Third order correction

In this context, our objective is to find out the contributions coming from third order in the
Fokker Planck equation and to solve this equation numerically 26. To serve this purpose we

26Including the contributions from third order we will see that the Fokker Planck equation can not solvable
analytically.
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equate both sides of Eq (6.68) after Taylor expansion and compare the coefficient of δτ 3.
Consequently, we get the following partial differential equation:

n3

6
(1 + n)3∂

6P (n; τ)

∂n6

+
3n2

2
(1 + n)2(1 + 2n)

∂5P (n; τ)

∂n5

+3n(1 + n)(1 + 5n+ 5n2)
∂4P (n; τ)

∂n4

+(1 + 2n)(1 + 10n+ 10n2)
∂3P (n; τ)

∂n3
=

1

µ3
k

∂3P (n; τ)

∂τ 3
(6.195)

which can not able to solve analytically with any integer values of m3. We solve this equation
for different values of m3 numerically with assumed initial condition. Only for the special
case, m3 = 0 with large n limit we can able to provide an analytical solution in the present
context.

Now to solve this partial differential equation we apply method of separation of variable,
using which we can write the total solution in the following form:

P (n; τ) = P1(n)P2(τ). (6.196)

Further, using the solution ansatz stated in Eq (6.171) we get the following sets of indepen-
dent differential equations, as given by:

n3

6
(1 + n)3d

6P1(n)

dn6

+
3n2

2
(1 + n)2(1 + 2n)

d5P1(n)

dn5

+3n(1 + n)(1 + 5n+ 5n2)
d4P1(n)

dn4

+(1 + 2n)(1 + 10n+ 10n2)
d3P1(n)

dn3
−m2

3P1(n) = 0, (6.197)[
d3

dτ 3
−m2

3µ
3
k

]
P2(τ) = 0. (6.198)

It is important to note that, the analytical solution of P1(n) is not possible for any arbitrary
values of the constant m3, except the special case m3 = 0. For this reason we use numerical
technique to solve Eq (6.197). On the other hand Eq (6.198) is exactly solvable in the
present context and the solution can be written as:

P2(τ) =
[
C7e

(−1)2/3m
2/3
3 τµk + C8e

− 3√−1m
2/3
3 τµk + C9e

m
2/3
3 τµk

]
, (6.199)

where C7, C8 and C9 are three arbitrary constants which can be fixed by choosing proper
boundary conditions.

Now to solve Eq (6.197) numerically for different values of m3 along with given initial
condition and we also prove the analytical solution for the special case m3 = 0. Here it
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important to mention that, since arbitrary values of m3 is allowed, one can consider integer
as well as non integer values at the level of solution of differential equation. However, the
only physically acceptable solution restrict us to only consider the integer values of m3

because such third order corrected solution of the Fokker Planck equation is directly related
to the quantum effects as we have mentioned earlier. As a result such integer values of m3

can be interpreted as the quantum number i. e.

Quantum Number IV : m3 = 0,±1,±2, · · · ,±∞ ∈ Z. (6.200)

For numerical solution we take the following assumptions:

P1(n = 0.0001) = 100,

[
dP1(n)

dn

]
n=0.0001

= 100,[
d2P1(n)

dn2

]
n=0.0001

= 100,

[
d3P1(n)

dn3

]
n=0.0001

] = 100,[
d4P1(n)

dn4

]
n=0.0001

= 100,

[
d5P1(n)

dn5

]
n=0.0001

= 100. (6.201)

Asper our assumption particle production probability has constant value at some particular
small n[0.0001] or for small n P [n, τ ] and all its derivative has constant values and all those
values are same.
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Figure 41. Evolution of probability distribution function obtained from the third order corrected
Fokker-Planck equation with the occupation number n for different value of m3. Here we use the
initial conditions as mentioned in Eq (6.201).

From Fig 41 one can say that the third order corrected probability distribution function
for different value of m3 = 0 overlap at lower n limit (n → 0) though deviate significantly
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at large n limit. At lower values of n, particle production probability is independent of m3

and almost flat. But as soon as n reaches values greater than unity the distribution increase
exponentially and for different m3 they differ from each other.

Now we discuss about the analytical solution of Eq (6.197) for the special case when
we fix m3 = 0. In this situation one can recast the Eq (6.197) in to the following simplified
form:

n3

6
(1 + n)3d

6P1(n)

dn6

+
3n2

2
(1 + n)2(1 + 2n)

d5P1(n)

dn5

+3n(1 + n)(1 + 5n+ 5n2)
d4P1(n)

dn4

+(1 + 2n)(1 + 10n+ 10n2)
d3P1(n)

dn3
= 0. (6.202)

To find the analytical solution of Eq (6.202) one can further use the following simplification:

n3(1 + n)3

6

d3Q1(n)

dn3

+
3n2(1 + n)2(1 + 2n)

2

d2Q1(n)

dn2

+3n(1 + n)(1 + 5n+ 5n2)
dQ1(n)

dn
+(1 + 2n)(1 + 10n+ 10n2)Q1(n) = 0 (6.203)

where we introduce a new function Q1(n) which can be expressed in terms of P1(n) by
following identification:

Q1(n) =
d3P1(n)

dn3
. (6.204)

On large n limit (n→∞) the Eq 6.203 reduces to following extremely simplified form:

n6

6

d3Q1(n)

dn3
+ 3n5d

2Q1(n)

dn2
+ 15n4dQ1(n)

dn
+ 20n3Q1(n) = 0. (6.205)

The solution of this equation at large n limit can be expressed as:

Q1(n) =

[
C3 −

1

148n15/2

{(
15C1 −

√
71C2

)
sin

(
1

2

√
71 lnn

)
+
(

15C2 +
√

71C1

)
cos

(
1

2

√
71 lnn

)
+ 240n15/2 lnn

}]
, (6.206)

where C1,C2 and C3 are arbitrary constant of integration and can be evaluated by imposing
appropriate initial condition.
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Here, in the large n limit the solution for P1(n) can be written as:

P1(n) =

[
1

674880n9/2

{
3040n15/2 (37C3 − 60 lnn+ 110)

−
(

189C1 + 17
√

71C2

)
sin

(
1

2

√
71 lnn

)
+
(

17
√

71C1 − 189C2

)
cos

(
1

2

√
71 lnn

)}
+ C6n

2 + C5n+ C4

]
, (6.207)

where C4, C5 and C6 are arbitrary constant of integration and can be evaluated by imposing
appropriate initial condition.

Finally, in the large n limit the total probability distribution function can be expressed
as:

P (n; τ) =

[
1

674880n9/2

{
3040n15/2 (37C3 − 60 lnn+ 110)

−
(

189C1 + 17
√

71C2

)
sin

(
1

2

√
71 lnn

)
+
(

17
√

71C1 − 189C2

)
cos

(
1

2

√
71 lnn

)}
+ C6n

2 + C5n+ C4

]
×
[
C7e

(−1)2/3m
2/3
3 τµk + C8e

− 3√−1m
2/3
3 τµk + C9e

m
2/3
3 τµk

]
, (6.208)

which shows large deviation from log normal (Gaussian) distribution.

Further using the Fourier transformation with respect to the occupation number n as
mentioned in Eq (6.136), we get the following simplified expression for the Fokker Planck
equation at the third order:

∂3P̄ (k; τ)

∂τ 3
= µ3

k

[
−n

3

6
(1 + n)3k6 +

3n2i

2
(1 + n)2(1 + 2n)k5

+3n(1 + n)(1 + 5n+ 5n2)k4 − ik3(1 + 2n)(1 + 10n+ 10n2)
]
P̄ (k; τ), (6.209)

which is obviously a simplest version of the Fokker Planck equation as it contains only three
derivative with respect to time τ . In the present context we get the following result for the
probability distribution function in the Fourier transformed space, as given by:

P̄ (k; τ |n′ ; τ ′) = C1 exp
[
(−1)2/3 3

√
O(k;n′) (τ − τ ′)

]
+ C2 exp

[
(−1)1/3 3

√
O(k;n′) (τ − τ ′)

]
+ C3 exp

[
3
√
O(k;n′) (τ − τ ′)

]
, (6.210)
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where O(k;n
′
) is defined as:

O(k;n
′
) = µ3

k

[
−(n

′
)3

6
(1 + n

′
)3k6 +

3(n
′
)2i

2
(1 + n

′
)2(1 + 2n

′
)k5

+3n
′
(1 + n

′
)(1 + 5n

′
+ 5(n

′
)2)k4 − ik3(1 + 2n

′
)(1 + 10n

′
+ 10(n

′
)2)
]
. (6.211)

Additionally, C1 , C2 and C3 are arbitrary constants which is fixed by the following three
fold boundary conditions, as given by:

P (n; τ |n′ = 0; τ
′
= τ) = δ(n), (6.212)(

∂P (n; τ |n′ ; τ ′)
∂τ

)
n′=0,τ=τ ′

= −δ(n)

n
, (6.213)(

∂2P (n; τ |n′ ; τ ′)
∂τ 2

)
n′=0,τ=τ ′

=
2 δ(n)

n2
. (6.214)

which are necessary to solve the above mentioned third order differential equation.
As a result, we get the following set of constraints equations:

C1 + C2 + C3 = 1, (6.215)

C1 − (−1)2/3 C2 − (−1)1/3 C3 =
1

i1/3µkkn
, (6.216)

C1 − (−1)4/3C2 − (−1)2/3C3 = − 2

i2/3µ2
kk

2n2
, (6.217)

Solving these equations we get:

C1 =
(−1)2/3

(
− 6
√
−1knµk − iknµk + 2 3

√
−1− 2

)(
3 3
√
−1− 1

)
k2n2µ2

k

, (6.218)

C2 = −
3
√
−1
(
−knµk − (−1)2/3knµk − 4i+ 2 6

√
−1 + 6(−1)5/6

)(
6
√
−1− i

) (
3 3
√
−1− 1

)
k2n2µ2

k

, (6.219)

C3 = −
3
√
−1knµk − (−1)2/3knµk − 8i+ 10 6

√
−1 + 10(−1)5/6(

6
√
−1− i

) (
3 3
√
−1− 1

)
k2n2µ2

k

. (6.220)

Using this solution get the following probability distribution function in Fourier space, as
given by:

P̄ (k; τ) =
(−1)2/3

(
− 6
√
−1knµk − iknµk + 2 3

√
−1− 2

)(
3 3
√
−1− 1

)
k2n2µ2

k

exp
[
−i1/3µkk τ

]
−

3
√
−1
(
−knµk − (−1)2/3knµk − 4i+ 2 6

√
−1 + 6(−1)5/6

)(
6
√
−1− i

) (
3 3
√
−1− 1

)
k2n2µ2

k

exp
[
(−1)2/3i1/3µkk τ

]
+−

3
√
−1knµk − (−1)2/3knµk − 8i+ 10 6

√
−1 + 10(−1)5/6(

6
√
−1− i

) (
3 3
√
−1− 1

)
k2n2µ2

k

exp
[
(−1)1/3i1/3µkk τ

]
.

(6.221)
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Hence substituting back into the definition of Fourier transformation and setting the initial
condition n

′
= 0 and τ

′
= 0 we get the following result for the probability distribution

function, as given by:

P (n; τ) =

((√
3 + 3i

)
µk + 2

(√
3 + i

))
n3

4
(√

3 + 2i
)
µ2
kn

2 ((−1)2/3µkτ + n)

√
((−1)2/3µkτ + n)

2

+2in2

(
2i
√

3µ2
kτ + µk

(√
− 3
√
−1µ2

kτ
2 + n2 + 2(−1)2/3µknτ + 3i

√
3τ + 3τ

)
− 2

√
− 3
√
−1µ2

kτ
2 + n2 + 2(−1)2/3µknτ

)
− µknτ

((
−
(√

3− 3i
))

µ2
kτ

+ 2 6
√
−1µ

(√
− 3
√
−1µ2

kτ
2 + n2 + 2(−1)2/3µknτ + 3i

√
3τ + 3τ

)
− 2

(√
3− i

)√
− 3
√
−1µ2

kτ
2 + n2 + 2(−1)2/3µknτ

)
+
(√

3 + i
)
µ2
kτ

2

(
2µkτ +

√
−2i

(√
3− i

)
µ2
kτ

2 + 4n2 + 4i
(√

3 + i
)
µknτ

)
,

(6.222)

which is coming from the third contribution in the Fokker Planck equation.
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Figure 42. Evolution of the third order contribution to the probability density function with
respect to the the occupation number per mode nk, for a fixed time.

In figure (6.3.3), we have shown the evolution of the probability density function with
respect to the occupation number per mode, for a fixed time (µkτ=fixed). From this plot
we have observed irregular oscillations with deviation from Gaussian feature.
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6.3.4 Fourth order correction

In this context, our objective is to find out the contributions coming from fourth order in
the Fokker Planck equation and to solve this equation numerically 27. To serve this purpose
we equate both sides of Eq (6.68) after Taylor expansion and compare the coefficient of δτ 4.
Consequently, we get the following partial differential equation:

70n4(1 + n)4∂
8P (n; τ)

∂n8
+ 140n3(1 + 2n)

∂7P (n; τ)

∂n7

+30n2(1 + n)2(3 + 14n+ 14n2)
∂6P (n; τ)

∂n6

+20n(1 + n)(1 + 2n)(1 + 7n+ 7n2)
∂5P (n; τ)

∂n5

+(1 + 20n+ 90n2 + 140n3 + 70n4)
∂4P (n; τ)

∂n4
=

1

µ4
k

∂4P (n; τ)

∂τ 4
. (6.223)

which can not able to solve analytically with any integer values of m4. We solve this equation
for different values of m4 numerically with assumed initial condition. Only for the special
case, m4 = 0 with large n limit we can able to provide an analytical solution in the present
context.

Now to solve this partial differential equation we apply method of separation of variable,
using which we can write the total solution in the following form:

P (n; τ) = P1(n)P2(τ). (6.224)

Further, using the solution ansatz stated in Eq (6.223) we get the following sets of indepen-
dent differential equations, as given by:

70n4(1 + n)4d
8P1(n)

dn8
+ 140n3(1 + 2n)

d7P1(n)

dn7

+30n2(1 + n)2(3 + 14n+ 14n2)
d6P1(n)

dn6

+20n(1 + n)(1 + 2n)(1 + 7n+ 7n2)
d5P1(n)

dn5

+(1 + 20n+ 90n2 + 140n3 + 70n4)
d4P1(n)

dn4
−m2

4P1(n) = 0, (6.225)[
d4

dτ 4
−m2

4µ
4
k

]
P2(τ) = 0. (6.226)

It is important to note that, the analytical solution of P1(n) is not possible for any arbitrary
values of the constant m4. For this reason we use numerical technique to solve Eq (6.225).
Also considering the large n limit we have checked that Eq (6.225) is not analytically
solvable. On the other hand Eq (6.226) is exactly solvable in the present context and the
solution can be written as:

P2(τ) =
[
C9e

−√m4τµk + C10e
√
m4τµk + C11 sin (

√
m4τµk) + C12 cos (

√
m4τµk)

]
, (6.227)

27Including the contributions from fourth order we will see that the Fokker Planck equation can not
solvable analytically.
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where C9, C10, C11 and C12 are three arbitrary constants which can be fixed by choosing
proper boundary conditions.

Now to solve Eq (6.225) numerically for different values of m4 along with given initial
condition. Here it important to mention that, since arbitrary values of m4 is allowed, one can
consider integer as well as non integer values at the level of solution of differential equation.
However, the only physically acceptable solution restrict us to only consider the integer
values of m4 because such third order corrected solution of the Fokker Planck equation is
directly related to the quantum effects as we have mentioned earlier. As a result such integer
values of m4 can be interpreted as the quantum number i. e.

Quantum Number V : m4 = 0,±1,±2, · · · ,±∞ ∈ Z. (6.228)

For numerical solution we take the following assumptions:

P1(n = 0.0001) = 100,[
dP1(n)

dn

]
n=0.0001

= 100,[
d2P1(n)

dn2

]
n=0.0001

= 100,[
d3P1(n)

dn3

]
n=0.0001

= 100,[
d4P1(n)

dn4

]
n=0.0001

= 100,[
d5P1(n)

dn5

]
n=0.0001

= 100,[
d6P1(n)

dn6

]
n=0.0001

= 100,[
d7P1(n)

dn7

]
n=0.0001

= 100. (6.229)

Accoding to our assumption particle production probability has constant value at some
particular small n value (n = 0.0001) and all its derivative has constant values and all those
values are same.

During the analysis we assume that the particle production probability and all its
derivative has a constant same value for n = 0.0001, which is very very helpful for us to deal
with the initial conditions during performing numerical techniques to solve the Eq (6.225).

From fig. 43 we observe that the fourth order corrected probability distribution function
for different m4 is almost flat upto n = 1 and after that the distribution function suddenly
increases. Additionally, we observe that the fourth order correction has deviation from
Gaussianity at small values of the occupation number. On the other hand, for large values
of the occupation number we get a Gaussian like feature and that is shown explicitly in the
mentioned plot.

Further using the Fourier transformation with respect to the occupation number n as
mentioned in Eq (6.136), we get the following simplified expression for the Fokker Planck
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(b) Fourth order corrected distribution for m4 = ±1
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(c) Fourth order corrected distribution for m4 = ±2
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(d) Fourth order corrected distribution for m4 = ±3

Figure 43. Evolution of probability distribution function obtained from the fourth order corrected
Fokker-Planck equation with the occupation number n for different value of m4. Here we use the
initial conditions as mentioned in Eq (6.229).

equation at the fourth order:

∂4P̄ (k; τ)

∂τ 4
= µ4

k

[
70n4(1 + n)4k8 − 140in3(1 + 2n)k7

−30n2(1 + n)2(3 + 14n+ 14n2)k6

+20ni(1 + n)(1 + 2n)(1 + 7n+ 7n2)k5

+(1 + 20n+ 90n2 + 140n3 + 70n4)k4
]
P̄ (k; τ), (6.230)
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which is obviously a simplest version of the Fokker Planck equation as it contains only four
derivative with respect to time τ . In the present context we get the following result for the
probability distribution function in the Fourier transformed space, as given by:

P̄ (k; τ |n′ ; τ ′) = C1 exp
[
− 4
√
J (k;n′)

(
τ − τ ′

)]
+ C2 exp

[
4
√
J (k;n′)

(
τ − τ ′

)]
+C3 sin

(
4
√
J (k;n′)

(
τ − τ ′

))
+ C4 cos

(
4
√
J (k;n′)

(
τ − τ ′

))
, (6.231)

where J (k;n
′
) is defined as:

J (k;n
′
) = µ4

k

[
70n

′4(1 + n
′
)4k8 − 140in

′3(1 + 2n
′
)k7

−30n2(1 + n
′
)2(3 + 14n

′
+ 14n

′2)k6

+20ni(1 + n
′
)(1 + 2n

′
)(1 + 7n

′
+ 7n

′2)k5

+(1 + 20n
′
+ 90n

′2 + 140n
′3 + 70n

′4)k4
]
. (6.232)

Additionally, C1, C2, C3 and C4 are arbitrary constants which is fixed by the following three
fold boundary conditions, as given by:

P (n; τ |n′ = 0; τ
′
= τ) = δ(n), (6.233)(

∂P (n; τ |n′ ; τ ′)
∂τ

)
n′=0,τ=τ ′

= −δ(n)

n
, (6.234)(

∂2P (n; τ |n′ ; τ ′)
∂τ 2

)
n′=0,τ=τ ′

=
2 δ(n)

n2
(6.235)(

∂3P (n; τ |n′ ; τ ′)
∂τ 3

)
n′=0,τ=τ ′

= −6 δ(n)

n3
. (6.236)

which are necessary to solve the above mentioned fourth order differential equation.
As a result, we get the following set of constraints equations:

C1 + C2 + C4 = 1, (6.237)

C1 − C2 − C3 =
1

µkkn
, (6.238)

C1 + C2 − C3 =
2

µ2
kk

2n2
, (6.239)

C1 − C2 + C3 =
6

µ3
kk

3n3
. (6.240)

Solving these equations we get:

C1 =
−k2n2µ2

k − 2knµk − 6

4k3n3µ3
k

, C2 = −k
2n2µ2

k − 2knµk + 6

4k3n3µ3
k

, (6.241)

C3 = −k
2n2µ2

k − 6

2k3n3µ3
k

, C4 = − 1

k2n2µ2
k

. (6.242)
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Using this solution get the following probability distribution function in Fourier space, as
given by:

P̄ (k; τ) =
−k2n2µ2

k − 2knµk − 6

4k3n3µ3
k

exp [−µkkτ ]− k2n2µ2
k − 2knµk + 6

4k3n3µ3
k

exp [µkτ ]

−k
2n2µ2

k − 6

2k3n3µ3
k

sin (µkkτ)− 1

k2n2µ2
k

cos (µkkτ) , (6.243)

Hence substituting back into the definition of Fourier transformation and setting the initial
condition n

′
= 0 and τ

′
= 0 we get the following result for the probability distribution

function, as given by:

P (n; τ) =
1

2π

∫ ∞
−∞

dk exp [ikn]

{
−k2n2µ2

k − 2knµk − 6

4k3n3µ3
k

exp [−µkkτ ]

− k2n2µ2
k − 2knµk + 6

4k3n3µ3
k

exp [µkτ ]

− k2n2µ2
k − 6

2k3n3µ3
k

sin (µkkτ)− 1

k2n2µ2
k

cos (µkkτ)

}
(6.244)

which is divergent within the interval −∞ < k < ∞. After introducing an IR and UV
regulators, Q < k < L we can get a finite result, which we have not presented in this paper
for its huge length. The origin of such corrections are the fourth order contribution in the
Fokker Planck equation.
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Figure 44. Evolution of the fourth order contribution to the probability density function with
respect to the the occupation number per mode nk, for a fixed time.

In figure (6.3.4), we have shown the evolution of the probability density function with
respect to the occupation number per mode, for a fixed time (µkτ=fixed). From this plot
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we have observed that for the occupation number n = 0 the distribution is almost divergent
and for large values of the occupation number the distribution sharply decreases to a satu-
ration value after which if we increase the value of the occupation number the probability
distribution function remains uniform.

6.3.5 Total solution considering different order correction

Now we plot total solutions with different order of correction with main solution.Then we
check validation of different order of correction altogether and how they merge with each
other at what limit.

A. Upto second order correction:-

Further we consider upto second order corrected solution with first order contribution at
m1 = 2 for different m2. From fig. 45 we observe that at low values of n, P1 + P2 and P2
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(a) Upto second order corrected distribution for
m2 = 1
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(b) Upto second order corrected distribution for
m2 = 0

Figure 45. Second order corrected probability distribution profile for different m2 with previously
mentioned initial conditions. Here we fix m = 2. Here the subscript 1 and 2 stands for the corrected
order in the distribution.

are significantly different, but as we increase n they overlapped and P2 effect is more over
P1 + P2 so the second order solution domiante over the first order solution.

B. Upto third order correction:-

Here we add all the three previously derived contributions to produce the total proba-
bility distribution corrected upto third order. From fig. 46 we observe that P1 + P2 + P3,
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Figure 46. Upto third order corrected probability distribution profile for different m3,m2 and
m1 = 2 with previously mentioned intial conditions

P2 + P3 and P3 overlap at higher n limit though separated. At low n limit and P1 + P2

and P2 overlap with each other but remain separated from P1 + P2 + P3 for the complete
range. This implies that third order contribution is dominant over the other two due to
the non-linearities in the differential equation and behaves like a non-perturbative quantum
effect at the level of solution.

C. Upto fourth order correction:-

Here we add all the four previously derived contributions to produce the total probability
distribution corrected upto fourth order. From fig. 47 we observe that due to discontinuity
at fourth order the final curve represented by P1 +P2 +P3 +P4 is not continuous. Though,
P1 +P2 +P3 and P1 +P2 are merged at high n limit and continuous. Here P1 +P2 +P3 +P4

don’t merge with them. As a result at the fourth order correction are valid for very small
values of n. As n increases P1 +P2 +P3 +P4 also has some major deviation and discontinuity
from P1 + P2 + P3 and P1 + P2 + P3.

Previously it is shown that in ref. [42] the distribution will be log-normal at large
n, considering the lowest order contribution coming from the solution of Fokker-Planck
equation. We extend this result upto fourth order and shown the discontinuity is appearing
at the fourth order solution. As a result, considering upto third order will be sufficient
enough to explain Gaussian as well as quantum effects. In the next subsection we will
calculate various statistical moments and from that we can discuss about the role of quantum
effects and non-Gaussinanity from the Probability distribution profile for particle production
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Figure 47. Fourth order corrected probability distribution for different m4,m3,m2 and m1 = 2
with previously mentioned initial conditions.

in the context of early universe cosmology (mostly during reheating).

6.4 Calculation of statistical moments (or quantum correlation functions) from
corrected probability distribution function

Here our prime objective is to compute the different statistical moments from the quantum
corrected probability distribution function as obtain by Taylor expanding in order by order
from Eq (6.68). From is corrected probability distribution function we compute the expres-
sion for 〈n〉,〈n2〉,〈n3〉 and 〈n4〉 and then calculate standard deviation, skewness and kurtosis
for a given time. We have explicitly shown that the non vanishing contributions of skewness
and kurtosis carries the signature of significant effect of non-Gaussianity. In this analysis
the values of these moments are compared with predicted results obtained from log-normal
(Gaussian) distribution and non zero values of kurtosis and skewness define the deviation
from that.

To compute the moments we start with the following sets of master evolution equations
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valid in different orders, as given by:

First Order Master Evolution Equation :

1

µk

∂〈F 〉
∂τ

=

〈
(1 + 2n)

∂F

∂n
+ n(n+ 1)

∂2F

∂n2

〉
, (6.245)

Second Order Master Evolution Equation :

1

µ2
k

∂2〈F 〉
∂τ 2

=

〈
n2

2
(1 + n)2 ∂

4F

∂n4
+ 2n

(
1 + 3n+ 2n2

) ∂3F

∂n3
+
(
1 + 6n+ 6n2

) ∂2F

∂n2

〉
, (6.246)

Third Order Master Evolution Equation :

1

µ3
k

∂3〈F 〉
∂τ 3

=

〈
n3

6
(1 + n)3∂

6F

∂n6
+

3n2

2
(1 + n)2(1 + 2n)

∂5F

∂n5

+ 3n(1 + n)(1 + 5n+ 5n2)
∂4F

∂n4
+ (1 + 2n)(1 + 10n+ 10n2)

∂3F

∂n3

〉
, (6.247)

Fourth Order Master Evolution Equation :

1

µ4
k

∂4〈F 〉
∂τ 4

=

〈
70n4(1 + n)4∂

8F

∂n8
+ 140n3(1 + 2n)

∂7F

∂n7

+30n2(1 + n)2(3 + 14n+ 14n2)
∂6F

∂n6

+20n(1 + n)(1 + 2n)(1 + 7n+ 7n2)
∂5F

∂n5

+(1 + 20n+ 90n2 + 140n3 + 70n4)
∂4F

∂n4

〉
, . (6.248)

where the first moment or the expectation value of the observable F is define as:

First Moment : 〈F (n)〉(τ) ≡
∫

dn F (n)P (n; τ) . (6.249)

Here F (n) is the physical observable in which we are interested in and P (n; τ) is the corrected
probability distribution function which is not necessarily log-normal (Gaussian) in nature.
In the present context of discussion, Eq (6.249) plays the role of generating function, which
is commonly used in calculating various mathematical special functions. In our discussion,
Eq (6.249) represents the statistical moment generating function in presence of quantum
corrected probability distribution function. In terms of quantum mechanical language,
Eq (6.249) signify the one point quantum correlation function and it is exactly equal to the
statistical first moment in this discussion.

Now, we explicitly compute the expressions for one point function (or first moment) of
the occupation number i.e. 〈n〉, two point function (or second moment) of the occupation
number i.e. 〈n2〉, three point function (or third moment) of the occupation number i.e. 〈n3〉
and four point function (or fourth moment) of the occupation number i.e. 〈n2〉 using the
previously mentioned first, second, third and fourth order master equations. The detailed
steps of the computations are appended bellow:
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1. Step I:
First of all, we use the first order master evolution equation. Then we replace the
function F by the occupation number n. Consequently, we get the following time
evolution equation of the first moment or one point function 〈n〉, given by:

1

µk

∂〈n〉
∂τ

= 〈(1 + 2n)〉 = 1 + 2〈n〉 . (6.250)

2. Step II:
Secondly, we want to compute the expression for 〈n2〉. To compute this we consider
here the first and second order master equations, as mentioned earlier. Considering
only the first order master equation we get the following analytical expression:

1

µk

∂〈n2〉
∂τ

= 〈2n(1 + 2n) + 2n(1 + n)〉 = 〈4n+ 6n2〉 = 4〈n〉+ 6〈n2〉 . (6.251)

On the other hand, using the second order master equation we get the following ana-
lytical expression for the time evolution of the second moment or two point correlation:

1

µ2
k

∂2〈n2〉
∂τ 2

= 〈2(1 + 6n+ 6n2)〉 = 12〈n〉+ 12〈n2〉+ 2 . (6.252)

3. Step III:
Next, we want to compute the expression for 〈n3〉. To compute this we consider here
the first, second and third order master equations, as mentioned earlier. Considering
only the first order master equation we get the following analytical expression:

1

µk

∂〈n3〉
∂τ

= 〈3n2(1+2n)+6n(1+n)〉 = 〈6n+9n2+6n3〉 = 6〈n〉+9〈n2〉+6〈n3〉 . (6.253)

On the other hand, using the second order master equation we get the following ana-
lytical expression for the time evolution of the third moment or three point correlation:

1

µ2
k

∂2〈n3〉
∂τ 2

= 〈12n(1+3n+3n2)+6n(1+6n+6n2)〉 = 18〈n〉+72〈n2〉+60〈n3〉 . (6.254)

Finally, using the third order master equation we get the following analytical expres-
sion for the time evolution of the third moment or three point correlation:

1

µ3
k

∂3〈n3〉
∂τ 3

= 〈6(1 + 2n)(1 + 10n+ 10n2)〉 = 72〈n〉+ 180〈n2〉+ 120〈n3〉+ 6 . (6.255)

4. Step IV:
Next, we want to compute the expression for 〈n4〉. To compute this we consider here
the first, second, third and fourth order master equations, as mentioned earlier. Con-
sidering only the first order master equation we get the following analytical expression:

1

µk

∂〈n4〉
∂τ

= 〈4n3(1 + 2n) + 12n2(1 + n)〉 = 〈16n3 + 20n4〉 = 16〈n3〉+ 20〈n4〉 .(6.256)
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On the other hand, using the second order master equation we get the following ana-
lytical expression for the time evolution of the fourth moment or four point correlation:

1

µ2
k

∂2〈n4〉
∂τ 2

= 〈12n2(1 + n)2 + 48n2(1 + 3n+ 2n2) + 12n2(1 + 6n+ 6n2)〉

= 72〈n2〉+ 240〈n3〉+ 180〈n4〉 . (6.257)

Then, using the third order master equation we get the following analytical expression
for the time evolution of the fourth moment or fourth point correlation:

1

µ3
k

∂3〈n4〉
∂τ 3

= 〈72n(1 + n)(1 + 5n+ 5n2) + 24n(1 + 2n)(1 + 10n+ 10n2)〉

= 96〈n〉+ 720〈n2〉+ 1440〈n3〉+ 840〈n4〉 . (6.258)

Finally, using the third order master equation we get the following analytical expres-
sion for the time evolution of the fourth moment or fourth point correlation:

1

µ4
k

∂4〈n4〉
∂τ 4

= 〈24(1 + 20n+ 90n2 + 140n3 + 70n4)〉

= 480〈n〉+ 2160〈n2〉+ 3360〈n3〉+ 1680〈n4〉+ 24 . (6.259)

5. Step V:

Further we apply the boundary conditions, i.e. 〈n〉, 〈n2〉, 〈n3〉, 〈n4〉, d〈n2〉
dτ2

, d〈n3〉
dτ3

and

, d〈n4〉
dτ4

are vanishingly small at τ = 0. Using these conditions we get expressions for
〈n〉, 〈n2〉, 〈n3〉 and 〈n4〉.

6. Step VI:
Using the result obtained in Step I and using the previously mentioned boundary
condition we get the following expression for the one point function 28 (or first moment)
of occupation number:

First Moment (First Order) : 〈n〉I =
1

2
(e2τµk − 1) . (6.260)

which is further used to compute all the higher order moments from master evolution
equation considering higher order Taylor expansion. Additionally, it is important to
note that if we use higher order equations for the first moment then after imposing
the boundary conditions we get the following results:

First Moment (Second Order) : 〈n〉II = 0, (6.261)

First Moment (Third Order) : 〈n〉III = 0, (6.262)

First Moment (Fourth Order) : 〈n〉IV = 0 . (6.263)

28Here it is important to note that as far as quantum mechanical computation is concerned, it produces
same result for the one point function and first moment of the occupation number and both of them is equal
to the expectation or average value of the occupation number in this context.
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Consequently, the total first moment can be written as:

Total First Moment : 〈n〉 = 〈n〉I + 〈n〉II + 〈n〉III + 〈n〉IV

= 〈n〉I =
1

2
(e2τµk − 1) . (6.264)

In fig. (48), we have explicitly shown the time dependent behaviour of first moment

<n>

0.001 0.010 0.100 1 10 100

1

1010

1020

1030

τ

<n> for μk=1

Figure 48. Time dependent behaviour of 〈n〉 for µk = 1.

or one point function of the occupation number 〈n〉. As there is no contributions are
coming from the second, third and fourth order moment generating master evolution
equation for 〈n〉, the only contribution is coming from the first order master evolution
equation. From this plot we see that for a fixed value of the parameter µk = 1, at the
lower values of the time the first moment or the one point function of the occupation
number initially increase with time very very slowly. Then after a certain time when
τ >> 1 it shows suddenly huge increment in the behaviour. Most importantly, this
plot shows the first moment or one point function of the occupation number is not
zero. This shows the first signature of the non-Gaussianity as we know for Gaussian
probability distribution profile this is exactly zero.

7. Step VII:
Using the results obtained in Step II and using the previously mentioned boundary
condition we get the following expression for the two point function 29 (or second

29It is important to note that, as far as quantum mechanical computation is concerned, it produces not
exactly same result for the one point function and first moment of the occupation number. For two point
function we actually get the following result:

〈n(τ)n(τ
′
)〉 = A(τ)δ(τ + τ

′
), (6.265)
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moment) of occupation number:

Second Moment (First Order) :

〈n2〉I =
1

6
e6τµk +

1

6
(2− 3e2τµk) . (6.267)

Second Moment (Second Order) :

〈n2〉II =
1

24
e−2
√

3µkτ
[
8e2
√

3µkτ − 18e2(
√

3+1)µkτ +
(

3
√

3 + 5
)
e4
√

3µkτ − 3
√

3 + 5
]
.(6.268)

which is further used to compute all the higher order moments from master evolution

<n2>I

<n2>II

<n2>total

0.001 0.010 0.100 1 10 100

τ

<n2> different solution for μk=100

Figure 49. Time dependent behaviour of different 〈n2〉 at different values of the parameter µk.

equation considering higher order Taylor expansion. Additionally, it is important to
note that if we use higher order equations for the second moment then after imposing
the boundary conditions we get the following results:

Second Moment (Third Order) : 〈n2〉III = 0, (6.269)

Second Moment (Fourth Order) : 〈n2〉IV = 0 . (6.270)

Consequently, the total second moment can be written as:

Total Second Moment : 〈n2〉 = 〈n2〉I + 〈n2〉II + 〈n2〉III + 〈n2〉IV
= 〈n2〉I + 〈n2〉II . (6.271)

where A(τ) is the amplitude of the two point function as given by the following expression:

A(τ) = 〈n2〉 = 〈n2〉I + 〈n2〉II. (6.266)

This implies that the amplitude part is exactly matches with the second moment of the occupation number
in this context.
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In fig. (49), we have explicitly shown the time dependent behaviour of second moment
or amplitude of the two point function of the occupation number 〈n2〉. As there is no
contributions are coming from the third and fourth order moment generating master
evolution equation for 〈n2〉, the only contribution is coming from the first and second
order master evolution equation. From this plot we see that for a fixed value of the
parameter µk = 1, 10, 100, at the lower values of the time the second moment or the
amplitude of the two point function of the occupation number initially increase with
time very very slowly. Then after a certain time when τ >> 1 it shows suddenly huge
increment in the behaviour.

8. Step VIII:
Using the results obtained in Step III and using the previously mentioned boundary
condition we get the following expression for the three point function 30 (or third
moment) of occupation number:

Third Moment (First Order) :

〈n3〉I =
1

8µk

[
e6µkτ

(
12µ2

kτ + 2µk − 5
)

+ (9− 6µk)e
2µkτ + 4(µk − 1)

]
.(6.274)

Third Moment (Second Order) :

〈n3〉II =
1

560

[
35
(

3
√

3− 5
)
e−2
√

3µkτ + 450e2µkτ

− 35
(

3
√

3 + 5
)
e2
√

3µkτ +
(

6
√

15 + 20
)
e2
√

15µkτ

+
(

20− 6
√

15
)
e−2
√

15µkτ − 140
]
. (6.275)

30It is important to note that, as far as quantum mechanical computation is concerned, it produces not
exactly same result for the three point function and third moment of the occupation number. For three
point function we actually get the following result:

〈n(τ)n(τ
′
)n(τ

′′
)〉 = B(τ, τ

′
, τ”)δ(τ + τ

′
+ τ”), (6.272)

where B(τ, τ
′
, τ”) is the amplitude of the three point function. If we fix τ = τ

′
= τ” (equal time) then we

get the following expression:

B(τ, τ, τ) = 〈n3〉 = 〈n3〉I + 〈n3〉II + 〈n3〉III. (6.273)

This implies that the equal time amplitude part is exactly matches with the third moment of the occupation
number in this context.
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Third Moment (Third Order) :

〈n3〉III =
1

36960

[
2√

3− 3i

(
−6135i+ 2045

√
3− 1654 35/6 3

√
5 + 1011

6
√

352/3

+ 1011i152/3
)
e−

3√15(1+i
√

3)µkτ + 32670e2µkτ − 1050
(

10
√

3 + 17
)
e2
√

3µkτ

+
(

4090 + 827i35/6 3
√

5− 1011i
6
√

352/3 − 827
3
√

15− 337 152/3
)
ei

3√15(
√

3+i)µkτ

+ 1050
(

10
√

3− 17
)
e−2
√

3µkτ − 9240 +
2√

3− 3i

(
−6135i+ 2045

√
3

+ 827 35/6 3
√

5 + 1011
6
√

352/3 − 2481i
3
√

15− 1011i152/3
)
e2 3√15µkτ

]
. (6.276)

which is further used to compute all the higher order moments from master evolution
equation considering higher order Taylor expansion. Additionally, it is important to
note that if we use higher order equations for the third moment then after imposing
the boundary conditions we get the following results:

Third Moment (Fourth Order) : 〈n2〉IV = 0 . (6.277)

Consequently, the total third moment can be written as:

Total Third Moment : 〈n3〉 = 〈n3〉I + 〈n3〉II + 〈n3〉III + 〈n3〉IV
= 〈n3〉I + 〈n3〉II + 〈n3〉III . (6.278)

<n3>I
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<n3>III

<n3>total
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1×101320
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<n3> different solution for μk=100

Figure 50. Time dependent behaviour of the third moment 〈n3〉 for different fixed values of the
parameter µk.

In fig. (50), we have explicitly shown the time dependent behaviour of third moment
or three point function of the occupation number 〈n3〉. As there is no contributions are

– 150 –



coming from the fourth order moment generating master evolution equation for 〈n3〉,
the only contribution is coming from the first, second and third order master evolution
equation. From this plot we see that for a fixed value of the parameter µk = 1, 10, 100,
at the lower values of the time the third moment or the equal time amplitude of the
three point function of the occupation number initially increase with time very very
slowly. Then after a certain time it shows suddenly huge increment in the behaviour.
Most importantly, this plot shows the third moment or equal time amplitude of the
three point function of the occupation number is not zero. This shows the second
signature of the non-Gaussianity as we know for Gaussian probability distribution
profile this is exactly zero.

9. Step IX:
Using the results obtained in Step IV and using the previously mentioned boundary
condition we get the following expression for the four point function 31 (or fourth
moment) of occupation number:

Fourth Moment (First Order) :

〈n4〉I =
6(µ− 1)e2µτ + 3(5µ− 2)e8µτ − 2e6µτ (3µ(4µτ + 3)− 5)− 3µ+ 2

2µ
.(6.281)

Fourth Moment (Second Order) :

〈n4〉II =

(
67− 45

√
5
)
e−6
√

5µτ

10080
+

(
45
√

5 + 67
)
e6
√

5µτ

10080
+

1

5040
(−5265 sinh(2µτ)

− 216
√

15 sinh
(

2
√

15µτ
)

+ 2610
√

3 sinh
(

2
√

3µτ
)
− 5265 cosh(2µτ)

+ 4350 cosh
(

2
√

3µτ
)
− 720 cosh

(
2
√

15µτ
)

+ 1568) (6.282)

The third and the fourth order corrected version of the fourth order moment equa-
tions are not exactly solvable analytically. For this reson we have applied numerical
techniques to solve these differential equations.

Consequently, the total fourth moment can be written as:

Total Fourth Moment : 〈n4〉 = 〈n4〉I + 〈n4〉II︸ ︷︷ ︸
Analytical

+ 〈n4〉III + 〈n4〉IV︸ ︷︷ ︸
Numerical

. (6.283)

31It is important to note that, as far as quantum mechanical computation is concerned, it produces not
exactly same result for the three point function and third moment of the occupation number. For three
point function we actually get the following result:

〈n(τ)n(τ
′
)n(τ

′′
)n(τ

′′′
)〉 = C(τ, τ

′
, τ”, τ

′′′
)δ(τ + τ

′
+ τ” + τ”

′
), (6.279)

where C(τ, τ
′
, τ”, τ

′′′
) is the amplitude of the four point function. If we fix τ = τ

′
= τ” = τ

′′′
(equal time)

then we get the following expression:

C(τ, τ, τ, τ) = 〈n4〉 = 〈n4〉I + 〈n4〉II + 〈n4〉III + 〈n4〉IV. (6.280)

This implies that the equal time amplitude part is exactly matches with the third moment of the occupation
number in this context.

– 151 –



<n4>I

<n4>II

<n4>III

<n4>IV

<n4>total

0.001 0.010 0.100 1 10 100

10.×10-51

1×10950

1×101950

1×102950

1×103950

1×104950

τ

<n4> Total correction at μk=10

(a) Different 〈n4〉 for lower values τ .

<n4>I

<n4>II

<n4>III

<n4>IV

<n4>total

0.001 0.010 0.100 1 10 100 1000

10-20

1×10180

1×10380

1×10580

1×10780

1×10980

τ

<n4> Total correction at μk=1

(b) Different 〈n4〉 for higher values τ .

Figure 51. Log plot of Time dependent behaviour of the Fourth moment 〈n4〉 for different fixed
values of the parameter µk.

In fig. (51), we have explicitly shown the time dependent behaviour of fourth moment
or amplitude of the four point function of the occupation number 〈n4〉. From this
plot we see that for a fixed value of the parameter µk = 1, 10, 100, at the lower values
of the time the third moment or the equal time amplitude of the four point function
of the occupation number initially increase with time very very slowly. Then after a
certain time it shows suddenly huge increment in the behaviour.

6.4.1 Standard Deviation

Further, using the results obtained in the context of second moment or two point corre-
lation function, in this subsection our prime objective is compute the expression for the
Standard Deviation from the corrected version of the probability distribution function. In
the present context of discussion Standard Deviation actually gives the spread of the peak of
the corrected probability distribution function. Therefore, Standard Deviation considering
upto first order is given by the following expression:

S.D.uc =

√
〈n2〉I − (〈n〉I)2 =

√
2e6τµk − 3e4τµk + 1

2
√

3
, (6.284)

where the subscript ”uc” stands for uncorrected.

On the other hand, after including the result from the second order the corrected ex-
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pression for the Standard Deviation can be expressed as:

S.D.c =

√
(〈n2〉I + 〈n2〉II)− (〈n〉I)2

=

√(
3
√

3 + 5
)
e2
√

3µkτ − 18e2µkτ − 6e4µkτ + 4e6µkτ +
(
5− 3

√
3
)
e−2
√

3µkτ + 10

2
√

6
. (6.285)
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Figure 52. Time dependent behaviour of variance without second order correction and with
second order correction and 〈n〉2 are shown for different µk.

From the fig.- 52, we can see that the uncorrected Standard Deviation (first order) and
corrected Standard Deviation (second order) has significant difference in low µkτ limit and
second order overlapped as they approach higher µkτ . So for lower limit this second order
correction is significant and for this reason during the computation of Kurtosis and Skewness
we use total solution of standard deviation over the uncorrected one alone.

6.4.2 Skewness

In this subsection, our prime objective is to computed the expression for the Skewness from
the corrected probability distribution function. Skewness actually measure the asymmetry
of the probability distribution function of a real-valued random variable about its mean
value. This measure can be positive or negative, or undefined. From positive skewness (for
unimodal distribution) we can say normal curve has longer right tail.
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Therefore, skewness without correction can be expressed as:

Skewnessuc =
〈n3〉I[

〈n2〉I − (〈n〉I)2]3/2 =
〈n3〉I

[S.D.uc]3

=
3
√

3 (e6µτ (12µ2τ + 2µ− 5) + (9− 6µ)e2µτ + 4(µ− 1))

µ (−3e4µτ + 2e6µτ + 1)3/2
. (6.286)

On the other hand, the third order corrected value of the Skewness can be expressed as:

Skewnessuc =
〈n3〉I + 〈n3〉II + 〈n3〉III[

(〈n2〉I + 〈n2〉II)− (〈n〉I)2]3/2 =
〈n3〉I

[S.D.c]3
. (6.287)

The explicit detail of the corrected version of Skewness is not written to avoid writing the
unnecessary lengthy expression.
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Figure 53. Time dependent behaviour of Skewness without correction and with correction at
different fixed range of µk.

Now from fig. 53, we can say that the corrected Skewness deviate significantly from the
uncorrected one at low µkτ limit. But we can see that at higher limit they overlap. Also
Skewness is positive for the whole range which implies that the normal distribution curve
has longer right tail. Moreover, there is a discontinuity of third order corrected Skewness
in between the range 0.1 < τ < 1 and for the rest of the whole range of time Skewness
decreased upto unity and then it is increased.

6.4.3 Kurtosis

Kurtosis is a measure of the tailedness of the probability distribution of a real-valued random
variable. This is actually a descriptor of the shape of a probability distribution function
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and there are specific ways of quantifying it for a theoretical probability distribution and
corresponding ways of estimating it from a sample from a population. It is important to
note that, the Kurtosis of any univariate normal distribution is 3. For practical purposes
it is common practice to compare the expression for Kurtosis of a probability distribution
function to 3. Probability distributions with Kurtosis less than the value 3 are identified as
platykurtic, although this information does not imply the distribution is flat-topped in nature.
Rather, it implies that the probability distribution produces fewer and less extreme outliers
than does the normal probability distribution.Probability distributions with Kurtosis greater
than the value 3 are said to be leptokurtic. It is also common practice to use, the excess
Kurtosis, which is the Kurtosis minus 3, to provide the comparison to the normal probability
distribution profile. Like Skewness here also we calculate kurtosis from different distribution
and get it at different order of correction.

Therefore, Kurtosis without correction can be expressed as:

Kurtosisuc =
〈n4〉I[

〈n2〉I − (〈n〉I)2]2
=

〈n4〉I
[S.D.uc]2

=
6

µ (−3e4µkτ + 2e6µkτ + 1)

×
[
6(µk − 1)e2µkτ + 3(5µk − 2)e8µkτ

− 2e6µkτ (3µ(4µkτ + 3)− 5)− 3µk + 2
]
. (6.288)

On the other hand, the fourth order corrected value of the Kurtosis can be expressed as:

Kurtosisc =
〈n4〉I + 〈n4〉II + 〈n4〉III + 〈n4〉IV[
〈n2〉I + 〈n2〉I − (〈n〉I)2]2

=
〈n4〉I + 〈n4〉II + 〈n4〉III + 〈n4〉IV

[S.D.c]
2 (6.289)

From fig. (54), we can say that uncorrected kurtosis deviate from corrected one in lower
τ regime though overlapped in higher order [τ > 1]. So the contribution from the correction
factor is important in lower regime. Also it is important to note that, Kurtosis is greater
than the value 3 for the whole time regime, so the distribution is Leptokurtic and have
fatter tails.

From the calculation of the higher-order statistical moments (or equivalently the ampli-
tude of the quantum mechanical correlation functions) we get the following overall features
to analyze the nature and physical outcomes of the corrected probability density function
derived in this paper.

1. The Standard Deviation is significantly large for higher µkτ , though very small for
lower regime.

2. Skewness is positive throughout the time regime, though becomes vanishingly small
at a specific time interval (0.1 < τ < 0.7).
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Figure 54. Time dependent behaviour of Kurtosis without correction and with correction in the
probability density distribution function at different range of τ considering different µk

3. Kurtosis is greater than 3 for the whole time regime.

4. The predicted Log-Normal Gaussian Distribution shows deviations at significant levels.
Effects of the non-Gaussianity in the distribution function is clearly visualized.

5. The probability distribution has longer trailing ends and the trails go broad higher.

6. The probability distribution has a very low spread at lower µkτ limit though highly
spread out in larger limit.

Conequently, from the previously predicted result of [42] we show that distribution
deviates from a Log-Normal distribution and the predicted distribution function appears to
beleptokurtic and has a broad right trailing end.

7 Conclusion

In this paper we have addressed the issues which are appended below:

• In this paper, we have provided the analogy between particle creation in primordial
cosmology and scattering problem inside a conduction wire in presence of impurities.
Such impurities are characterized by effective potential in the context of quantum
mechanical description. On the other hand, in the context of primordial cosmology
time dependent mass profile of created particles (couplings) mimics the same role.

– 156 –



• Specific time dependence of mass profile actually restricts the structure of the scatter-
ing effective potential. To establish the analogy between two theoretical frameworks
we have further computed various characteristic features of conduction wire i.e. resis-
tance, conductance (electrical properties), Lyapunov exponent (dynamical property),
reflection and transmission coefficients (optical properties), occupation number and
energy density (energetics) using the expression for Bogoliubov coefficients for dif-
ferent mass profiles which connects the ingoing and outgoing solution of the mode
functions obtained in the context of particle creation process in cosmology.

• We have solved this particle creation problem using the following crucial steps:

1. First of all assuming that the interactions are well known we have studied the one
to one correspondence between the particle creation problem in early universe
cosmology with the scattering problem inside a conduction wire. Here we have
additionally neglected the effect of the expansion of our universe and this is
perfectly justifiable during the epoch of reheating. For this reason we call it as
Reheating Approximation.

2. Secondly we have studied the same problem where the particle interactions are
not known at all at the level of action. In such a situation, assuming the gravi-
tational background is classical in nature and also assuming the previously men-
tioned Reheating Approximation we have demonstrated the problem with
the help of Random Matrix Theory.

3. Further we have solved the dynamics of the particle creation problem by studying
the higher order corrections in the Fokker Planck equation for previously men-
tioned random system where the interactions are not easily quantifiable at the
level of action. We have constructed the fourth order corrected Fokker Planck
equation from which we have provided the solution of the random probability
distribution function. Such distributions are very very useful to study the dy-
namical systems when particle interactions are not well known. In our analysis
we have identified all of these modifications as the quantum correction to the
Fokker-Planck equation, the physical implications of which we have studied in
detail in this paper.

• In this work, we have shown that the Lyapunov exponent varies inversely with the
number of scatterers. Therefore, with an increase in the number of scatterers the
Lyapunov exponent also reduces thereby reducing the amount of randomness in the
system. This may be a hint to the fact that the Lyapunov exponent has a dependence
on the momenta values of the incoming wave-function of the scalar field. Additionally,
it is important to note that the upper bound of Lyuapunov exponent is restricted
by the constraint λ ≤ 2π/β (where β = 1/T ), which is a generic bound on chaos
obtained in the context of quantum field theory. As a consequence, one can find
restriction on the upper bound on the reheating temperature for the different quenched
mass profiles for which the chaos bound saturates. This is obviously a remarkable
result in the present context as it can able to provide the explicit expression for the
reheating temperature for a specified momentum scale, which was not predicted earlier
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in the detailed study of reheating. Most importantly, the bound on quantum chaos
in terms of Lyapunov exponent directly restrict the value of reheating temperature
without explicitly knowing the details of the particle interactions as appearing in the
action. Just the knowledge of time dependence of the quenched mass profiles (in other
words the knowledge of effective impurity potential as appearing inside the conduction
wire) is sufficient enough to restrict the upper bound of reheating temperature due to
quantum chaos.

• In this context we have also provided the expression for the two point quantum cor-
relation function, which is known as Spectral Form Factor (SFF) for both in finite
and zero temperature. Spectral Form Factor is actually a more strong measure to
find chaotic behaviour of a dynamical system compared to Lyapunov exponent. We
get saturating behaviour of SFF at late time scale, which indicates that it has an
upper-bound. We can relate SFF for any potential (Even Polynomial Potential in this
case). In the calculation of the Lyapunov Exponent for the specific time dependent
mass profiles, we choose three different quenched protocols for mass profiles. Poten-
tial functions which can be represented by polynomial potential (Even only in our
case) can be used to get the SFF-saturation. In this connection ,we have provided a
model independent upper and lower bound of SFF, which is treated as the significant
bound of quantum chaos (−1/N (1− 1/π) ≤ SFF ≤ 1/πN) in the context of particle
production event in cosmology. This is obviously a remarkable result which we have
explicitly computed in this paper.

• We have also presented the computation of quantum corrected Fokker- Planck equation
which corresponds to the delta-scatterers. From this computation we have derived the
corrected statistical distribution of the particle production events in cosmology. The
distribution which has been predicted in [42] to be Gaussian doesn’t retain its form
when more correction terms are taken into account. This may be treated as a signature
of non-Gaussianity in particle production events during reheating (in cosmology).

The future discussions of the present work are mentioned in the following:

• In this paper for our study of quantum chaos in the context of cosmology we have
used a closed quantum system. As we have mentioned that the present computation
has been performed for a massless scalar field which interacts with the heavy fields
(which acts like scatterers inside the conduction wire). The entire calculation is being
done for the set up when there is only a single massless scalar field that interacts with
the scatterer. One may repeat the calculation for a large number of these scalar fields
interacting with the scatterers which needs the introduction of the random matrix
approach in a more generalized fashion.

• The system we have studied in this paper have no interactions with the background
as the definition of the background in this set-up is itself an ill-defined one during
reheating. To treat the entire system having being interacted with a background one
needs to have a detailed description of the nature of background in the cosmological
scenario. Then it will be possible to introduce the other non-linear and dissipative
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effects into the system introduced by the background itself. Such a treatment will
be studied within the framework of an open quantum system interacting with the
defined background set-up. One then needs to consider the entire system having
being interacted with the background under a weak coupling limit. One such model
as has been studied in [103].

• We have calculated the Lyapunov exponent and Spectral Form Factor in this paper
which is a measure of chaos or non-linearity into the system. With the system pre-
scribed in this work being treated as an open quantum system one may study the
effects of dissipation being introduced into such a system which renders the system
to be a stochastic one. With this, one may be able to study the effects of the non-
linearity being introduced into the system which may well be a good study to look for
the behaviour of Lyapunov exponent and Spectral Form Factor.

• During the study of quantum correction in the Fokker Planck equation and the devi-
ation from log normal distribution we have followed a specific approach in which we
have considered the following possibilities:

1. We have neglected the contribution from the damping term in the Fokker Planck
equation. One can include such effect and study its role in the context of cosmol-
ogy (specifically during reheating).

2. During the computation we have followed a specific approach in which we have
also neglected the effect of impurity potential at very high temperature during
reheating. This will give rise to a simplest form of the Fokker Planck equation
where only diffusion and drift contributions are appearing explicitly. But if we
include the effect of impurity potential in presence of finite temperature then it
will surely effect the final solution of the probability distribution function. One
can include such additional effects and study its impact during reheating epoch
of the early universe.

3. Furthermore, during the construction of the Fokker Planck equation from the
basic principles we have followed a special approach in which the effect of diffusion
and drift is appearing in a very simplified manner. However, in the study of
statistical field theory Itô and Stratnovitch or more generalized prescriptions are
used commonly to construct the Fokker Planck equation. Here it is important
to note that in each case it will give rise to different mathematical structure
of Fokker Planck equations. In the present context of discussion, one can follow
such well known prescriptions to see its physical outcomes to solve the probability
distribution function for the particle production and compare the results to check
the appropriateness of these approaches during reheating.

Acknowledgments

SC would like to thank Quantum Gravity and Unified Theory and Theoretical Cosmology
Group, Max Planck Institute for Gravitational Physics, Albert Einstein Institute for pro-
viding the Post-Doctoral Research Fellowship. SC would like to thank IUCAA, Pune, India

– 159 –



where the problem was formulated and part of the work has been done during post doctoral
tenure. SC take this opportunity to thank sincerely to Jean-Luc Lehners, Shiraz Minwalla,
Sudhakar Panda and Varun Sahni for their constant support and inspiration. SC also thank
the organisers of Kavli Asian WInter School on Strings, Particles and Cosmology 2018 for
providing the local hospitality during the work. SC also thank DTP, TIFR, Mumbai, ICTS,
TIFR, Bengaluru, IOP, Bhubaneswar, CMI, Chennai, SINP, Kolkata and IACS, Kolkata
for providing the academic visit during the work. AM, PC and SB is thankful to IUCAA,
Pune for the visit during the work for winter project. Last but not the least, We would all
like to acknowledge our debt to the people of India for their generous and steady support
for research in natural sciences, especially for theoretical high energy physics, string theory
and cosmology.

A Itô solution of Fokker Planck equation
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Figure 55. Evolution of the probability density function for Itô prescription with respect to the
the occupation number per mode n, for a fixed time.

From Itô perspective the Fokker Planck equation can be expressed as:

Fokker Planck Equation (From Itô) :

∂P (n; τ)

∂τ
= − ∂

∂n
(a(n)P (n; τ)) +

∂2

∂n2
(D(n)P (n; τ)) , (A.1)

Here we take a(n) = 0 and D(n) = n(n + 1). Using this we get the following solution of
probability distribution:

P (n, τ) =
1

2
√
π
√
n(n+ 1)τµk

exp

[
−((4n+ 2)τµk + n)2

4n(n+ 1)τµk

]
(A.2)
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In fig. (55) we have shown the probability distribution function obtained from the Itô solu-
tion of the Fokker Planck equation. This solution is similar to the log normal distribution
obtained from the present computation. From the plot we observe that for large value of
occupation number n (n >> 1) the distribution function decays to a finite saturation value.
On the other hand for small occupation number n (n << 1) we get peak in the distribution
function for different values of µkτ .

B Stratonovitch solution of Fokker Planck equation
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Figure 56. Evolution of the probability density function for Stratonovitch prescription with
respect to the the occupation number per mode n, for a fixed time in the limit n << 1.

From Stratonovitch perspective the Fokker Planck equation can be expressed as:

Fokker Planck Equation (From Stratonovitch) :

∂P (n; τ)

∂τ
= − ∂

∂n
(a(n)P (n; τ)) +

∂

∂n

(√
D(n)

∂

∂n

(√
D(n)P (n; τ)

))
, (B.1)

Here we take a(n) = 0 and D(n) = n(n + 1). Using this we get the following solution of
probability distribution:

P (n, τ) =
1

2
√
π
√
n(n+ 1)τµk

exp

[
−9(2n+ 1)2τµk

16n(n+ 1)

]
(B.2)

In fig. (56) we have shown the probability distribution function obtained from the Stratonovitch
solution of the Fokker Planck equation. This solution is similar to the log normal distribu-
tion obtained from the present computation. From the plot we observe that for large value
of occupation number n (n >> 1) the distribution function decays to a finite saturation
value. On the other hand for small occupation number n (n << 1) we get peak in the
distribution function for different values of µkτ .
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C Generalized solution of Fokker Planck equation at infinite tem-
perature
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(a) Probability distribution for Q = 1/4.
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Figure 57. Evolution of the probability density function for generalized prescription with respect
to the the occupation number per mode n, for a fixed time.

From General perspective the Fokker Planck equation can be expressed as:

Fokker Planck Equation (For Generalized Itô) :

∂P (n; τ)

∂τ
= − ∂

∂n
(a(n)P (n; τ)) +

∂

∂n

(
(D(n))1−Q ∂

∂n

(
(D(n))QP (n; τ)

))
, (C.1)

Here we take a(n) = 0 and D(n) = n(n + 1). Using this we get the following solution of
probability distribution:

P (n, τ) =
1

2
√
µkπτ(n(n+ 1))Q

× exp

[
−
(
n2(n+ 1) + µkτ(2n+ 1)Q(Q+ 1)(n(n+ 1))Q

)2

4µkτ(n(n+ 1))Q+2

]
(C.2)

In fig. (57) we have shown the probability distribution function obtained from the generalized
solution of the Fokker Planck equation without dissipation in very very large temperature.
From the plot we observe that for large value of occupation number n (n >> 1) the distri-
bution function decays to a finite saturation value. On the other hand for small occupation
number n (n << 1) we get peak in the distribution function for different values of µkτ .
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D Generalized solution of Fokker Planck equation at finite tem-
perature

From General perspective the Fokker Planck equation with effect of potential can be ex-
pressed as:

Effective Potential :

U(n) =

[
β2

4
D(n)

(
∂V (n)

∂n

)2

− β

2
D(n)

(
∂2V (n)

∂n2

)
− β

2

(
∂D(n)

∂n

)(
∂V (n)

∂n

)]
. (D.1)

∂

∂n

(
D(n)

∂W (n; τ)

∂n

)
− U(n)W (n; τ) =

∂W (n; τ)

∂τ
, (D.2)

P (n; τ) = exp

(
−β

2
V (n)

)
W (n; τ) . (D.3)

Here we take a(n) = 0,V [n] = n2and D(n) = n(n+ 1). Using this we get the following
solution of probability distribution:

P (n, τ) =
1

2
√
π
√
n(n+ 1)τµk

× exp

[
−(n− µk(2nτ + τ))2

4n(n+ 1)τµk
− βn2

2
− βn {n(βn(n+ 1)− 3)− 2}

]
(D.4)

In fig. (58) we have shown the probability distribution function obtained from the solution
of of the Fokker Planck equation derived in presence of finite temperature effective potential
solution. From the plot we observe that for large value of occupation number n (n >> 1)
the distribution function decays to a finite saturation value. On the other hand for small
occupation number n (n << 1) we get peak in the distribution function for different values
of µkτ .
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