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ABSTRACT: In this work, we study the key role of generic Effective Field Theory (EFT) framework
to quantify the correlation functions in a quasi de Sitter background for an arbitrary initial choice
of the quantum vacuum state. We perform the computation in unitary gauge in which we apply
Stiickelberg trick in lowest dimensional EFT operators which are broken under time diffeomor-
phism. Particularly using this non-linear realization of broken time diffeomorphism and truncating
the action by considering the contribution from two derivative terms in the metric we compute
the two point and three point correlations from scalar perturbations and two point correlation
from tensor perturbations to quantify the quantum fluctuations observed in Cosmic Microwave
Background (CMB) map. We also use equilateral limit and squeezed limit configurations for the
scalar three point correlations in Fourier space. To give future predictions from EFT setup and to
check the consistency of our derived results for correlations, we use the results obtained from all
class of canonical single field and general single field P(X, ¢) model. This analysis helps us to fix
the coefficients of the relevant operators in EFT in terms of the slow roll parameters and effective
sound speed. Finally, using CMB observation from Planck we constrain all of these coefficients of
EFT operators for single field slow roll inflationary paradigm.
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1 Introduction

The basic idea of effective field theory (EFT) is very useful in many branches in theoretical physics
including particle physics [1, 2], condensed matter physics [3], gravity [4, 5], cosmology [6—25] and
hydrodynamics [26, 27]. In a more technical ground EFT framework is an approximated model
independent version of the underlying physical theory which is valid up to a specified cut-off scale
at high energies, commonly known as UV cut-off scale (Ayy), which is in usual practice fixed at
the Planck scale M,,. EFT prescription deal with all possible relevant and irrelevant operators
allowed by the underlying symmetry in the effective action and all the higher dimensional non
renormalizable operators are accordingly suppressed by the UV cut-off scale (Ayy ~ M,,). There
are two possible approaches exist within the framework of quantum field theory (QFT) using which
one can explain the origin of EFT, which are appended below:

1. Top down approach: In this case the usual idea is to start with a UV complete fun-
damental QFT framework which contain all possible degrees of freedom. Further using
this setup one can finally derive the EFT of relevant degrees of freedom at low energy
scale Ay < Ayy ~ M, by doing path integration over all irrelevant field contents [11, 13].
To demonstrate this idea in a more technical ground let us consider a visible sector light
scalar field ¢ which has a very small mass my < Ayyv ~ M, and heavy scalar fields
v;Vi = 1,2,--- N with mass My, > Ayy ~ M,, in the hidden sector of the theory. the
representative action of the theory is described by the following action [11, 13]:

N
S[gf)ﬂl’i,gw]:/d‘lx\/ig pR+£VIS o]+ L] +Zcmt (1)
=1

where g,,, is the classical background metric, Lyis[¢] is the Lagrangian density of the visible
sector light field, Egl)d[ U,Vi = 1,2,--- , N is the Lagrangian density of the hidden sector
heavy field and [,mt [0,¥;]Vj = 1,2,---,N is the Lagrangian density of the interaction
between hidden sector and visible sector field. Further using Eq. (1.1) one can construct
an EFT by performing path integration over the contributions from all hidden sector heavy
fields and all possible high frequency contributions as given by:

N
S (¢, 9] = —iln (DY S[, ¥y, g | = —i In Sl ¥y, gl | - (1.2)
EFT |9, 9 31;[1/ 9 Z [/ g

Finally one can express the EFT action in terms of the systematic series expansion of visible
sector light degrees of freedom and classical gravitational background as [11, 13]:

SeFT [0, 9] = / d'zy/—g ;R+.cvis[¢]+ZZC§J><90>M1E , (13)
v j=1 v




where ng )(gc)V’y, Vj=1,2,--- N represent dimensionless coupling constants which depend

on the parameter g. of the UV complete QFT. Also 59) [6]Vy, Vj=1,2,---, N represent A,

mass dimensional local EFT operators suppressed by the scale M£J7_4. In this connection
one of the best possible example of UV complete field theoretic setup is string theory from
which one can derive an EFT setup at the string scale A; which is identified with My in
Eq (1.3).

2. Bottom up approach: In this case the usual idea is to start with a low energy model
independent effective action allowed by the symmetry requirements. Using such setup the
prime job is to find out the appropriate UV complete field theoretic setup allowed by the
underlying symmetries [11, 13]. This identification allows us to determine the coefficients of
the EFT operators in terms of the model parameters of UV complete field theories. In this
paper we follow this approach to write down the most generic EFT framework using which
we describe the theory of quantum fluctuations observed in CMB around a quasi de Sitter
inflationary background solution of Einstein’s equations.

In this paper our prime objective is to compute the expressions for the cosmological two and three
point correlation functions in unitary gauge using the well known Stiickelberg trick [28, 29] along
with the arbitrary choice of initial quantum vacuum state. The working principle of Stiickelberg
trick in quasi de Sitter background is to break the time diffeormorphism symmetry to generate
all the required quantum fluctuations observed in CMB. This is exactly same as applicable in the
context of SU(N) non-abelian gauge theory to describe the spontaneous symmetry breaking. In
the present context the scalar modes which are appearing from the quantum fluctuation exactly
mimic the role of Goldstone mode as appearing in SU (V) non-abelian gauge theory. After breaking
the time diffeomorphism in the unitary gauge scalar Goldstone like degrees of freedom are eaten
by the metric. In unitary gauge, to write a most generic EFT in terms of operators which breaks
time diffeormorphism symmetry, the following contributions play significant role in quasi de Sitter
background:

e Polynomial powers of the time fluctuation of the component in the metric, ¢°° such as,
5% = g0 41,

e Polynomial powers of the time fluctuation in the extrinsic curvature at constant time sur-
faces, K, such as, 6K, = (K;w — a2HhW), where a is the scale factor in quasi de Sitter
background.

Construction of EFT action using Stiickelberg trick also allows us to characterize all the pos-
sible contribution to the model independent simple versions of field theoretic framework based
on the models of inflationary paradigm described by single field, where the observables are con-
strained by CMB observation appearing from Planck data. It is important to note that this idea
of constructing EFT action using Stiickelberg trick can also be generalized to the EFT framework
guided by multiple number of scalar fields as well.

The mian highlighting points of this paper are appended below point-wise:

1. We have presented all the results by restricting up to all possible contributions coming from
the two derivative terms in the metric which finally give rise to a consistently truncated
EFT action. Consequently, we get consistent predictions for Single Field Slow Roll [30—41]
and Generalized Single Field P(X, ¢) models of inflation [42-55]. In earlier works various
efforts are made to derive cosmological three point correlation functions by writing a con-
sistent EFT action in the similar theoretical framework. However, the earlier results are



not consistent with the Single Field Slow Roll inflation with effective sound speed cg = 1
as it predicts vanishing three point correlation function for scalar fluctuations. See ref. [6]
for more details. The main reason for this inconsistency was ignoring specific contributions
from the fluctuation in the EFT action, which give rise to improper truncation.

2. We have computed the analytical expression for the two point and three point correlation
function for the scalar fluctuation in quasi de Sitter inflationary background in presence of
generalized initial quantum state. Also for the first time we have presented the result for two
point correlation function for the tensor fluctuation in this context. To simplify our results

we have also presented the results for Bunch Davies vacuum and «, 8 vacua .

3. We have presented the exact analytical expressions for all the coefficients of EF'T operators
for Single Field Slow Roll and Generalized Single Field P(X, ¢) models of inflation in terms
of the time dependent slow roll parameters as well the parameters which characterize the
generalized initial quantum state. To give numerical estimates we have further presented the
results for Bunch Davies vacuum and «, § vacua.

This paper is organized as follows. In section 2, we discuss the overview of the EFT frame-
work under consideration, which includes the construction of the EFT action under broken time
diffeomorphism in quasi de Sitter background. In section 3, we derive the expression for the
two point correlation function from EFT using scalar and tensor mode fluctuation. Further in
section 4 we derive the expression for the scalar three point function from EFT using scalar mode
fluctuation in equilateral and squeezed limit configurations. After that in section 5, we derive the
exact analytical expressions for coefficients of EF'T operators for both single field slow roll inflation
and generalized single field P(X, ¢) models of inflation. Finally we conclude in section 6 with
some future prospects of the present work.

2 Overview on EFT

2.1 Construction of the generic EFT action

In this section our motivation is to construct the most generic EFT action in the background of
quasi de Sitter space. Before going to the further technical details it is important to note that the
method of implementing cosmological perturbation using a scalar field is different compared to the
generic EFT framework. However the underlying connection can be explained by interpreting the
scalar (inflaton) field as a scalar under all space time diffeomorphisms in General Relativity:

’Space — time diffeomorphism : 2z — a# + ¢H(t,x) YV u=0,1,2, 3‘ ) (2.1)

Consequently in the cosmological perturbation the scalar field d¢ transform like a scalar under
the operation of spatial diffeomorphisms, on the other hand it transforms in non-linear fashion
with respect to time diffeomorphisms. The space and time diffeomorphic transformation rules are

In QFT of quasi de Sitter space we deal with a class of non thermal quantum states, characterized by infinite
family of two real parameters o and 8, commonly known as «, 8 vacua. It is important to note that «, 8 quantum
states are CP invariant under SO(1,4) de Sitter isometry group. On the other hand we we fix 8 = 0 then we get «
vacua which is actually CPT invariant under SO(1,4) de Sitter isometry group. Furthermore, if we fix both a = 0
and 8 = 0 then we get the thermal Bunch Davies vacuum state.



appended bellow:

Spatial diffeomorphism : t = t, 2! = ' +¢'(t,x) Vi=1,2,3 — ¢ = 6¢,

Time diffeomorphism : t = t 4+ £0(t,x), o' = 2! Vi=1,2,3 — 6¢ = 0¢ + ¢o(£)£°(t, x).

(2.2)
Here €°(¢,x) and £'(t,x)Vi = 1,2,3 are the diffeomorphism parameter. In this context one can
choose a specific gauge in which we set the background scalar degrees of freedom as, ¢(t,x) = ¢o(t),
which is consistent with the requirement that the perturbation in the scalar field vanishes:

‘Unitary gauge fixing = 0¢(t,x) = (2.3)

In cosmological perturbation theory this is known as unitary gauge in which all degrees of freedom
are preserved in the metric of quasi de Sitter space. This phenomenon is analogous to the sponta-
neous symmetry breaking as appearing in the context of SU(N') gauge theory where the Goldstone
mode transform in a non-linear fashion and destroyed by the SU(N) gauge boson in unitary gauge
to give a massive spin 1 degrees of freedom after symmetry breaking. In a alternative way one
can present the framework of EFT by describing cosmological perturbation theory during inflation
where time diffeomorphisms are realized in non-linear fashion.

Now to construct a most general structure of the EFT action suitable for inflationary paradigm
we need to follow the step appended below:

1. One must write down the EFT operators that are functions of the metric g,,. Here one of
the possibilities is Riemann tensor.

2. Also the EFT operators are invariant under the linearly realized time dependent spatial
diffeomorphic transformation:

Spatial diffeomorphism : t =t, z' = z'+£¢(t,x) Vi=1,2,3]. (2.4)

For an example, one can consider an EFT operator constructed by ¢° or its polynomials
without derivatives which transform like a scalar under Eq (2.4).

3. Due to the reduced symmetry of the physical system many more extra contributions are
allowed in the EFT action.

4. In the EFT action one can also allow geometrical quantities in a preferred space-time slice.
For an example, one can consider the extrinsic curvature K, of surfaces at constant time,
which transform like a tensor under Eq (2.4).

Consequently the most general EFT action can be written in terms of all possible allowed operators
by the space-time diffeomorphism as [6, 19]:

M2 ) ) > MA(t)
4 2 00 2 2 n 00\n
S:/da:ﬁg 7”R+Mpﬂg — M (3H +H)+§ —2=(5™)




where the dots stand for higher order fluctuations in the EFT action which contains operators with
more derivatives in space-time metric. Here we use the following sets of definitions for extrinsic
curvature K, unit normal n, and induced metric h,,:
09 ,00 4 5059 00 0500 00
K,, = h’Von, = 0,0vg ™ + 0,0u9 + 0,909 909 _ 9% (Oupv + Ovgpu — OpGpw)
A A 2(7900)3/2 2(7900)5/2 2(7900)1/2 ’
0
Oyt _ % .
\/_gwautavt \/—900

Here K, represents the variation of the extrinsic curvature of constant time surfaces with respect
to the unperturbed background FLRW metric in quasi de Sitter space-time:

h;w = Guv T NpNy, ny, = (2'6)

5900 = 900 +1, 0Ky =Ky — CLQHh/W' (27)

Additionally, we have used a shorthand notation [0K] to define the following tensor contraction
rule useful to quantify the EFT action [19]:

+2 3 m m
[BK]™? = §KIMOKI26KNS - - K1 K fim+2 (2.8)

Hm+2

Before going to the further details let us first point out the few important characteristics of the
EFT action which are appended bellow:

e In the EFT action the operators M]?H ¢ and Mg <3H 24 H ) are completely specified by the
Hubble parameter H (t) which is the solution of Friedman’s Eqns in unperturbed background.

e Rest of the contributions in EFT action captures the effect of quantum fluctuations, which
are characterized by the perturbation around the background FLRW solution of all UV
complete theories of inflation.

e The coefficients of the operators appearing in the EFT action are in general time dependent.

Now as we are interested to compute the two and three point correlation function, we have re-
stricted to the following truncated EFT action [6, 19]:

M, : N\ Myt M3 (t
LR+ M2 — ME (3H + 1) + M) (g0 4 1)? 4 Mal8) (oo 4 4y3

_ 4
S_/dx“ﬂ 2l 3!

M3(t) M (t)

M%(t) 00 2 v
=5 (0" + 1) 0K - =D (0K))? - = LOKOKG |

(2.9)
where we have considered the terms in two derivatives in the metric 2.

2As we are dealing with EFT, in principle one can consider opeators which includes higher derivatives in the
metric i.e. (gOO + 1)2 K2, 6K26KZ(5K[,‘, SK®, SKSN? (here SN = N — 1, where N is the lapse function in ADM
formalism. See ref. [56] for more details.) etc contributions. But since we have considered the terms two derivative
in the metric we have truncated the EFT action in the form presencted in Eq. (2.9) and the form of the EFT action
is exactly similar with ref. [6]. In this paper our prime objective is to concentrate only on the leading order tree
level contributions and for this reason we have not considered any subleading suppressed contributions or any other
contributions which are coming from the quantum loop corrections. Additionally, we have also neglected the term
like (gOO + 1)2 SK in the EFT action as this term is suppressed by the contribution H?e¢ << 1 in the decoupling
limit and also the higher derivatives of the Goldsotone mode 7 after implementing the symmetry breaking through
Stiickelberg trick.



2.2 EFT as a theory of Goldstone Boson

2.2.1 Stiickelberg trick I: An example from SU(N) gauge theory with massive gauge
boson in flat background

In the unitary gauge the EFT action consist of graviton mode two helicities and scalar mode re-
spectively. In this context first we apply a broken time diffeomorphic transformation on Goldstone
boson. As a result SU(N) gauge symmetry [6, 57] is non-linearly realized in the framework of
EFT. This mechanism is commonly known as Stiickelberg trick. Let us mention two crucial roles
of Stiickelberg trick in gauge theory:

1. Using this trick in SU(N) gauge theory [6, 57] one can study the physical implications from
longitudinal components of a massive gauge boson degrees of freedom.

2. It is expected that in the weak coupling limit the contribution from the mixing terms are
very small and consequently Goldstone modes decouple from the theory.

To give a specific example of Stiickelberg trick we consider SU (V) gauge theory characterized
by a non-abelian gauge field Aj; in the background of Minkowski flat space-time. In unitary gauge
this theory is described by the following action:

(2.10)

4 1 v m2
S=[dx —zTr(FWF“ ) — 7Tr(AMA“)

where A, = AJT, and F}j, = 8[MAZ}. Here the label a = 1,2,--- | N for SU(N) gauge theory. Also
T, are the generators of non-abelian gauge group which satisfy the following properties:

5ab
[T“,Tb] = jpaber,, TH(T) =0, T(TT) = - (2.11)
Here f%¢Va,b,c=1,2,---, N are the structure constants of the non-abelian SU(N) gauge theory.

It is important to mention that, in this context the SU(N) gauge transformation on the
non-abelian gauge field can be written as:

A, = A, =-UD,U',  with D, =0, —igA, (2.12)
g
where D,, is the covariant derivative. Here g is the gauge coupling parameter for SU(NN) non-

abelian gauge theory. Under this gauge transformation each of the terms in the action stated in
Eq (2.10) transform as:

Tr(F,, F") = Tr(F,, F" ) = Tr(F,, F"), (2.13)
m2 m2 ~ o~ m2

5 Tr(A,A) = Z-Tr(4,A") = TTr[(DMUT)(D“U)], (2.14)
g

where U is the unitary operator in SU(NN) non-abelian gauge theory.
Consequently after doing SU(N) gauge transformation action can be expressed as:

3 m? m?
S—§=5+ /d%« [QTT(A/LA“) ~ 5g BUDUN (D V) (2.15)

Additional part which breaks SU(N) gauge symmetry




where term signifies the gauge symmetry breaking contribution in the unitary gauge.

Further it is important to note that the SU(N) gauge symmetry can be restored by defining
the previously mentioned unitary operator in a following fashion:

U = exp [iT"(t,%)] , (2.16)

where one can identify the 7V a =1,2,--- | N s with the Goldstone modes, which transform in
a linear fashion under the action of the following gauge transformation:

U= U = exp [iT*(t,x)] = X(t, x) exp [iT7(t,x)] = U. (2.17)

(¢, %)
——
Local operator
For the sake of simplicity one can rescale the Goldstone modes by absorbing the mass of the SU(N)
gauge field m and the SU(N) gauge coupling parameter g by introducing the following canonical

normalization as given by:

Canonical normalization : Te = L (2.18)

g

Consequently, the action in terms of canonically normalized field 7. can be written after SU (V)
gauge transformation as:

B 2
S—=— S =5+ / dtax %Tr(AuAﬂ) - %Tr[(@uﬂc)(a“ﬂc)]

Kinetic term of Goldstone

29° g9’ 2 ;
——Tr(A,0"m.) + ETY(AMAHWC) +igTr(m. A0 )
m

Mixing terms after canonical normalization

(2.19)
It is important to note the important facts from Eq (2.19) which are appended below:

e The last two terms in Eq (2.19) are the mixing terms between the transverse component of
the SU(N) gauge field, Goldstone boson and its kinetic term respectively.

e Here one can neglect all such mixing contributions at the energy scale E,,;, >> m. Conse-
quently, two sectors decouple from each other as they are weakly coupled in the energy scale
E,iz >> m and the Eq (2.19) takes the following form:

~ m? 1
S=—S5=5+ /d4x [2Tr(A#A“) — 5Tr[(awrc)(a/%rc)] . (2.20)

2.2.2 Stiickelberg trick II: Broken time diffeomorphism in quasi de Sitter background

Here one need to perform a time diffeomorphism with a local parameter £%(¢,x), which is inter-
preted as a Goldstone field 7(¢,x). These Goldstone modes shifts under the application of time
diffeomorphism, as given by:

Time diffeomorphism : t =t + £°(t,x), ' = 2' Vi=1,2,3 — 7(t,x) = 7(t,x) — £°(¢,%).

(2.21)



The 7 is the Goldstone mode which describes the scalar perturbations around the background
FLRW metric. The effective action in the unitary gauge can be reproduced by gauge fixing the
time diffeomorphism as:

Unitary gauge fixing = 7(t,x)=0 = 7(t,x)=—-£(t,x)|. (2.22)

To construct the EFT action it is important to write down the transformation property of each
operators under the application of broken time diffeomorphism, which are given by:

1. Rule for metric: Under broken time diffeomorphism contravariant and covariant metric
transform as:

Contravariant metric : g% = (1 + 7)2¢% + 2(1 + 7)g" ;7 + g“ 0;m0;,
¢% = (14 7)g" + ¢"9;m, (2.23)

Covariant metric : ggo = (1 + 7)2goo,
goi = (14 7)goi + oo, (2.24)

9ij = Gij + 90;0im + gio0;.

2. Rule for Ricci scalar and Ricci tensor: Under broken time diffeomorphism Ricci scalar
and the spatial component of the Ricci tensor on 3-hypersurface transform as:

4
Ricci scalar : @R — OR 4 —2H(827r),
a (2.25)

Spatial Ricci tensor : (S)Rij - (3)Rij + H(0;0;m + 6ij527r).

3. Rule for extrinsic curvature: Under broken time diffeomorphism trace and the spatial,
time and mixed component of the extrinsic curvature transform as:

Trace : 0K = 0K — 3nH — %(82@,

Spatial extrinsic curvature : dK;; = 0K;; — WHhij — 0;0;m
Temporal extrinsic curvature : 5K8 == 5K8, (2.26)
Mixed extrinsic curvature : §K — 5KZQ,

(2

Mixed extrinsic curvature : §K{ = JK} + 2Hgij8j7r.




4. Rule for time dependent EFT coefficients: Under broken time diffeomorphism time
dependent EFT coefficients transform after canonical normalization 7. = F2(t)7 as:

[c0  p dn
EFT coefficient : F(t) = F(t+m) = Z L'dT”
n!

Ln=0

F(t)

(2.27)

[e.e]

T d"
— Z T F(t) =~ F(t) .
——

n=0
Suppression

Here F(t) corresponds to all EFT coefficients mention in the EFT action.

5. Rule for Hubble parameter: Under broken time diffeomorphism, time dependent EFT
coefficients transform after using the following canonical normalization:

Canonical normalization : 7, = F2?(t)7 |, (2.28)

as given by:

IS O IO
Hubble parameter : H(t) = H(t+7) = Z %dt—n H(t)
n=0

72 H (t)

= [1—7H(t)e — (6—26%) +---| H(t) .

Correction terms

(2.29)
Here € = —H /H? is the slow-roll parameter.

Now to construct the EFT action we need to also understand the behaviour of all the operators
appearing in the weak coupling regime of EFT. In this regime one can neglect the mixing con-
tributions between the gravity and Goldstone modes. To demonstrate this explicitly let us start
with the EFT operator:

O1(t) = —HM:g™. (2.30)

Under broken time diffeomorphism, the operator O(t) transform as:

OL(t) = [1 + g (6 —2He) +-- ] [(1 +7)204(t) — HM2 (2(1 + #)9img” + giﬂ‘amajﬂ)}

(2.31)
For further simplification the temporal component of the metric ¢°° can be written as, g% =
g% + 0g%°, where the background metric is given by, g°° = —1 and the metric fluctuation is

characterized by d¢%° [6, 19]. Using this in Eq (2.31) and considering only the first term in
Eq (2.31) we get a kinetic term, Mp2H 72¢% and a mixing contribution, MI?H 79g% respectively.
Further we use a canonical normalized metric fluctuation from the mixing contribution as given

by:

Canonical normalization : §g2° = M,d9" |, (2.32)

in terms of which one can write, MSH 76" = VH 70929, Consequently, at above the energy

scale Epiz = V H, we can neglect this mixing term in the weak coupling regime.

— 10 —



One can also consider mixing contributions MI?H 725¢% and Tngﬁ 7g%, which can be recast
a"ftelt canonical normalization as, MgH 726g%0 = 725¢%° /M,, and wMgﬁ 7§ = Hr,7r.g"°/H with
H/H << 1. Here all higher order terms in 7 will lead to additional Planck-suppression after
canonical normalization. Consequently, we can neglect the contribution from MI?H 769" term at
the scale E > E,;;. Finally, in the weak coupling regime one can recast Eq (2.31) as:

O1(t) = O (1) [7‘9 - alz(aﬂr)ﬂ . (2.33)

2.2.3 The Goldstone action from EFT

Finally in the weak coupling limit (or decoupling limit) we get the following simplified EFT action:
Sgrr = Sy + Sr, (2.34)

where the gravitational part and the Goldstone action is given by:

M? :
S, = /d4x\/7—g LR =M (3H2 +H> : (2.35)
Sy = SO 450 ... (2.36)

where the second and third order Goldstone action can be written as:

: 1
s = / d'z a® [—MgH <7'r2 - a2(8m)2> + 2My7?

L n ) - 09— (a4 saa) 1207 g L gop
B 3 2 € ) 3 2 P 17Ta2 s
(2.37)
s® — [ dtz 3 | 202 4M4 3 _ opfds 1 9:)2
T = za 2~ g3 )T zﬂﬁ(ﬂ)
NEnB L 0Pr — 3N Hn—(0P7) + SN nH - (0im)? (2.38)
— MymH 50T = oM Wﬁ(i”)"’g 1T ﬁ( i)
3 g . —q. 1
QMf’HWWQMf’Tr(IZ(aiW)2] .
Here we introduce EFT sound speed cg as:
1
CcCs = (2.39)

|- 2
AM2

4
Here if we set My = 0 or equivalently if we say that %(goo +1)? term is absent in the effective
Lagrangian then Eq (2.39) suggests that in that case sound speed c¢g = 1, which is true for single
field canonical slow roll inflation. Next using Eq (2.39) and applying integration by parts in the

— 11 —



Goldstone part of the Lagrangian we get *:

- MpH W _ o H(1 1
52 — /d4x a® 2 —ck |1 - 12 - [M32 +3M22] ¥ —Q(Giw)Q . (2.44)
c% M; 2MzH ] a
3 1 . 3 - 4 .
S = /d% a® [{ (1 — ng) HM; + S MPH — 3M§}} 73
1 . 2 3 3 1 . 2 2 4
— (1= 5 ) HM? + SM}H { —#(9;r) (2.45)
cg 2 a
_ 3 - 1 d
3772 -2 3 2
b TH m7* + iMl H;ﬂ'@ (Oim)
In the present context metric fluctuation of the spatial components are given by:
gij = a*(t) [(1 +2¢(t,%)) 6s5 +vi5] ¥ i=1,2,3, (2.46)

where a(t) is the scale factor in FLRW quasi de Sitter background space-time. Also ((t,x) is
known as curvature perturbation which signifies scalar fluctuation. On the other hand, tensor
fluctuations are identified with +;;, which is spin-2, transverse and traceless rank 2 tensor. Here
under the broken time diffeomorphism the scale factor a(t) transforms in the following fashion:

la(t) = al(t — 7(t,x)) = a(t) — Hr(t,x)a(t) + - ~ a(t) (1 — Hr(t,x))|. (2.47)
Further using Eq (2.46) and Eq (2.47), we get:
a?(t) (1 — Hr(t,x))* ~ a®(t) (1 — 2H7(t, %)) = a®(t) (1 + 2¢(¢,%)) . (2.48)

This implies that the curvature perturbation ((t,x) can be written in terms of Goldstone modes
7(t,x) in the following way *

‘ Quantum fluctuation in terms of Goldstone mode: ((t,x) = —Hn(¢,x) ‘ . (2.50)

3Let us concentrate on the following contribution in the second and third order peturbed EFT action, which can
be written after integration by parts as:

2 5 —/d% dt o® I} % (02r) = /d% dt ]\j—f {—ai (#0im) + %%(am)ﬂ
/d% dt o® M—f [% <(8;7;)2) — g (fmr)ﬂ
/d% dt a® ; (8 )2. (2.40)
$% 5 —/d% dt o I g o= /d% dt a® EMlH#S - gHQMfwirQ} . (2.41)
S35 /d% dt a® M7 g Hr (8;72)2 = —/d3m dt a® [3Mf’H7T (9;m)* + C%gj\?ff (81'71')2} (2.42)
s3 73/d3x dt a® M3 H 7 % (a,?w) = /dB:c dt a® 3M3 [a—: (@im)® + 7; (am)ﬂ (2.43)

“Here we have considered the linear relation between the curvature perturbation (¢) and the Goldstone mode (7).
In this context one can consider the following non-linear relation to compute the three point correlation function
from the present setup:

C(t,x) = —Hm(t,x) — @H%’Q(t?x) +y (2.49)
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Further using Eq (2.50), the effective action for the Goldstone part of the Lagrangian can be recast
in terms of curvature perturbation ((t,x) as:

M2\ | . M3H _ o H?(1+¢€)\ 1
S(Q)z/d%a?’ —r 21— M2 3] ——L ) = (9;0)% . (251
¢ C% C S MgH [ 3 2] 2Mp2H ag( ZC) ( )

3
3) 4, @ LN g2 33 4.4 13

1) 3 - 1,

+ { <1 - c2> HM} + 2M§H} —5¢(0:C)? (2.52)
S

2 131722 _§

+ G M 2

_ d
MPH ¢ (@C)Q] -

For further simplification we introduce few new parameters which are appended bellow °:

e First of all we define an effective sound speed ¢g, which can be expressed in terms of the

usual EFT sound speed cg as °:
M3H _ _ - H2(1+¢)

g =c 1— L — [M2+3M2] ————. 2.53

T M2H (Mg -+ 5215 2M2H (2:53)
Since the following approximations:

M}H _ o H?(1

Lol << 1, |[M3 + 3M3] H+e) 1 (2.54)
MgH 2M5H

are valid in the present context of discussion, one can recast the effective sound speed in the
following simplified form as:

. . . — oy H(1+¢€)
~ 14— | M{ + (M3 +3M37) —————=| ¢ . 2.55
Cs CS{+26HM3[ P+ (Mg + 3M3) 5 (2.55)
where the slow-roll parameters are given by, ¢ = —H JH? and n = ¢ — %ddlj’\]f. Here N' = [ H dt, represents the

number of e-foldings. However the contribution from such non-linear term is extremely small and proportional to
subleading terms €2, * and en in the expression for the three point function and the associated bispectrum. From the
observational perspective such contributions also not so important and can be treated as very very small correction
to the leading order result computed in this paper.

5Here we have used few choices for the simplifications of the further computation of the two and three point
correlation function in the EFT coefficients which are partly motivated from the ref. [58]. Also it is important to
note that, since we are restricted our computation up to tree level and and not considering any quantum effects
through loop correction, we have discussed the radiative stablity or naturalness of these choices under quantum
corrections.

SHere it is important to point out that, in the case when M, = 0 we have the EFT sound speed cs = 1 exactly,
which is true for all canonical slow-roll models of inflation driven by a single field. But since here the EFT coefficients
are sufficitly small MVi = 1,2, 3(~ (’)(1072 — 1073)) it is expected that és ~ cs and for the situation cs = 1 one
can approximately fix ¢s &= 1. So for canonical slow-roll model one can easily approimate the redefined sound
speed és with the ususal EFT sound speed cs without loosing any generality. But such small EFT coefficients
M¥i = 1,2,3(~ O(107% — 107?)) play significant role in the computation of the three point function and the
associated bispectrum as in the absence of these coefficients the amplitude of the bispectrum fn is zero. This
also implies that for canonical slow-roll model of single field inflation the amount of non-Gaussinity is not very
large and this completely consistent with the previous finding that in that case the amplitude of the bispectrum
fnr o« € (where € is the slow-roll parameter), at the leading order of the computation. See ref. [30] for details.

— 13 —



e Secondly, we introduce the following connecting relationship between M3 and Mj given by:

Mick = —ésMjy. (2.

(S

6)

When M = 0 then from Eq (2.39) we can see that the sound speed cg = 1 and Eq (2.56)
also implies that M3 = 0 in that case.

e Next we define the following connecting relationship between Mz and M; given by:
Miéy = —HMé3. (2.57)

When Ms = 0 then from Eq (2.39) we can see that the sound speed cg = 1 (which is actually
the result for single field canonical slow-roll models of inflation) and Eq (2.56) and Eq (2.57)
also implies the following possibilities:

1. M3 = 0, M; # 0 and %j — 0. We will look into this possibility in detail during our
computation for ¢cg = 1 case as this will finally give rise to non vanishing three point
function (non-gaussianity).

2. M3 =0, M; =0 and g—i # 0. We don’t consider this possibility for ¢g = 1 case because

for this case third (Sés)) action for curvature perturbation vanishes, which will give rise
zero three point function (non-gaussianity).

e For further simplification one can also assume that:
_ _ M3
M3+ 3M; =2 2.58
3+ 3My Hes (2.58)

so that one can write:

. _ o H(1+¢) M} (1+e¢)
——— | M} + (M3 + 3M3 =—21_ |1 . 2.59
eHM2 |1 + (M +305) 2 eHM? 205 (2:59)
For ¢g = 1 this implies the following two possibilities:
1. My # 0 and & = —3(1 +¢). We will look into this possibility in detail during our

computation for cg = 1 case as this will finally give rise to non vanishing three point
function (non-gaussianity).

2. M; = 0. We don’t consider this possibility for cg = 1 case because for this case third
(Sé‘?')) action for curvature perturbation vanishes, which will give rise zero three point
function (non-gaussianity).

Consequently, the effective sound speed can be recast as:

AM? AM?
g = 1 L~ 1 L 2.
s = ST 2emaz TS { +46HM3} (2:60)

where A is defined as, A = 2+16—Jg€. Here A = 0 for & = —3(1+¢€) when cg = 1. Consequently
we have ¢g = cg = 1 in that case.

e For further simplification one can also assume that:
M}
4Hes'

Here c¢g = 1 this implies the following two possibilities:

M2 ~ M3 = (2.61)
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1. M3 ~ M3 # 0,M; # 0 and & = —3(1 + ¢) as mentioned earlier. We will look into this
possibility in detail during our computation for cg = 1 case as this will finally give rise
to non vanishing non-gaussianity.

2. M2 ~ M2 = 0,M; = 0. As mentioned earlier here we don’t consider this possibility

for cg = 1 case because for this case second (Sé )) and third order (Sé3)) action for

curvature perturbation vanishes, which will give rise zero non-gaussianity.

e Next we define the following connecting relationship between My and M3 given by:
Mjég = Mjéy = —HDM;é3. (2.62)

When Ms = 0 then from Eq (2.39) we can see that the sound speed cg = 1 and Eq (2.56)
and Eq (2.62) also implies the following possibilities:

1. My #0, M3 =0, My # 0 and % — 0. We will look into this possibility in detail during
our computation for cg = 1 case as this will finally give rise to non vanishing three
point function (non-gaussianity).

2. My =0, M3 =0, M; =0 and g—i # (0. We don’t consider this possibility for cg = 1

case because for this case third (Sé3)) order action for curvature perturbation vanishes,
which will give rise zero three point function (non-gaussianity).

Further using all such new defined parameters the EFT action for Goldstone boson can be recast
7.

as
Forcg=1:
2) 4. 3 a2 |2 1 2
N/d, x a® Mye [C —g(@() ] (2.63)
3 _ . _ 1 .
Sf’) s/d“m“?) - §M{”H G+ §MfH —((0:¢)*
H 2 2 a? (2.64)
i — 3apaie® 9.0 |
GNP CC — DMPH ¢ 2 (9:6)
For cg <1

s ~ / . (J\fg ) [c _ (a g)] (2.65)

2 ~ ~ -
@ [ o4 sMy /1 34 | 263 z3 3¢4
Se N/dxa i <1 c%) [{1+4§+3c§ ¢ 1+42 C(@()

9H 3041 (zC)]

(2.66)

"Here it is important to note that, for the case cs = 1 we have written an approximated form of the second and
third order action by assuming that és &~ cs ~ 1, which is true for all canonical slow-roll models of inflation driven
by a single field. Here the EFT coefficients are sufficitly small M;Vi = 1,2,3(~ O(1072 — 1073)) for which it is
expected that ¢s =~ cs and for the situation cs = 1 one can approximately fix ¢s ~ 1.
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3 Two point correlation function from EFT

3.1 For scalar modes
3.1.1 Mode equation and solution for scalar perturbation

Here we compute the two point correlation from scalar perturbation. For this purpose we consider
the second order perturbed action as given by ®:

M2e\ | . M}H _ o1 H?(14¢)\ 1
2 4, 3 P 2 2 e S 2 2 2
S = /d Ta (C% ) [c cz (1 o7 [M3 + 3M3] P %7 = (2:0)*], (3.1)

which can be recast for ¢cg = 1 and ¢g < 1 case as:

2 : 1

For cg =1: Sé )~ /d4a: a® Mge {Q‘Q = a2(8¢§)2] , (3.2)
M?2e . 1

2 -

For cg < 1: Sé ) ~ /d4x a? (é;) [CQ — C%CLQ(aiC)2:| ; (3.3)
where the effective sound speed ¢g is defined earlier.
Next we define Mukhanov-Sasaki variable variable v(n, x) which is defined as:

Mukhanov — Sasaki variable : v(n,x) =z ((n,x) Mp=—2z H m(n,x) M,|. (3.4)

In general the parameter z is defined for the present EFT setup as, z = aé—‘/f Now in terms of
v(n,x) the second order action for the curvature perturbation can be recast as:

/ N 1
S? ~ / 4>z dn [v 2 c?g(awﬁﬁ(aigﬁ —mer(m?] |, (3.5)

where the effective mass parameter m.¢(n) is defined as, m? () = —%g%ﬁ. Here 7 is the conformal
time which can be expressed in terms of physical time ¢ as, n = [ %. The conformal time described
here is negative and lying within —co < n < 0. During inflation the scale factor and the parameter

z can be expressed in terms of the conformal time 7 as:

~ for dS

a(y =4 7 (3.6)
—H—n(l—ke) for qdS.

and
wvze | -z for dS
2= =q (3.7)
cs 1 V2e
T cs (1+¢) for qdS.

Additionally it is important to note that for de Sitter and quasi de Sitter case the relation between
conformal time 7 and physical time ¢ can be expressed as, t = —% In(—Hn). Within this setup
inflation ends when the conformal time 1 ~ 0.

8See also ref. [30] and [43], where similar computation have performed for canonical single field slow roll and
generalized slow roll models of inflation in presence of Bunch-Davies vacuum state.
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Now further doing the Fourier transform:

3 .
v(n, @) = / (;f)g, vie(n) e (3.8)

one can write down the equation of motion for scalar fluctuation as:

Mukhanov — Sasaki Eqn for scalar mode : v + (65k* + msz(n)) e =0/. (3.9)

Here it is important to note that for de Sitter and quasi de Sitter case the effective mass parameter
can be expressed as:

) - for dS
meff(n) = (2 - 1) (3.10)
for qdS.

Here in the de Sitter and quasi de Sitter case the parameter v can be written as:

3 for dS
v= § (3.11)
S
§+Se—n+§ for qdS,
where ¢, 7 and s are the slow-roll parameter defined as:
¢ = n=2— — s (3.12)

THY 9He  ° T Heg

In the slow-roll regime of inflation ¢ << 1 and || << 1 and at the end of inflation sow-roll
condition breaks when any of the criteria satisfy, (1) e=1or |n|=1, (2) e=1=|n|.
The general solution for vk (n) thus can be written as:

V= |C1HY (—késn) + CoH'P (—késn) for dS
v(n) = S : | (3.13)
v=n [C&Hl(,l) (—késn) + CoH (—késn)} for qdS.

Here 'y and Cs are the arbitrary integration constants and the numerical values depend on the
choice of the initial vacuum. In the present context we consider the following choice of the vacuum
for the computation:

1. Bunch Davies vacuum: In this case we choose, C1 =1,Cy =0 .

2. @, 3 vacuum: In this case we choose C; = cosh o, Cy = € sinh o . Here f3 is a phase factor.

For the most general solution as stated in Eq (3.13) one can consider the limiting physical situa-
tions, as given by, I. Superhorizon regime: kcsn << —1, Il. Horizon crossing: kcgn = —1,
ITI. Subhorizon regime: kégn >> —1.

Finally, considering the behaviour of the mode function in the subhorizon regime and super-
horizon regime one can write the expression in de Sitter and quasi de Sitter case as:

1 1 —iké s —im ikc 27~ i
—————— |C1e7"ST (1 +ikcsn) e T — Cae" ST (1 — ikésm) e for dS
n \/i(kés)% [ }
— v—3 1 1 ~ 3_y F(l/) —iké o~ _im (4 1
v(n) = 278~ °(késy)? Cre™*esm (1 4 ikagn) e T (T2)
et T g e 0 e

— Coe™es (1 — ikésn) e%(y+%)} for qdS.



Further using Eq (3.14) one can write down the expression for the curvature perturbation ((n, k) =
vk (n)

z M, as:
LS [C’le_ikasn (1 + ikésn) e ™ — Coe™s (1 — ikésn) em} for dS
2 My (kes) s
Clnk) = § ot W0 (g | DO o cmikeon 1 g inggn) = F (2)
2 M,/e(1+e)(sk)? r(3)
— Cyethesn (1 —ikesnm) e%’(wr%)] for qdS.

One can further compute the two point function for scalar fluctuation as:

(Cn,k)C(n,q)) = 2m)63) (k + @) Pe(k,m) | (3.14)

where P¢(k,n) is the power spectrum at time 7 for scalar fluctuations and in the present context
it is defined as:

H? 1

o ) . 2
. —tkégn .7~ —im ikcgn I i
, 1 M 2ees M2eis &P ‘016 (1+tkesn)e Coe (1 —tkesn)e for dS
[vk(n)] H? 1 I'(v) ?
PC(k 77) = = Wes S (—késn)® T ( (3.15)
! 2M2 TNl 1 s B3 Fesm
iy i - i 2
]cle—”“s” (1 + ikésn) e T ("+2) _ Cype*esm (1 — jkégn) e T (vF2) for qdS.

3.1.2 Primordial power spectrum for scalar perturbation

Finally at the horizon crossing one can write further the two point correlation function as “:

(C(k)¢(a) = (2m)°8% (k + @) Pe(k) | (3.16)

where P (k) is the power spectrum at time 7 for scalar fluctuations and it is defined as:

2
Mfizws% [|C1|* +|Ca|* = (C1C2 + C1C5)]  for dS
Pe(k) = [’vk(n)‘z] = Pr(k )i — 221,7}; H? 1|t [ (G + [P (3.17)
= — )— = 1 |
C ZQMI? |késr,7|:1 C k3 4 Mgé(l 4 E)QCS k3 r (%) 1 2
(e s ae D) for aas

where P (k) is power spectrum for scalar fluctuation at the pivot scale k = k,.For simplicity one
can keep k3/27? dependence outside and further define amplitude of the power spectrum Ac(ky)
at the pivit scale k = k, as:

H2

o7 ameas G +1Cal” = (C1C2 + Ci65)) for dS
P
K3 1 e o 2
A k* = 7P k = 7P k* — 2v—3 (I/) 2 2 318
(ki) = 55 Bc(k) = 55 FPe(ks) B AT s | T () [IC1]? + |C| (3.18)

- (Csze”(”%) + C’lCSe’”(”%))] for qdS.

For Bunch Davies and «, 8 vacua power spectrum can be written as:

9See also ref. [30] and [43], where similar computation have performed for canonical single field slow roll and
generalized slow roll models of inflation in presence of Bunch-Davies vacuum state.
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e For Bunch Davies vacuum :
In this case by setting C1 = 1 and Co = 0 we get the following expression for the power

spectrum:
H?* 1
—_— for dS
4 M2ecs k3
Pe(k) = " 2 (3.19)
2238 H 1100 for qdS
4 Mze(1+€)2es k3 T (3)
Also the power spectrum Ac(k,) at the pivit scale k = k, as
H2
—_— for dS
872 M2ec
Ak =4 777 2 (3.20)
=3 H () for qdS
872 MZe(1+¢€)?¢s | (2) ags:

e For o, 8 vacuum :

In this case by setting C; = cosha and Cy = € sinh o we get the following expression for
the power spectrum:

H> 1
I Zes [cosh 2c¢ — sinh 2 cos B] for dS
€Cs

AR (i N —
¢ 4 M2e(1 + €)2és k®

T'(v)
r(3)

(3.21)

l\.’)\»—l

cosh 2a — sinh 2« cos ( ( ) + ﬂ)] for qdS.

Also the power spectrum A (k) at the pivit scale k = k,
H2
82 MZecs

- H?
— 2v—3
Ag(k*) =32 812 M2e(1+ €)?¢s

[cosh 2« — sinh 2 cos ] for dS
rw) |’
r'(3)
{cosh 2a — sinh 2ar cos (7r (V + %) + ,8)} for qdS.

(3.22)

Finally at the horizon crossing we get the following expression for the spectral tilt for scalar
fluctuation at the pivot scale k = k, as:

nel) 1= {dlnAg(k)

=2 —de— 3, (3.23)
dink ]IkésTI:l

where § is defined as, § = ;g .
S

3.2 For tensor modes

3.2.1 Mode equation and solution for tensor perturbation

Here we compute the two point correlation from tensor perturbation. For this purpose we consider
the second order perturbed action as given by ':

M? M2 1 M.
2) ~ /d4l‘ a3 ?p [( M2> 7@]71] ) m’)%j :| /dgx d77 a . [( M32> 71] - (am%j)21|

(3.24)

198ee also ref. [30] and [43], where similar computation have performed for canonical single field slow roll and
generalized slow roll models of inflation in presence of Bunch-Davies vacuum state.
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In Fourier space one can write 7;;(n,x) as:

d3l<: -
Yii(mx) = Y / k) 1a(n, k) €%, (3.25)
A=X,+
where the rank-2 polarization tensor e 7 satisfies the properties, e = k'e )‘ =0,),.€ j l] =20,y

Similar like scalar fluctuation here we also define a new variable u A(% k) in Fourier space as:

a My ya(n, k) for dS
a1, 1) = —5 My (k) = v i (3.26)
_fTHn (1+¢€) M, yr(n, k) for qdS.
Using u)(n, k) one can further write Eq (3.24) as
M2 M / CLN
2) 3 2 Mp 3 2 2 2
Sf(y)~/d90d77a Ve [( M2>u/\(777 k) — (k _a> (ur(n,k)) ] (3.27)
From this action one can find out the mode equation for tensor fluctuation as:
(=)
Mukhanov — Sasaki Eqn for tensor mode : uy (0, k) + 7]\;21@\(77, k)=0/. (3.28)
)
P
Further we introduce a new parameter ¢y defined as:
1
cT = (329)
1M
oM
The general solution for the mode equation for graviton fluctuation can finally written as:
V= [DlH(l) - (—kcrn) +D2H(2) ~ (— chn):| for dS
ux(n,k) = i e 7V “8( : (3.30)
AV [DlH 1+4CT( o Z) ( kCT’I]) + DQH 1+4CT( 2—%) (—kCTn):| for qu

Here Dy and Dy are the arbitrary integration constants and the numerical values depend on the
choice of the initial vacuum. In the present context we consider the following choice of the vacuum
for the computation:

1. Bunch Davies vacuum: In this case we choose, D1 =1, D5 = 0.

2. «, 3 vacuum: In this case we choose D; = cosha, Dy = e¢®sinha. Here f is a phase

factor.

For the most general solution as stated in Eq (3.30) one can consider the limiting physical situa-
tions, as given by, I. Superhorizon regime: |kepn| << 1, II. Horizon crossing: |kepn| = 1,
III. Subhorizon regime: |kcyn| >> 1.
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Finally, considering the behaviour of the mode function in the subhorizon regime and super-

horizon regime we get:

{Dleﬂ'kCT" (1 + ikern) 67%((% 1+8C2T+%> — Dyetkern (1 —ikern) e%(% %)] for dS
ux(n, k) = 1 2 (1 (3.31)
22 1+402T("2_%)_%.i71 3 (_kCTﬁ)%_% 1acq (v2—§) F(2 1+4C§ v 4))
/2 (ker)? r(3)
. _in (1 floae2 (p2_1).1 ) in (1 1rac2 (02_L)4l
{Dle““” (14 ikern)e * (2 rack( 4)+2) — Doe™ T (1 — ikern) e ? (2 ac( 4)+2)] for qdS.

Further using Eq (3.14) one can write down the expression for the curvature perturbation ¢(n, k)

as:
1 2
GVIE 1 e [ (3V158)
My (ker)? r(3)
[D emikern (1 —|—ik:cT77)e_%T(% 18 +1) _ Doetkern (1 —ichn)e%r(% 1+8c%~+%):| for dS
ux (1, k) o¥\1ract(v2-1)-3 _ iH L (Ckepm)3—3V1HaeR (2 0)
ha(n, k) = oM, M, (1+e) (ch)%( er) (3.32)
D(3y/1+42 (12 -1 in (1 Traz (v 1)
(2 :::F ( 4) Dy kern (1 + ikern) e 2 (% 1+4C%(V27i)+%)
r(3)
. im (1 /11402 (b2—1)4+1
— Dyetkern (1 —ikern)e® <2 Lrach (2 4)+2>:| for qdS.
3.2.2 Primordial power spectrum for tensor perturbation
One can further compute the two point function for tensor fluctuation as:
(h(n,X)h(n, @) = > _(ha(n, Ky (n,q)) = (27)°6®) (k + Q) Pu(k,n) |, (3.33)
AN
where Py, (k,n) is the power spectrum at time 7 for tensor fluctuations and in the present context
it is defined as:
( 1 5 2
9V/148¢3.-3 4H® 1 (—k Tn)37,/1+8c% r (5 V1 +80T)
Mg (ker)? r(3)
X . 2
Dye”*eT (1 + ikern) 6_%(% TR 3) _ Dae™ T (1 —ikern) e%(% ) for dS
4|ha(n, k)|? o/ 1Hack (218 AH” Lo 3=/ (1)
Pulhom) = —ooni = 3 (L o ey (3.34)
I L 1+4C2 1/27l _dim (1 2 (L2 1 1
(2\/ :( 4)) Dre=*eTn (1 4+ ikerm) e ® (2 1+4c2. (12 4)+2>
r(3)
2
v in (1 /14462 (b2-1)41
— Do (1 —ikern) e ® (4rrac (2= D)+4) for qdS.
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Finally at the horizon crossing we get the following two point correlation function for tensor
perturbation as:

(h(l)h(q)) = (2m)*6"") (k + q) Pu(k)

where P (k) is known as the power spectrum at the horizon crossing for tensor fluctuations and
in the present context it is defined as:

(3.35)

;

r(svivag)|

= 5 4H? 1
| T ‘ (D3] + Do ?
2
) —(Dsze”(% 1+8¢2T+%)+D1D567W(% 1+8E%+%))} for dS
Pa(k) = Pa(ke) s = 2 (3.36)
*) 7.3 T A ) r(% 1—|—4c2T(y2_%)) ] ]
2 o M2(1+ €)% k3 e (D1 + 1D
P € cr (2)

for qdS.

a1 2 (v2—-1)4 1 —an( L 2 (v2—-1)4 1
<DTD26 (BVIHEGTD4) | e i (38R 4>+2))

where Py (k) is power spectrum for tensor fluctuation at the pivot scale k = k.. For simplicity one
can keep k3/272 dependence outside and further define amplitude of the power spectrum Ay, (k)
at the pivit scale k = k, as:

3
A(ks) = g Pulk) = 5eg Palk.)
)
QVﬁ&%Swii;;I(érzggﬁ) D4+ 1Daf
3 (Cngei"(% 1+8c%+%)+D1D;€_iﬂ(%\/m+%)):| for dS
RE MCQT(VZ‘I‘)Sszz?fje)?cs F@W) 2[D1I2+|D2|2 o
p T 2

=

_ <D;D2e”(

For Bunch Davies and «, 8 vacua we get:

B (A | DID;;“‘(5\/“40%(”2‘“”))} for qds.

e For Bunch Davies vacuum :
In this case by setting D1 = 1 and Dy = 0 we get the following expression for the power

spectrum:
2
yimer s 4?1 [T(3VIFEG) for dS
2 g E T "
P — . (3.38)
g/ 1+t (v2- 1) -3 4H? 1 T (%m) for qdS
M2(1+ ) k3 r(3) o
Also the power spectrum A¢(ky) at the pivit scale k = ki as:
2
s 21 |l (sviTssd) for dS
g | () "
At — 2 (3.39)
g/ 1H+4e (12— ) -3 2H? r (% L (v i)) for qdS
M2 (1+6)° r(3) -
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e For o, vacuum :

In this case by setting D; = cosha and Dy = €’ sinh a we get the following expression for
the power spectrum:

2
1 Ao e
gV/1485 -3 ag? 1 |0 (2 1+ SCT)

M2c3, k3 r(%)
. 1 1
( ) [cosh2a—s1nh2acos <7r (51/1+86%+ 5) —|—6)} for dS ( |
Py(k) = 2 3.40
T (A D) AH 1 F(% 1+ 4c2 (”2—%))
M2 (1+¢)* ¢ k2 r(3)
. 1 ) 1\ 1
cosh 2a. — sinh 2accos | 7 3 14+4c2 (v? — 1))t B for qdS.
Also the power spectrum A¢(ky) at the pivit scale k = k. as:
( r(i/ivsz)|
9 /1+SC%—,—3 2H2 (E + CT)
m2MZc3 I (%)
o) {cosh2a—sinh2acos <7r (%\/14—8(:%4—%) +B)} for dS ( |
Ap(ks) = 2 3.41
R o IR GO Lo €2VAe X k),
T )
. 1 1 1
Iicosh2a — sinh 2c cos <7r (2\/1 +4c2 (y2 - Z) + 2) + ﬁ) for qdS.

Now let us consider a special case for tensor fluctuation where ¢ = 1 and it implies the following
two possibilities:

1. M3 = 0. But for this case as we have assumed earlier Mg ~ M2 = Mf/élHég,, then M; =0
which is not our matter of interest in this work as this leads to zero three point function for
scalar fluctuation. But if we assume that ]\_4?? % ]\Zf; but M?? = M3 /4Hé5 then by setting
M; = 0 one can get M; # 0, which is necessarily required for non-vanishing three point
function for scalar fluctuation.

2. M3 << M,. In this case if we assume Mg R Mg = M3 /4Hés, then Mf’/4HE5M§ << 1 and
My << M, This is perfectly ok of generating non-vanishing three point function for scalar
fluctuation.

If we set ¢ = 1 then for Bunch Davies and «,  vacua power spectrum can be recast into the
following simplified form:

e For Bunch Davies vacuum :
In this case by setting D1 = 1 and Dy = 0 we get the following expression for the power

spectrum:
4H? 1
Ve for dS
Py (k) = ! ) 2 (3.42)
2% =3 4H 1 I(v) for qdS.
MZ (14 K |T(3)
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Also the power spectrum A¢(ky) at the pivit scale k = ki as:

2
733\142 for dS
Anlhey = "M : (3.43)
V=3 21 L' () for qdS
m2MZ (1+¢€)* T (3)

e For o, vacuum :

In this case by setting D; = cosh o and Dy = €*? sinh a we get the following expression for
the power spectrum:

4H? 1

M2 = [cosh 2 — sinh 2a cos f3] for dS
Pu(k) = i 1|t [ 1 (3.44)
22v =3 MZ(11 BE ® T (%) {cosh 2a — sinh 2ac cos (w (1/ + 5) + 5)] for qdS.

Also the power spectrum A¢ (k) at the pivit scale k = ki as:

2

REYVE [cosh 2a — sinh 2« cosf] for dS
2
A k* — 203 2H F(l/) 4
W)= g e ) 349

cosh 2a — sinh 2a: cos <7r <1/ + %) + ﬂ)} for qdS.

4 Scalar Three point correlation function from EFT

4.1 Basic setup

Here we compute the three point correlation function for perturbations from scalar modes. For
this purpose we consider the third order perturbed action for the scalar modes as given by '!:

3 .
3) 4., @ 1 g2, O 3 4.4 i3
SC N/d T [—{(1— C%> HMp+§MlH—§M3 ¢

1Y - 3. 1.
- { (1 — C%> HM§+21\JfH} ﬁg(aiC)Z (4.1)

9 _. o 3. 1 d
SMPH?CCP—SMPH ¢~ (0;¢)*
+2 1 Cg 9 1 (LQC(ﬁ (a C) 9

"Here it is important to note that the red colored terms are the new contribution in the EFT action considered
in this paper, which are not present in ref. [6]. From the EFT action itself it is clear that for effective sound speed
cs = 1 three point correlation function and the associated bispectrum vanishes if we don’t contribution these red
colored terms. This is obviously true if we fix ¢cs = 1 in the result obtained in ref. [6]. On the other hand if we
consider these red colored terms then the result is consistent with ref. [30] with ¢s = 1 and with ref. [43] with c¢s # 1.
This implies that c¢g = 1 is not fully radiatively stable in single field slow roll inflation. However, if we include the
effects produced by quantum correction through loop effects, then a small deviation in the effective sound speed
1 —cs ~ € (H/M,)* can be produced. See ref. [6] where this fact is clearly pointed. But for inflation we know that
in the inflationary regime the slow roll parameter € < 1 and the scale of inflation is H/M, << 1, which imply this
deviation is also very small and not very interesting for our purpose studied in this paper.
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which can be recast for c¢ = 1 and cg < 1 case as:

Forcs=1:
LIRS /d4x I‘g [— {;’M?H} ¢+ {zj\lffﬂ} %é(&OQ (4.2)
+§MfH2C('2—ngH%C% (&:C)Q} :
Fores<1:
0= o 28 (1 ) [ 252} e e |
9f(' ¢+ %Zc uo}

To extract further informations from third order action, first of all one needs to start with the
Fourier transform of the curvature perturbation (7, x) defined as:

3
¢0n,%) = / (d ’j Cie(m) exp(ik ), (4.4)

where (i (n) is the time dependent part of the curvature fluctuation after Fourier transform and
can be expressed in terms of the normalized time dependent scalar mode function vk (n) as:

. v a *(n.—k)al (=

where z is explicitly defined earlier and a(k),a’(k) are the creation and annihilation operator
satisfies the following commutation relations:

[a(k),aT(—k/) — 2r)33(k + k), [a(k),a(k’)] —0, [aT(k),aT(k’)} —0. (4.6)

4.2 Computation of scalar three point function in interaction picture

Presently our prime objective is to compute the three point function of the curvature fluctuation in
momentum space from Sg with respect to the arbitrary choice of vacuum, which leads to important
result in the context of primordial cosmology. Further using the interaction picture the three point
function of the curvature fluctuation in momentum space can be expressed as:

ny=0

(C(k1)¢ (k) (k) = —i / dn a(n) (O] [0np, k1) (ng, ko) (ng k), Hona ()] 10) |, (47)

Ni=—00

where a(n) is the scale factor defined in the earlier section in terms of Hubble parameter H and
conformal time scale 7. Here |0) represents any arbitrary vacuum state and for discussion we will
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only derive the results for Bunch-Davies vacuum and «, § vacuum.
Hamiltonian can written as '*:

1 1 , 3
[ (-2 i 2

1 3 .
+ { (1 _ ) HM? + 2M1 } ?4(8&)2

CS

In the interaction picture the

Hint(n) =

2_32'2_§_3 ii M\2
+ SMPHCE — SMPH = (90)

which gives the primary information to compute the explicit expression for the three point function
in the present context. After substituting the interaction Hamiltonian we finally get the following
expression for the three point function for the scalar fluctuation:

ny=0

ctsctactia) =~ [ anat (55 [ | &

1i=—00

{041<0| [ (nkal)é(nka2)§(77ka3)z6/(7%k4)&/(n,k5)él(777k6)] 0)

d3k4 d3k5 d3ke
3 (2m)3

’L(k4+k5 +k6).x

— as(ks-ke) (0 _€<nf,k1>é<nf,kz>é<nf,k3>,é’<n,k4>c<n,k5> {(n.ke)] 10)
+ag a(n) (0] [0ng,ka)(ng, ka) (s k), Cn ka)C (0, ks)C (1, ke) | [0)
— au(ks-ke)(0] |17 ke )C 17 ka)C 17 ka) . C(n. ka)C (n, ks)(m. ke) | [0)
— as(ks-ke) (0] [C(ny, ka ) (ny ka)C(n7. ka), {(n. ka) (n, ks )C (1. ko)

where the coefficients «;Vj = 1,2,3,4,5 are defined as 13,

1 4
a = {(1_> HM? + 3MlH— M3} (4.10)
cS 2 3
1 : 2 3 73
S
a3 = —%Msz, (4.12)
3 _
oy = 5Mf”H, (4.13)
3 _
a5 = iMf)H. (4.14)

Now let us evaluate the co-efficients of oy, as, a3, g in the present context using Wick’s theorem:

12See also ref. [30] and [43], where similar computation have performed for canonical single field slow roll and
generalized slow roll models of inflation in presence of Bunch-Davies vacuum state.

3Here it is clearly observed that for canonical single field slow-roll model, which is described by ¢s = 1 we have
M3 = 0 and other EFT coeffecients are sufficiently small, M;Vi = 1,2,3(~ O()107% — 1072). This directly implies
that the contribution in the three point function and in the associated bispectrum is very small and also consistent
with the previous result as obtained in ref. [30]. Additionally it is important to mention that, in momentum space
the bispectrum containts additional terms in presence of any arbitrary choice of the quantum vacuum initial state.
Also, if we compare with the ref. [6]
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. Coefficient of aq:

(O] |C(ng,%1)C (5 k2)C(ny. ka), € (1. ka)C (1, ks)C (n. ke) | 0)
= (Ola(k1)a ( 2)a(ks)a’(—kq)a’(—k ) T(—ke)|0)

(ny,k1)0(ng, k2)0(ny, ks)v " (ny, —ka)v * (s, —ks)7 (77f —ke) (4.15)
(Ola(kq)a(ks)a(k )QT( )GT( 2)a ( k3)|0)
v*(np, —k1)0" (15, —ka2)v* (5, —ks)v (1, ka)0 (n,ks)0 (n, ke).

. Coefficient of «s:

(ks ko) (0] [(n7. ke )C (7. ka)ny Ks), €' (n ka)(n. ks)C (n. Kes) | 0

)
(k5.ke)(0|a(ki)a(kz)a(ks)a'(—ka)a' (—ks)a'(~ke)|0)

v(ny, k1)v(ny, k2)0(ny, k3)77/*(77fa_k4) (Ufa_kS) (nf,—ke) (4.16)
+(ks.ke)(0la(ks)a(ks)a(ke)al (—k1)al (—kz)a'(—k3)|0)
T (ny, —k1)0" (g, —ka2)7" (ny, —ks)T (0, ka)T(ny,ks)T(ny,ke).

. Coefficient of asj:

(0] [¢(ng, ka ) (ny ka)ny K >mmwmamww

)

= (0]a(k1)a(kz)a(ks)a’ (— k4) f(— ks) "(—ke)[0)
(ny,k1)0(ns, k2)0(ny, ks)v" (ny, —ka)? * (ny, —ks)7 ( 1y, —ke)
+(0a(ka)a(ks)a(ke)a (kl)T( k2)a (k3!0>

7 (s, —k1)0" (17, —ka)0" (07, —ks)o(ny, ka)¥ (17, ks)0 (07, Ke).

(4.17)

. Coefficient of au:

(ks.ks) (0] [C(ny ka)C(ny ka)C(ng Ks), COn, ka)C (1, ks ) (. Ke) | [0)
(ks.ke)(0]a(k1)a(kz)a(ks)a' (— k4) f(—ks)a'(—ke)|0)

v(ng, k1)v(ng, k2)v(ny, ks)v (nf,—k4) *(ny, —ks)0 (?7f>—k6)
+(ks k¢)(0]a(ks)a(ks)a(ke)a' (ki )a' (—ka)a' (—ks)|0)

7" (ng, —k1)v" (0, —ka2)0" (17, —ks) T (17, ka)¥ (17, k)T (1, ke).

(4.18)

. Coefficient of as:

(ks ko) (0] |y k) ng, ka2 )C g Ks). C(n, ka) (1, ks)C (n. k)| [0

)

= (0]a(k1)a(kz)a(ks)a' (~ka)a(— ks) "(—ke)|0)

5(77]”7kl)@(nf7k2)l_)(77f7k3)77*(77f7_k4> (nfv_kS) (nf7_k6) (4-19)
+(0la(ka)a(ks)a(ke)a' (—ki)a' (—kz)a ( k3)[0)

0" (g, —k1)v" (ny, —k2) " (ng, —ks )0 (17, ka)o(ng, ks)v (n5. ke)-
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where we define v as:

v(n, k)
ZM,

o(n, k) = (4.20)

Further we also use the following result to simplify the the co-efficients of a1, a9, as, ay:

ka)a(ks)a' (—ks)a'(—ks)a’(—ke)|0)
ks)a(ke)a' (—ki)a'(—kz)a’(—ks)|0)

= (2m)° {6® (kg + k1) [5<3> (ks + k2)6® (kg + ks) + 6 (ks + k3)6® (kg + k2)]
150 (ky + ka) [5@ (ks + k1)0® (kg + k3) + 6@ (ks + k3)o® (kg + kl)]

+6®) (kq + ks) [5“”) (ks + k1)6® (kg + ks) + 6@ (ks + kg)6® (kg + kl)] } . (421)

Finally one can write the following expresion for the three point function for the scalar fluctua-

tion 1%

(C(k1)¢(k2)C(ks)) = (2m)%6®) (ky + kg + ks) Bepr(ky, ka, ks) | - (4.22)

where Bppr(k1, k2, ks) is the bispectrum for scalar fluctuation. In the present computation one
can further write down the expression for the bispectrum as:

5

Bppr(ky ko, ks) = > a;0;(ki, ks, ks)
=1

(4.23)

where ©(k1, k2, k3)Vj = 1,2,3,4,5 is defined in the next subsections. Here it is important to note
that we have derived the expression for the three point function and the associated bispectrum for
effective sound speed cg = 1 and c¢g < 1 with a choice of general quantum vacuum state.

4.2.1 Coefficient of oy

Here we can write the function 01 (k1, ko, k3) as:

nr=0 a
Onhr ) = 60 [

Ni=—00
+ 0" (07, k1) ¥ (5, k2) 0" (15, k3)0 (1, —k1)v (1, —ka)v (0, —ks)| .  (4.24)

5(ny, k1)0(ng, ka)0(ns, ka)v * (0, k1)o *(n, k2)7 * (1, ks)

4See also ref. [30] and [43], where similar computation have performed for canonical single field slow roll and
generalized slow roll models of inflation in presence of Bunch-Davies vacuum state.
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Further using the integrals from the Appendix we finally get the following simplified expression

for the three point function for the scalar fluctuations '°:

_ 3H? 1 1 3 (3 %3 « “\3 (3 3

O1(k1, ko, k) = 166308 Frkoks HK?) [(01 — )" (CF + C3°) + (Cf = C3)” (CF +02)]

3
1
(= 0 €165 (01 - G5) + (1~ 5 10 (01~ )] Y o
i=1 t
(4.26)

Finally for Bunch Davies and «, 8 vacuum we get the following contribution in the three point
function for scalar fluctuations:

e For Bunch Davies vacuum:
After setting C; = 1 and Cy = 0 we get:

6H? 1 1
O1(k1, ko, k3) = mmﬁ7 (4.27)

e For o, 8 vacuum:

After setting Oy = cosh o and Cy = € sinh o we get:

3H? 1

O1(k1, ko, k3) = 166308 Fykoks

1 . 3 )
{K3 [(cosh a — e sinh a) (cosh3 a + e3P ginh? a)
. 3 .
+ (cosh a — e Pginh a) <cosh3 a + %P ginh? oz)]
1 , 3 .
+§ [(Cosh a — e sinh a) e~ sinh 2a (Cosha — ¢ " gsinh a)
1
(2k; — K)3
(4.28)

. 3 . 3
+ (Cosha — ¢ " ginh a) ¢ sinh 2a (cosha — ¢Bsinh a)}

i=1

15Here ot is important to point out that in de-Sitter space if we consider the Bunch Davies vacuum state then here
only the term with 1/K 3 will appear explicitly in the expression for the three point function and in the associated
bispectrum. On the other hand if we consider all other non-trivial quantum vacuum state in our computation then
the rest of the contribution will explicitly appear. From the perspective of observation this is obviously an important
information as for the non trivial quantum vacuum state we get additional contribution in the bispectrum which
may enhance the amplitude of the non-Gaussianity in squeezed limiting configuration. Additionally, it is important
to mention that in quasi de Sitter case we get extra contributions 1/¢% =2 and 1/(1+¢€)°. Also the factor 1/(kik2k3)
will be replaced by 1/(k1 k2k3)2(”71). Consequently, in quasi de Sitter case this contribution in the bispectrum can
be recast as:

_ 3H2 1 1 3 *3 *3 * *\3 3 3
Orlhu b k) = 6 Mga (1 1 c)F (buhake) 20D Hﬁ [ -2 (i + 65%) + (G - €3)” (€1 + €3]
3

c * * * * 1

+[(C1r = C2)° CLC5 (CF = C3) + (CF = C5)° C1.C2 (G — )] Z(%_K)H ’

7

(4.25)
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4.2.2 Coefficient of a9

Here we can write the function O(k1, ko, k3) as:

nf=0

O2(k1, ka2, k3) = i/n__oo dn GIE[Z) {Q(kz-k3) [17("7f,k1)17(77f,kz)@("?f,ks)l_),*(mkl)@*(??,kz)@*(mks)

+ 0" (g, —k1)0" (nf, —ka2)v" (1, k) (1, —ka) (1, —k2)0(n, —ks)}
+2(ks.k1) [U(Ufa k1)o(n7, ka)o(nys, ka)v " (1, k2)0" (1, k1 )0" (0, ks)

+ 0% (ny, k1) (ng, —ka)v" (ny, —ks)v (1, —ka)v(n, —k1)v(1, —ks)}
+ 2(k1.k2) [17(771“7 k1)o(n7, ka)o(nys, ka)v " (1, ka)0* (1, ka)v" (n, ka)

+ 0" (7, —ka )T (17, — k)T (17, —ks)¥ (1, —ka)0(n, k)i, —ka)] }
(4.29)

Using the results derived in Appendix we finally get the following simplified expression for the
three point function for the scalar fluctuations '°:

H? 1

Oa(ky, ki, kig) =
2(k1, ko, ks) 3263 M (knkaks)

= [K1 (ko ks)G1(ky, ko, ks)

+ k5 (k1 ks)Ga(k1, ko, ks) + k3 (k1 ka)Gs(k1, ko, k3)]

(4.31)

6Here ot is important to point out that in de-Sitter space if we consider the Bunch Davies vacuum state then here
only the term with 1/K 3 will appear explicitly in the expression for the three point function and in the associated
bispectrum. On the other hand if we consider all other non-trivial quantum vacuum state in our computation then
the rest of the contribution will explicitly appear. From the perspective of observation this is obviously an important
information as for the non trivial quantum vacuum state we get additional contribution in the bispectrum which
may enhance the amplitude of the non-Gaussianity in squeezed limiting configuration. Additionally, it is important
to mention that in quasi de Sitter case we get extra contributions 1/¢%'~" and 1/(1+¢)®. Also the factor 1/(k1kaks)?
will be replaced by 1/(k1 k2k3)2”. Consequently, in quasi de Sitter case this contribution in the bispectrum can be
recast as:

H? 1 2
— . E; (k2.k3) G (1, k2, k:
3263 MSEY (1 + €)® (kikaks)? ki ko) G (ks ®) (4.30)

+ k3 (k1.ks)Ga(k1, ko, k3) + k3 (k1. k2)Gs(k1, k2, k3)] ,

Oa(k1, k2, ks) =
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where the momentum dependent functions Gy (k1, k2, k3), Ga(k1, k2, k3) and Gs(k1, ke, k3) are de-
fined as:

Gk ko k) = o5 [K? + 2koks + K(K — k)] [(C1 — C2)*(CF* + C5°) + (C1 — C2)* (CF° + C357)]
1
1
+W [K? — dkoks + K (ks — 5k2) + 6k3]
1 2 2
+W [K? — 4koks + K (ko — 5k3) + 6k3]
[(C1 = C2)’C{O3(CF + C3) + (CF — C3)°C1Cy(Ch + Ca)] - (4.32)
Galks, ko k) = 725 [ + 2k + K(K — )] [(C1 = C2)(CF* + CFF) + (€1 = o) + 3]
1
1
T oh K [K? — dkiks + K (ks — 5k1) + 6k7]
1
[(C1 = C2)’C{C3(CY + C3) + (CF — C3)°C1Cy(Ch + Ca)] (4.33)
1
Gk, ko, ks) = <= [K2 + 2k1ke + K(K — k3)] [(C1 — C2)*(C* + C5%) + (C1 — C2)(CF + C37)]
{ 2k3 — K2 + 2k1ke + K(K — 5k3) — 2(K — k3)ks + 4I<:3}
(2%2 — ) [ — 4k ko + K(k‘l - 5/6‘2) + 6]@2}
1
[(C1 = C2)’CLC3(CY + C3) + (CF — C3)°C1Cy(Ch + Ca)] (4.34)

Here 25’:1 k; = k1 + ko + kg = 0. Consequently one can write:

kiko == (k§ — k3 — ki), kaks= (k3 —k{ —k3), koks=- (kI — k3 —k3), (4.35)

N | =
N | —
N | —

and using these results one can further recast the three point function for the scalar fluctuation
as:

H? 1

Oy (ky, ki, big) =
2( 1, k2, 3) 64€3M55%’ (k1k2k3)3

(k3 (kT — k3 — k3) G1(k1, ko, k3)
(4.36)

+ k3 (k3 — kf — k3) Ga(ky, ko, ks) + k3 (k3 — k3 — k) Ga(k1, k2, k3)] .

Finally for Bunch Davies and «, 8 vacuum we get the following contribution in the three point
function for scalar fluctuations:
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e For Bunch Davies vacuum:
After setting C'y = 1 and Cs = 0 we get:

2
Gl(/ﬂ, ks, kg) = K3 [K + 2koks + K(K /61)] (4.37)
Gz(k’l, ko, k‘g) = ﬁ [K2 + 2k1ks + K(K — ]{72)] . (4.38)
G3(k1, ko, k3) = K3 [K? + 2kiky + K (K — k)] . (4.39)

Consequently we get:
H? 1
323 M52, (kikoks)? K3
+ k3 (k3 — K — k3) [K? + 2kiks + K(K — k)]
+ k3 (k3 — k3 — ki) [K? 4 2kiks + K(K — k3)]] - (4.40)

Oa(ky, ko, k3) = (k3 (kT — k3 — k3) [K* + 2koks + K(K — k1))

e For o, vacuum:

After setting C; = cosha and Cy = ¢ sinh o we get:

G1(k1, ko, ks) = fg [K2 + 2koks + K (K — k1)] Ji(e, B)
{ o7 = [K? + 2koks + K (K — 5ky) — 2(K — k1)ky + 4k7]
1
(2k2 —K)y [ — 4koks + K (ks — 5ka) + 6k2]
1
Gg(k'l, ks, kg) = K3 [K2 + 2k1ks + K(K /ﬂg)] Jl(a,ﬁ)
1
+ {M [K? + 2kiks + K (I — 5ko) — 2(K — ko)ky + 4k3]
! K? — 4kk3 + K (k3 — 5k k2
+m[ — 4k1k3 + (3_51)+61]
1
+m [K? — dkiks + K (k1 — 5ks3) + 6k3] } Jo(a, B). (4.42)
Gs(ky, kg, k) = K3 [K? + 2k1ks + K(K — k3)] Ji(a, B)
1
+ {M [K? + 2kiko + K (K — 5ks) — 2(K — ks)ks + 4k3]
L K? — 4k1ky + K (k1 — 5k k3
+m[ — 4Kk + (1—52)-1-62]
1
JF(QkIfK)3 [K? — dkiky + K (ko — 5k1) + 6k7] } Jo(a, B). (4.43)

where Ji (o, ) and Ja(e, B) are defined as:

Ji(a, B) = |:(COShOé — ¥ sinh a)3 (cosh3 o + 73 ginh? a>

. 3 .
+ (cosh o — e sinh a) (cosh3 a + 3P sinh? a)] , (4.44)
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. 3 .
(cosha — ¢ sinh a) e~ ginh 2a <cosh a — e P ginh a)

JZ(aa B) = %

. 3 . .
+ (cosha — e Bsinh a) e sinh 20 (cosha — P sinh a)} . (4.45)

Consequently the three point function for the scalar fluctuation can also be written af-
ter substituting all the momentum dependent functions Gi(ki, ke, ks), Ga(k1, ke, k3) and
Gs(k1, ko, ks) for «, 8 vacuum.

4.2.3 Coefficient of a3

Here we can write the function O3(ky, k2, k3) as

. =0 a2(77) — — — —% ' —x
Oulhn,kake) =2 [ “5 { [otns K)oty k)l o) () 1 K)o 0 )

+ " (ng, —ka)v" (7, k)" (n, —ka)v(n, —k1)v' (0, ~ka2)¥' (0, —ks) |
+ [0017. k1)o7, ka) o (s ko) (1, kz)0'™ (1, ke )0 (1, ke)
+ " (17, —ka) " (ny, —ka)v" (g, —ka)o(n, —ka)o (1, —ka)7 (n, —ks) |
+ 817 1) (g, k) o017 ka) " (1, k)0 (1, ea ) * (7. ea)
+ " (ng, —ka)v" (7, —k2)5" (ng, —ks)(n, ~ks)¥ (n, ~k1)7 (n. —ka) | } .
(4.46)

Using the results obtained in the Appendix we finally get the following simplified expression for
the three point function for the scalar fluctuations ':

H 1
[(koks)? M (ky, ks, k3)

O3(k1, ko, k3) =
3263]\4;,i (k1koks)3 (4.48)

+ (kiks)? Mo (K1, ko, ks) + (k1ka)® Ms(ky, ko, k3)] |

"Here ot is important to point out that in de-Sitter space if we consider the Bunch Davies vacuum state then here
only the term with 1/K? will appear explicitly in the expression for the three point function and in the associated
bispectrum. On the other hand if we consider all other non-trivial quantum vacuum state in our computation then
the rest of the contribution will explicitly appear. From the perspective of observation this is obviously an important
information as for the non trivial quantum vacuum state we get additional contribution in the bispectrum which
may enhance the amplitude of the non-Gaussianity in squeezed limiting configuration. Additionally, it is important
to mention that in quasi de Sitter case we get extra contributions 1/~ and 1/(1+¢)®. Also the factor 1/(kik2ks3)?
will be replaced by 1/(kik2k3)*”. Consequently, in quasi de Sitter case this contribution in the bispectrum can be
recast as:

H 1
[(kaks)* My (K1, ko, ks)

O3(k1, k2, k3) =
3(k1, k2, ks) 323 MG (1 + €)3 (kakaks)2 (4.47)

+ (klkg)QMQ(kh k2, ]f3) + (k1k2)2M3(k17 k27 k3):| )
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where the momentum dependent functions M (ky1, ko, k3), Ma(k1, ke, ks) and Ms(k1, ke, k3) are
defined as:

Mk, o, k) = 3 (K + 1) [(C1 — (O + CF) + (C1 — o) + O
{ K 3k1) (K + k1 — 2k2) (K + k1 — 2]{3) }
M eh K2 (k- k)2 2k — K)?
[(C1 = C2)*CTO3(CF + C3) + (CF — C3)*C1C2(Cy + Cs)] . (4.49)

My (k1, ko, k) = ﬁ(K + ko) [(Ch — C2)3(CT? + C35°) + (C1 — C2)*(CF + C37)]
(K — 3k2) (K + ko — le) (K + ko — ng)
{(%2 K2 2k K2 (2ks _K)? }
[(01 — C2)’CiC3(CF + C3) + (Cf = C3)°CLC2(Ch + Cy)] (4.50)
Ms(kyi, ko, k) = K2 (K + k3) [(C1 — C2)*(CF + C5%) + (C1 — C2)(CF* + C37)]
(K — 3k3) (K + ks — 2k3) (K + ks — 2ky)
* { ks —K)? T (2 — K)2 2k — K)? }
[(C1 — C9)3CTC3(CF + C3) + (CF — C3)3C1Co(Cy + CQ)] ) (4.51)

Finally for Bunch Davies and «, 5 vacuum we get the following contribution in the three point
function for scalar fluctuations:

e For Bunch Davies vacuum:
After setting C'y = 1 and Cy = 0 we get:

2

Ml(kl,kg,kg) = W(K + kl). (4.52)
2

Mg(kl,kQ,kg) = E(K + k‘g). (4.53)
2

Mg(k‘l,k‘Q,kg) = 72(K+ k‘g) (4.54)

Consequently we get the following contribution:

H 1 1

ki, k. k) = K2
O3(k1, k2, k3) 16€3 M (k1koks)? K2

[(kaks) (K + k)] + (kaks)* (K + k2) + (kik2)* (K + k3)] |

(4.55)

e For o, 8 vacuum:

After setting C; = cosh o and Cy = €*? sinh o we get:

M (i1, ko, ks) = (K+k¥il(a,ﬂ) N {((21;—_ 3}/?))2 N (I&fl—;{ 2)152) (K(;gkl_;( 2)153)} Jo(a, ). (4.56)
Ma(ky, ko, Fis) = (K+k:2=2]1(a,ﬁ) N {((22—_ 3}1?))2 N (Ii;ﬁki;( 2)!;1) N Ui;:gk:( 2)153)} Jo(a, B). (457)
M3 (kq, ko, k3) = (K + kigil(&, B) { ((2123_3]]?))2 (K(VQZ;EKQ)];?) (Ii;l::lkiKQ)];l) } Jo(a, B). (4.58)

where Ji(a, 8) and Jo(a, B) are defined earlier. Consequently the three point function for
the scalar fluctuation can also be written after substituting all the momentum dependent
functions My (ky, ko, k3), Ma(k1, ko, k3) and Ms(ky, ko, k3) for «, f vacuum.
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4.2.4 Coefficient of ay

Here we can write the function O4(k1, k2, k3) as

O4(k1, ko, k) = i/nf " dn a]_({?)) {(k2.k3)X1(k1, ko, k3) + (k1.kg) Xo(k1, ko, k3) + (k1.k2)Xs3(k1, ko, k3)} ,(4.59)
ni=—o00
where the momentum dependent functions X7 (k1, ko, k3), Xao(k1, ko, k3) and X3(k1, ko, k3) can be
expressewd in terms of the various combinations of the scalar mode functions as:
X1 (K1, ko, ks) = v(ny,k1)0(ny, k2)0(ns, ks)v* (n,k1)0 " (n, ka)v" (1, ks)
+ 0" (ny, —k1)0" (ny, —ka)v" (nf, —ka)v(n, —k1)v' (n, —ka)v(n, —Ks)
+0(n7,k1)0(ny, ka2)0(ny, ka)v* (1, k1 )0 * (1, ks )0* (1, ka)
+ 0% (g, —ka)0" (1, —k2) 0" (ny, —ks)v(n, —k1)v (1, —ks)v(n, —k2), (4.60)
Xo(ky, ko, ks) = v(ns,k1)0(ny, k2)0(ns, ks)v* (0, k2)v " (n, k1)v" (1, ks)
+ 0" (nf, —k1)v" (05, —k2)v" (15, —ks)v(n, —k2)v (1, —k1)v(n, —ks)
+ 0y, k)0 (g, k2)0 (7, ka)0" (0, ka)o ™ (1, ks)0" (0, k)
+ 0% (ny, —k1)0" (15, —k2)0" (1, —ks)v(n, —k2)v (1, —ks)v(n, —k1), (4.61)
Xs(ky, ko, ks) = v(ny, k1)v(ns, ka)0(ny, ks)v™ (0, ks)v * (0, k1)0" (1, ka)
+ 0" (np, —k1)0" (17, —ka2) 0" (ny, —ks)0(n, —ks)v (1, —k1)0(, —k2)
+ (k1.ka2)o(ny, k) oy, ko) 0y ka)o* (1. ks)v™* (. ka) " (0 k)
+ 0" (g, k1) " (7, —ka)v" (ny, —ks)v(n, —ka)v (1, —ka)v (1, —k1), (4.62)

Using the results obtained in the Appendix we finally get the following simplified expression for
the three point function for the scalar fluctuations '®:

S

SR

H? 1
64cZe3ME (k1koks)?

O4(k1, ko, k3) = — k3 (ko k) Fi(k1, ko, ks) + k3 (ka.ks) Fa(k1, ko, k3)

+ k2 (kq.k3) Fz(k1, ko, k3) + k2 (ky.ks) Fa(ky, ka, k3)

+ k3 (k. k2) Fs (k1. ko, k3) + k3 (k1 ko) Fo(ki, ke, ks)] ,

(4.64)

¥Here ot is important to point out that in de-Sitter space if we consider the Bunch Davies vacuum state then here
only the term with 1/K 3 will appear explicitly in the expression for the three point function and in the associated
bispectrum. On the other hand if we consider all other non-trivial quantum vacuum state in our computation then
the rest of the contribution will explicitly appear. From the perspective of observation this is obviously an important
information as for the non trivial quantum vacuum state we get additional contribution in the bispectrum which
may enhance the amplitude of the non-Gaussianity in squeezed limiting configuration. Additionally, it is important
to mention that in quasi de Sitter case we get an extra contribution 1/(1 + €)®. Also the factor 1/(k1k2ks)® will be
replaced by 1/(k1k2k3)?” and 1/¢% is replaced by 1/06” 7. Consequently, in quasi de Sitter case this contribution in
the bispectrum can be recast as:

H? 1

@ k 7k ’k-f = — -
4, k2, ks) 6485 Te3ME (1 + €)> (kakaks)? [

k‘g(kz ka)Fi(ki, ko, ks) + k3(k2 ks)Fa(ki, k2, ks)

+ k7 (ka.ks)Fa(ki1, ko, ks) + k3 (k1.ks) Fa(kr, ko, ks) + k7 (ka.k2)Fs (k1, ka, ks) + k3 (k1.ka) Fo (k1, k2, k3)] ,
(4.63)
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where the momentum dependent functions F;(ki, ko, k3)Vi = 1,2,--- ,6 are defined as:

fl(kh k27 k3)

f?(kh k27 k3)

Fa(ki, ko, ks) =

f4(k17 k27 k3)

Fs(ki, ko, ks) =

1
a [K? + 2kiks + K (K — ko)] [(C1 — C2)*(CF + C5%) + (C — C2)*(CF* + C3?)]
1

+ {M [K? — dkiks + K (ks — 5k1) + 6k7]
N 1

(2ky — K)3
N 1

(2k3 — K)3
[(C1 CQ)SCTCék(CT +C3) + (Cf — 05)30102(01 + CQ)] . (4.65)

K? + 2kiko + K(K — k3)] [(C1 — C2)*(CF? + C5%) + (C1 — C2)(CF* + C37)]

1
+ {(%1—103 [K? — dkiky + K (ko — 5k1) + 6k7]

1
Mok — K
+¥ [
(2ky — K)3
[(C1 = C2)*’CFC3(CF + C3) + (CF — C3)*C1C2(Cy + Cy)] (4.66)

[K? + 2koks + K (K — k1)] [(C1 — C2)*(CF + C5%) + (C1 — C2)*(CF* + C3?)]

[(K — 2]€2)(K — 2ko + kl) + (K + 2k1 — ng)k'g,]

[K? — 4kks + K (k1 — 5k3) + 6k3] }
=

[(K — 2k3) (K — 2ks + k1) + (K + 2k — ng)kg]

K? — dkiky + K (ki — 5ko) + 6k3] }

3
K? — dkoks + K (ks — 5ko) + 6k3]
2k:2 -

ok K [(K 2k1) (K — 2k + ko) + (K + 2kg — 2k1) k2]
1
@k K |

[(C1 = C2)*’CTC3(CF + C3) + (CF — C3)*C1C2(Cy + Cy)] (4.67)
K2 + 2k1ko + K(K kg)] [(Cl — CQ)S(CT?’ + C;S) + (Cl — Cg)g(Cfs + 053)]

+ K? — 4koks + K (ko —5]€3)+6k§]}

= |
1 2 2
+ {M [K? — 4k1ky + K (ki — 5k2) + 6k3]

1
+ = 77 (K~ 2Ks)(K = 2hs o+ ko) + (K + 2z — 2hs)ke]
1
+W [Kz — 4](51]{32 + K(kQ - 5]{31) + 6]{;%] }
(1= P CIC3(CT + ) +(C — P CIC(Cr+ Co)] . (469

K3 [K2 + 2koks + K(K kl)] [(Cl — CQ)S(CT?) + 053) + (Cl — Cg)g(Cik?’ + 053)]

1
+ {M [KQ — 4koks + K(k‘Q — 5k;3) + 6}3%]
1
gy gy (U~ 2R (K = 2k o ko) + (K o 2k — 2k
Lt
(2ks — K )
[(Cy = Co)3CC3(CF + C3) + (CF — C3)PC1C(Cy + Co)] - (4.69)

+ K —4k21€3+K(k3—51€2)+6k‘%]}
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Fo(ki, ko, k3) = [K? 4 2k1ks + K (K — k)] [(C1 — C2)*(CT* + C5%) + (C1 — C2)*(CF* + C37)]

K3
+ {M (K — dkyks + K (ki — 5ks) + 6k)]
+M (K — 2k2)(K — 2ko + k3) + (K + 2ks — 2ka) k1]
+M [K? — 4kiks + K (ks — 5k1) + 6k7] }
[(C1 = Co)*CHC5(Ci + C5) + (CF = C3)*C1Ca(Cr + )] (4.70)

Further after simplification one can recast the three point function for the scalar fluctuation as:

H? 1

O4(ky, ko, k3) = —
a(k1, ko, k3) 1285%€3M1§ (k1koks)?

(k3 (kT — k3 — k3) Fi(ky, ko, k) + k3 (kT — k3 — k3) Fa(k, ko, k3)

+ k3 (k3 — k§ — k3) Fa(ky, ko, ks) + k3 (k3 — k — k3) Fa(k, ko, k3)

+ k7 (k3 — k3 — ki) Fs(ky, ko, ks) + k3 (k3 — k3 — ki) Fo(k, ka, ks)] ,

(4.71)
Finally for Bunch Davies and «, § vacuum we get the following contribution in the three point
function for scalar fluctuations:

e For Bunch Davies vacuum:
After setting C1 = 1 and Cy = 0 we get:

Fi(ky, ko, k3) = — [K? + 2kiks + K (K — k)] (4.72)
Folky, ko, k3) = % [K? + 2kiko + K (K — k3)] (4.73)
Fs(ky, ko, k3) = % [K? + 2koks + K (K — ki1)] . (4.74)
Fa(ky, ko, k3) = % [K? + 2kiko + K (K — k)] . (4.75)
Fs(ki, ko, k3) = ig [K? + 2koks + K (K — ki)] (4.76)
Fo(kr, ko, k3) = % [K? + 2kiks + K (K — k)] (4.77)

Consequently the three point function for the scalar fluctuation can be expressed as:

H? 1

ki, ko, k3) = —
O4(k1, ko, k3) 1285?963M;? (k1kaks)3

(k3 (ki — k3 — k§) [K? + 2kiks + K (K — k)]

+ k3 (kT — k3) [K? + 2kiks + K(K — k3)]
+ k3 (k2 k3) [K? + 2koks + K(K — k1))
+ k3 (k3 k3) [K? + 2kiks + K(K — ks)]
+ k(K3 k7 [ + 2koks + K (K — k)]
+ k3 (k3 ki) [K? 4 2kiks + K(K — ko)]],  (4.78)
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e For o, vacuum:

After setting Cy = cosh @ and Csy = e sinh o we get:

fl(k17k2ak3) =

IQ(kly kQ? k?}) =

F3(k, ko, k3) =

Fua(ki, ko, k3) =

Fs(ki, ko, k3) =

1
K3

1 2 2

+M (K — 2ka)(K — 2k + k1) + (K + 2k1 — 2k)ks]

1
+m [K? — 4k ks + K (k1 — 5k3) + 6k3] } Jo(a, B).

[K? + 2k1ks + K(K — ks)] Ji(a, B)

% [K? + 2k1ko + K (K — k3)] Ji(cv, B)

+ {M [K? — dkiky + K (ko — 5k1) + 6k7]
1

(ks — K
1

(2ky — K)3 [

+ K — 2k3)(K — 2k3 + k1) + (K + 2k1 — 2k3)k2]

+ K? — dkiky + K (ki — 5k2) + 6k3] } Jo(a, B).

1
K3

1 K? — 4koks + K (ks — ko) + 6k2
+ m[ — dkoks + K (ks — 5ka) + 2}
;[(
(2k; — K)3
P
(2ks — K)3

[K? + 2koks + K(K — ky)] Ji(ev, B)

+ K —2k1) (K — 2k + ko) + (K + 2k — 2k1) ko)

K? — dkoks + K (ko — 5ks) + 6k3] } Jola, B).
3 [Kz + 2k1ko + K(K — ]{23)] J1(a, B)
1 2 2
T
2k — K)?

1
o R |

K — 2k3) (K — 2k + ko) + (K + 2ky — 2k3) k2]

K? — 4kiky + K (ko — 5k1) + 6k7| } Jola, B).

% [K? + 2koks + K (K — k1)] Ji(ev, B)

+ {M [K? — dkoks + K (ko — 5k3) + 6k3]
1

T2k - K .
1

(2ky — K)? [

K — le)(K — 2k + kg) + (K + 2ko — le)kg]

+ K? — 4kyks + K (k3 — ko) + 6k3] } Ja(a, B).
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1

]:6(]{21,]62, ]{73) = [K2 + 2k1ks + K(K — ]{2)] Jl(a,,é’)

K3

* {M [K? — 4kks + K (k1 — 5k3) + 6k3]

+M (K — 2ks) (K — 2ky + ks) + (K + 2k3 — 2kz) ki
+M [K? — dkiks + K (ks — 5k1) + 6k7| } Jo(a, B). (4.84)

where Ji(a, f) and Jo(c, 5) are defined earlier. Consequently the three point function for
the scalar fluctuation can also be written after substituting all the momentum dependent
functions F;(ky, ka, k3)Vi =1,2,---,6 for a, f vacuum.

4.2.5 Coefficient of oy

ny=0 a
Os(k1, k2, k3) = Z/ dn (1)

Ni=—00

F {(kz.k3)Y1(k1, kQ, kg) + (kl-k3)Y2(k17 k2a k3)
+ (k1.k2)Y3(k1, k2, k3)} (4.85)

where the momentum dependent functions Y7 (k1, ko, k3), Ya(k1, k2, k3) and Y3(k1, ke, k3) can be
expressewd in terms of the various combinations of the scalar mode functions as:

Yi(ki, ka, ks) = B(ns, k1)B(ns, k2)0(ns, ks)o* (0, k1)7" (n, ka)7* (1, k3)
+ 0" (ng, —k1)v" (nf, —ka2)" (7, —ka)o(n, —k1)v(n, —ka)v (1, —ks)
+ (g, ka)o (g, k2)0 (7, ka)o" (0, ka )0 (0, ks )™ (n, kez)
+ 0" (15, —k1)0* (7, —k2)0" (nf, —ka)0(n, —k1)v(n, —ka)v (1, —kz), (4.86)
Ya(ky, ko, ks) = v(ns, k1)o(ng, k2)v(ns, ks)v* (1, k2)v* (1, k1)v™ (1, ks)
+07 (17, —k1)0" (07, —ka2)0" (ny, —ks)v(n, —k2)(n, —k1)7 (1, —ks)
+ 0(n7, k)o(ny, ka)o (7, ka)v* (n, k2)v" (1, ks ) o (n, k1)
+ 07 (7, —k1)v* (n7, —ka2)v" (ny, —ks)v(1, —ka)v(1, —ks)v (1, —k1), (4.87)
Ya(ki, ko, ks) = 0(ny, k1)0(ng, k2)5(ns, ks)v* (1, ks)v* (1, k1)v (1, k)
+ 0% (ny, —k1)v" (0, —k2)v" (17, —ks)0(n, —ks)v(n, —k1)v (1, —ka)
+9(ny, k1)0(ns, ka)o(ns, ks)o" (1, ks)o" (n, k2)7* (0, k)
+ 0% (07, —k1)0" (ny, —ka)0" (1, —ks)v(n, —ks)v (1, —k2)¥ (1, —k1), (4.88)
Here we get the following contribution in the three point function for scalar fluctuations ':
Os(k1, ko, k3) = O4(k1, ko, k3), (4.90)

where ©4(kq, ko, k3) is defined earlier. Here the result is exactly same as derived for the coefficient
Qy.

19Here ot is important to point out that in de-Sitter space if we consider the Bunch Davies vacuum state then here
only the term with 1/K? will appear explicitly in the expression for the three point function and in the associated
bispectrum. On the other hand if we consider all other non-trivial quantum vacuum state in our computation then
the rest of the contribution will explicitly appear. From the perspective of observation this is obviously an important
information as for the non trivial quantum vacuum state we get additional contribution in the bispectrum which
may enhance the amplitude of the non-Gaussianity in squeezed limiting configuration. Additionally, it is important
to mention that in quasi de Sitter case we get an extra contribution 1/(1 4 ¢)5. Also the factor 1/(k1keks)? will be
replaced by 1/(k1k2ks)®” and 1/é% is replaced by 1/¢% 7. Consequently, in quasi de Sitter case this contribution in
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4.3 Limiting configurations of scalar bispectrum

To analyze the features of the bispectrum computed from the present setup here we further consider
the following two configurations:

4.3.1 Equilateral limit configuration

Equilateral limit configuration is characterized by the condition, k1 = ko = k3 = k, where k; =
|ki|Vi = 1,2, 3. Consequently we have, K = 3k.
For this case, the bispectrum can be written as:

Berr(k, k, k) Zaj (kK K) |, (4.91)
where a;Vj =1,2,--- 5 are defined earlier and O;(k, k,k)Vj =1,2,--- ,5 are given by:
3H? 11
_ L 4.92
O1(k, k, k) T [27U1 3U2] : (4.92)
3H? 1 [17
Os(k, b k) = —————— — | —U;, — 3U- 4.93
2(k, k. k) 64¢3 MG kS {27 L 2} ’ (4.93)
3H 1 [10 22
O3(k, k., k) = mﬁ [ - 49U2] ) (4.94)
3H? 1 [17
kokk) = ——— = O5(k, k, k 4.
@4( 5 vy ) 645%63M£ L6 |:27U1 3U2:| 95( y vy )a ( 95)
where Uy and Us; are defined as:
Ur = [(C1 - o) (CF + C5%) + (CF - G3)° (G + G3)]
Up = [(C1 = C2)* GG (CF = C5) + (Cf = G5)° C1Ca (G — C)] (4.96)

Further substituting the explicit expressions for a;Vj =1,2,---,5 and ©;(k,k,k)Vj =1,2,---,5
we get the following expression for the bispectrum for scalar fluctuations:

3H2 1<
Berr(k, k k) = ——=— 75 prUp

4.
165305Mg L6 et (4.97)

the bispectrum can be recast as:

H? 1

O (ky, ko, k) = Ou(kn, ko, ks) = — ———
5( 1,R2 3) 4( 1, 2 3) 64Cgu 763Mg(1+€)5 (k1k2k-3)2u

(k3 (ka.k3)Fi(k1, ka2, ks) + k3 (kz.ks) Fa(ky, k2, k3)

+ k7 (ka.ks)Fa(k1, ko, ks) + k3 (k1.ks) Fa(kr, ko, ks) + k7 (ka.k2)Fs (1, ka, ks) + k3 (k1.ka) Fo (k1, k2, k3)] ,
(4.89)
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where f,Vp = 1,2 are defined as:

é 1Y - 3 4 17 1Y\ - 3 _
= 21— % |HEM?>+ SM3H — — M} 1— = |HM? + M}H
hi 27{( c§> p Mg 3}+10865{< cg,) p oM

5 _ 17
— 5ME’H 365, —— M} H, (4.98)
1\ . 3 _ 4 3 1 3
= 3¢ 1— = | HM? + M3}H — =M 1—-— HM2 MH
fo Cs{< C?g) p+2 1 3 3 4Cs CS + 1
99 9 _
+3 8M1 Hé, — VEn M}H. (4.99)
S

e For Bunch Davies vacuum:
After setting C1 =1 and Cy = 0 we get:

Uy =2, Uy=0. (4.100)
Consequently we get the following expression for the bispectrum for scalar fluctuations:

H? 1 1 [é 1 5 3 4
Bgrr(k, k, k) = 4ECSM2M4G2]€6[ {(1 CS)HMJr MlH—§M3

17 1Y . 3 _ 15
1— = |HM?+SM}H  — —=MPHE,
+7255{< c§> p M } 41

For ¢ = 1 = cg case we know that My = 0 and M3 = 0 which we have already shown
earlier. As a result the bispectrum for scalar fluctuation can be expressed in the following
simplified form:

7
MYH| . (4.101
+ o V] (10

B kkk)= ——r— " M’H. 4.102
wrr (k. k. k) AeM2 M2 kS 48 ! (4.102)

For ¢s < 1 and cg < 1 case one can also recast the bispectrum for scalar fluctuations in the
following simplified form:

H? 1 1 - 3 4é3 262
Berr(k, k, k) = MH[CS{ +?3+~CS}

4€CSM2 M4€2 ]4}6 18 3 C4 Cq
17 (24 3] 15. 17

iR QR . 4.103

+7255{ & +2} 4CS+2455] (4.103)

e For o, 8 vacuum:

After setting C; = cosh o and Cy = €*? sinh o we get:

Ur = Ji(a,8), Uz = Ja(a, B), (4.104)
where Ji (o, 8) and Ja(«, 3) are defined earlier.
Consequently we get the following expression for the bispectrum for scalar fluctuations:

H* 1 1 [[¢& L\ - o 3 _4 4
BEFT(k k k‘) 4603M2 M4 2]{36 I:(gﬁ{(l— C%) HMp +§M1H—§M3

17 1 3 15 _ 17 _
+ — {(1 - ) oM + M1H} — §M§H(§5 + 5 Mf’H) Ji(e, B)
Cs

144¢, CS
9 1Y\ - 3 4
- (—55 { (1 — ) HM? + SMPH — M§}}
4 C% P9 3
9 1\ - 3 297 27
— 1 — = |HM? + SM}H } + =—M?Hé, — ——MPH (4.1
16, {( C§> p oM } 3027175 T 16, 1 )JZ(a’ﬁ)] (4.105)
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For ¢ = 1 = cg case we know that My = 0 and M3 = 0 which we have already shown
earlier. As a result the bispectrum for scalar fluctuation can be expressed in the following

simplified form:

Bk, k. k) = —

8073
1568

Ji(a, B) +

H? 1 1 125
[ (4.106)

1eM2 Me? o M |5 Gk )} '

For ¢s < 1 and cg < 1 case one can also recast the bispectrum for scalar fluctuations in the
following simplified form:

Berr(k,k, k) =

H? 1 1 - ég (3 4dég 262 17 (24 3
- M3H B A o] -t s 2
decg M2 Mle® kO 1 [(36 { *3 4 + 4 + 144¢g | &4 *3

15 17 9. (3 4é 2% 9 (2 3
- 5 J ) - a o ~ —— - T~ — =
805+4865> i(a BH( 405{2+3C4+ G | 1665 @ 2

297 27
—C J: . 4.107
+ ot~ o) (a9 (4.107
4.3.2 Squeezed limit configuration
Squeezed limit configuration is characterized by the condition, k1 = ko(= k1) >> k3(= kg), where

ki = |k;|Vi = 1,2,3. Also k1, and kg characterize long and short mode momentum respectively.
Consequently we have, K = 2k;, + kg. For this case, the bispectrum can be written as:

where a;Vj =1,2,---

©1(kr, kL, ks) =~

O©2(kr, kL, ks) = —

@ (kLv kL? kS)

@4(kL7 k[n kS) = -

Za] (kr,kr, ks) (4.108)

Berr(kr, kr, ks)

,b are defined earlier and ©;(kr, kr,ks)Vj =1,2,---

k

U, — 16U2< L) ]
ks

3

{i Uy — 3Us] + =

, b are given by:

3H? 1

TR v 4.1
128e3M$ k3 ks (4.109)

H? 1
64€3 MBS k3 ks

@5(kLv kLa kS)v
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where Uy and Us are defined earlier.

Further substituting the explicit expressions for «;Vj = 1,2,---,5 and ©;(kr, kr, ks)Vj =

1,2,---,5 we get the following expression for the bispectrum for scalar fluctuations:
9 2
B kr,kr, ks) = —5—— kr,ks)U, 4.113
err(kL, kL, ks) 6135 NS pzjlgp( L, ks)Up, ( )

where gp(kr, ks)Vp = 1,2 are defined as:

krp.kg) = —2>-2(1— = | HM?> + “M}H — =M.
g1(kr, ks) 2k2k5{< C%) p+2 1 3773
1 1Y\ - 3 5 (ks\?
— (1 -=)VEM?’+=M3HY[2-° (=2 4.114
*@@m{( cﬁ p g }< 4(@)) (1

9 _ ¢ kr\? 3 _ 1 kg 3 ks\?
— SMPH <" 3+< ) + —MPH {2 + =)+ 2= ,
27! k;gks< ks és ks ki) ' 2k3k3 kr
24ég I\ - 5 3 a4 ) [(kp\?
ki kg) = —= 31— = | HM? + SMPH — —M$ [ -=
92( L S) k’5ks{< C%) p+2 1 3 3 kg
o oA Y mez s B\ s o (s 2
sk ks % Pt kL
5 (ks\’ 8 ks')” R VET P kL21+8 iz
4 \ kr, 5 \ kr 271 KD kg ks ks
3 - 1 kg ks
—M}H2| — 4+ = 2 (= . 4.115
T {(kk*k>+2m< (k) (#.115)

e For Bunch Davies vacuum:
After setting C'y = 1 and Cs = 0 we get:

Uy =2, Uy;=0. (4.116)
Consequently we get the following expression for the bispectrum for scalar fluctuations:
H? 1

3Cs LY a2 33 4,
B ki, kr,kg) = 1-— |HM —-M;7yH — -M
EFT( LyNL, S) 4665M5 8M;}62 |:2k%k5 {( C%) D + 2 1 3 3

1 1Y\ - 3 5 (ks\?
— 1= |HM?>+=M}H [2-=
+@@m{( %) p g }< 4@))

3 1 ks 3 ks )
—MHS2( 2 )+ e (2 (2 . (4117
T { (k;gks * kZ) * 2k3 k3 < (kL> (4.117)
For ¢s = 1 = cg case we know that My = 0 and M3 = 0 which we have already shown
earlier. As a result the bispectrum for scalar fluctuation can be expressed in the following

— 43 —



simplified form:

H2 1 9 3 5 (ks>
B kp.kp. kg) = —————M3H 2= 4.118
orr(ke, kL, ks) 4@@%@&1-[M%5+%%5< 4(@) ( )

9 1 kr\ 2 1 ks 3 %
———13 — 3¢2( —+—+ — — 2= .

2@@(*(@))* {(@@*@ HETETE ke
For ¢s < 1 and cg < 1 case one can also recast the bispectrum for scalar fluctuations in the

following simplified form:

H? 1 - 3¢s [3  4es 2c8
Bepr(kp, kp ks) = ——— s MPH | =53 5 222 4 =8
EFT( LyNL, S) 4655‘Mg 8M;)l€2 1 |:2]€%k?5’ {2 + 354 * 54 }

L2 3 [, 5 (ksY

iskSks | &1 2 4 \ kg
9 ég kr\ 2

-2 |3 =
M%s<+(m)

3 1 kg 3 ks\?
2o+ ) 2 (2 . (4.119
+~{ Q%s+@>+%%z< (n))” (4119

cs

e For o, 8 vacuum:
After setting C; = cosh o and Cy = € sinh o we get:

Ul = Jl(‘%ﬁ)a U2 = JZ(aaﬂ)a (4120)

where Ji (o, ) and Ja(«, B) are defined earlier.
Consequently we get the following expression for the bispectrum for scalar fluctuations:

H? 1
= [91(kL, ks)Ji(a, B) + g2(kr, ks)J2(a, B)] . (4.121)

Bepr(kr, ki, ks) =
prr(ke, ke, ks) decs M2 16M1e2

For ¢g = 1 = ¢g case we know that My = 0 and M3 = 0 which we have already shown earlier.
As a result the factors g1(kr, ks) and go(kr, ks) appearing in the expression for bispectrum
for scalar fluctuation can be expressed in the following simplified form:

9 3 5 (ks>
kp, kg) = M3H+ ——MH|2-°(2

Ak ks
9 1 kp\>
— —M3H 34 (=
21@@(*@))
1 kg 3 %
3M3H S 2 e — 4.122
+3My {(@@*@)*%%z( (m))} (4122
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9 _ 1 kr, kr
—ZM}H-—-13 = 1+8( =
271 kiks{ +(k‘s) < i (7%’))}
_ 1 kg 3 ks 2
SM3H 2 —— 2= . 4.123
+ 3M; { <k2k54—k7>—++-k3k3< (kL) )} (4.123)

For ¢g < 1 and ¢g < 1 case one can also recast the factors g1(kr,ks) and ga2(kp, ks) as
appearing in the expression for bispectrum for scalar fluctuations in the following simplified

form:
3¢s [3  4c 2k
kr,ks) = —=
g1k, ks) %%{ LN
1 2¢% 3 5 (kg
- = 2_Z (2=
Ak }( ()
9 Cs
AJ.H
Y S ks ( >
+ 3 arH 1+— - %-@2 (4.124)
ig t Kks ki 2k%k% kL ’ '

bk = e (3o sn B ()
v e () 16 (3 )
g {o () (s
it i) e (- ())) o

5 Determination of EFT coefficients and future predictions

In this section we compute the exact analytical expression for the EFT coefficients for two specific
cases- 1. Canonical single field slow roll inflation and 2. General single field P(X, ¢) models of
inflation, where X = —%gf‘” 0,90, ¢ is the kinetic term. To determine the EFT coefficients for
canonical single field slow roll model or from general single field P(X, ¢) model of inflation we will

follow the following strategy:

1. First of all, we will start with the general expression for the three point function and the
bispectrum for scalar perturbations with arbitrary choice of quantum vacuum. Then we take
the Bunch-Davies and «, 8 vacuum to match with the standard results of scalar three point

function.
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2. Next we take the equilateral limit and squeezed limit configuration of the bispectrum obtained
from single fleid slow roll model and general single field P(X, ¢) model.

3. Further we equate the equilateral limit and squeezed limit configuration of the bispectrum
computed from the EFT of inflation with the single field slow roll or from general single field
P(X, ¢) model.

4. Finally, for sound speed cg = 1 and c¢g < 1 we get the analytical expressions for all the EFT
coefficients for canonical single field slow roll models or from generalized single field P(X, ¢)
models of inflation.

5.1 For canonical Single Field Slow Roll inflation

Here our prime objective is to derive the EFT coefficients by computing the most general expression
for the three point function for scalar fluctuations from the canonical single field slow roll model of
inflation for arbitrary vacuum. Then we give specific example for Bunch-Davies and «, 5 vacuum
for completeness.

5.1.1 Basic setup

Let us start with the action for single scalar field (inflaton) which has canonical kinetic term as
given by:

2

M
TPRJFX —V(¢) (5.1)

Canonical model : § = /d4x\/—g

where V(¢) is the potential which satisfies slow-roll condition for inflation.
It is important to mention here that perturbations to the homogeneous situation discussed
above are introduced in the ADM formalism ehere the metric takes the form [30]:

ADM metric : ds® = —N?dt* + g;; (da’ + N'dt) (da’/ + Ndt) |, (5.2)

where g;; is the metric on the spatial three surface characterized by ¢, lapse N and shift IV;. Here
we choose synchronous gauge to maintain diffeomorphism invariance of the theory where the gauge
fixing conditions are given by:

Synchronous gauge: N =1, N'=0], (5.3)

and the perturbed metric is given by:

gij = a*(t) [(1 4 2¢(t,x))dij + Vi), v = 0], (5.4)

where ((t,x) and 7;; are defined earlier. Here it is important to note that, the structure of g;;
is exactly same that we have mentioned in case of EFT framework discussed in this paper. Note
that in the context of ADM formalism one can treat the scalar field ¢, induced metric g;; as the
dynamical variables. On the other hand, N and N? mimics the role of Lagrange multipliers in
ADM formalism. Consequently, one needs to impose the equations of motion of N, N* as additional
constraints in the synchronous gauge where the gauge condition as stated in Eq. (5.3) holds good
perfectly. More precisely, in this context the equations of motion of N and N correspond to time
and spatial reparametrization invariance.
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Further using the ADM metric as stated in Eq (5.2), the action for the single scalar field
Eq (5.1) can be recast as [30]:

M? 1 g 1 /. . 2 g
_ 4 P Ar (3 2
S = /d /=g | 5N GR—- NV + o (EgBY — E?) + o (¢> -~ Nzaid)) - Ng”@igi)ﬁjqb] :
where )R is the Ricci scalar curvature of the spatial slice. Also here E;j and E is defined as [30]:
1.
Eij L= 5 (gij - VZN] — VJNZ) = NKij, (56)

Here the covarinat derivative V;, is taken with respect to the 3-metric g;;. Also in this context
the extrinsic curvature Kj; is defined as [30]:

1 .
Kij = Bij = 555 (95 = VilNj = V;Ni). (5.8)

Additionally we choose the following two gauges:

Gaugel:  d¢(t,x) =0, ((t,x)#0, 0 =0, 7i=0]. (5.9)

Gauge IT : dop(t,x) #0, ((t,x)=0, 0vij =0, i =0]. (5.10)

For our present computations, we will work in Gauge I as this is exactly same as the unitary
gauge that we have used in the context of EFT framework. Also the tensor perturbation -;; is
exactly same for the unitary gauge that we have used for EFT setup.

5.1.2 Scalar three point function for Single Field Slow Roll inflation

Before computing the three point function for scalar mode fluctuation here it is important to note
that the two point function for Single Field Slow Roll inflation is exactly same with the results
obtained for EFT of inflation with sound speed ¢g = 1 and ¢g = 1, which can be obtained by
setting the EFT coefficients, My = 0, M3 = 0, My # 0, My # 0, My # 0, M3 # 0, é5 = —%(1—}—6) 20,
Using three point function we can able to fix all of these coefficients.

20Tn case of Single Field Slow Roll inflation amplitude of power spectrum and spectral tilt for scalar fluctuation
can be written at the horizon crossing |kn| =1 as:

Vi(g+)
24 Miey for dS
For Bunch — Davies vacuum :  A¢(ks) = 3 2
265‘/727]‘/ V((b*) F(§ + 46‘/ - 77V) for qu
2472 Mpey (14 ev)? I (%) '
% [cosh 2ac — sinh 2 cos 3] for dS
P
3 2
For o, 8 vacuum : A (ki) = { 96cv—2nv V() L(; +dev —nv)
2472 Miey (1 + ev)? I (%)
[cosh 2a — sinh 2accos (7 (2 + 4ey — nv) + B)] for qdS.
and
ng(k*)71:2ﬁvf6ev. (5.11)
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We here now proceed to calculate the three point function for the scalar fluctuation ((¢,x)
in the interacting picture with arbitrary vacuum. Then we cite results for Bunch-Davies and «, 3
vacuum. For Single Field Slow Roll inflation the third order term in the action Eq. (5.5) is given
by [30]:

S = [ate [@3GE + ad(00) - 20° Cordauteo) (5.12)

which is derived from Eq (5.5) and here after neglecting all the contribution from the terms which
are subleading in the slow-roll parameters. Additionally here we use the following field redefinition:

C=§+{e—g}52, (5.13)

where €, 1, § and s are slow-roll parameters which are defined in the context of Single Field Slow
Roll inflation as:
1 g ;

NT]\J;?’ 77"\-‘6—6, 6:7 s=0. (514)

€ AR
Ho

Here one can also express the slow-roll parameters € and 7 in terms of the slowly varying potential
V(p) as, € ~ ey, n ~ ny — €y, 6 ~ 2ey — ny. where the new slow-roll parameter ey and 7y are

V(e) V(9)

Now it is important to note that, in the present context of discussion we are interested in the
three point function for the scalar fluctuation field ¢, not for the redefined scalar field fluctuation
¢ and for this reason one can write down the exact connection between the three point fulction for
the scalar fluction field ¢ and redefined scalar fluctuation field ¢ in position space as:

2 / 2 "
defined as, ey = % <V (¢)> T Mg V_(9) ) Here '’ represents d/d¢.

(C(x1)¢(x2)C(x3)) = (((x1)¢(x2)C(x3)) + (26 — 1) [((x1)C(x2)) (C(x1)(x3)) (5.15)
+ (C(x2)C(x1))(C(x2)C(x3)) + (C(x3)¢(x1))(C(x3)¢(x2))] -

After taking the Fourier transform of the scalar fluction field ¢ and redefined scalar fluctuation
field Q: one can express connection between three point function in momentum space and this is
our main point of interest also.

The interaction Hamiltonian for the redefined scalar fluctuation ¢ can be expressed as:

Hip = /d3x [a (% +a G 2&65/81‘581‘(68725/)] . (5.16)
Further following the in-in formalism in interaction picture the expression for the three point

function for the redefined scalar fluctuation ¢ and then transforming the final result in terms of
the scalar fluctuation ¢ in momentum one can write the following expression:

ny=0

(C(k1)C(k2)((ks)) = Z/ dn a(n) (O1[C(nys, k1)C(ng, k2)C (15, k3), Hint(n)]0) 5.17)
7;=—00 .

= (27)%6®) (k1 + ko + k3) Bsrsr(ky, ko, ks)

where Bspsr(ki, k2, k3) represents the bispectrum of scalar fluctuation ¢, which is computed from
Single Field Slow Roll inflation. Here the final expression for the bispectrum of scalar fluctuation
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for arbitray vacuum is given by:

H4 1 2 E
Bsrsr(kn, ko, ks) = 2(2¢ — ) (|C12 + |Co?) " S K}
spsr(ki, k2, k3) 3220 (kiksks)? (2¢ —n) (IC1* +C2]?) ZZ; 5
3
ITSTINPEASE B SITH S Z kK]
i=1 i,j=1,i#j bj=1,1>j
! ; (5.18)
+e(CICo+CiC3)° | =D K+ > kik]
i=1 4,j=1i#]
3 3 1
21.2
+38 Z kiijK_ka
i,j=1,i>j m=1

For Bunch Davies and «, f vacuum we get the following simplified expression for the bispec-
trum for scalar fluctuation:

e For Bunch Davies vacuum:
After setting C; = 1 and Cy = 0 we get [30]:

HY 1 ’
B ki, ko, kg) = 2(2¢ — K
SFSR( 1, h2, 3) 32€2M;)1 (k1k2k3)3 [ ( € 77); i
Zk3+ Z kk2+— Z k2k? (5.19)
i,j=1,i#j i,j=1,i>j
e For «, vacuum:
After setting C; = cosh o and Cy = %P sinh o we get [32]:
H* 1 ’
B ki, ko, k3) = 2(2¢ — h?2 K
srsr(k1, k2, ks3) 32207 (v gk )3 (2 — n) cos aZ 5
p =1
3 3
>R D Rk + Z k2k? (5.20)
=1 1,7=1,i#j 1,j=1,i>7
3
1
12 2 3 2 272
+esinh? 2a cos® B —Zki—k Z kik? + 8 Z k7K Zm
=1 1,7=1,i#j 1,j=1,4>J m=1

Further we consider equilateral limit and squeezed limit in which we finally get:

1. Equilateral limit configuration:
Here the bispectrum for scalar perturbations in presence of arbitray quantum vacuum can
be expressed as:

H* 1

BSFSR(k k k) 32¢ 2M4 kﬁ

[ (2e — ) (|C1* + |02|2)2 +11e (|C1* - 102\2)2
(5.21)

27 (CFCy + 0105)2} .
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Now for Bunch Davies and «, 8 vacuum we get the following simplified expression for the
bispectrum for scalar fluctuation:

e For Bunch Davies vacuum:
After setting C1 = 1 and Cs = 0 we get:

H* 1

Bspsr(k, k k) = mﬁ [23e — 6] | . (5.22)

e For «, 8 vacuum:

After setting C; = cosh o and Cy = €’ sinh o we get:

H* 1
Bspsr(k k k) = I [6(2¢ — 1) cosh? 2a + 11€ + 27esinh® 2a cos® 5] | . (5.23)
P

2. Squeezed limit configuration:
Here the bispectrum for scalar perturbations in presence of arbitray quantum vacuum can
be expressed as:

(5.24)

H4 1 3 <kS>J
B kp kp, kg) = —————— a; | ==
sesr(kL, kr, ks) 32e? My K} kg j;1 T\ ke

where the expansion coefficients a;Vj = —1,--- ,3 for arbitrary vacuum are defined as:
a1 = 16e (CfCy + C1C3)?,
ao = 4(2¢ — ) (IC1* + |Co*)* + 4e (|C1[* = |Caf?)” + 4¢ (C1Cs + C1C5)?,
a1 = 3¢ (C1Cy + C1C3)%, ag = 10¢ (|C1|? — |Cal?)” + 10 (CC + C1C3)?,
ag = 2(2¢ — ) (|C1* + |Caf?)* = 5e (|C1]? = |Cf?)” — € (CTCa + C1C3)°.

Now for Bunch Davies and «, 5 vacuum we get the following simplified expression for the
bispectrum for scalar fluctuation:

e For Bunch Davies vacuum:
After setting C1 = 1 and Co = 0, we get the following expression for the expansion
coefficients a;Vj = —1,---,3:

a_1 =0, ap=4Be—n), a1 =0, ay=10¢, az = —(e+ 2n). (5.25)

Consequently the bispectrum can be recast as:

Borsn(ko ko ks) = — A L s~ v 10e (F5Y (e ram (K5 (5.26)
SFSR\NLy ML, S ) — 3262M3 k’%kg € Ui € 2 € n . .

e For o, vacuum:

After setting C; = cosha and Co = € sinh o, we get the following expression for the
expansion coefficients a;Vj = —1,--- ,3:

a_1 = 16esinh?® 2a.cos? B, ag = 4(2¢ — 1) cosh? 2ar + 4e + 4esinh? 20 cos? 3,
a1 = 34esinh? 2a cos® B, as = 10e + 10e sinh? 2ac cos? 5,

az = 2(2¢ — 1) cosh? 2 — 5¢ — esinh? 2ar cos? 3.
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Consequently the bispectrum can be recast as:

B (kr, kL, ks) 7H4 L 16€sinh? 2 cos? 3 <k‘5>1
SFSR\NL, kL, NS ) = €81 7
322 MI K3 K3 kL

+ (4(2€ — ) cosh? 2a + 4€ + 4e sinh? 2 cos® 3)

k 3
+ (2(2¢ — ) cosh? 2a — 5¢ — esinh? 2a cos? B) <ks>
L

k
+ 34esinh? 2a cos? 3 (%) + (106 + 10e sinh? 2 cos® ﬂ) -5

o)

5.1.3 Expression for EFT coefficients for Single Field Slow Roll inflation

Here our prime objective is to derive the analytical expressions for EFT coefficients for Single Field
Slow Roll inflation. To serve this purpose we start with a claim that the three point function and
the associated bispectrum for the scalar fluctuations computed from Single Field Slow Roll inflation
is exactly same as that we have computed from EFT setup for consistent UV completion. Here
we use the equilateral limit and squeezed limit configurations to extract the analytical expression

for the EFT coefficients. In the two limiting cases the results are following:

1. Equilateral limit configuration:
For this case with arbitrary vacuum one can write:

Bgrr(k,k, k) = Bspsr(k, k, k), (5.28)

which implies that:

1
_ { HMge[6(17—26)(|Cl|2+|Cg|2)2—116(|01|2—\Cg|2)2—27e(CTC’2+C1C§)Q] }3
b

(5 U1+555 Ve

_ _ 5] 2M56{6(2677])001\2+|CQ|2)2+116(|C1|27|Cz|2)2+276(Cf02+0105)2] 2
(1+e) [ 122U, + 8973 15 | )

& =—2(1+¢, My=0, M;=0,

-

N1t G H2M2e[6(2e—1) (|C1[2+]C2[2) > +11e(|C1 2= |Ca[2) 2 +27e(CrCa+Crs)?] | 2
R B e B
12 196
(5.29)
where for arbitrary vacuum U; and Us are defined as:
Ui = |(C1— Co)* (CF + C5%) + (CF = C3)° (CF + €3] (5.30)
Uz = [(C1 = G2’ CiC3 (CF = C3) + (C = 3P GO (G = Go)] . (531)

To constraint all these coefficients of EFT operators using CMB observation from Planck

TT-+low P data we use [31]:

e < 0.012 (95% CL), n= —0.0080T000% (68% CL), cs =1 (95% CL),

H = Hj,y < 1.09 x 107* M, \/e cs, (5.32)
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where M, = 2.43 x 10'® GeV is the reduced Planck mass. Now for Bunch Davies and o, 8
vacuum we get the following simplified expression for the bispectrum for scalar fluctuation:

e For Bunch Davies vacuum:
After setting C; = 1 and Cy = 0 we get:

S : 17 :
= {5 HMJe[6n — 23¢]}*, My~ Mz = 4H65:{125(1+6)M6[236_6n]} ;

=140, M=0, My=0, M= (~BHIR)" = {5 H02e 3 — 6}

=

(5.33)
Further using the constraint stated in Eq (5.32) we finally get the following constraints
on the coefficients of EFT operators:

1.23 x 107° M, < | M| < 1.41 x 1073 M,,, 8.79 x 107> M,, < |My| ~ |M3| < 1.08 x 1072 M,

My =0, Ms=0, 3.86x107% M, < My x (—s/é3)"/* < 4.29 x 107* M,,. (5.34)

e For «, 8 vacuum:
After setting C; = cosh o and Cy = e’ sinh o we get:

1
M. — HMge[G(n—%) cosh? 2a—11e—27esinh? 2 cos? B} 3
! (225 71 (0, 8) + 592 Jo (o, 3)] ’

1
_ _ M3 2M?2€[6(2e—n) cosh? 2a+11e+27€ sinh? 2 cos? 2
My =~ N = 1—{ pelo2en) e

4H65 o (1+e)[%(}1(a,ﬂ)+%‘b(a,ﬁ)] (535)

1
652—5(1+6), My =0, M3 =0,

1
1 =
& — 4 s H2M?2e[6(2¢—n) cosh? 2a411e427€ sinh? 2¢ cos? 4
My = (——ggHMf) — { 3 el6(2¢—n) 8]

6 [ 22 J1 (a,8)+ 508 Jo (0 8)]

Further using the contraint stated in Eq (5.32) we finally get the following constraints
on the coefficients of EFT operators for a given value of the parameters a and 3 (say
for « = 0.1 and 8 =0.1):
9.1 x 107* M, < |M;| < 1.1 x 1073 M, 1.11 x 1072 M, < |My| =~ |M3| < 1.5 x 1072 M,
My =0, Mz=0, 3.06x107* M, < My x (=s/é3)"/* < 3.54 x 107* M, (5.36)

2. Squeezed limit configuration:

For this case with arbitrary vacuum one can write:

Berr(kr,kr,ks) = Bsrsr(kr, kr, ks), (5.37)
which implies that:

. 1 ) 1
_ 23:_1aj<:—S)J 3 _ _ M3 MZ2e 23——1 J(:S>] ?
M, = {2HM?*e—=" L , Moy =~ Mz = L =7 =L 2 Lo, ,
1 { e smrw eyl SRRCREL GEi e (o

kr,

—5(1+¢€, My=0,

M\»—A

C5 =

=
|
=
=
I
/N
l‘&
=
=
SN—
N
I
—

2202 5 S0 1 ()
~ (

. 3
6 S bm E)

5.38)
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where the expansion coefficients a;Vj = —1,--- , 3 are defined earlier and here the coefficients
b,Vm = —1,---,3 for arbitrary vacuum are defined as:

2 1
b_1 =-36Uy, by = g (Ul —|—9U2), b1 =0, by = <£U1 + 27U2> , b3=0, (5.39)

where Uy and U, are already defined earlier.

Now for Bunch Davies and «, 8 vacuum we get the following simplified expression for the
bispectrum for scalar fluctuation:

e For Bunch Davies vacuum:
After setting C7 = 1 and Cy = 0, we get Uy = 2 and U = 0. Consequently the
expansion coefficients can be recast as:

a_1=0, ap=4Be—n), a1 =0, ay=10¢, a3 = —(e+2n), (5.40)
and
27
bo1=0, bo=9, bi=0, by=", by=0, (5.41)

Finally the EFT coeflicients for scalar fluctuation can be written as:

QHMge[4(3e—n)+106(k*5)2*(€+2’7)(Ls)g} ’

- kr, kr,
M, = ,
]
1
kg2 kg2 2
ity = iy = W Mge|:4(77—3e)—106(%) +(€+2n)(%> } |
s (4o |18-% (35)7] (5.42)

& =—2(14+¢€, My=0, M;=0,

i o |4m=309-10¢( 5 ) (eramy (25)°] |
R T
2 \kp,

Further using the contraint stated in Eq (5.32) we finally get the following constraints
on the coefficients of EFT operators for a given value of the parameter kg/kz, (say for
ks/kr = 0.1):

1.22 x 107% M, < | M| < 1.56 x 1072 M,, 8.67 x 107> M,, < |My| ~ |M3| < 1.25 x 1072 M,
My =0, Mz=0, 3.75x 10* M, < My x (=és/é3)"/* < 4.51 x 107* M, (5.43)
e For o, vacuum:

After setting C; = cosha and Cy = P sinh o, we get Uy = Ji (o, ) and Uy = Jo(a, ).
Consequently the expansion coefficients can be recast as:

a_1 = 16esinh? 2a.cos? B, ag = 4(2e — 1) cosh? 2ar + 4e + 4esinh? 20 cos? 3,
a1 = 34esinh? 2a cos?® B, as = 10e + 10e sinh? 2ac cos? 5,
az = 2(2¢ — 1) cosh? 2 — 5¢ — esinh? 2ar cos? 3. (5.44)
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and

by = —36.a(c, B), bo = g (Ji(e, B) + 9a(cv, B))

b = (Fia,) + e s)) ta=0=t. (5.45)

Finally the EFT coeflicients for scalar fluctuation can be written as:

_ -1 N
My = {QHMge [—36J2(a, B) (Z—i) +9 (Jl(a,ﬁ) + Llab) ”3)>
o1-1
~30(a.8) - T ) ()]
pe\ L
|:166 sinh? 2ar cos? 3 (ﬁ) + (4(26 — 1) cosh? 2av 4 4€ + 4e sinh? 2a cos? ﬁ)
s 1.2 2 ks 12 2 ks 2
+34e sinh” 2c cos® B <E) + (106+ 10e sinh“ 2« cos ﬁ) (E)

31) 3
+ (2(2€ — 1) cosh? 2a — 5¢ — esinh® 2a cos? 3) (%Z) ] } ;

~ ~ M3 MZ2e -1 Jo(a,
2 /R M3 = 4HIE5 = {(l—ﬁe) |:36J2(Oé,ﬁ) (%) —9(J1(Oé,ﬁ)+ 2(2 ,8)>
011
+401(0,6) ~ Tle 8) ()]
-1
{165 sinh? 2a cos? 8 (i—i) + (4(26 — 1) cosh? 2 4 4€ + 4esinh? 2a cos? 5)
5.46
) N (5.46)
+34esinh? 2a cos? 8 (ﬁ) + (106 + 10e sinh? 2a cos? B) (ﬁ)
w310 2
+ (2(2€ — 1) cosh? 2a — 5¢ — esinh® 2a cos? 3) <ﬁ) ] } )
& =—3(1+¢, My=0, M3=0,
1
S rrrr3) 4 2H2M2e & -1 o
M, = (_iHMf)‘l - {63 [36J2(a,ﬂ) (’,37) —9 <J1(oz,B) + M)
3 k2]
+3 (9710, B) = Tha(a, B)) (1)
-1
|:166 sinh? 2a cos? 8 (i—i) + (4(Qe — 1) cosh? 2 4 4€ + 4esinh? 2a cos? ﬁ)

2
+34e sinh? 2av cos? I5} (Z—i) + (106 + 10e sinh? 2« cos? ﬂ) (i—i)

+ (2(2€ — 1) cosh? 2a — 5¢ — e sinh® 2a cos? 3) <£i)3] }4 .

Further using the contraint stated in Eq (5.32) we finally get the following constraints
on the coefficients of EFT operators for a given value of the parameters «, 8 and ks/kr,
(say for = 0.1, 5 = 0.1 and kg/kr = 0.1):

6.05 x 107* M, < |My| < 7.15 x 10°* M, 3.03 x 107 M,, < |Ma| ~ |M3| < 3.89 x 107> M),
My =0, Ms=0, 2.22x 1073 M, < My x (—&/é3)"/* < 2.51 x 1073 M, (5.47)
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5.2 For General Single Field P(X, ¢) inflation

Here our prime objective is to derive the EFT coefficients by computing the most general expression
for the three point function for scalar fluctuations from the General Single Field P(X, ¢) model of
inflation for arbitrary vacuum. Then we give specific example for Bunch-Davies and «, 8 vacuum
for completeness.

5.2.1 Basic setup

Let us start with the action for single scalar field (inflaton) which is described by the general
function P(X,¢), contains non canonical kinetic term in general and it is minimally coupled to
the gravity [32, 43]:

S:/d4x\/—7g

]\fR + P(X, ¢)] . (5.48)

In case of general structure of P(X, ¢) the pressure p, the energy density p and effective speed of
sound parameter c¢g can be written as [43]:

— P(X,¢), p=2XPx(X,6)— P(X,0), - ’ (549
p=P(X.0). p=2XPx(X.0) - P(X.0). cs \/RX(X’@HXRXX(X’@ (5.9
In case of general P(X, ¢) theory the slow roll parameters can be expressed as [43]:
= 2IXWB0) % IPy(X,¢) + XPxx(X,0)],
2x5  [XPix(X,0) = Px(X,0)Pxx(X,6) - XPx(X,6)Pxxx(X,0)] 550
s = . :
Px(X,¢) [Px(X,¢) + XPxx(X,¢)]
In case of Single Field Slow Roll inflation we have:
P(X,9) =X -V(9), (5.51)

where V(¢) is the single field slowly varying potential. For this case if we compute the effective
sound speed then it turns out to be cg = 1, which is consistent with our result obtained in the
previous section. Also if we compute the expressions for the slow roll parameters €,7,d and s the
results are also perfectly matches with the results obtained in Eq (5.14).

Similarly in case DBI inflationary model one can identify the function P(X, ¢) as [44]:

1 1
m\/l—QXf(qﬁ)qu

where the inflaton ¢ is identified to be the position of a D3 barne which is moving in warped
throat geometry and f(¢) characterize the warp factor 2!, For the effective potential V' (¢) one can
consider following mathematical structures of the potentials in the UV and IR regime [44]:

e UV regime: In this case the inflaton moves from the UV regime of the warped geometric
space to the IR regime under the influence of the effective potential, V(¢) ~ %m2¢2, where

the inflaton mass satisfy the constraint m >> Mpﬁ. In this specific situation the inflaton
starts rolling very far away from the origin of the effective potential and then rolls down in
a relativistic fashion to the minimum of potential situated at the origin.

21For AdS like throat geometry, f(¢) ~ ﬁ7 where )\ is the parameter in string theory which depends on the flux
number.
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e IR regime: In this case the inflaton started moving from the IR regime of the warped space
geometry to the UV regime under the influence of the effective potential, V' (¢) ~ Vp— %mquQ,
where the inflaton mass is comparable to the scale of inflation, as given by, m ~ H. In this
specific situation, the inflaton starts rolling down near the origin of the effective potential
and rolls down in a relativistic fashion away from it.

In case of DBI model the pressure p and the energy density p can be written as [44]:

1 1 1 ;
p= il es) - V(o) “Uw%§_0+w” es = V1= 2X[(9) = \/1- d2£(9), (5.59)

where X = ¢? /2. In this context the slow roll parameter [44]:

€= 3¢* ~ ; : (5.54)
4@w@+ﬁ5u_@ﬂ 2[1+ csf(0)V(9)]

is not small and as a result the effective sound speed is very small, cg << 1. Consequently the

1
Vi)
to note that in the context of DBI inflation the other slow roll parameters n and s can be computed
as:

/

3V +esT@OV () + YL Mydes { F(0)V'(6) + V() f

(14 csf(9)V(9)]
3f(¢)es

s =~V M6 285(0) + 67F (6)] (5.55)
S

@)~ 5t (2670487 9))}

3
Q
[SI[9°)

In the slow roll regime to validate slow-roll approximation along with c¢g << 1 we need to satisfy
the constraint condition for DBI inflation, 2c¢g f(¢)V (¢) >> 1.

5.2.2 Scalar three point function for General Single Field P(X, ¢) inflation

Before computing the three point function for scalar mode fluctuation here it is important to note
that the two point function for General Single Field P(X,¢) inflation is exactly same with the
results obtained for EFT of inflation with sound speed cg << 1 and ¢g << 1, which can be
obtained by setting the EFT coefficients, My # 0, Mz # 0, My # 0, My # 0, My # 0, M3 # 0,
&5 # —3(1+€) 2. Using three point function we can able to fix all of these coefficients.

Now here before going to the details of the computation for three point function just using the
knowledge of two two point function we can easily identify the exact analytical expression for the
EFT coeficient M». For this we need to identify the effective sound speed computed from General
Single Field P(X, ¢) inflation with the result obtained for the proposed EFT setup. Consequently

22In case of General Single Field P(X, ) inflation amplitude of power spectrum and spectral tilt for scalar
fluctuation can be written at the horizon crossing |késn| =1 as:

QX*RX(X*7¢*) — P(X*7¢*)
2472 Mpése for dS

236 n+5 s 2X, PX( *7¢*)7P(X*7¢*)
2472 Mpe(1 + €)?

For Bunch — Davies vacuum : A (k) =

2
N(E+3e—n+3%)
r(3)

for qdS.

— 56 —



0 for Single Field Slow Roll
XPxx(X, ¢

we get:
N ) %:
v = (pte g ) [( #46) ) (57
¢ f(¢) — 1

We here now proceed to calculate the three point function for the scalar fluctuation ((t,x) in the
interacting picture with arbitrary vacuum in case of General Single Field P(X, ¢) inflation. Then
we cite results for Bunch-Davies and «, 8 vacuum and give a specific example for DBI model of
inflation.

Here we introduce two new parameters [43]:

’ 2
HM?
2

1
1
] for DBI.

) eH?M?
Y1(X,¢) = XPx(X,0) +2X°Pxx(X,¢) = 2 (5.58)
5
Yo(X, ) = X?Pxx(X, ) + 2X?’PXXX(X, }). (5.59)

3 I
which will appear in the expression for three point function for the scalar fluctuation. For Sin-
gle Field Slow Roll inflation and DBI inflation we get the following expressions for these
parameters [43]:

;

X =eH*M} for Single Field Slow Roll
El(Xv QZ)) = X €H2M2 (560)
s =——— for DBL
(1-2Xf(9): <%
0 for Single Field Slow Roll
—— for DBI.
( (1-2X7(9))>

For General Single Field P(X, ¢) inflation the third order term in the action Eq. (5.48) is given

by [43]:

® _

¢ / d*z [—a3

{zl(x, ) (1 - 0125) + 25 (X, ¢)}

E N a’e (e— 3+30§) 552
H3

4
Cs

( 9% + 1 2) (5.62)
ae (€ — 2s —Cc3) ~, - L € o4
+ TS Ha0)? - 2a*elidon (23 24) ,
s s
24m? Midse [cosh 2a — sinh 2 cos 3] for dS
2
For a, 8 vacuum : Ac(ks) = 266—20+S2X*RX(X*7¢*) — P(X.,¢4) |T(5 +3e—n+3)
2472 Mze(1 + €)? I (%)
. s
[cosh 2a — sinh 2« cos (7r (2 +3¢—n+ 5) + /3)] for qdS.

and

ne(ke) — 1= 20— 6e — s. (5.56)
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which is derived from Eq (5.5) and here after neglecting all the contribution from the terms which
are sub-leading in the slow-roll parameters. Additionally here we use the following field redefinition:

c=lr g {3} (5.63)

where €, 1, 0 and s are already defined earlier for General Single Field P(X, ¢) inflation.

Now it is important to note that, in the present context of discussion we are interested in the
three point function for the scalar fluctuation field ¢, not for the redefined scalar field fluctuation
{ and for this reason one can write down the exact connection between the three point fulction for
the scalar fluction field ¢ and redefined scalar fluctuation field ¢ in position space as:

(Cla)Cxa)Cla)) = (o)) lco) + 2 () e () )

+ (C(x2)C(x1))(C(x2)¢ (x3)) + (C(x3)¢(x1)) (¢ (x3)C(x2))] . (5.64)

After taking the Fourier transform of the scalar fluctuation field ¢ and redefined scalar fluctuation
field ¢ one can express connection between three point function in momentum space and this is
our main point of interest also.

The interaction Hamiltonian for the redefined scalar fluctuation ¢ can be expressed as:

» ) .
Hint = /d3fv _{EI(X7¢) (1—612> +222(X,¢)}<3+ ae(e j+3Cs)CCQ
S 5

o
™

(9)% — 24l 9O, (C‘%a—%’)] . (5.65)

Further following the in-in formalism in interaction picture the expression for the three point
function for the redefined scalar fluctuation ¢ and then transforming the final result in terms of
the scalar fluctuation ¢ in momentum one can write the following expression:

nf=0

(C(k1)C(k2)¢(ks)) = —73/:_ dn a(n) (O [C(ns, k1)C(ny, k2)C (0, ka), Hint(1)] |0) (5.66)

= (2m)36®) (ky + ko + ks) Basr (k1 ka, ks3),

where Bgsr(ki, ke, k3) represents the bispectrum of scalar fluctuation ¢, which is computed from
General Single Field P(X,¢) inflation. Here the final expression for the bispectrum of scalar
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fluctuation for arbitray vacuum is given by:

H* 1 3/1 25(X, ¢) 9 o2 (k1koks)?
B = S - k] —_
GSF(k17k27k3) 39¢ 2M4 (klekg) |: <CS El(X ¢) ) (|Ol| + ‘02| ) K3
3
1
+ (2 - > (IC1]* +1C2?) Zkf Z kZkD — — Z k2K
s i,j=1,i#] i,j=1,i>j
3
S 4
+5 (IC1]7 +1Ca?) —22k§>+ b7 Z kPkD — Z kZk?
S 1,j=1,i#j ’Lj 1,i>7
3
+2(2¢ — 1) (|C1]* + | C2/?) 2Zk§ (5.67)

+e (IC1]* = |Ca?) ZkS Z kk2+— Z k2 k?

i,j=1,i#j 1,j=1,i>]

e (C{C+ C1C3)* (- T, Z+Z” i kil

+8 Z k%QZK—lem +0(e) |,

1,j=1,4>7 m=1

where O(e) characterizes the sub-leading corrections in the three point function for the scalar
fluctuation computed from General Single Field P(X, ¢) inflation.

Now further we consider a very specific class of models, where the following constraint condi-
tion 23R x¢(X, ¢) = 0 perfectly holds good. In this case one can write down the following simplified
expression for the bispectrum of scalar fluctuation for arbitray vacuum as:

H4 1 1 Se€ (k‘lkgkg)Q

Beasr(ky, ko, ks) = = 1= — ) (|C1]? + |Co|?)” 2L
GSF( 1 2 3) 3262]\4;;L (kilkgk‘g)g [<C%‘v 36 >(| 1’ ‘ ‘ ) K3
3
1 4
+ <02 > (IC1* + |C2?) Zkf T2 Z kik} — — Z ki kS
S i,j=1,i#£j ’Lj 1,i>7
3

+2(2¢ — 1) (IC1]? + |Co)?)* Z i3

3
+e (|C1]* = |Ca?) Zk3 > kiki+ Z k2K
=1

j—lisﬁj i,j= 11>J
3
1
2 272
+e(CTCy+ C1C5)° | =D K+ Z kik} + 8 Z k2k; ZK_%M :
i=1 1,7=1,i#j 1,j=1,i>7 m=1

23Gtrictly speaking, DBI model is one of the exceptions where this condition is not applicable. On the other hand,
in case of Single Field Slow Roll inflation this condition is applicable. But in that case one can set c¢s = 1 and get
back all the results derived in the earlier section. Additionally it is important to mention that, here we consider
those models also where cs << 1 alongwith this given constraint.
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where the new parameter ex is defined as 2*:

XHx
H?2

EX = —

(5.70)

For Bunch Davies and «, 8 vacuum we get the following simplified expression for the bispectrum
for scalar fluctuation:

e For Bunch Davies vacuum

After setting C; = 1 and Cy = 0 we get [43]

Basr(ki, ko, k3) = H* 1 3 (1 ~ 25(X, 9) (k1kaks)?
GSF\Ihl, 2, h3 32€2M4 (1k2k3)3 2 C%« El(X,¢> K3
4
3 21.3 279
+<62—1) R LTI O
= 1,j=1,i#] i,j=1,i>j
3
4
3 213 2,2
_2Zkl+ﬁ Z Kk - % Z kikj (5.71)
1,j=1,i#j i,7=1,2>7
3

2(2e —n Zk‘f’
3
Zk?’ Z kik? +

ik + § Kk
’]:1»7’#] 4,J=1,i>j

Further for restricted class of General Single Field P(X, ¢) model, which satisfies the con-
straint P x4(X,¢) = 0, one can further write down the following expression for the bispec-
trum:

Basr(ki, ko, k3) =

i 1 S€E (k1k2k3)2
32¢ 2M4 (ky 2k:3)3 % 3ex K3

( -1 Zk;ﬂ% Z k2k3—— Z k2k?

1,7=1,i#7j 1,j=1,i>7

(5.72)
+2(2¢ — n) Z K}
=1

3 3
—;kﬁf ';#/@ik? Z k2K
1= 1,7=1,17%#)

1,7=1,1>7

e For a, 8 vacuum:

24For Single Field Slow Roll inflation the newly introduced parameter ex is computed as

ex =e€(n—¢) =ev (nv —2ev). (5.69)
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After setting Oy = cosha and Oy = €% sinh o we get [32]:

H* 1 3/1 255 (X, @) o (k1koks)?
Basp(ki, ko, k S A h?2a220
Gsr(kr, by, k) = 3262 M} (krkoks)? [ (cg 21(X g) ) TR
+ ( — 1> cosh? 2« Zk?’ —|— — Z k2k3 Z k2k2
i,j=1,i#j 1,J=1,i>j
+- cosh?2a —2Zk3 Z k:Qk:?’—— Z k2K
€s i=1 i,j= 11;&] t,j=1,i>j
3
+2(2e—n)cosh22a2k;~g’+e k3 + Z kk:2 Z k:2k2
=1 =1 1,j= 1@#] i,0=1,2>7
3 3 3 1
. 2 2 3 2 21.2
+esinh? 2a cos? 3 —Zki—&— > kiki+38 Z k2K Zm
i=1 4,7=1,i#j 1,j=1,i>7 m=1

Further for restricted class of General Single Field P(X, ¢) model, which satisfies the con-
straint P x4(X,¢) = 0, one can further write down the following expression for the bispec-

trum:
B (k1, ko, ks) = i ! i—1—i (:osh22047(161'%2]{:3)2
GSIEL R B) T 392 M T (kikaks)® |\ &3 3ex K3
3
1 2 3y 4 213 212
+<02—1>cosh 20 | Y K+ Z k2K — — Z k2K
S i=1 zg 1,i#£5 t,j=1,i>j
3 3
+2(2€—77)cosh22a2k‘§+€ Zkf’—i— Z kkg Z k2k2
i=1 ij= 11#] by=14>j
3
1
02 2 3 2 2,2
+esinh? 2a cos? Zk + > kik+8 Z Kk Z T
1,j=1,i#j 1,j=1,i>7j m=1

Further we consider equilateral limit and squeezed limit in which we finally get:

1. Equilateral limit configuration:
Here the bispectrum for scalar perturbations in presence of arbitray quantum vacuum can
be expressed as:

H* 1]1 /1 25(X, ¢) 2
Bosr(bkoh) = sz 5 (3 1~ T gy ) (O +1040)
7(1 34
S (z-1)ar+en-35 7 (11 + [Cal?)’
S 3 c

+6(2¢ — 1) (|C1]? + |Ca)?)* + 11e (101\2 —Co?)? 4 27¢ (C7Cy + 0105)2] :

Further for restricted class of General Single Field P(X, ¢) model, which satisfies the con-
straint P x4(X,¢) = 0, one can further write down the following expression for the bispec-
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trum:

H* 11 /1 se o T/1 2
Basr(ki, ko, k3) = Wﬁ [27 <C§ -1- 3€X) (IC1 > + |02’2) 3 (Cg - 1) (IC1* + |Ca]?)

+6(2e — 1) (IC12 + Caf?)” + 1€ (|C1 2 = |Gof)° + 27€ (CCy + C1C3)?]

(5.76)

Now for Bunch Davies and «, 8 vacuum we get the following simplified expression for the
bispectrum for scalar fluctuation:

e For Bunch Davies vacuum:
After setting C'y = 1 and Cy = 0 we get:

HY 11 /1 255(X, ¢) 7(1 34 s
B S P (S P At i I T A Ay
ase (k. k. k) 3262 M1 6 [18 <cg (X, 0) ) 3\ 3 T2 0

(5.77)
Further for restricted class of General Single Field P(X, ¢) model, which satisfies the
constraint P x (X, ¢) = 0, we get:

HY 1 [1 <1 se) 7(1 ) ]
Basp(ky kg kg) = — | — (21— 2 L (2 1) 4 23e—6n|, (5.78)
GSF( 1, 2 3) 3262M;)1k6 27 C% 3ex 3 C?g 7

e For o, vacuum:

After setting C; = cosha and Cy = ¢ sinh o we get:

H 11 /1 255(X, ¢) 2
asr(k,k, k) 32 M1 &S [18 <c§ Y1(X, 0) o
1 4
T <2 — 1> cosh? 2o — 3—% cosh? 2a (579)
3 \cg 3 ¢

+6(2¢ — 1) cosh? 2a + 11€ + 27e sinh? 2c cos? Bl.

Further for restricted class of General Single Field P(X, ¢) model, which satisfies the
constraint P x4(X, ¢) = 0, we get:

H* 11 /1 1
Bagsr(k,k, k) = [ < -1 86) cosh? 200 — 7 (2 — 1) cosh? 2

322 MAES |27 \ & 3ex 3\ (5.80)

4 6(2¢ — 1) cosh? 2a + 11€ + 27esinh? 2a cos? Bl .

2. Squeezed limit configuration:
Here the bispectrum for scalar perturbations in presence of arbitray quantum vacuum can
be expressed as:

(5.81)

H 1 <k5>j
Basp(kr ki ks) = g O ti [
asr (kL ki, ks) 3262Mgk§kgj}1” k1,

— 62 —



where the expansion coefficients t;Vj = —1,--- ,3 for arbitrary vacuum are defined as:

t_1 = 16€(CICy + C10%)2,

6s
to = <4(2e —n) — 02> (1IC1? + |Caf?)? + de (|C1]? — |Ca)?)” + 4e (C;Ca + C1.C5)?,
S

t1 = 34e (CFCy + C1C5)?, (5.82)
3 /1 255 (X, ¢) 1 65 9 o 2
th=3 — (5 -1-""2 ) 65 —1) —— ¢ (IC C.
+10€ (|C1 2 — |Caf?)? + 106 (CCy + C1C5)?,

9 /1 2% (X, 1 2

—5e (|C1]? = |Caf?)? = € (C;Cy + C1C3)? .

Further for restricted class of General Single Field P(X, ¢) model, which satisfies the con-
straint P x4(X,¢) =0, we get:

t_1 = 16 (CyCy + C1C3)?,
to = 4(2¢ — ) (|C1J2 + |Cal?)? + 4e (|C1]? — |Ca)?)” + 4e (C;Cy + C1C3)?
t1 = 34e (CYCy + C1C3)?, (5.83)

1 1 Se€ 1 2
tg=3=-(=—-1-"")—6(=—-1 2 2
2 {8 (C% 36x> 6(6% >}(‘Cl‘ *1c2l)
+10€ (|C1 2 = |Cof?)? + 106 (CCy + C1C5)?,
3 1 se 1 2
t3 =422 —n)— — [ = —1- ) 45(=—1 C11? + |Cy)?
o= e gy (gl o (5 ) fear e
—5e (|C1]? = |Caf?) — € (C{Ch + C1C3)? .

Now for Bunch Davies and «, 8 vacuum we get the following simplified expression for the
bispectrum for scalar fluctuation:

e For Bunch Davies vacuum:
After setting C; = 1 and Cy = 0, we get the following expression for the expansion
coefficients ¢;Vj = —1,---,3:

t =0,
6s
to = (36_77)_77
Cs
t =0, (5.84)
1 92505 (X, ¢) 1 65
ty=10e+4 > (2122229 g )2
2 6Jr{m(g 21X, 9) ) &
1 2% 9 (1 2505 (X, ¢)
ty = —(e+2 5o 1)+ 2 2 (o 2229 L
G ">+{ (cg >+cg 32 <c§ S1(X, ¢)
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Consequently the bispectrum can be recast as:

_H' 1 _ 6s
Cs

1 255 ( 1 k
(M%{i(-ﬁ se) oz -2) (&)
s & L7 (5.85)

1 2s
+<—(6+277)+{5 <2 1>+ —
Cs Cs
9 i_l_QZQ(X’d)) ILS
32 El(Xa ¢) kL

Further for restricted class of General Single Field P(X, ¢) model, which satisfies the

constraint P x4(X, ¢) = 0, we get:

t =0,
tO = 4(36 - n)a
t =0, (5.86)

1/1 S€E 1
we (L) (3 )
8 \cg 3ex cg
1 3 1 se
t3 =<5|l——-1)]—-——-5—-1— — — 2
3 { <c§ ) 16 <02S 3€X>} (e +2n)

for such case bispectrum is given by:

H* 1
32 ML K3 [4(3e =)

()G ) e
(bl (-2 ()]

e For a, 8 vacuum:

Basr(kr, kr, ks) =

After setting C; = cosha and Co = € sinh o, we get the following expression for the
expansion coefficients a;Vj = —1,---,3:

t_1 = 16esinh? 2a cos? B,
6
to = (4(25 —n) — ;) cosh? 2a + 4e + 4esinh? 2 cos? 3,

s
t; = 34esinh? 2a cos? B, (5.88)

3 /1 25 (X, ) 1 65 )
to=4— (o —1-222%) (= -1 h22
2 {16 (cg S1(X, ¢) ) = At

+ 10€ + 10e sinh? 2cv cos? 3,

9 (1 255 (X, ) 1 2s )
t5 =202 —1n) — —= (& —1- 222 ) 45 = —1) + = ¢ cosh?2
’ { (2e =) 32 (c% Y1(X,0) g cg c?g oSt s

— 5e — esinh? 2acos? 3.
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Consequently the bispectrum can be recast as:

H4

Basr(kr, kr,ks) = RN BED

s 1.2 2 ks -1
16¢ sinh” 2« cos /B(E)
+ ((4(26 —n) — —) cosh? 2av + 4e + 4e sinh? 2ar cos B)
+ 34esinh? 2a cos? B (Z—i)
3 (1 4 _25(Xd))\ (L _ 2 5.89
({3 (F 1) —6 (L 1) - %} eosh®2a (5.89)
12 2
+ 10€e + 10e sinh“ 2a cos B) (ﬁ)
9 (1 2%3(X,¢) 2 2

+({2(2e—n)—§<%—1—22(X7¢))—|—5( 1)—1— Z}Cosh 2

— 5¢ — esinh? 2ar cos? B) (ﬁ) ] .

Further for restricted class of General Single Field P(X, ¢) model, which satisfies the
constraint P x4(X, ¢) = 0, we get:

t_1 = 16esinh? 2a cos? j,
to = 4(2¢ — ) cosh? 2ar + 4e + 4esinh? 2a cos? 3,
t; = 34esinh? 2a cos? B, (5.90)

1/1 1
t2:{<2_1_86)—6<—1>}cosh2204
8 Cg 3ex Cs
+ 10€ + 10e sinh? 2cv cos? 3,
3 /1 S€ 1
ta =222 —n) — — | — —1 - — 51l—=—1 h22
o= P (g1 55) 5 (5 1) Jeomean
—5e—esinh22a00826.

Consequently the bispectrum can be recast as:

H4

1
Besrp(kr, kr,ks) = 5o RN IEL

: h2 2 ks -t
16€ sinh” 2« cos” 3 (E)
+ (4(2¢ — n) cosh? 2a + 4€ + 4e sinh? 2 cos? 3)
P12 2 k
+ 34esinh” 2a cos” (ﬁ)

—|—<{% (%—1— se)—ﬁ(%—l }cosh22a (5.91)

cg 3ex S

+ 10€ + 10e sinh? 2« cos? (Z—S>

+ ({2(26 —n) - ( ) (é - )}cosh2 20

3
— 5e — esinh? 2a cos? B) (Z—i) } .
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5.2.3 Expression for EFT coefficients for General Single Field P(X, ¢) inflation

Here our prime objective is to derive the analytical expressions for EFT coefficients for General
Single Field P(X,¢) inflation. To serve this purpose here we start with a claim that the three
point function and the associated bispectrum for the scalar fluctuations computed from General
Single Field P(X,¢) inflation is exactly same as that we have computed from EFT setup. Here
we use the equilateral limit and squeezed limit configurations to extract the analytical expression
for the EFT coefficients. In the two limiting cases the results are following:

1. Equilateral limit configuration:
For this case with arbitrary vacuum one can write:

BEFT(k7k7k) - BGSF(k7k7k)7 (592)

which implies that 2°:

T 4BC
Ml_{ZBH[ 144/1+ 32

1
3 v e A [ 4BC
} o My~ My = :\/SBHQEs [_1+ T+2 |

XPxx(X,9)
MQ = ( %HM2>

1
A ~ 4
A & 4BC
1 —1\ 1
My = (- CzHMf’)4:< As [—1+ 1+4§§D

where the factors /1, B and C are defined as:

; 4é3 23
A= <3+ =4 NCS> [U1—3U2} —gU1+%U2

(5.94)

m‘wz

304 Cq4 27 98
AT1 /1 25 (X, ¢) ) 2
S e (e A St
i | <c?g Si(x.q) ) 1OF T1CT)
7/(1 2 34 s
3 (Z 1) Geriem? - T3 (of e’
€s
+6(2¢ —n) (|C1)* + |02\2)2+116(|01|2 — |Cy ) + 27¢ (Cf02+0105)2],
A 3 4dcs 26% Uq 5 99 Ac%
B=1{(2 b Y AT 5/ O _
{( T35 T @)[27 3U2} 2U1+98U2} ScHZMZ’ (5.95)
. HPMJeci [1 (1 25 (X, ¢)
pcCs 2(A, 2 2\2
S R (P £ A R
-5 (c% i) (ki)
7/ 1 2 34 s
—3 <2 —1> (IC11? +1Caf*)” - 3 (IC1? +1Cof? )
€s

2 * *
+6(26 — 1) (IC12 + [Ca)?)” + 11e (|C12 = [Ca)?)” + 27¢ (CFCy +0102)2] .
25Here we also get another solution:

1
_ A 3
M, = {2BH } , (5.93)

which is redundant in the present context as this solution is not consistent with the c¢s = 1 and és = 1 limit result
as computed in the earlier section for Single Field Slow Roll inflation.

4BC

—1—\1+
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Further for restricted class of General Single Field P(X, ¢) model, which satisfies the con-
straint P x4(X, ¢) =0, we get the following expression for the factors A, B and C as:

A 3 4¢c3 2cg U, 5 99
A= 13Uy - ZU + —U
( +3C4+E4>|:27 2] 571 T 9g™2

A1l 1 S€ 1
1 [27 (Cg -1- 3e> (|C1* + |C2|2) -5 <% > (IC1 % +|Cs| )
+27¢ (C
o2

+6(2¢ — ) (JC1]? + |Ca)?)? + 11e (|C1 ]2 — |Co ) 02+0102)},

~ 3 463 205 U1 5 99 S
B={(:2 L _3u,| - 2U Uy 5.96
{( T3a T 54)[27 2] 71 T g2 }2H2M2’ (596)
H2MZeck [1 (1 s€ 7(1
p-=S 2 2\ 2 9 2\ 2
—h = -1-—|(lC ) - (= -1)(C C

=1y s
+6(26 — ) (|12 + |Cal?)” + 11€ (|C1 |2 — |Ca)?)” + 27€ (CFCy + clc;ﬂ .

¢= 27

where for arbitrary vacucum U; and Us are defined as:
U1 = [(Cr = Co)° (G 4+ C5°) + (CF - C3)* (CF + CF) (5.97)
Uz = [(Cr = C2)* CIC3 (CF = C3) + (CF = G 1 (Cr = Gy)| . (5.98)

If we take ¢cg = 1 and ¢g = 1 then we get then we get back all the results obtained for Single
Field Slow Roll inflation in the previous section.

Now for Bunch Davies and a, 5 vacuum we get the following simplified expression for the
bispectrum for scalar fluctuation:

e For Bunch Davies vacuum:
After setting C; = 1 and Cy = 0 we get the following expression for the factors A, B

and C as:
.2 (3 4¢3 22 Al /1 255(X, ¢)
A= S) 55— = = -1-—="
27( +304+ 64> 4 [18< Y1(X, 9)
7/(1 34 s
—— |5 —-1)—-—= 23¢ — 6
3<c?g > 3c§+( ¢ 77)]’
~ 2 (3  4d¢és 26% Ac?g
B=<—|= —by ——= 5.99
{27 (2+304+ 64> }26H2Mg’ ( )
. H*MZeck [1 (1 2% (X 1 4 s
O s 7_1_M _7 R _3 + (23¢ — 61)] .
2 18 Y1 (X, 9) 3\cg 3cS

Further for restricted class of General Single Field P(X, ¢) model, which satisfies the
constraint P x4(X,¢) = 0, we get the following expression for the factors A, B and C

as:
2 (3 dé 2% A1 (1 se\ T/(1
= (= - (o1 ) — (5 —1) +(23c—6
27<2+3C4+54> 127\ & 3ex) 3\ 1) TEemm]

s
I

>

. H2M?32ec2 [ 1 1 s€ 7/ 1
C=—"P 5| (S —1——) == (5 —1)+(23—6n)|.
2 (g an) a(a 1) v
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e For o, 8 vacuum:

After setting C'1 = cosha and Ch = e’¥ sinh o we get the following expression for the
factors A, B and C as:

. (3 4e 2¢q) [N, B) D 99

AT(1 /1 95(X, )\ 7 [1 34s )
= S A ik AR [N (S h22

1 ng( (X, 0) ) 3\ EX: R
+6(2¢ — )cosh2 2+ 11e + 27esinh® acos® ] ,

o [(3  4des 2eE\ [Ji(e, B) 5 99 Ac?
B = {(2—1_364_‘_ 54 ) |: 27 —3J2(Oé,,3):| - ijl(avﬁ) —|——J2(O{, )} P 2 (5101)

., H*MZeck (1 (1 25 (X 7(1 4
C=—""P 5|} —2—1—M -5 l= -1 222 L cosh?2a
2 18\ 2 S(X,6) ) 3\ 3
+6(2¢ — n) cosh? 2ar + 11€ + 27esinh? o cos? Bl.

Further for restricted class of General Single Field P(X, ¢) model, which satisfies the
constraint P x4(X,¢) = 0, we get the following expression for the factors A, B and C'
as:

i (3+4C3+ ¢ )[“ 5)—3J2(a,ﬁ)} ~ (@) + oo Ta(0 )

3¢y Cq 8

AlfL/d se\ T7(1
4 2z 17 3) 3 et 2e — h? 2
4 |:{27 ( 36)() 3 <C% ) +6( € n)}COS o

+ 11€ + 27e sinh? a cos? 5} ,

. 3 4é 263\ [Jila, B) 5 99 Ac?
8= {(aran v &) [P st ] —gotens e s o

~ H2M?ec? 1 1 S€ 7
p-=S 2
_ — | —-1—- — — = —1) +6(2— h* 2¢
¢ 2 |:{27 (C% 3€X> 3 < > 6( ¢ T})}COS

+ 11€ + 27esinh? a cos B} .

2. Squeezed limit configuration:
For this case with arbitray vacuum one can write:

Bgpr(kr,kr,ks) = Basr(kr. kL, ks), (5.103)

which implies that:

1
_ A ~ 3 _ _ =3 - —
_ 4BC ~ _ M7 A . 4BC
My = {23}1{ L4yl A2]} ’ 2= 4H155_\/83H255|: Tyl A?]’
1 1
_ (_XPxx(X.¢) 2) 4 _ Aé aBC | ! 5.104
Mz_(—%HM> Mg_{—ﬁg[—u 1+ AQ]} , (5.104)
1
~ — 1 ~= 1
M4=(—ggHM§)4:( As {—1+ 1+4§§]> .




where the factors fl, B and C are defined as 26

3 1 ~ 3 j
~ A A~ ks J ~ PlA A 2 2 kS J
A:P1+P2—th<kL> , B:m, C=2H’M; )t W , (5.106)
j=—1 j=—1

where the expansion coefficients ¢;Vj = —1,---,3 are defined earlier for general P(X,¢)
model and also for restricted class of model where P x (X, ¢) = 0 constarint satisfies.
Here the factors ]51 and ]52 are defined as:

3 m 3 m
Pi=3 ém (é) , Pr=Y" hm (k:i) : (5.107)

m=—1

where the expansion coefficients é,,Vm = —1,---,3 and ﬁme = —1,---,3 for arbitrary
vacuum are defined as:

9 3 dé 2k 9
é_1 = —36Uz, €9 = {—2U1 + (24{2+32+ gf} - > UQ] :

2 4é5 22 2
& =0, é2:[—27U2+<3{3+c3+ fs}—7) Ul], e3=0, (5.108)

2 2 3 54 Cyq

and

9 N
:?(Ul‘i‘UQ), hy1 =0,
S

- 2¢2 4 2¢2 -
ho = [(15+202 225 W o 4 (210383025 Wyl hy=0, (5.109)
2 Cq4 2 2 Cq4

where Uy and U, are already defined earlier.

hoqy =0, ho

Now for Bunch Davies and «, 8 vacuum we get the following simplified expression for the
bispectrum for scalar fluctuation:

e For Bunch Davies vacuum:
After setting C7; = 1 and Cy = 0, we get Uy = 2 and Us = 0. Consequently the
expansion coefficients can be recast as:

61 =0, ég=-9, é1=0, éy=—27, é5=0, (5.110)

and

. .18 2 3 2 5
hoy=0, ho=—, h1=0, hy= <3o+4{+ f3}> , hy=0, (5.111)
26Here we also get another solution:

~ ~ A 3
a o= A e (5.105)
2BH A2

which is redundant in the present context as this solution is not consistent with the cs = 1 and és = 1 limit result
as computed in the earlier section for General Single Field P(X, ¢) inflation.
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e For o, 8 vacuum:
After setting C; = cosha and Co = P sinh o, we get U = Ji (o, ) and Uy = Ja(a, ).
Consequently the expansion coefficients can be recast as:

~ 2
é—l - _36J2(a75)7 é0 - [_gjl(avﬂ) + <24{3 + écj + 205} - g) JQ(Oé,,B):| )

2 3a C4

R , 27 3 (3 4dé 2% 27 )
_ I 212,24 _ 2 = 112
e1 0, €2 |: 2z]2(0[,ﬁ)+(2{2+3é4 64 } 2>J1(C¥,5):|, €3 07 (5 )
and
R . 9 R
h-y =0, ho= = (U1 + J2(o, B)U2), h1 =0,
S
R 3 2c2 45 2 .
oy = | (154202 + 250} fi(a,B) + (2 +302+ 25 8) hy(a, B)|, hs =0. (5.113)
C4 2 2 Cq

6 Conclusion

To summarize, in this paper, we have addressed the following issues:

e We have derived the analytical expressions for the two point correlation function for scalar
and tensor fluctuations and three point correlation function for scalar fluctuations from EFT
framework in quasi de Sitter background in a model independent way. For this computation
we use an arbitrary quantum state as initial choice of vacuum. Such a choice finally give rise
to the most general expressions for the two point and three point correlation functions for
primordial fluctuation in EFT. Further we have simplified our results by considering Bunch
Davies vacuum and «, 8 vacuum state.

e During our computation we have truncated the EFT action by considering the all possible
two derivative terms in the metric. This allows us to derive correct expressions for the two
point and three point correlation functions for EFT which are consistent with both single
field slow roll model and generalized non-canonical P(X,¢) single field models minimally
coupled with gravity 2.

e Further we have derived the analytical expressions for the coefficients of all relevant EFT
operators for single field slow roll model and generalized non-canonical P(X, ¢) single field
models. We have derived the results in terms of slow roll parameters, effective sound speed
parameter and the constants which are fixed by the choice of arbitrary initial vacuum state.
Next, we have simplified our results also presented the results by considering Bunch Davies
vacuum and «, 8 vacuum state.

e Finally using the CMB observation from Planck we constrain all of these EFT coefficients
for various single field slow roll models and generalized non-canonical P(X,¢) models of
inflation.

The future directions of this paper are appended below point-wise:

2"This is really an important outcome as the earlier derived results for the three point function for EFT in quasi
de Sitter background was not consistent with the known result for single field slow roll model, where effective sound
speed is fixed at ¢g = 1.
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e One can further carry forward this work to compute four point scalar correlation function
from EFT framework using arbitrary initial choice of the quantum vacuum state. The present
work can also be extended for the computation of the three point correlation from tensor
fluctuation, other three point cross correlations between scalar and tensor mode fluctuation
in the context of EFT with arbitrary initial vacuum.

e In the present EFT framework we have not considered the effects of any additional heavy
fields (m >> H) in the effective action. One can redo the analysis with such additional
effects in the EFT framework to study the quantum entanglement, cosmological decoherence
and Bell’s inequality violation in the context of primordial cosmology. Once acan also futher
generalize this compuatation for any arbitrary spin fields which are consistent with the
unitarity bound.

e The analyticity property of response functions and scattering amplitudes in QFT implies
significant connection between observables in IR regime and the underlying dynamics valid
in the short-distance scale. Such analytic property is directly connected to the causality
and unitarity of the QFT under consideration. Following this idea one can also study the
analyticity property in the present version of EFT or including the effective of massive fields
(m >> H) in the effective action.

e There are other open issues as well which one can study within the framework of EFT:

1. Role of out of time ordered correlations from open quantum system [59—61].

2. EFT framework in a quantum dissipative systems and its application to cosmology
[62—64].

3. Thermalization, quantum critical quench and its application to the phenomena of re-
heating in early universe cosmology [66].
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Appendix
A Brief overview on Schwinger-Keldysh (In-In) formalism

To compute the any n-point correlation function in quasi de Sitter space we use Schwinger-Keldysh
(In-In) formalism. In this framework the expectation value of a product of operators O(t) at time
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t can be written as:

(O)) = <<T exp [—i /_ ; Hmt(t')dt'DTo(t) (T exp [—i /_ ; Hint(t")dt”]>>

where it is important to note that all the fields appearing in the right hand side belong to the
Heisenberg picture. Here correlation function is computed with respect to the initial quantum
vacuum state |in), which in general can be any arbitrary vacuum state. In cosmological literature
concept of Bunch Davies and «, 8 vacuum are commonly used. To mention the mathematical
structure of the quantm vacuum state |in) we first consider an arbitrary state |Q(¢)), which can
be expanded in terms of the eigen basis state |m) of the free Hamiltonian as:

Q) =D m)(m|Q(t)). (A.2)

Further the time evolved quantum state from time ¢ = ¢; to t = t5 can be written as:

(A1)

Hia)a | 19602)) = D)) + 3 exp iBin(ta — )] ) (1) (4.3

m=1

9(t2)) = T exp [—z'
h Free part

Interacting part

It is clearly observed that we have expressed any arbitrary quantum state in terms of the free part
and the interacting part of the theory. Further for further computation we set to3 = —oo(1 — i¢)
which clearly projects all excited quantum states. Using this we have the following connecting
relation between the interacting vacuum and the free vacuum state, as given by:

|Q(—00(1 —i€))) = |0)(0|Q2). (A4)
Finally, at any arbitrary time the interacting vacuum can be written as:
¢

¢
lin) =T exp [—1/ Hmt(t,)dt,

—oo(1—1t¢)

|Q(—o0(1 —i€))) =T exp [—z/

—oo(1—1ie)

Hmt(t')dt'] 0)(0[€2). (A.5)

For our computation initially we have written the expression which is valid for any arbitrary choice
of quantum vacuum state. But for simplicity further we consider two specific choice of vacuum
state- Bunch-Davies vacuum and «,  vacuum, which are commonly used in cosmological physics.
Now in this context the total Hamiltonian of the theory can be written in terms of the free and
interacting part as, H = Hy + H;,¢, where interaction Hamiltonian is described by H;,; and the
free field Hamiltonian is described by Hp.

In the context of cosmological perturbation theory one can follow the same formalism where
one usually start with the Einstein-Hilbert gravity action with the any matter content in the
effective action. For this purpose one uses the well known ADM formalism to derive an action
which contains only dynamical degrees of freedom. From this action one need to perform the
following steps:

e First of all one need to construct the canonically conjugate momenta and the Hamiltonian
for the system.

e Then need to separate out the quadratic part from the higher order contributions in the
Hamiltonian.
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Now in this context let us consider a part of the effective action which contains the third order con-
tribution and all other higher order contribution in cosmological perturbation theory, represented
by Lint. In this case the usual expression for the interaction Hamiltonian is given by, H;nt = — Linst.
Further to make a direct connection to the in-out formalism in QFT used in the computation of
S-matrix, one can further insert complete sets of states labeled by « and 5 in Eq (A.1) and finally

get:
— / do / i
(0] (T exp [—i /_ ; Him(t’)dt’DT |a>zc:|_((;%<ﬁ| (T exp [—i /_ ; Hmt(t”)dt”D 0),

(A.6)

Here the in-in quantum correlation is interpreted as the product of the vacuum transition ampli-
tudes and in the matrix element (a|O(t)|3) = Onp(t), where one needs to sum over all possible
quantum out states. Further to compute the quantum correlations using Schwinger-Keldysh (In-
In) formalism one needs to consider the following steps:

e First of all one needs to define the time integration in the time evolution operator U(t) to
go over a contour in the complex plane i.e.

t t
Ut)=T exp [—i / Hmt(t’)dt’] = T exp |—i / Hipy(t)dt' (A7)
—0o0 —oo(141i€)
where we have redefined the time interval by including small imaginary contribution as given
by t — t(1 £ ie). With this specific choice one can finally write the following expression for
the n-point correlation function:

t f t
(O(t)) = <<T exp [—i / (1')Hmt(t')dt']> O(t) (T exp [—i / . Hie(t")dt”

(A.8)
Here it is important to note that complex conjugation of the time evolution operator U (t) sig-
nifies the fact that the time-ordered contour does not at all coincide with the time-backward
contour.

e Next we analytically continue the expression for the interaction Hamiltonian as appearing
in the time evolution operator U (t) i.e. Hini(t) = Hint(t(1 £ i€)).

e Next we consider the following Dyson Swinger series:

t
T exp —i/ H;, ( )dt | =1+ / dt; Hint(t;),  (A.9)
[ —oo(1+41€) ' ] Z N' H (14t€) '

using which finally we get the following s1mphﬁed expression for the n-point correlation

function:
_ t _ S o)™ | |
o =3 = H / ey Ol ). 0] 0) = 3 (0(0) (A.10)

where |0) is the initial quantum vacuum state under consideration. Here expanding in the
powers of interacting Hamiltonian H;,(t) we finally get:
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1. Zeroth order term (O(t))(®) in Dyson Swinger series:
Here the zeroth order term in Dyson Swinger series can be expressed as:

(0(1)” = (0j0(1)|0). (A.11)

2. First order term (O(t))™) in Dyson Swinger series:
Here the first order term in Dyson Swinger series can be expressed as:

(O@#)M = 2Re

il lo Hie >ro>]. (A12)
—oo(1+i€)

3. Second order term (O(t))? in Dyson Swinger series:
Here the second order term in Dyson Swinger series can be expressed as:

(O)? = —2Re
—oo(14ie

/“ dty /” dt2(0|O(t) mt<t1)Hmt(t2)|0>]
) —oo(14i€)

t1 t2

+ / dt, / 13 (0| Hint (1) O(t) Hint (£2)[0). (A.13)
—oo(1+i€) (14i€)

Following this trick one can easily write down the expression for any n-point correlation

function of the given operator O(t).

B Choice of initial quantum vacuum state

In general one can consider an arbitrary initial quantum vacuum state which is specified by the
two sets of constants (C1,C2) and (D1, D) as appearing in solution of the scalar and tensor mode
fluctuation. In general in this context a quantum state is described by this two number as |C1, Co)
and | D1, Dy) and defined as, C(k)|C1,C2) =0V k, D(k)|Di1,Ds) =0V k, where C(k) and D(k)
are the annihilation operators for scalar and tensor mode fluctuations as appearing in cosmological
perturbation theory.

In general ground one can write down the most general state |C1,C3) in terms of the well
known Bunch-Davies vacuum state as:

1.0 =TT 7o s @107 (0]
* * 3
e |50 > c*(k)@“(—k)] 0) = 5 0 |5 [ (g €109CT 0 0}, (B

= — X
Ne
where N = /|C1] are the overall normalization constant for scalar and tensor mode fluctuations.
For the tensor modes the calclation is similar.

Here it is important to mention that the quantum vacuum state |C, Cs) satisfy the following

constraint equation:

. 3 3 T *
Po|C, Cy) :/(%’3 CH(p)C(p)[Ch, Ca) = H/ p pC\/ij(p) exp [2%2{ OT(k)CT(—k)] 0)

d*p p Ct(p)C Cy
:/( P P (p)1 P) . 25* ZCT ]‘0>

2 /]

C
_ [ pC'OICE) [ [ &k 0ot -
- / (2m)3 VICi| P [20{ /(271.)30 (k)C( k)] 0) =0, (B.2)
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which is true for the quantum vacuum state |D;, D) for tensor modes also. Since scalar modes
are exactly similar to tensor modes we will not speak about tensor modes in the next part.

Additionally, here it is important to note that, the annihilation and creation operators for
Bunch-Davies vacuum (a(k), af(k)) and the arbitrary quantum vacumm |Cy, Cy) state (C'(k), Ct(k))
are connected via the following sets of Bogoliubov transformations:

C(k) = Cf a(k) — C3 a'(—k), (B.3)
a(k) = C; O(k) + C5 CT(—k). (B.4)

1. Bunch-Davies vacuum:
Bunch-Davies vacuum is specified by fixing the coefficients to, C1 =1 = D1, Cy=0= Do,
in the solution of the scalar and tensor mode fluctuation as derived earlier. In this case the
quantum vacuum state |0) is defined as the state that gets annihilated by the annihilation

operator, as given by, a(k)|0) = 0 V k. Here the creation and annihilation operators a(k)
and af(k) satisfy the following canonical commutation relations:

[a(k),a(k’)} =0, [aT(k),aT(k’)] =0, [a(k),aT(k/)} = 2r)36@(k+k). (B.5)

2. «, 8 vacuum:
a, B vacuum is specified by fixing the coefficients to, C; = cosha = D;, C = e#sinha =
Do, in the solution of the scalar and tensor mode fluctuation as derived earlier. In this
case the quantum vacuum state |a, §) is defined as the state that gets annihilated by the
annihilation operator, as given by, b(k)|a, ) = 0 V k. Here the creation and annihilation
operators b(k) and bf(k) satisfy the following canonical commutation relations:

[b(k),b(k')} —0, [b*(k),zﬂ(k’)} —0, [b(k),zﬂ(k’)] = 2r)*6®(k+K).  (B.6)

Here one can write the Bunch Davies vacuum state |0) as a special class of |«, 5) vacuum
state. Also using Bogoliubov transformation one can write down |a, ) vacuum state in
terms of the Bunch Davies vacuum state |0), as given by:

[_e # tanh o aT(k)aT(—k)] 10)

E]ﬂama
_ i ex _Ee—w tanh o aT(k)aT(_k)] 0)
N plz %:

i 3
_ /i/ exp {—2615 tanh a / (;lﬁ’;, aT(k)aT(—k)} 10), (B.7)

where N/ = /| cosh a] is the overall normalization constant. Here it is important to mention
that the |a, B) vacuum state satisfy the following constraint equation:

A 3
P’aa >:/(;l]))3p ()()|Oé,8>
a,Jr i
B H/ d3p p a'(p)a(p) exp [_26—15 tanh o aT(k)aT(—k)} 10)

/| cosha|

= d3p paT(p)a(p) ex —ze*iﬁ anh « at(k)al (-
_/Qﬂ3ymm%ﬂ p[z tanh %I<m (k)| lo)

= Tp pal(plalp) exp | —Le7# tanh a ﬁaJr at(— _
_/k%ﬁ /I cosha] p{z tanh /@ﬂ3(m <whw—m3&
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Additionally, here it is important to note that, the creation and annihilation operators for
Bunch-Davies vacuum and |a, ) vacuum state are connected via the following sets of Bo-
goliubov transformations:

b(k) = cosha a(k) +i e ¥ sinha af(—k), (B.9)
a(k) = cosha b(k) —i e ¥ sinha b (k). (B.10)
C Useful integrals as appearing in scalar three point function

All the useful integrals appearing in the scalar three point function are appended bellow:

0
s 2
1. dn n? eFesn — = C.1
/ nn T5E (C.1)
2
d Fi(2ka—K)ésn _ 4 C.2
/ ni e i(2ky — K )38 (©-2)
ny=0 . 1
3. / (1 F ikyesn) (1 F ikcGsn) e R = ——— [K? + 2kyke + K(K — ka)] (C.3)
ni= 1K°¢g
4. / dn (1 — ikyesn) (1 — ikeign) 'K —2ka)esn — / (14 ikyisn) (1 + ikoign) e K —2ka)esn
= - [K? + 2kpke + K(K — 5ko) — 2(K — ko)ka + 4K2] (C.4)
i(2kq — ) Cs
0 0
5. / dn (1 — ikycsn) (1 F ikecgn) 'K —2k)ésn — _ / dn (1 F ikyesn) (1 + ikeign) e T —2ks)esn
= —K2—4kkc K (k. — 5k k? .
2 K [ vke + K (ke — 5ky) + 6k; ] , (C.5)
0
. 1
1 +iKésn _ £ K u )
6. [ dn (1 i) e (K + Ea), (C6)
0 . K — 3k,)
7. dn (1 +ik si(k—2haisn _ 4 = 3ka) C.7
/Oo 77 1 05'77) 1(2ka — K)QES7 ( )
0 5 K+ k, — 2ky)
8. dn (1T ik +i(K—2kp)Esn _ :l:(# C.8
/Oo n (1% ikatsm) € i(2ky, — K)2ég (C8)
0
9. / dn (1 — ikeésn) (1 — ikegn) e —2ko)esm
(K — 2kp)(K + ko — 2k K + 2kq — 2ky)ke] . .
(2/% K)Pes [( b) (K + b) + (K + b)ke] (C.9)
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