arXiv:1712.08299v2 [hep-th] 1 Jun 2018

Quantum entanglement in de Sitter
space from Stringy Axion: An analysis
using « vacua

Sayantan Choudhury, '** Sudhakar Panda “%¢

* Quantum Gravity and Unified Theory and Theoretical Cosmology Group, Mazx Planck Institute for Grav-
itational Physics (Albert Einstein Institute), Am Mihlenberg 1, 14476 Potsdam-Golm, Germany.

b Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, India.
¢Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha - 751005, India.

4 National Institute of Science Education and Research, Jatni, Bhubaneswar, Odisha - 752050, India.

€ Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400085, India.

E-mail: sayantan@aei.mpg.de,sayantan.choudhury@aei.mpg.de,
panda@iopb.res.in

ABSTRACT: In this work, we study the phenomena of quantum entanglement by computing de
Sitter entanglement entropy from von Neumann measure. For this purpose we consider a bipartite
quantum field theoretic setup in presence of axion originating from Type II B string theory. We
consider the initial vacuum to be CPT invariant non-adiabatic o vacua state under SO(1,4)
ismometry, which is characterized by a real one-parameter family. To implement this technique
we use a S% which divide the de Sitter into two exterior and interior sub-regions. First, we derive
the wave function of axion in an open chart for « vacua by applying Bogoliubov transformation on
the solution for Bunch-Davies vacuum state. Further, we quantify the density matrix by tracing
over the contribution from the exterior region. Using this result we derive entanglement entropy,
Rényi entropy and explain the long-range quantum effects in primordial cosmological correlations.
We also provide a comparison between the results obtained from Bunch-Davies vacuum and the
generalized o vacua, which implies that the amount of quantum entanglement and the long-range
effects are larger for non zero value of the parameter ae. Most significantly, our derived results for a
vacua provides the necessary condition for generating non zero entanglement entropy in primordial
cosmology.
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1 Introduction

It is well accepted fact that von Neumann entropy is a measure of quantum entanglement to quan-
tify long range correlation in condensed matter physics [1-3] and cosmology [4-21]. In condensed
matter physics entanglement entropy exactly mimics the role of an order parameter and the cor-
responding phase transition phenomena can be characterized by correlation in quantum level. On
the other hand in cosmology entanglement entropy is acting as a key ingredient to understand
role of the quantum mechanics in observed correlations through hot and cold spots in Cosmic
Microwave Background (CMB) maps. Also it is expected from the theoretical background that
from this understanding of long range effects in quantum mechanical correlations one can able to
understand the underlying physics of the theory of multiverse, bubble nucleation etc in de sitter
space [22]. As a consequence a prompt response one may observe due to the local measurement in
quantum mechanical theory by violating causal structure of the space-time. In quantum theory
such causality violation is known as Einstein-Podolsky-Rosen (EPR) paradox [23]. But in such
type of local measurement practically causality remains unaffected as the required quantum in-
formation (in the form of qubits) are not propagating. In this connection Schwinger effect in de
Sitter space [24, 25| is one of the prominent examples of quantum entanglement. In Schwinger
effect particle pair creation takes place with a finite separation in de Sitter space-time in presence
of a constant electric field [15] and the quantum states show long range correlation.

To quantify entanglement entropy in the context of quantum field theory one need to have
a bipartite system, which is not a straightforward computation. For strong coupling regime of
a quantum field theory using the principles of gauge gravity duality in the bulk it is possible to
compute entanglement entropy [26-35], which is till now treated as a remarkable result in this
literature. Using this technique later various works have been done in the context of holographic
entanglement entropy. Further, in ref. [10] the authors have constructed a completely different



computational algorithm to quantify entanglement entropy using Bunch Davies initial state '
in de Sitter space-time. After that in ref. [15] the authors have extended the computation of
entanglement entropy using a vacua initial state in de Sitter space by following the techniques
presented in ref. [10]. Next, using this prescribed technique in presence of a linear source term in the
effective action we have computed entanglement entropy for stringy axion using the same Bunch
Davies initial state in de Sitter space [14]. We have shown that this result for axion compliments
the necessary condition for the violation of Bell’s inequality in primordial cosmology.

In quantum field theory of de Sitter curved background one can further introduce CPT invari-
ant under SO(1,4) isometry group one parameter infinite family of initial vacuum states [36, 37].
These class of non-thermal states are characterized by the real parameter «, known as « vacua.
For a = 0 one can get back the usual Bunch Davies vacuum state for A # 0 (A > 0 for de Sitter and
A < 0 for anti de Sitter) and flat Minkowski vacuum for A = 0 2. In a more technical ground the a
vacua can be treated a squeezed quantum state, which are created by an unitary operator acting
the Bunch Davies vacuum state. This leads to the generalization of Wick’s theorem in interacting
quantum field theory, which allows us to describe any free quantum field theory Green’s function
computed in presence of o vacua in terms of the products of the Green’s functions computed from
Bunch davies vacuum [38]. See other refs. [37, 39, 40] for more details on the quantum field theory
of a vacua. For a specified a vacuum state as an quantum initial condition it is possible to describe
the long range correlations within the framework of quantum field theory. As a consequence the
non-local quantum phenomena can be associated with the long range effects, which is described by
quantum entanglement of vacuum state provided as an initial condition. It is important to mention
that, till date there is no such experiment available using which one can able to test the local be-
haviour of quantum field theory in cosmological scale (Hubble scale). However, it is expected that
in near future it is possible to test such prescriptions in various ways. In this connection setting up
the theory to test the violation of Bell’s inequality in primordial cosmology and its experimental
detection possibility in CMB observations plays significant role. Now in the technical side it is
important to note that, propagators in free quantum field theory of de Sitter space computed in
presence of adiabatic Bunch Davies vacuum state manifest Hadamard singularity which is consis-
tent with the result obtained in the context of Minkowski flat space time limit [41, 42]. However
in the context of interacting quantum field theory of de Sitter space such a singular propagators
applicable for adiabatic Bunch Davies vacuum are dubious. In this connection a vacuum state
plays significant role using which one can express the propagators in interaction picture. In this
context the singularity of the propagators appear in the anti-podal points. In the quantum field
theory describe by the a vacua state the real parameter « plays the role of superselection number
associated with a quantum state of a different bipartite Hilbert space. However, it is still a de-
batable issue that whether the interaction picture of the quantum field theory with any arbitrary
« vacua with any superselection rule are consistent with the physical requirements of quantum
mechanics or not [39]. In general, one can treat the o vacua as a family of quantum initial state
where we have quantum fluctuation around an excited state. Here it might be possible that the
Hilbert space corresponding to excited state (for a vacua) and the adiabatic Bunch Davies vac-
uum coincides with each other. In such a situation it is perfectly consistent to describe quantum
field theory of excited state in de Sitter space in terms of the adiabatic Bunch Davies vacuum
in the ultraviolet regime ®. As a result this specific identification allows us to write an effective

Tt is important to mention that, Bunch Davies initial state is exactly equivalent to the Euclidean or adiabatic
vacuum state in quantum field theory.

2Here A is the cosmological constant. Also it is important to note that, the radius of curvature of a space-time
R o< A™!. As a result the signature and the magnitude of A will directly fix the curvature of the space-time.

3In the infrared regime due to the non removal of divergences appearing from various interaction in quantum



field theory description in the ultraviolet end. This implies that identifying the correct and more
appropriate quantum « vacuum state is fine tuned. However, this fine tuning only allows us to
describe the quantum field theory with any excited states compared to ground state described by
the adiabatic Bunch Davies vacuum. Using this prescription apart from inflationary paradigm,
one may able to explain a lot of unexplored late time physics phenomena using this type of non
standard vacuum state. In this work, we further generalize the computational strategy of entan-
glement entropy for axion using « vacua initial state in de Sitter space. This result will surely
establish the generation of quantum entanglement entropy in early universe in a more generalized
fashion. In this connection EPR pair creation from the present setup it is important to note that
this procedure has an inherent correlation associated at the quantum level. When in this type of
setup the possibility of EPR pair creation increases, it is naturally appears that the quantum long
range correlation will increase accordingly. As a consequence the amount of entanglement entropy
increases with increase in the value of the parameter a. We have investigated this possibility with
a specific model of axion derived from Type IIB string theory [43—46] setup in this paper. In
this work we will demonstrate the bell’s inequality violation from non zero entanglement entropy
of axion. This connection also will be helpful in future to provide an theoretical tool to compare
various models of inflation [47-50]. In the same line we have also commented on Rényi entropy
using the same setup which will finally give rise to a complete new interpretation to long range
quantum correlation in presence of « vacua. In table (1) we present a comparison between the
features and results obtained from Bunch Davies vacuum and « vacua in presence of axion field
studied in this paper. The prime physical motivations for doing computation with a vacua initial
state are appended bellow:

1. The computation of entanglement entropy with de Sitter invariant one parameter family
a vacua allows us to understand the underlying physics of long range effects of quantum
correlation for axion in a non-trivial fashion.

2. From the holographic perspective it is important to know about the changes in the compu-
tational scheme of entanglement entropy for axion with « vacua.

3. From the point of view of cosmology it is crucial to know about the observational constraints
on the o (non- Bunch Davies) vacua from CMB maps [19, 51, 52]. In the presence of «
vacua it is expected that the (auto and cross) correlation functions of primordial fluctuations
get modified significantly, which is obviously an important information to understand the
underlying new physics of o vacua. Also this will helps us to discriminate between the
physical outcomes of a vacua and the adiabatic Bunch Davies vacuum state.

4. From the point of view of gravity it is also significant to understand the physical implications
of the new physics originated from « vacua described in a specific curved gravitational
background. It is a very well established fact that the Einstein General Theory of relativity
is a classical field theoretic description, which describes the interactions in astrophysical scales
and constrained by galaxy rotation curves, dynamics of clusters etc. [39, 53]. However, in
the infrared regime of the gravity sector till date is no observational probe exists using which
one can able to test the infrared correction to the classical field theory of gravity. Now from
the theoretical perspective if we describe the fluctuation in the metric in terms of spin 2
transverse, traceless degrees of freedom * in the background de Sitter space-time, then in

field theory explaining the physics of excited states with the adiabatic vacuum is not a good approximation.
‘Here it is important to note that in the quantum version such spin 2 degrees of freedom is identified with
graviton.



Feuatures Bunch-Davies vacuum a vacua
1 It describes an adiabatic It describe an non-adiabatic
and thermal quantum state. and non-thermal class of quantum state.
11 This describes quantum fluctuation This describe quantum fluctuation around
around a ground state with a class of excited states,
a special choice a = 0. characterized by superselection (real) parameter .
I11 This is not CPT invariant. This is CPT invariant.
v Fine tuning is small. Fine tuning is large compared to BD vacuum.
A% This preserves SO(1,4) isometry It also preserves SO(1,4) isometry
in de Sitter space. in de Sitter space.
VI von Neumann measure of von Neumann measure of
entanglement entropy is non vanishing. entanglement entropy is significantly
for axion. large for o vacua compared
to BD vacuum for axion.
VII Rényi entropy Rényi entropy
is considerably large is significantly large for o vacua
for axion. compared to BD vacuum for axion.
VIII For axion long range effects of For axion long range effects of
quantum correlation is prominent. quantum correlation is more significant
than BD vacuum.
IX Provides the necessary Provide more strongest
condition for generating non vanishing necessary condition for generating non vanishing
entanglement in primordial cosmology. entanglement in primordial cosmology.

Table 1. Comparison between Bunch Davies vacuum and « vacua in the light of axion.

presence of o vacua using the non local field redefinition in metric one can express the scalar
degrees of freedom. Testing this mechanism in presence of o vacua is also an important work

in this area.

This paper is organized as follows. In section 2, we briefly review the basic setup using which we



will compute the entanglement entropy and Rényi entropy using « vacua. In section 3.1.1, we
introduce the axion model from string theory. Then using this model we compute the expression
for the wave function in a de Sitter hyperbolic open chart in presence of Bunch Davies vacuum
in section 3.1.2. Further using Bogoliubov transformation we express the solution in terms of
new basis, called a vacua in section 3.1.3. After that in section 3.2, we construct the density
matrix in presence of o vacua. Using this result further in section 3.3, we derive the expression for
the von Neumann entropy which is the measure of entanglement entropy in presence of o vacua.
Next in section 3.3, we compute Rényi entropy using the result of density matrix as derived in
section 3.2. Finally we conclude in section 4 with some future prospects of the present work.

2 Basic setup: Brief review

In this section we briefly review the computational method to derive entanglement entropy in de
Sitter space following the work performed in ref. [10] and ref. [14]. We consider a time preserving
space-like hypersurface S2 for this purpose. As a result S? is divided into two sub regions-interior
and exterior which are characterized by RI (=L) and RII (=R). In terms of the Lorentzian
signature an open chart in de Sitter space is described by three different subregions regions [10, 14]:

;

TE:E—’L'LLR for tr > 0
R(= RII) : 2 (2.1)
PE = —ITR for rg > 0.
T =tC for—%ﬁtcﬁg
C (2.2)
pE:g—irC for —oco < re < .
¢ - '
T = ——= + il for tr, > 0
L(=RI) : 2 (2.3)
PE = —IiTL, for r1, > 0.

\

Also in open chart the metric with Lorentzian signature can be written as [10, 14]:

1

R(=RII) : { dsh = —5 [—dtzR + sinh? tg (dr%{ +sinh? rg dQ%)] , (2.4)
1

C: { dsgy = 2 [dt% + cos’ to (—d?% + cosh? rc dQ%)] , (255)
1

L= (RI) : { ds3, = 72 [—dt% + sinh? ¢y, (dr% + sinh? ry, dQ%)] . (2.6)

where H = a/a is the Hubble parameter and d2% represents angular part of the metric on S2.

Now let us assume that the total Hilbert space of the local quantum mechanical system is
described by H, which can be written using bipartite decomposition in a direct product space [54]
as, H = Hint ® HEexT. Here HinT and HexT are the Hilbert space associated with interior and
exterior region and describe the localized modes in RI and RII respectively. Consequently, one
can construct the reduced density matrix for the internal RI region by tracing over the external
RII region as:

pla) = Trrla){al. (2.7)



Here the vacuum state |«) is the a vacuum. Further using the Von Neumann entropy measure,
the entanglement entropy in de Sitter space can be expressed as:

S(a) = —Tr [p(a) In p(a)]. (2.8)

Using this result we establish its connection with Bell’s inequality violation in cosmology [11-13].
The reduced density matrix, which is a key ingredient for computing entanglement entropy,

is obtained by tracing over the exterior (R) region. Also it is important to note that the total

entanglement entropy can be expressed as a sum of UV divergent and finite contribution as:

S = Svadivergent + Svaﬁnite- (29)
In 3+ 1 D, the UV-divergent part of the entropy can be written as [10, 14, 15]:

A
SUV—divergent = C1 EISNT + [CZ + (C3"’n2 + C4H2) AENT] In (GUvH) , (2.10)

uv

where eyvy is the short distance lattice UV cut-off, AgnT is the proper area of the entangling
region of 82 and c;Vi = 1,2, 3,4 are the coefficients.

However we restrict ourself only within the UV-finite part which contain the information of
long range effcets of quantum state. At late time (n — 0), the UV-finite part of the entanglement
entropy can be expressed as [10, 14, 15]:

SUV —finite = Cs ArNTH? — %3 In (AENTHZ) + finite terms. (2.11)

Here cg quantify the long range effect. In general, cg can be expressed as [10, 14, 15], cg = Sintr,
where Sinty is the UV-finite relevant part which we quantify in later sections.

3 Quantum entanglement for axionic pair using « vacua

3.1 Wave function of axion in open chart
3.1.1 Model for axion effective potential

In this section our prime objective is to compute de Sitter entanglement entropy in for axion. Such
axion is appearing from RR sector of Type IIB string theory compactified on CY3 in presence
of NS 5 brane. For details see refs. [43—46, 55]. Let us start with the following effective action for
axion field:

Susion = [ =5 | ~5(067 + V(@) (3.1

where ¢ is the axion and the effective potential can be written as:

V(¢) = 3¢ + A cos <}b> =13 [gb + bf, cos (JZ)} , (3.2)

a

where 13 is the mass scale, f, is the decay constant of axion and we introduce a parameter b,

. Al 3 ¢S .

is defined as, b = 3?‘1. Here Ag can be expressed as, Ag = /% e~ Sinst where Sine is
o gs

n

the instanton action, factor ¢ ~ O(1), mgysy is SUSY breaking scale, o represents Regge slope
parameter, g5 characterizes the string coupling constant and L% is the world volume factor.

For further analysis we consider the following two cases which will be helpful to interpret the
results:



1. Case I:
Here we restrict up to the linear term of the effective potential as given by:

V(9) = 1o, (3.3)

which can be interpreted as a massless source in the equation of motion.

2. Case II:
In the limit ¢ << f,, the total effective potential for axion can be approximated as:
4 2 2
m* .
V() ~ A+ o — 20 (L) = 1 (b, + ¢) — Dazion g2, (3.4
2 fa 2
where we introduce the effective mass of the axion as °,
3 4
b A
mgzion = Z = T§~ (3.5)
3.1.2 Wave function for Axion using Bunch Davies vacuum
Further using Eqn (3.1) the field equation of motion for the axion caan be written as [14]:
1 3 3
For Case I : [cﬁ(t)at (a’(t)8y) — T 2( )L } ¢ =pu, (3.6)
1 3 1 2 3
For Case II : mﬁt (a’(t)0y) — 22t )LH3 +m2 ol =ud  (3.7)

where the scale factor a(t) in de Sitter open chart is given by, a(t) = sinht/H. Here the Laplacian
operator Li;s in H? can be written as [56]:

1 1 1
L = , (sinh27 8,) + —— 0y (sin 0 9p) + —5=07 .
HY = o [3 (sinh®r 8,) + n 989 (sin® Og) + - 984 , (3.8)
which satisfy the follwoing eigenvalue equation:
f‘%{fiyplm(’rvaaQZ)) = 7(1 +p2)yplm(r,97¢)' (39)

Here Ypim (7,0, @) represents orthonormal eigenfunctions which can be written in terms of a radial
and angular part as:

yplm(rv 97 ¢) = ‘ljpl(r)nm(eagﬁ)’ (310)

where the angular part Y,,(, ¢) and the radial part ¥, (r) can be written as:

204+ 1
Yim (6, 4/ l+ 1/ (L= Pl (cos0) (3.11)

B zp+l+1 D +1)
W) = T Ve Plg) (cos). (3.12)

5Axion decay consatnt follow a (conformal) time dependent profile which we choose to be, f2/H? = 100 —
80 to demonstrate Bell’s inequality [11-14].

)

C—




where P;"(cos #) and 73( ~(i+ )) (coshr) represent associated Legendre polynomial.

The total solution of the equations of motion for the Case I and Case II can be written as:
o(t,r0.0) = > laqlaltr,0,0) + alU(t,r.0.0)] (3.13)
Q=p,l,m,o

where Ug(t, 7,0, ¢) forms complete basis of mode function labeled by index Q. Here o = +1 for
R and L hyperboloid and given by [14]:

1

UQ (t’ T, 97 ¢) = @XP,U (t)yplm (T’ 9, ¢) — 1 . Xpo ( )yplm (T7 07 (;5)7 (314)

sinh ¢

where X, »(t) forms a complete set of positive frequency function. Also this can be written as a

sum of complementary (X,(f(),(t)) and particular integral (XI() (),( t)) part, as given by [14]:

Xpo () = XS0 (8) + X (1) (3.15)

Explicitly the complementary part for Case I and Case II can be expressed as [14]:

Case 1:
L[ +0) I GO P
©) 1) = { 2 F@t i) E o)~ gy P (coshin) o (3.16)
Xp,o = . o= TP .
) o ( P + U) ip @ —ip
2sinh 7p (2 + ip) Pr"(coshir) — I'(2—ip) Py *(coshtr) for L.
Case 11 :

( 1 [ (e”” — 40 67“”})

P ht — —1ip ht f R

X(c) (t) - 2sinh7p | T (u + % + ip) P(V,%)(COS R) T (z/ n % — ip) (W%)(cos R) 0r(3 17)
P, o o ) (eﬂ'P — o efiTru) i ; 71'71'1/) » .
1 hiy) — i - for L
2sinh 7p | T (v+ 5 +ip) 7D(l,,%)(cos L) T i) P(V,%)(COS L) or L,

where in Case II the parameter v is defined as [14]:

axzon 9 Aé
,/ s \/ _ faHQ - \/4 - B (3.18)

(c)

This solution is symmetric under the exchange of the signature of quantum number pi.e. xp5(t) =

(c)

X-po(t). In this context the overall normalization constant of the time dependent complementary
part of the solution is fixed by the Klein Gordon inner product.
The solution for the particular integral part for Case I and Case II can be expressed as [14]:

X (t) = Slnh?tz xpn,a( ) / dt’ ¥\ (¢ T(t), (3.19)

where the source for axon is J = 3.

3.1.3 Wave function for Axion using o vacua

Here our prime objective is to derive results for a-vacua, which can be interpreted as a quantum
state filled with particles defined by some hypothetical observer who belongs to the Bunch Davies



vacuum state originally. Here the v vacua are invariant under SO(1,4) isometry group of de Sitter
space. Consequently we use the equivalent prescrption followed in case of Bunch Davies vacuum by
defining two subspaces in de Sitter space, which is identified as RI and RII respectively. Addition-
ally, it is important to note that, in general a-vacua is CPT invariant, which is parameterized by
a single real positive parameter a which plays the role of superselection quantum number. Bunch
Davies vacuum is the special case of a vacua, where we set & = 0 in the final solutions. In this
section we will explicitly investigate that how the long range effects in quantum entanglement is
improved by the choice of the a-vacua. To serve this purpose, we use the results obtained for the
solution of the EOM where we expand the field in terms of creation and annihilation operators in
Bunch Davies vacuum, and further using Bogoliubov transformation the mode functions for the
a-vacua can be written as:

(11,0, ) = /O ap Y3 Z (oS (71,0, 6) + b, (€50, (r,4,0,0)] , (3.20)

o==%1 =0 m=—1

where the a-vacua state are defined as:
dopim|a) =0 Vo=(+1,-1);0<p<o0;l=0,---,00,m=—1l,-,+l. (3.21)
(a)

In this context, the a-vacua mode function £ oplm, €A1 be expressed in terms of Bunch Davies mode
function Uypim, (1,1, 0, ¢) using Bogoliubov transformation as:

g(a)

oplm

= [cosh & Uppip (1, t,0, ¢) + sinh o U, opim (75 50, 9)] . (3.22)

Here Uypim (1,t,0, @) is the Bunch Davies vacuum states, which is defined as [14]:

Z/{Uplm (Ta ta 9, ¢) Xp7 ( )yplm (7", 97 gb) (323)

sinh ¢

After substituting Eq (3.22) and Eq (3.23) in Eq (3.20) we get the following expression for the
wave function:

®(r,t,0,¢) = /O dp> Z zp;g ()i (1,0, D), (3.24)

=0 m=—1
where we introduce a new function Wy, (t), which is defined as:

H

(@) _
Zpim (1) = sinh ¢

plm

Z [dgplm cosha xpo(t) + di,plm sinha x;, ()| - (3.25)
o=%1

Finally, the solution of the time dependent part of the wave function can be recast as [14]:

1 1 _ -
Xnall)= 2, | 37 loa P15 P +Z/\/—(pn oy [0, P B P L (320

Complementary solution Particular solution

where we use the following shorthand notation:

PI™ = sinh?¢ / dt’ X\, () T(E) Pom. (3.27)



Additionally, here we use the shorthand notations P4, P*1 PL™ P*3" for the Legendre polyno-
mial and for its complex conjugate counterpart, which is defined in ref. [14]. Also the coefficient
functions (o, 47) and (af ,,, 87,,) (where o = £1), normalization constants Ny, N, for the com-
plementary and particular part of the solution are explicitly mentioned in ref. [14] for Case I and
Case II.

For further computation a-vacua are defined in terms of Bunch Davies vacuum state as:

1
la) = exp <2tanha > aj,a(,> |BD). (3.28)

o==+1

Here it is important to note that for « = 0 we get, |« = 0) = |0) = |BD). Further one can also
write the the R and L vacua as [14]:

n=0 n=0

with (¢) and (p) representing the complementary and particular part respectively.
Further assuming the bipartite Hilbert space (H, := Hr ® Hr,) one can also write the a-vacua
in terms of the R and L vacuum as:

la) = exp( tanha Y a aa> (IR) ® |L)), (3.30)

o==+1

where the creation and annihilation operators aj, and a, for the R and L vacuum are defined as

[14]:

=3y {[vq,,b A +Z arnban qmbgn]}, (3.31)

¢=R,L
=Y {[7qu + daoba] + Z Finbhin + dasnbin] } (3.32)
—R,L n=0

with ¢ = +1. Here it is important to note that, the coefficient matrices for the Bogoliubov
transformation 45, dgo, Ygo,n and Sq(m helps us to write the a type of oscillators in terms of a new
b type of oscillators. For more details see ref. [14] where all the symbols are explicitly defined. Here
it is important to note that, the newly introduced b type of oscillators exactly satisfy the harmonic
oscillator algebra, provided the oscillators corresponding to the solution of complementary and
particular part of the time dependent solution of the wave function are not interacting with each
other. This surely helps us to set up the rules for the operation of creation and annihilation
operators of these oscillators in this context [14].

Also in Eq (3.30), the composite operator O which acts on the direct product of R and L
state is defined as [14]:

O=3 Y mybitiey Y S g B B (3.33)

4,j=R,L i,j=R,L n=0

where the matrices m;; and m;;, corresponding to complementary and particular part of the
solution are explicitly computed in ref. [14] for Bunch Davies vacuum.

— 10 —



For our further computation we use the definition of a-vacuum state as given in Eq (3.30),
which is very useful to compute entanglement entropy in de Sitter space. However, it is important
to note that the technical steps for the computation of the entanglement entropy in de Sitter space
from a-vacua are exactly similar to the steps followed for Bunch Davies vacuum. Only difference
will appear when we use the creation and annihilation operators in the context of a-vacua, which
can be written in terms of the creation and annihilation operators defined for R or L vacuum state
as:

dy = Z { [(cosha Ygo — sinh o §g0) by + (cosha 8}, — sinha 7},) b;]
¢q=R,L

_l’_

o0 o0
(cosh a Z Ygonbgn — sinh Z 5(107”1_9%”)

n=0 n=0

(cosha Zéqon 4.n — Sinha Z'yq(m )]} (3.34)

dl = Z { [(coshoz Yqo — Sinha 5:;0) b:; + (cosh v §ge — sinh a v44) bq
q=R,L

(cosh o Z 'ng n q , — sinh « Z 6q0 niq n>
+ <cosha Z Sqo.nbgn — sinh Z ’an,an,n>] } , (3.35)
n=0

n=0

where we use the definition of creation and annihilation operators in Bunch Davies vacuum as
mentioned in Eq (3.32) and Eq (3.31). In this computation it is important to note that, under
Bogoliubov transformation the original matrix V4o, d¢0s Ygo,n and ngyn used for Bunch Davies
vacuum are transformed in the context of a-vacua as:

Ygo — (cosha 4o —sinha 045), 0g0 — (cosha §ge — sinh v 4 ) , (3.36)
Ngom — (Cosha Ngon — sinh a ng,n) , ng,n — (cosha ng,n — sinh f_ng’n) .

Considering this fact, after Bogoliubov transformation a-vacua state can be written in terms of R
and L vacua as:

GI)

) =

where the new operator O is defined as:

é:% S iy b ! + 3 me LB (3.38)

i,7=R,L 1,j=R,L n=0

e”(IR) ® [L)), (3.37)

Here m;; and ﬁmijm represents the entries of the matrices corresponding to the complementary and
particular solution in presence of a vacuum which we will compute in this paper.

Further one can write the annihilation of a vacuum in terms of the annihilations of the direct
product state of R and L vacuum as:

dolay = ) ZJ (3.39)

¢=R,L s=1
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where neglecting contribution from the powers of creation operators, js(q)v,s =1,2,3,4,¢q=R,L
are defined as:

> T = Y (cosha e —sinha by) by e (R) L))

q=R,L q=R,L
R~ Z mjj (cosha vj, — sinha d5) bl-L (IR)®|L)), (3.40)
i,j=R,L
Z (Q) = Z (cosha g0 — sinh ’an) e© (IR) ®|L))
q=R,L q=R,L
R~ Z (cosh o bs, — sinha ;) b; (IR)® L)), (3.41)
¢=R,L
Z jg)(Q) = Z (Cosha Z Ygonbgn — sinh Z (5qg,an7n> © (IR) ® |L))
¢q=R,L q=R,L n=0 n=0
~ Y (cosha S frtiartinabl —sithar 3 Agadion ) (R)© L), (342
i,j=R,L n=0 n=0
Z t74(q) = Z (cosha Z Otpnbl , — sinh o Z'y;}’nb;n> e (IR) ® |L))
q=R,L q=R,L =0
~ Z Z (coshoz Z 6q0n gn — Sinha quan ) (IR)®|L)). (3.43)
¢=R,L n=0

This directly implies that:
[m;j (cosh o vjo — sinh v §5,) + (cosh a 65, — sinh v 7, )] bg

00 oo
(cosh « Z ﬁzij,n”ng,nli);n — sinh « Z mij,n(sjg,nb}"n)

n=0 n=0

o
(cosha Z(Swn i — sinha Z’_Y;kanl_)zn>] =0. (3.44)
n=0

As we have already mentioned that the complementary and particular part of the solutions are
completely independent of each other and hence vanish individually. Consequently, we get the
following constarints in case of o vacuum:

_l’_

[mij (cosh & vjo — sinh v d,) + (cosh v d;, —sinha 7;)] = 0, (3.45)
[(cosha MijnYjon — sinha mijmgjg’n) + (cosha gz-ko.m —sinha W;Um)] =0Vn  (3.46)

Further using Eq (3.45) and Eq (3.46), the matrices corresponding to the complementary and
particular part of the solution can be expressed as:

: : , . MRR  TMRL
mij = — (cosha 6, —sinha ;) (cosha v —sinha 0) 7 = , (3.47)
MLR  MLL

_ - ) . ) 1 MRR,n  TMRL;n
Mijn = — (cosha 07, , —sinha 7}, ) (cosha ¥ —sinha 6) = . (3.48)

aj,n
MLR,n  MLLn
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Further substituting the expressions for =, d, 7, and J, we finally get the following simplified
expressions: Next substituting the right hand side of the above mentioned equations explicitly the
entries of the mass matrices can be expressed for 7,7 = R, L as:

For complementary solution :

. (3)
I'(2—ip) 2Dij2 for Case 1
i = I' (2 +ip) e27p (cosha — sinh « 6—2”’)2 — (cosh a — sinh a)2 (3.49)
s ) 22l

— T - 5 - - —— for Case II.
I (v+ 35 +ip) €2 (cosh @ — sinh o e=277) + 27 (cosh ov + sinh v e—2i7¥)

For particular solution :

’ (5:)
I'(2—ipn) 2D;;
~ . - 5 - 5 for Case 1
Pjin = I'(2 +ipn) e27Pn (cosh a — sinh @ e=27Pn)? — (cosh o — sinh @) (3.50)
” L(v+3—ip,) 2 D"

- 1. . 3 - - —— for Case II.
I (v+ 3 +ipy) e2mn (cosh a — sinh o e=27Pn)% 4 €2i77 (cosh o + sinh o e—2i7)

Here for Case I and Case 11, we define the D matrices as:

3

o (ol o) (o el

Case I : fo): o o] fo’”): PR (3.51)
Dig  Dit Dir~ Dip
D(V) D(V) ID(Vv”) fD(an)

CaseII: DY = t“; 1(‘? , DU — ?R) TL) L (352
Dir  Drp Dir’  Drr

and the corresponding entries of the D matrices are given by:

Case 1
D(%) _ D(%) e I
Rr = Dpi = —sinh2a sinh®7p, (3.53)
3 3
D) = D2 =i sinhrp, (3.54)
(5.m) (3.m) . 12
Dpr = Di1 = —sinh2a sinh® 7p,, (3.55)
(5.m) (5m) _ .
Dy~ = Dix =1 sinhmp,, (3.56)
Case IT :
Dgﬁ = Dg’ﬁ = (cosh2 o €™ 4+ sinh® o e_“”’) cos mv — sinh 2ar sinh? 7p, (3.57)
Dg{ = D£V1)1 =1 (cosh2 o €™ 4+ sinh® o e =™ + sinh 200 cos mv) sinh 7p, (3.58)
Dg’g) = ngl"") = (cosh2 a €™ +sinh* @ e7"™) cos v — sinh 2o sinh® 7p,,, (3.59)
(3.60)

Dgf’) = Dgﬁb) =1 (cosh2 a €™ + sinh? o e + sinh 2o cos 7r1/) sinh 7p,,.

Before further discussion here we point out few important features from the obtained results:
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e For the Case I we see that for the complementary and particular part of the solution

- - I'(2—ip) 2sinh 2a sinh? 7rp
MRR = MLL = — - - — - 5 (3.61)
I'(2 +1ip) €27 (cosh a — sinh @ e=27)? — (cosh a — sinh a)
- - '(2—ipy) 2sinh 20 sinh? 7p,,
MRR.n = MLL.n = — ; . (3.62
" " T (2 +ipn) €2mn (cosh o — sinh @ e=27)% — (cosh o — sinh &) (3.62)
But for Case II we find that
~ ~ L (v+3—ip)
MRR = MLL = ————————
REZ LT 0+ L +ip)
2 [(cosh2 a €™ + sinh? o e‘””) cos v — sinh 2¢v sinh? 7rp] (3.63)
2™ (cosh a — sinh o e=27)% 4 €2im (cosh ov + sinh ov e=2i77)? '
= = r (V + % - an)
MRR,n = MLLn = — 1 B
r (V +5+ an)
2 [(cosh2 a ™ 4 sinh? o e~ ) cos mv — sinh 2« sinh? wpn]
5. (3.64)

. — 2 . 5 Y
e2mPn (cosh o — sinh v e=27Pn )= + 2™ (cosh v + sinh v e=2i77)

which is non vanishing for 0 < v < 3/2 and v > 3/2. For v = 3/2 we get the non vanishing
result from Case I using a-vacuum and this result is significantly different from the result
obtained for Bunch Davies vacuum state. Here by setting & = 0 and v = 3/2 in Case I one
can check that the entries of the matrices vanish for Bunch Davies vacuum.

Finally to implement numerical analysis we use the following approximated expressions for
the entries of the coefficient matrices as given by:

Casel:
o —pm inh 2« sinh? 7
o — i(043) V2 ¢ S P 3.65
MRR = € \/cosh2mp — 1 (cosh2 a — sinh? 6—2”1") ’ ( )
_ i(6+%) V2 TP sinh 2a sinh? 7p, (3.66)

MRRn = € -
" veosh 2mp, — 1 (Cosh2 a — sinh? o 6*2”1’“) ’

which vanishes for Bunch Davies vacuum with o = 0. On the other hand for a most gener-
alized situation we get:

Case 11 :
- [(cosh2 a + sinh? o 6*2””) — sinh 2« sinh? mp e~ sec 7TI/]
MRR = MRR X (cosh2 a + sinh? e—Qﬂ(erz'u)) ’ (3.67)
- [(cosh2 a + sinh? o e‘Qi””) — sinh 2« sinh? mp,, e~ sec 771/}
MRR,n = MRRn X , (3.68)

(cosh2 o + sinh? o e‘27r(pn+iy))

where for Case II, mrr and mgrr,, represent the contributions for the coefficient matrices
from its Bunch Davies vacuum counterpart as given by °:

0 V2e PTcosTy (3.69)
MRR = € , .
RR v/cosh 27p + cos 2wv
0 V2e P cosTy

V/cosh 27p,, + cos 2mv’

MRR,n = (3.70)

5For rest of the analysis we absorb this overall phase factor e®.
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e For the Case I we see that for the complementary and particular part of the solution:

I'(2—ip) 2sinh 7p

PHRL T LR T T (24 ip) €27 (cosh o — sinh v e=27P)? — (cosh @ — sinh ar)?’ (3.71)
- - I'(2—1p, 2sinh
MHRLn = LR = T EQ + ipn; e2mPn (cosh o — sinh e_QWP"; — (cosh o — sinh a)? (3.72)
But for Case II we find that
. . T (V + % - ip)
21 [(cosh2 a €™ +sinh? o e + sinh 2a cos 7r1/) sinh Wp} (3.73)
€2 (cosh a — sinh a e=27)% 4 2™ (cosh o + sinh o e=2im)?’ .
MRL,n = MLR,n = EV"“"ZP;
[(cosh2 a €™ 4 sinh? & e~ + sinh 2a cos 7r1/) sinh an]
S (3.74)

- 2 -
62”7’" (cosh v — sinh o €727Pn)* + 27 (cosh v + sinh v e =267V

Here a special case appear for v = 3/2, where the result reduces to the result of Case I.
Additionally, the non vanishing entries of the off diagonal components of the coefficient
matrix for both of the cases in presence of a-vacuum indicates the existence of quantum
entanglement in the present computation, which we will explicitly show that finally give rise
to a non vanishing entanglement entropy.

Finally to implement numerical analysis we use the following approximated expressions for
the entries of the coefficient matrices as given by:

Case1:
(047 V2 e T sinh 7p
gy, = €/(043) , 3.75
REL cosh2mp — 1 (cosh2 a — sinh? o 6727rp) ( )
. - —PnT .
_ i(0+3) V2e sinh 7p,, (3.76)

ﬁlRL,n =€ .
vcosh2mp, — 1 (cosh2 a — sinh? o e—z’fpn) ’

which vanishes for Bunch Davies vacuum with o = 0. On the other hand for a most gener-
alized situation we get:

Case I1 :

[cosh2 o + sinh? o e~ %™ 4 sinh 2o cos v e_"”’]
(cosh2 a + sinh? « e~ 2m(ptiv))

[cosh2 a + sinh? o %™ 4 sinh 2a cosv e

(Cosh2 o+ sinh? o e*QW(PnJriu))

, (3.77)

MRL = MRL X

—im/]

, (3.78)

MRL,n = MRL,n X

where for Case II, mgy, and mgrry, , represent the contributions for the coefficient matrices
from its Bunch Davies vacuum counterpart as given by ’

i(0+%) V2 e PTsinh 7p
€ )
V/cosh 2mp + cos 2w

V2 e Pr™ sinh 7p,,
V/cosh 2mp,, + cos2mv’

(3.79)

MRL =

MR, = ¢ (73) (3.80)
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[A9, | vs a for fixed x=2rrp=1 [A®, | vs a for fixed x=27p=2
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(a) \)\Sra)\ vs a plot for z =1 and v? > 0. (b) |)\SLO‘)\ vs a plot for z = 2 and v? > 0.
|A@, | vs a for fixed x=27tp=1 [A@, | vs a for fixed x=27tp=2
18] 25]
14
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— 12! _
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10}
— V2=—1/16,-9/16,-25/16 Yo
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(c) \)\Sf‘)| vs a plot for z = 1 and v? < 0. (d) |)\3La)\ vs a plot for z = 2 and v? < 0.

Figure 1. Behaviour of \/\f)| in de Sitter space with respect to the parameter a.

e In this context the eigenvalues of the coefficient matrix are given by from the complementary
and particular part of the solution as:

1r,. - = = = =
A 3 [(mLL +mrr) + /(ML — MRR)? + 4mRLmLR} ; (3.81)
N 1 = = = = = =
/\(le =3 |:(mLL,n +MRRn) £ \/(mLL — MRRn)? + 4mRL,nmLR,n:| : (3.82)

"For rest of the analysis we absorb this overall phase factor e*
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IA(")+| vs v for fixed x=2mp=1 |A(“)+| vs 2 for fixed X=2mp=2

16
— a=0 1 251 — a=0
wal — a=0.03 — a=0.03
a=0.1 20 a=0.1
121 — a=03 — a=03
_* s
3 3
= =

08l 1.0+

f\\//_\ ~

-2 0 2 4 6 8 -2 0 2 4 6 8

04

(a) |)\Sra)| vs 2 plot for = 1 and o = 0,0.03,0.1,0.3.  (b) \)\f)| vs 2 plot for = 2 and a = 0,0.03,0.1,0.3.

Figure 2. Behaviour of |/\$¥)| in de Sitter space with respect to mass parameter v2 for 2 = 1 and = = 2.

Here it is important to note that, \)\(f)| = |)\(,a)|.

In terms of the result obtained for the coefficient matrices for Case I and Case II we get:

Case I :
i ) o E\ inh 2a sinh 7p + 1]
AY = figg + Mg = €(0T3) gpm sin ) 583
+ RR RL (cosh2 o — sinh? o e=2mp) .
i i am\ inh 2 sinh 7p, £ 1]
AL — Rt g, = e/(0TE) g pir_ B0 o) .
+n RR.n == T"RLn (cosh? a — sinh? o e~27Pn) o
Case 11 :
MY = Giee 17
¥ MRR — MRL
y V2 e PT (cos v = i sinh 7p) [cosh2 a + sinh? & e~ 2™ + 4 sinh 2 sinh ™ e_””’] (3.85)
= e ‘ 7 .
/cosh 2mp + cos 2w (cosh2 a + sinh? o e~ 2m(ptiv))
AL), = RR. £ MRLA
V2 e P (cos v + isinhp,) [cosh? @ + sinh? v e~ %™ £ i sinh 2 sinh 7p,, e~ (3.86)
= e . .

\/cosh 2mp,, + cos2mv (cosh2 a + sinh? o e_QW(pn+iV))

In fig. (1) we have shown the behaviour of the magnitude of the eigenvalue |)\Sf‘)| with the variation
of the parameter o for mass parameter v? > 0 with z = 1 (fig. (1(a))) and =z = 2 (fig. (1(a))),
v? <0 with x =1 (fig. (1(c)) and = = 2 (fig. (1(d))) respectively. In both fig. (1(a)) and fig. (1(b))
magnitude of the eigenvalue |)\(f)| increase with the increase in the parameter «. In fig. (1(c)) and
fig. (1(d)) magnitude of the eigenvalue \)\Sra)] also increase with the increase in the parameter a in
a different fashion.

Further, in fig. (2) we have shown the behaviour of the magnitude of the eigenvalue |)\(+a)|
with the respect mass parameter v? for fixed value of the rescaled SO(3,1) quantum number
x =1 (fig. (2(a))) and = = 2 (fig. (2(b))). In fig. (2(a)) and fig. (2(b)) we also fix the parameter
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a at, @« = 0 (red), a = 0.03 (blue), a = 0.1 ( ) and o = 0.3 (black) respectively. For
x =1 and = = 2 comparing the behaviour obtained for different values of v in v > 0 region, it is
observed that the amplitude of the aperiodic oscillations are larger for o = 0.3 compared to the
results obtained for o = 0,0 = 0.03 and o = 0.1. For v? < 0 region both the plots show identical
behaviour for all values of the parameter a.

To find a suitable basis first of all we trace over all possible contributions from R and L region.
To implement this we need to perform another Bogoliubov transformation introducing new sets of
operators as given by:

GrR =@ br + 0 b, éL=1by+00bL, (3.87)
CN'RJL = Un bR,n + Vn ler:{,n’ CN'LJL = ﬁn bL,n + ‘771 bLn, (3.88)
where following conditions are satisfied:

@l =10 = 1, [al?* = [0 =1, |Oa® = [Val? =1, |Unf® = [Val? = 1. (3-89)

Here using these new sets of operators one can write the a-vacuum state in terms of new basis
represented by the direct product of R and L’ vacuum state as:

) = < (R & 1) = e (IR @ 1)) (3.90)

()
P
where we introduce a new composite operator Q which is defined in the new transformed basis as:
2 e ~ ~
Q=7 i, +> T\ Ch, Cl (3.91)
n=0
where 'y;,(,a) and I‘ﬁz are defined corresponding to the complementary and particular solution, which
we will explicitly compute further for o vacuum. Additionally, it is important to note that the
overall normalization factor N,,(“) is defined as:
~ (@) > o
3 / ’ o
() o)< [1 . <|v§,a>|2+2|r;?;2 )] C ew
n=0

which reduces to the result obtained for Bunch Davies vacuum in ref. [14] for @« = 0. In this
calculation due to the second Bogoliubov transformation the direct product of the R and L vacuum
state is connected to the direct product of the new R’ and L’ vacuum state as:

R =

(R) ®|L)) — <\R’> ® yL’>)(°‘) — N QO Ry © |L). (3.93)

Let us now mention the commutation relations of the creation and annihilation operators corre-
sponding to the new sets of oscillators describing the R" and L vacuum state as:

adl] =0y, lanel=0=dd]. (3.94)
(CinsCln| = 658um: [CinsCim] =0=[C1,, 811 (3.95)

Here for a vacuum the oscillator algebra is exactly same as that obtained for Bunch Davies vacuum.
However for a vacuum the structure of these operators are completely different and also they are
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acting in a different Hilbert space H,, which is characterised by one parameter a. Here it is
important to note that for a = 0 these oscillators will act on Bunch Davies vacuum state where
the corresponding Hilbert space, Hpp is the subclass of H,.

In this context, the operations of creation and annihilation operators defined after on the «
vacuum state are appended bellow:

érla) = A &l la), cnla) = 4@ ckla), (3.96)
Cronla) =T CF Lla), Crale) =T) CF o). (3.97)

Further, one can express the new ¢ type annihilation operators in terms of the old b type annihi-
lation operators as:

1

& =b:Gh Crmy = by (é(n))J. (3.98)

. N I
Here the matrices g{, and (g(n))J for o« vacuum are defined as:

o, v Oy Vo

~ q q ~ I oq,n
gl = R (Q(n)>J = _ ) , (3.99)
Vo Ug Van  Ugn

Here the entries of the matrices for o vacuum are given by:

Uq = diag (4,7), f/q = diag (9,7), ﬁq,n = diag (Un, ﬁn) , f/q,n = diag (Vn, ‘:/n) (3.100)

Further using Eq (3.87) and Eq (3.88), in Eq (3.96) and Eq (3.97), we get the following sets of
homogeneous equations for Case I and Case II:

For complementary solution :

mRRi+ 0 — 1Y mRLT" = 0,

MRRU + 0 — v{,“)rhmﬁ* =0,

MRl — 7))

MRLU — ’Y;(; i

ur —7( JmRRT" = 0,

a* —7( )RR = 0,

For particular solution :

R Un + Vi — T mRL Vi = 0, (3.105)
MRRAUn + Vi — TSimRe, Vi = 0, (3.106)
MRLUn — FI(%UZ ](gangRnV* =0, (3.107)
mRL,nf] Fé‘i% T — F(a)mRRnV* =0, (3.108)

In the Case II with o vacuum it is not sufficient to use o* = @, @* = @ for particular part and also
f/; =V, f],;" = U, for the complementary part. In this case the system of four equations each for
complementary and particular part will not be reduced to two sets of simplified equations. This
is an outcome of the fact that in case of a vacuum the entries of the coefficient matrices m;; and
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1¥o@| vs x(=27p) for fixed =0 Ivo'®| vs x(=27tp) for fixed a=0.03
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08 i 08 — 2=1/169/16,25/16
— v2=114,9/4,25/4 — 2=1/4.9/4.25

x(=27tp) x(=27tp)
(a) |7;<>a)| vs z plot for a = 0. (b) |'y§°‘>| vs z plot for a = 0.03.

Ivo| vs x(=27tp) for fixed a=0.1 Ivp”| vs x(=27tp) for fixed a=0.3
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(c) |’Yz(>a)| vs x plot for a = 0.1. (d) |'7,(,a)| vs x plot for o = 0.3.

Figure 3. Behaviour of |%()a)| in de Sitter space with respect to the rescaled SO(1,3) principal quantum
number z for ‘+’ branch of solution.

m;jn are complex in nature, which is either real or imaginary in case of Bunch Davies vacuum

state consider all signatures of the mass parameter v2. To solve these equations for ’yz(,a) and F,(ﬁz

here we need to use additionally the normalization conditions, |i|? — 5|2 = 1 and |U,|*> — |[V,,|> = 1.

Finally, the non trivial solutions obtained from these system of equations for Case I and
Case II can be expressed as:

1
() . - ~ 4 ~ 4
Y, = — 1+ ]mRL| + |mRR\
P \/§|mRL| [(
—2/mrr|’ — m&r (MiL)? — Mk (Mar)?) = {(-1 - [mrol* - g [*

113
_ 23 gn L3 n 2
+2lmrr|* + MRr (kL) + ML (MRR)?) — 4|mRL|4} 2] , (3.109)
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Figure 4. Behaviour of |71(,a)| in de Sitter space with respect to the rescaled SO(1,3) principal quantum
number z for ‘+’ branch of solution.

1
F(a) = — (1 + ’ﬁ”LRL ‘4 + |mRR |4
pn \/§|mRL7n‘ [( TV 5T

—2|iRRal* - mQRR,n(m*RL,n)Q - m%{L,n(mﬁR,n)Z) £+ {(~1 - |mrLyl* — RRA|

1
- - . - . 2 - 3
+2lmRrRa|? + MRR o (MRLR) + TRLA (TRRA)) — 4|mRL,n|4} 2] ; (3.110)

where the components mrr = MmyL, MRL = MLR and MRR,n = MLLn, MRLy = MLR,n ale
defined for Case I and Case II in Eqn (3.61), Eqn (3.62), Eqn (3.63), Eqn (3.64) and Eqn (3.71),

Eqn (3.72), Eqn (3.73), Eqn (3.74) respectively. Note that here in both the solutions for ’yl(,a) and
r;(o‘i? we absorb the overall phase factor.

After further simplification we get the following expressions for the non trivial solutions from
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Figure 5. Behaviour of |'y;(,o‘)| in de Sitter space with respect to the parameter « for ‘+’ branch of solution.

(3.111)

Case I and Case II as given by:
Case 1:
1
(@) ~ 44 TP™ x
p (cosh2 a — sinh? o 6—2”17) ’
1

(@) ~ 44 TP . 3.112
p.n (cosh2 a — sinh? a e_zﬂpn) ( )

V2
(3.113)

Case I1 :
~ 1
V/cosh 27mp + cos 2mv 4= /cosh 27p + cos 2mv + 2
[cosh2 a + sinh? & e2™ + sinh 2a cos TV e””]

(@)

Tp

(cosh2 a + sinh? a 6—2”(1’—’3”))

V2
il . (3.114)

~ 9
Vcosh 27p,, + cos 2w + y/cosh 27p,, + cos 2mv + 2
[cosh2 a + sinh? & e2™ + sinh 20 cos TV e

Iy
(COSh2 a + sinh? o e*QW(Pnfiv))
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Figure 6. Behaviour of |71(7a)\ in de Sitter space with respect to mass parameter v? for = = 1.for ‘+’ branch
of solution.

In fig. (3) we have shown the behaviour of the magnitude of the solution |%(,a)| with the variation
of the rescaled SO(1,3) quantum number z = 27p for a = 0 (fig. (3(a))), o = 0.03 (fig. (3(b))),
a = 0.1 (fig. (3(c))) and @ = 0.3 (fig. (3(d))) along with the mass parameter v? > 0 respectively.
In fig. (3(a)), fig. (3(b)), fig. (3(c)) and fig. (3(d)) we use v? = 0 (red), v* = 1/16,9/16,25/16
(blue) and v? = 1/4,9/4,25/4 ( ). For all v2 > 0 with a = 0 (fig. (3(a))) and a = 0.03
(fig. (3(b))) show almost similar behaviour. However, at x = 0 the magnitude of the solution
|%(7a)| for 12 =0,1/16,9/16,25/16 with o = 0.03 is slightly larger compared to the result obtained
for a = 0 (Bunch Davies vacuum) case. But for v? = 1/4,9/4,25/4 with a = 0 (fig. (3(a))) and
a = 0.03 (fig. (3(b))) both the plots show exactly same behaviour. After comparing fig. (3(a)) and
fig. (3(b)), we also observe that at = ~ 3.5 for all values of v > 0 the magnitude of the solution
\fy](;a)| coincides at a single point and then further . On the other hand, for a = 0.1 (fig. (3(c))) and
a = 0.3 (fig. (3(d))) both the plots show distinguishable features for v? = 0,1/16,9/16,25/16 and
similar behaviour for v = 1/4,9/4,25/4. Also in fig. (3(c)) and fig. (3(d)) a cross over take place
at z ~ 2.2 and x =~ 0.8 respectively. However, for large values of x the magnitude of the solution
|%(7a)| decrease to a very small non-vanishing value.

Further in fig. (4) we have shown the behaviour of the magnitude of the solution ‘%()a)| with
the variation of the rescaled SO(1,3) quantum number x = 27p for « = 0 (fig. (4(a))), a =
0.03 (fig. (4(b))), @ = 0.1 (fig. (4(c))) and a = 0.3 (fig. (4(d))) along with the mass parameter
v? < 0 respectively. In fig. (4(a)), fig. (4(b)), fig. (4(c)) and fig. (4(d)) we use v? = 0 (red),
v? = 1/16,9/16,25/16 (blue) and v? = 1/4,9/4,25/4 ( ). For all v? < 0 it is observed
that plots for « = 0, & = 0.03, @ = 0.1 and o = 0.3 identical features. For all these plots for
large values of x the magnitude of the solution |7§,a)| decrease to a very small value and at z =0
magnitudes are different for « = 0, « = 0.03, a = 0.1 and a = 0.3.

Next in fig. (5) we have shown the behaviour of the magnitude of the solution \’y}(,a)| with
the variation of the parameter o for mass parameter 2 > 0 with = 1 (fig. (5(a))) and = = 2
(fig. (5(b))), ¥* < 0 with z = 1 (fig. (5(c)) and = = 2 (fig. (5(d))) respectively. In fig. (5(a))
magnitude of the solution |%()a)| increase with the increase in the parameter o and in and fig. (5(b))
it decrease with respect to a. Most importantly a crossover take place at o =~ 0.25 and a ~ 0.9
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(fig. (5(a))) and a =~ 0.1 (fig. (5(b))) respectively. In fig. (5(c)) and fig. (5(d)) magnitude of the
solution |fy,(,a)| increase with the increase in the parameter a. Most importantly no crossover take
place in fig. (5(c)) and fig. (5(d)).

Finally, in fig. (6) we have shown the behaviour of the magnitude of the solution \fy,(fy)\ with
the mass parameter 12 for fixed value of the rescaled SO(1, 3) quantum number z = 1 (fig. (6(a)))
and z = 2 (fig. (6(b))). In fig. (6(a)) and fig. (6(b)) we also fix the parameter o at, @ = 0 (red),
a = 0.03 (blue), a = 0.1 ( ) and « = 0.3 (black) respectively. For z = 1 and x = 2 both
the plots show discontinuity at 2 = 0 for a = 0.3. For 2 = 1 comparing the behaviour obtained for
different values of o in 2 > 0 region, it is observed that the amplitude of the aperiodic oscillations
are larger for a« = 0, = 0.03 and o = 0.1 compared to the result obtained for & = 0.3. On the
other hand for = 2 in the region v? > 0 the amplitude of the aperiodic oscillations are larger
for & = 0.3 compared to the results obtained for & = 0,0 = 0.03 and a = 0.1. However for v? < 0
region both the plots show similar features for all values of the parameter «. This implies that
only for small mass parameter range (2> > 0) one can able to distinguish between the features
obtained for the ” 4" branch solution of ]’yl(,a) | for all values of the parameter . Also in the large
mass limiting range (v < 0) we get indistinguishable features for both plots obtained for z = 1
and x = 2.

3.2 Construction of density matrix using o vacua

In this subsection our prime objective is construct the density matrix using the « vacuum state
which is expressed in terms of another sets of annihilation and creation operators in the Bogoli-
ubov transformed frame. Here the Bunch Davies vaccum state can be expressed as a product of
the quantum state for each oscillator in the new frame after Bogoliubov transformation. Fach
oscillators are labeled by the quantum numbers p,l and m in this calculation. After tracing over
the right part of the Hilbert space we get the following expression for the density matrix for the
left part of the Hilbert space for the Case I and Case 11 as:

(pL(@))pim = Trrla)(al, (3.115)

where the a vacuum state can be written in terms of ¢ type of oscillators as:

00 1/2 ~
¢ a o) = ~ « A ~ ’ / (Oé)
o) ~ [1 - (I%ﬁ P+ |F£,73|2>] exp [vé. Ve d + ) T Ch, C{m] (|R ) ® |L >> , (3.116)
n=0

n=0

which is already derived in the earlier section. Further substituting Eq (3.116) in Eq (3.115), we
get the following simplified expression for the density matrix for the left part of the Hilbert space
for o vacuum as:

(o (@))pam = (1= 1ED1) D2 104 2 ks p, 1) (ks s
k=0

Complementary part

+ (£SO PrIn, rip, 1m) (n, s p, 1ml, (3.117)
n=0 r=0

~
Particular part
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where 71(,&) and Fj(fg are derived in the earlier section. Also we define the o parameter dependent

. . «
source normalization factor fz() ) as

o ~1
£l = (Z 1’2> . (3.118)

01—|F

P S

In this computation the states |k;p,l,m) and |n,r;p,l,m) are defined in terms of the quantum
state |L') as

—~—

|k;p,l,m) =

(@)L, i Lom) = —=(CL )7L, (3.119)

T

2~

Here we note that:

1. For a vacuum density matrix is diagonal for a given set of the SO(1,3) quantum numbers
p, 1, m and additionally depends on the parameter a explicitly. This leads to the total density
matrix to take the following simplified form as:

pr(a) = (1= 2P diag (1, 1212 D1 0 )+ () deag(l [, [Tl g

n=0
(3.120)
Here it is important to note that, for & = 0 we get back the result obtained for Bunch Davies
vacuum which is mentioned in ref. [14].

2. To find out an acceptable normalization of the total density matrix in presence of o vacuum
state, we use the following limiting results:

oo o 1— ”Y(a)’zk 1
2P = m Sy < e e (8.121)
e e AN Sl 0 b
1— [T = 1 =
r@)pr = lim — 2% 7@ < 1vn, o — = (fl) . (3.122)
D - L mT < - (1)

Consequently using these results for o vacuum we get:

o0

Tr [ (1= 1) diag (1) B )| = (1= 1) R =1 (3129)

k=0
[ deg(l |F )2, |I‘

[e.e] o0

S --)] = B3I
n=0 r=0

Consequently the normalization condition of this total density matrix in presence of o vacuum

state is given by:

= fle) (3.124)

Trpp(a) = 1+ fi*). (3.125)

This result is consistent with the ref. [10] where f,SO‘) = OVa and also ref. [14] where a = 0
and fz(,o) = fp. But for simplicity it is better to maintain always Trpr,(a) = 1 and to get this
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result for o vacuum the total density matrix can be redefined by changing the normalization
constant as:

)
(PL(@))pim = MZ ¥ ki L) (ki

1+ 4% 2
(a) 0 00 o o
(a) ZZ‘ (a)‘2r’n rip,l,my(n,r;p, 1, m|, (3.126)

1+f n=0 r=0

In this context equivalent convention for normalization factors can also be chosen such that
it always satisfies Trpp,(a) = 1 even the presence of source contribution ®.

3. For each set of values of the SO(1,3) quantum numbers p,l, m, the density matrix yields
(pL)p1m and so that the total density matrix can be expressed as a product of all such
possible contributions:

oo p—1

HH H pL(a))ptm- (3.129)

p=0 =0 m=—1

This also indicates that in such a situation entanglement is absent among all states which
carries non identical SO(1,3) quantum numbers p, [, m.

4. Finally, the total density matrix can be written in terms of entanglement modular Hamilto-
nian of the axionic pair as, p,(a) = e #"ENT where at finite temperature Tyg of de Sitter
space 3 = 27 /Tyg. If we further assume that the dynamical Hamiltonian in de Sitter space
is represented by entangled Hamiltonian then for a given principal quantum number p the
Hamiltonian for axion can be expressed as:

Hp(a) =

C +Z PN ’pn~

Acting this Hamiltonian on the o vacuum state we find:

1/2
(e S|

expl () T éT Z Rmc

= B |a), (3.131)

(3.130)

Hp()] )

%

()

E@ds, +Zg,gc;>c;n~p,n (IR)@L))

8 Here one can choose the following equivalent ansatz for total density matrix in presence of a vacuum as:

(PL())pim = af” Zlv(“)\%lk P Lmy (ks p, Ll + ()2 S0 S TSP g, Lm) (i, L] |, (3.127)
k=0 n=0 r=0
Complementary part Particular part

(a) +

where the overall factor a, ’ is defined as:

[e% 1 «
af” = { + £ (3.128)
1—n
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where the total energy spectrum of this system for o vacuum can be written as:

ER) = EW 13y el val | (3.132)

n=0

where the energy spectrum corresponding to the complementary and particular part of the
wave function corresponding to the a vacuum state are given by:

plo _ L

1
)2 () — (a)
D 5 ln(|’7p 1“), gp,n =73 In (Bpm). (3.133)

One can also recast the total energy spectrum of for a vacuum as:

@ __ Ly (h@pTT 8@ )| with B — !
Etr) =——1In| || B with B = —————, (3.134)
e ST

Now if we consider any arbitrary mass parameter v and any arbitrary value of the param-
eter a, in that case the SO(1,3) principal quantum number p dependent spectrum can be
expressed as:

1 1
E@ — _ T nd = (14 1rmf 4 et
M o n{2|ﬁlRL’2 [( +\mRL] —HmRR\

~Slinnl? — P () — e (7e)?) £ {(—1 — [mel* — [nel

1
i L9 e N ST 3
+2|mrRr[* + MEr (kL) + Mk (MRR)?) — 4’mRL|4} 2} } : (3.135)

1 1
g(a) E—| 1———  [(1 ~ 4 ~ 4
pn o n{ 2\mRLn|? [( T IMRLAL + [MRR.A|

—2|mRRn|” — MRR2 (MRLA). — PRLA(MRRA)) T {(=1 = [PRLA[" — RR A

1
_ - . - . 2 ~ 7
+2lirR > + MRR0 (MRLE) + TRLA (TRRA)) — 4|mRL,n|4} 2} } - (3.136)

In this case, the total energy spectrum for arbitrary parameter « can be recast as:

1 1 1
E,(Ic‘x) = —In2+ —In|mry| — —1In [(1 + |77~”LRL|4 + |mRR’4
27 T 27
—2|mRrR[* — Migr (MRy)? — MRy (Mar)?) £ { (-1 - [mRLl* - [Prr[*
1
N _ . Lo 2 3 3
2l + i i)+ i ()?) — i}

1

—Inqdl — ——— (1 T 4 T 4

t— [irr|"

_2|mRR,Tl‘2 - Th%{R,n(m;{L,n)2 - m%{L,n(mf{R,n)Q) + {(_1 - ‘mRL,n

1
- - ~ ~ - 2 - 2

+2|mRR,n‘2 + m%{R,n(mT{L,n)Q + m%{L,n(m;{R,ny) - 4|mRL,n‘4} 2:| } : (3137)

Here the components mrr = myL, MRL = MLR and MRR,, = MLLn, MRLx = MLR,n

are defined for Case I and Case II in Eqn (3.61), Eqn (3.62), Eqn (3.63), Eqn (3.64) and
Eqn (3.71), Eqn (3.72), Eqn (3.73), Eqn (3.74) respectively. Further using Eq (3.111),
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Et,p vs x=271p (Without source) with a=0
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(a) Er,p vs z plot for a = 0 and v* > 0. (b) Er,p vs x plot for a = 0.03 and v > 0.
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(c) Ex,p vs x plot for o = 0.1 and v* > 0.
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(d) Et, vs « plot for o = 0.3 and > > 0.

Figure 7. Behaviour of energy spectrum for axion in de Sitter space with respect to the rescaled SO(3,1)

quantum number z for ‘+’ branch of solution of |’ypa)| and |I‘;02 .

Eq (3.112), Eq (3.109) and Eq (3.110) in Eq (3.133) and Eq (3.133), we get the following

simplified expressions:

Casel:
1 1 T2
E}(,o‘) ~ £p — — In (cosh? a — sinh? a e~>™P) ,SI(JO;L) ~—In|l-— (3.138)
™ ’ 2m (cosh2 a — sinh? & e—%p)
Case II .
B~ 2
P 1 2
2m (v/cosh 27p + cos 27w + \/cosh 27p + cos 27w + 2)
[(:osh2 a + sinh? @ €2™ + sinh 2a cos TV e”"]
(cosh2 o + sinh? o 6*2”(1’*“’)) ’
@ ~ L1 2
pn " 2
27 (v/cosh 2mp,, + cos 27w + \/cosh 2mp, + cos 27v + 2)
[cosh2 o + sinh? o e2™ + sinh 2a cos T ei””] (3.139)

(cosh? a + sinh? o e=2m(Pa—iv))
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Er,p vs x=27tp (With source) with fixed a=0
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(c) Et,p vs x plot for o = 0.1 and v* > 0.

Figure 8. Behaviour of energy spectrum for axion in de Sitter space with respect to the rescaled SO(3,1)
quantum number z for ‘+’ branch of solution of |7pa)| and |F,(,a,2
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(b) Er,p vs x plot for a = 0.03 and v > 0.
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(d) Et, vs x plot for o = 0.3 and v* > 0.

Also the total energy spectrum for arbitray parameter o can be simplied as:

Casel:
1
E,([?‘I)) = +p— = In (cosh2 o — sinh? a 6727@)
oo
1
_ %hﬂ H 1 pe= ,
n=0 (Cosh2 a—sinh? a 6—2”1’)2
Case II :
1 1
E,(I?; =5 In2+ —1In [\/cosh 27p + cos 27w + \/cosh 27p + cos 27 + 2}
’ T T
1 | [COSh2 a + sinh? o e2™  sinh 2 cos T e“”’]
——1In .
us (cosh2 a + sinh? a 6*2”(1’*“’))
1 i 2
(1] :
2m 70 (v/cosh 27p,, + cos 2mv & /cosh 2mp,, + cos 27w + 2)
-1
[cosh2 a + sinh? a €2 4+ sinh 2« cos TV €™ ]
X

(cosh2 a + sinh? « e—QW(pn—iu))
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E7 p vs x=27tp (Without source) with a=0 E7 p vs x=27p (Without source) with a=0.03
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Figure 9. Behaviour of energy spectrum for axion in de Sitter space with respect to the rescaled SO(3,1)
quantum number z for ‘+’ branch of solution of |%()a)| and |I‘1(702 .

These results imply that for with arbitrary parameter v and « the entangled Hamiltonian
(HEnT) and the Hamiltonian for axion (H,)grxgs are significantly differ compared to the
result obtained in absence of linear source term and o = 0. For conformally coupled axion
(v = 1/2) and for minimally coupled axion (v = 3/2) with a = 0 the SO(1, 3) principal
quantum number p dependent total energy spectrum can be expressed as:

Casel:

(@) =0 © Lot

a a=0 + source 0)
ET,p _— ET,p = :l:p - % In H W ) (3142)

n=0
1

E,(I?j; a#0 + No source E’:(I:(‘)7)p _ :|:p _ ; In (COSh2 o — Sinh2 a e—27rp) ’ (3'143)
Er(rcfl)) a=0 + No source E'(I(‘{)p — +p. (3‘144)
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Er,p vs x=27tp (With source) with fixed a=0 Er p vs x=27tp (With source) with fixed a=0.03
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Figure 10. Behaviour of energy spectrum for axion in de Sitter space with respect to the rescaled SO(3,1)
quantum number z for ‘+’ branch of solution of |’y,(,a)| and |I‘,()a,1 .

Case I1 .
— 1
EY) om0+ sowee, g0 —5-In2 (3.145)
1
+ —1In [\/cosh 2mp + cos 2w £ \/cosh 2mp + cos 2w + 2
T
1 > 1
- —1
2| 11 1 2 ]
n=0 [\/cosh 2Py +cos 2wrv++/cosh 2mp, +cos 27r11+2]
() a#0 + No source o i
ET’p ET’p =5 In2 (3.146)
1
+—1In [\/cosh 27p + cos 27w & \/cosh 2mp + cos 27V + 2]
T
1 1 [cosh2 a + sinh? & e2™ + sinh 2« cos TV e”r”]
T (cosh2 a + sinh? « 6—2”(7’—“’))
() a=0 + No source o) _ 1
ET,p EM7 =5 In2 (3.147)

1
+—1In [\/cosh 2mp + cos 2mv £ \/cosh 2mp + cos 2mv + 2] .
T
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(¢) Er,p vs a plot with source for = 1 and v? > 0. (d) Et, vs a plot with source for z = 2 and v > 0.

Figure 11. Behaviour of energy spectrum for axion in de Sitter space with respect to the parameter « for
‘+’ branch of solution of |fy,(,a)| and |F§,a,)L|

This implies that for conformally coupled axion (v = 1/2) and for minimally coupled axion
(v = 3/2) the entangled Hamiltonian (HgnT) and the Hamiltonian for axion (H,)rxgs are
equivalent in absence of the linear source term in the effective action with the choice oo =0
of quantum vacuum state.

In fig. (7) and fig. (8) we have depicted the behaviour of the total energy spectrum for axion
in absence and presence of linear source with respect to the rescaled SO(1,3) quantum
number x = 27p for a fixed value of the mass parameter v?> > 0 respectively. Here in
both the plots we use set the parameter value a = 0 (fig. (7(a)) and fig. (8(a))), a = 0.03
(fig. (7(b)) and fig. (8(b))), o = 0.1 (fig. (7(c)) and fig. (8(c))) and « = 0.3 (fig. (7(d))
and fig. (8(d))) to demonstrate our result in presence of & vacuum. From both the plots it
is clearly observed that for minimally coupled axion (v = 3/2), conformally coupled axion
(v =1/2) and for v = 5/2 the energy spectrum is linear and represented by green colour.
Also it is important to note that in presence of linear source contribution the slope and
intercept of green coloured line will change. Further if we decrease the value of the mass
parameter to v = 1/4, v = 3/4 and v = 5/4 then it show small deviation from linearity
for very small values of z as shown by blue coloured line. Amount of deviation from the
linearity will be larger if we set the mass parameter v = 0 as depicted by red coloured line.

In fig. (9) and fig. (10) we have depicted the behaviour of the total energy spectrum for axion
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(¢) Er,p vs a plot with source for = 1 and v? < 0. (d) Et, vs a plot with source for z = 2 and v < 0.

Figure 12. Behaviour of energy spectrum for axion in de Sitter space with respect to the parameter « for
‘+’ branch of solution of |fy£,o‘)| and |F§,O‘7)L|

in absence and presence of linear source with respect to the rescaled SO(1,3) quantum
number z = 27p for a fixed value of the large axion mass with mass parameter v?> < 0
respectively. Here in both the plots we use set the parameter value a = 0 (fig. (9(a)) and
fig. (10(a))), a = 0.03 (fig. (9(b)) and fig. (10(b))), @ = 0.1 (fig. (9(c)) and fig. (10(c))) and
a = 0.3 (fig. (9(d)) and fig. (10(d))) to demonstrate our result in presence of & vacuum. From
both the plots it is clearly observed that for 2 = —1/2 the energy spectrum is represented
by green colour. Also it is important to note that in presence of linear source contribution
the slope of green coloured curve will change. Further if we decrease the value of the mass
parameter to v? = —1/4,-9/4,—25/4 then it show significant deviation from the result
obtained for v? = —1/2 for very small values of z as shown by blue coloured curve. Amount
of deviation is larger if we set the mass parameter v = —1/16,—-9/16, —25/16 as depicted
by red coloured curve.

Next in fig. (11) and fig. (12) we have depicted the behaviour of the total energy spectrum for
axion in absence and presence of linear source with respect to the variation of the parameter
«a for mass parameter v > 0 with = 1 (fig. (11(a)) and fig. (11(c))) and = = 2 (fig. (11(b))
and fig. (11(d))), v?> < 0 with z = 1 (fig. (12(a) and fig. (12(c))) and x = 2 (fig. (12(b)) and
fig. (12(d))) respectively. In fig. (11) we have used v = 0 (red), v = 1/4,3/4,5/4 (blue)
and v = 1/2,3/2,5/2 (green) to show the behaviour of the spectrum in v? > 0 region. Also
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Figure 13. Behaviour of energy spectrum for axion in de Sitter space with respect to the parameter « for
‘+’ branch of solution of |fy,(,a)| and |F§,a,)L|

it is important to note that for small values of the parameter o cross over take place for
x =1 and = = 2. Here it is clearly visible the difference between the total energy spectrum
for axion in absence and presence of axionic linear source contribution from fig. (11(a)) and
fig. (11(c)), fig. (11(b)) and fig. (11(d)). For all v = 0 and v = 1/4,3/4,5/4 as the value of
the parameter « decreases total energy of axion is also decreasing and for v = 12,3/2,5/2
we get completely opposite feature. On the other hand in fig. (12) we have used v* = —1/2
(green), v? = —1/16,-9/16,—25/16 (red) and v* = —1/4,—9/4, —25/4 (blue) to show the
behaviour of the spectrum in the large mass v < 0 region. Additionally, it is important to
mention that for the prescribed range of v? < 0 in presence and absence of axionic linear
source no cross over takes place as the green, red and blue curves are parallel to each other
for x = 1 and x = 2. Here also one can find out the small but crucial differences between
fig. (12(a)) and fig. (12(c)), fig. (12(b)) and fig. (12(d)).

Finally, in fig. (13) we have demonstrated the behaviour of the magnitude of the solution
total energy spectrum for axion with the mass parameter v? for fixed value of the rescaled
SO(1,3) quantum number xz = 1 (fig. (13(a)) and fig. (13(c))) and x = 2 (fig. (13(b))
and fig. (13(d))) in absence and presence of axionic source contribution. In fig. (13(a)),
fig. (13(b)), fig. (13(c)) and fig. (13(d)) we also fix the parameter « at, « = 0 (red), a = 0.03
(blue), o = 0.1 (violet) and a = 0.3 (green) respectively. For x = 1 and z = 2 both the
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plots show distinctive features at all representative values of . For x = 1 and z = 2 with
v? < 0 it is observed that the total energy spectrum of the axion decrease if we move towards
v? = 0. After that in v? > 0 region, aperiodic oscillations are observed for o = 0,ac = 0.03
and « = 0.1 and a = 0.3.

3.3 Computation of entanglement entropy using a vacua

In this subsection our prime objective is to derive the expression for entanglement entropy in de
Sitter space in presence of o vacuum state. In general the entanglement entropy with arbitrary «
can be expressed as:

S(p,v,a) = =Tr [prL(p, ) In pr(p, )], (3.148)

where the parameter v and the corresponding « vacuum state are defined in the earlier section.
In this context the expression for entanglement entropy for a given SO(1,3) principal quantum
number p can be expressed as

04)|2

(«) (
S(p,v,a) = — (1 + 1?;{,@) In (1 - !7,&“)!2) + Mln (!v},a)IQ)

(=) (14 £9). (3.150)

Then the final expression for the entanglement entropy in de Sitter space can be expressed as a
sum over all possible quantum states which carries SO(1, 3) principal quantum number p. Con-
sequently, the final expression for the entanglement entropy in de Sitter space is given by the
following expression:

o

Sra)= Y ZS(p,I/,Oz)—)VHs/ ) dp Ds(p) S(p,v,a) = ce(a,v)Vys / VLG | | (3.151)
States p=0 p=

where D3(p) = p?/2m? characterize the density of stat for radial functions on the Hyperboloid H3.
Additionally, it is important to note that the volume of the hyperboloid H? is denoted by the
overall factor Vigs. Here the regularized volume of the hyperboloid H3 for » < L. can be written
as:

Le
Vas = Vg2 /’r‘:O dr sinh?r large L. g [eQLC — 4LC] = {AENT —mIln AgnT +7ln <g)}
1
= Ve [ +lnn} . (3.152)
n
where AgnT is the entangling area and we use Vg2 = 47. Here the cutoff L. can be written as,

L. ~ —Inn. In this context we define regularized volume of the hyperboloid H? as, VI%,,EG =
Vs3/2 = 2m.

91f we follow the equivalent ansatz of density matrix as mentioned in Eq (3.127), the expression for entanglement
entropy for a given SO(1, 3) principal quantum number p can be expressed as:

G- hr) In (b5 2) (14 £ (1= )
— 1P
—af f 0 (14 £ (1= 1)) = af 500 (1= P ) I (14 1) (3.149)

For our computation we will not further use this ansatz.

(@) () |71<’a) ‘2

Sp,v,a) = —lnay” — a,
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Here in 3 + 1 D in presence of a vacuum long range quantum correlation is measured by
ce (e, ), which is defined as:

ce(, V) = Sintr(a,v) =

f(a) (@) (a) (a)
(1+1:f]§a>>z + (1—fp )1n(1+f,, )V , (3.153)

where the integrals Z(®) and V can be written in 3 4+ 1 dimensional space-time as:

1 [ | 'y(a) 2
70 =2 [" [ (1= bP) ¢ A (R) | sy
T Jp= @) |2
p=0 (1-hip)
1 [ 9
V=—— dp p*. (3.155)
™ p=0
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(a) Normalized entanglement entropy vs v in 3 + 1 (b) Normalized entanglement entropy vs v in 34+1 D
D de Sitter space in presence of o vacuum and in de Sitter space in presence of a vacuum and axionic
absence axionic source ( ,SC“) =0). source ( ;S‘”) =1077).

Figure 14. Normalized entanglement entropy Sins/S,—1/2 Vs mass parameter 12 in 3+ 1 D de Sitter

space in absence of axionic source ( fz(,a) = 0) and in presence of axionic source ( f,§“) =10"7) for ‘4’ branch

; ; (@) (@)
of solution of « vacuum i.e |y | and |T'pn
v = 1/2 result in presence of a vacuum.

. In both the situations we have normalized with conformal

Here it is important to mention that:

e Here the integral V diverges. To make it finite we need to regularize this by introducing a
change in variable by using z = 27p and introducing a cut-off Ac we get:

v ! / e dx z* Ag (3.156)

= —— T Tt = ——. )
81t J.—o 2474

e On the other hand, for Case I we get one solution for ]’y]ga)] as given by, \’y](;a)| = e P

(Cosh2 o —sinh?® a 6_2””)_1. Using this solution we compute the integral Z(®) for Case I
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(a) Entanglement entropy vs « in 3+ 1 D de Sitter (b) Entanglement entropy vs « in 34+ 1 D de Sitter
space without axionic source (f,(,a) =0). space with axionic source ( ,S") =1077).
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(c) Entanglement entropy vs « in 3 4+ 1 D de Sitter (d) Entanglement entropy vs « in 34+ 1 D de Sitter

space with axionic source ( ,Sa) =1077). space with axionic source ( éa) =1077).

Figure 15. Entanglement entropy Sin+-(«) vs parameter o in 3+ 1 D de Sitter space in absence of axionic
source ( fz(,a) = 0) and in presence of axionic source ( fl(,a) = 1077) for ‘+’ branch of solution of |7,(7a)| and
|F1(,0‘72| Here we fix the value of the parameter v? at different positive and negative values including zero.

for any arbitrary value of the parameter o. Further we use the rescaled SO(1,3) quantum
number x = 27p with cut-off Ac to compute this integral. Consequently we get:

1 Ac —x
Tl — —4/ dr 2> |In[1-— € 5
8% Ja=0 (cosh2 a — sinh? « e—z)

e*l‘
B 2+ 21In (cosh? o — sinh? a e ™* . (3.157)
<(COSh2 o — Sinh2 o 6_17)2 _ e—r) { ( )}

Next if we take the Bunch Davies limit o = 0 and f}ga) — 0, Ac — oo then we get:

1 3 1
Cg <O, 2> = Cg¢ (07 2) = % . (3158)
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Similarly, for Case I we get another solution, |'y}(,a)| = e (cosh2 o — sinh? a e~ 27 ) - Using
this solution we compute the integral Z(®) for Case I for any arbitrary value of the parameter
a. Consequently we get:

1 Ac x
(@) — —4/ de 2> |In[1- € 5
8% Jr=0 (cosh2 a — sinh? a e—x)

6117

((cos.h2 a — sinh? a 6_5'3)2 — 695)

+ {z—2In (cosh2 o — sinh? o e ")} . (3.159)

Next if we take the Bunch Davies limit o = 0 and f,@ — 0, Ac — oo then we get:

1 3
Cé (0, 2) =cg (O, 2) — 00| . (3.160)

e Further we analyze the integral Z(®) using both of the solutions obtained for arbitrary v and
v = 3/2. Following the previous logical argument here we also put a cut-off Ac to perform
the integral on the rescaled SO(1,3) quantum number x = 27p and after performing the
integral we will check the behaviour of both of the results. First of all we start with the
following integral with “+” signature, as given by:

sy _ L [he
gt z=0

2G4 (z,v, )
(1 -2G4(z,v,c))

dr z° [ln (1 -2G4(z,v,a)) + n (2G4 (z,v, 04))] )

(3.161)
where G4 (z,v, ) for any arbitrary value of the parameter « is defined as:

Gi(aj> v, Oé) = [(1 + |"f7’LR,L|4 + |mRR|4

1
4|mrL|?
—2irr|* — MRr (MRe)? — MaL(MRR)?) £ { (-1 — [Arel* - [ArR[!

1
N L2 - L9 - 2 3
+2|mRrRr[* + Mir (MRy)? + MRy (MRR)?) — 4’mRL|4} 2} ; (3.162)

where the components mrr = mrr and mgry = mpr are redefined in terms of the new
variable x = 27p.

Here small axion mass (¥? > 0) limiting situations are considered in v = 1/2 conformal

mass as well in v = 3/2 case which is appearing in Case I in presence of an additional
arbitrary parameter a. Additionally, we consider large axion mass (v? < 0 where v — —i|v|)
limiting situation which is important to study the physics from Case Il.In this large axion
mass limiting situation we consider the window of SO(1,3) principal quantum number is
0 < p < |v|. Consequently, the entries of the coefficient matrix m can be approximated as:

- cosh(|v| —p) 2 [cosh2a cosh? 7r|v| — sinh 2asinh? rp + 3 sinh 27 |v]]
MRR = 3 5 ,  (3.163)
cosh(|v| + p) (e2m + e27Yl) cosh? a + (€2 + e27IVI) sinh? o
) 2

- cosh(|v| —p) 2 [(cosh2a + sinh 2«) cosh || —i—sinhﬂl/\]
MRL = 5 5 (3.164)
cosh(|v| 4+ p) (e2 4 €27I¥l) cosh® o + (€277 + e27¥1) sinh? o
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This implies that for a vacuum if we consider the large axion mass (> < 0 where v —

—i|v|) limiting situation we get always real value for mrgr and imaginary value for mgr,.

Consequently one can esaily reduce the four sets of Eqn. (3.101), Eqn. (3.102), Eqn. (3.103)

and Eqn. (3.104) into two sets of equations as exactly we have done in ref. [14] for Bunch

Davies vacuum. In this large axion mass (¥ < 0 where v — —i|v|) limiting situation the
(a)

two solutions for the 7, ' for a vacuum are given by:

A & s (1 il — i) £\ (Lt e ig)” — Almmc | (3.165)
|mRL|

Small mass limiting situations are explicitly appearing in v = 1/2 and v = 3/2 case which we
have discussed for Case I. For our study here we consider large mass limiting situation which
is important to study the physical outcomes from Case II. In this situation we divide the
total window of p into two regions, as given by 0 < p < |v| and |v| < p < Ac. Here in these
region of interests the two solutions for yé,a) in presence of a vacuum can be approximately
written as:

(@) vl (1 + tan ) for 0 < p < |v|
= 3.166
%] e ™ (1+tana) (1 + tan o 627r|y\) . R ( )
(1 + tan? o e—27P) or [v| <p < Ac/2m.
and
eVl (1+tana) for 0 < p < |/
= (3.167)

€™ (1+tana) (14 tana e27r|”‘)
(1 + tan? a e—27P)

for |v| < p < Ac/27.

As a result, for large mass limiting range the a parameter dependent regularized integral
Ifa) for the first solution for wf,o‘)| can be written as:

[ A(v)

8t

[ln <1 — e 2™ (1 4 tan a)2>

_ —2mv 2
Ifa) _ N (2In (1 +tana) — 27v) e (1+tanc) for 0 <z < 2y (3.168)

(1 — e 2™ (1 + tan a)z)

B(v,a, A
_(’7’40) for 27jv| < x < Ac.
8w

and for the second solution for \’yz(;a)\ we get:

Av)

8t

[ln (1 — e*™ (1 + tan a)2>

2In (14t 27v) €™ (1 + tana)?
Ifa) _ _|_( n(l+tana) + 2mv) e (1 +tana) for 0 <z < 2n[v| (3.169)

<1 — 2™ (1 + tan a)Q)

C A
_M for 27r|y‘ <z <Ac.
\ 8md
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In Eq. (3.168) and Eq (3.169) coefficients A(v), B(v, o, Ac) abd C(v, a, Ac) are defined by
the following expressions:
2y 87T3 3

Alv) = / dr 2* = — 13, (3.170)
=0 3

Ac e (1+ tana)? (1 + tana 271V ?
B(v,a,Ac) =~ / dr 2® |In|1-— ( Il 5 )
w=2mv (1 —tan? o e~?)

e*”(1+tana)2(1+tana 62”|V\)2
(1—tan2? o e—7)?

<1 . e—z(1+tana)2(1+tana 52W|V|)2>

(1—tan? o e—%)?

_l’_

{2 In((1 + tan «) (1 + tan o ezn\u|))

—2In (1 - tan? o e ) —a}], (3.171)

Ac T (] 4t 21+t 2m|v|) 2
C(l/,a,Ac):/ dz z* [ln <1—e (1+tana)” (1 +tana )

(1—tan?a e—*)°

=27V
e” (14tan o)? (1+tana e27lv| )2
(1—tan? o e—%)?2

<1 B ez(l-i—tana)z(l—&-tana e2”|V|)2> {

(1—tan? o e—7)?

_|_

2In((1 + tan @) (1 + tan o egw‘l"))

—2In(1- tan® o e ") +a}]. (3.172)

Further within the window 0 < z < 27|v| we take the large mass limit |v| >> 1 in the first
solution for \'y}(,a)\ in presence of a vacuum:

20 1
‘ llimllfa) R~ %6_271—” (1+ tana)? {1 — —In(1+ tana)} [1 +(1+tana)? O (1/_1)} .
v|>>

TV

(3.173
This result is perfectly consistent with the result obtained for Bunch Davies vacuum (o = 0
in ref. [14], where we get:

)
)

4
lim 7\ ~ %6*2” [1+0w™)]|. (3.174)

lv|>>1

Similarly the integral V can be written as:

1 27|y | vl3
—4/ dx xQZ—L for 0 < x < 27|v|
81 =0 3w
) Ao 1 (3.175)
—— de 22 = ——— (AL — 873|v)3) . for 2 <z < Ac.
Consequently in the large mass limiting situation (0 < x < 27|v|) we get the following
expression for the entanglement entropy:

(@) 21/4
lim cg(a,v) ~ |1+ —L—— | Z—e 2™ (1 + tana)’

lv|>>1 1+ féa) 3
1 _
X {1 - Eln(l —i—tana)} [1 +(1+tana)?0O (v 1)}
3
~ (1= ) (1 ) £ (3.176)
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Further in absence of the source contribution in the large mass limit the long range quantum
correlation can be expressed as:

20! 1
‘V|>iilr’r}p%0 cela,v) = %6_27”/ (14 tan o)? {1 - In (1 + tan a)}
X [1 + (1+tana)? O (I/_l)} , (3.177)

which is also consistent with the Bunch Davies (a = 0) result [14]:

4

: ~ QL —2mv -1
|V|>i13}p_>0c6(0,y) ~ e 1+o0 |, (3.178)

For the second solution of \’y]()a)| in presence of o vacuum, we get:
3
lim Ifa) - [ln (1 — €™ (1 + tan a)2>
lv[>>1 3

(2In (1 4 tana) + 27v) €*™ (1 4 tana)?

(1 — 2™ (1 + tan a)2>

(3.179)

This result is perfectly consistent with the result obtained for Bunch Davies vacuum (a = 0)
in ref. [14], where we get:

(3.180)

3
lim 79 = -2 [m (1—e*™) +

2y >
lv[>>1 3

Consequently in the large mass limiting situation (0 < x < 2w|v|) we get the following
expression for the entanglement entropy:

7f1§a) ) V—g [ln <1 — €™ (1 + tan a)Q)

L+ ) 37

lim cg(a,v) = — (1 +
v|>>1

(2In (1 4 tan @) + 27v) 2™ (1 + tana)?
(1 —e?™ (1 + tan oz)2>

- (1 - f,ga>) In (1 + f}f”) ;i (3.181)

Further in absence of the source contribution in the large mass limit the long range quantum
correlation can be expressed as:

3

v
I , z——[l <1— 270 (1 4 ¢ 2)

‘V‘>>1lr%pﬁoc6(a V) 3. I e ( an o)

(2In (1 + tana) + 27v) €2™ (1 + tan a)? . (3.182)

(1 — 2™ (1 + tan a)2>

which is consistent with the Bunch Davies result (o = 0), as given by [14]:

v 21y 2™

li 0,v)=—o= [In(1—&*™) 4 —p— 3.183
|V‘>>lg}p_>0 Cﬁ( ’V) 3 |:Il ( € ) + (1 _ e27rzz):| ( )
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Small Axion Normalized Parameter Normalized
mass mass entanglement entropy « entanglement entropy
parameter Mazion | H % %
v from BD vacuum from o vacuum
(v? >0) (without source) (without source)
0,1,2,3 35 VTG V2T 0.8 <a=0
a=0.03= 0.9
a=0.1= 1.15
a=03= 2.15
1,851 V2,0, 2i,/10i 1 “a=0
a=0.03 = 1
a=0.1= 1
a=03= 1
v2,V3,v/5 1,84, Y1, 0.95 “a=0
a=0.03= 0.96
a=01= 1.03
a=03= 1.1
Table 2. Comparison between the normalized entanglement entropy obtained from BD vacuum and «

vacuum in absence of axion source (f,EO‘) =0) for v2 > 0.

In fig. (14(a)) and fig. (14(b)), we have demonstrated the behaviour of entanglement entropy
in D = 4 de Sitter space in absence ( f,S"‘) = 0) and in presence ( fIS"‘) = 1077 of axionic source
with respect to the mass parameter v2. In both the cases we have normalized the entangle-
ment entropy with the result obtained from conformal mass parameter ¥ = 1/2 in presence
of a vacuum. In fig. (14(a)), it is clearly observed that in absence of axionic source in the
large mass regime (where v* < 0) the normalized entanglement entropy Siner(a)/S,—1/2()
asymptotically approaches towards zero. In the large mass regime the measure of long range
correlation (or more precisely the entanglement entropy) in presence of o vacuum for axion
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Small Axion Normalized Parameter Normalized
mass mass entanglement entropy « entanglement entropy
/7 cg(0,v) cg(a,v)
parameter Mazion | H 6 (0.1) co(ad)
v from BD vacuum from o vacuum
(v? >0) (with source) (with source)
0,1,2,3 35 VTG V2T 0.99999 “a=0
a=0.03 = 0.99998
a=0.1= 1.00004
a=03= 1.00026
1,851 Vv2,0,2i,4/10i 1 =a=0
a=0.03 = 1
a=0.1= 1
a=0.3= 1
V2,v3,v5 18; V1, 0.99998 “a=0
a=0.03 = 0.99999
a=01= 1.00001
a=03= 1.00003
Table 3. Comparison between the normalized entanglement entropy obtained from BD vacuum and «

vacuum in presence of axion source (f,E“) =10"7) for v? > 0.

can be expressed for ’y,()a) = e~ Tmazion/HI (1 4 tan ) as:

ce (a ’I/’ ~ mam’on) _ s . (Oé |I/| ~ mam’on)
s H intr 5 H
_ 2T™Mggrion

%

74 (1 4 tana)?

2 (maxion ) 4
e

3 H
H H
X {1 ———In(1 +tana)} [1 + (1 +tana)?* O <>} ,
TMazion Maxion
(3.184)
in which by fixing & = 0 we get the result for Bunch Davies vacuum as given by [14]:
m, ; m, ; 2 m, ! 4 _QTrmaccion
co (01 ) — i (0 M) 2 (M (g1

If we further compare Eq (3.184) and Eq (3.185) then it is clearly observed that in pres-
ence of a vacuum one can able to get considerably large entanglement compared to the
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Large Axion Normalized Parameter Normalized
mass mass entanglement entropy « entanglement entropy
parameter Mazion | H ::((87’;)) ;66(%?
v from BD vacuum from « vacuum
(1? <0) (without source) (without source)
3 s 0.55 <a=0
oa=0.03= 0.63
a=01= 0.7
a=03= 1.12
i Vi3 0.12 “a=0
a=0.03= 0.15
a=01= 0.2
a=03= 0.35
V2i v 0.02 =a=0
oa=0.03= 0.04
a=01= 0.06
a=03= 0.1

Table 4. Comparison between the normalized entanglement entropy obtained from BD vacuum and «
vacuum in absence of axion source (f,EO‘) =0) for v? < 0.

result obtained for Bunch Davies vacuum (a = 0) for large mass regime (v?> < 0). To
demonstrate this clearly we have depicted the numerical values of the entanglement entropy
for « = 0 (red), o = 0.03 (blue), o = 0.1 ( ) and @ = 0.3 (violet). Now from
the fig. (14(a)) it is observed that in v? > 0 region Sy (a)/S,=1/2(a) reach its maximum
value at a = 0.1 ( ) and o = 0.3 (violet) with v = 0 (or Mmagion = 3H/2), as given
by, (Sintr(0.1)/8,=1/2(0.1))  _ ~ 1.2 and (Sintr(0.3)/S,=1/2(0.3)), .~ 2.1. On the
other hand, at a = 0.03 (blue) and @ = 0 and o = 0.3 (red) with v = 1/2 (or Magion = V2H)
the maximum value of Sinsr(a)/S,—1/2(c) is given by, (Si"tr(0'03)/SV:1/2(0‘03))max,u:1/2

(Sintr(0)/511:1/2(0))1113)(7”:1/2 ~ 1. Further if we consider the interval 3/2 < v < 5/2 then

Sintr(a)/Sy=1/2(c) show one oscillation with different amplitude for all values of the pa-
rameter «. After that it reach its maximum value for @« = 0 and a = 0.03, as given

bYa (Sintr(0'03)/SV:1/2(0'03))maX73/2<V<5/2 ~ (Sintr(0)/SV:1/2(O))max73/2<y<5/2 ~ 1. On the
other hand, Sintr(@)/S,—1/2(a) reach its minimum value for & = 0.1 and o = 0.3, as given
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Large Axion Normalized Parameter Normalized
mass mass entanglement entropy « entanglement entropy
/7 ceg(0,v) cg(a,v)
parameter Mazion/H 6(0,1) ce (ol
v from BD vacuum from « vacuum
(1? <0) (with source) (with source)
i s 0.99987 <a=0
oa=0.03= 0.99988
a=01= 0.99992
a=03= 1.00002
i v 0.99976 “a=0
a=0.03= 0.99978
a=01= 0.99981
a=03= 0.99986
V2i v 0.99973 =a=0
oa=0.03= 0.99974
a=01= 0.99975
a=03= 0.99976

Table 5.
vacuum in presence of axion source (f,E“) =10"7) for v? < 0.

Comparison between the normalized entanglement entropy obtained from BD vacuum and «

by, (Sintr(o'l)/svzlﬂ(0'1))min,3/2<u<5/2 ~ 1 and (Sintr(0'3)/syzl/2(0'3))min,3/2<u<5/2 ~ 1
Similarly in the interval 5/2 < v < 7/2 we can observe the same feature for the same values of
a with larger period of oscillation. In fig. (14(b)), the significant role of axionic source term
is explicitly shown. In both v < 0 and v? > 0 regime the behaviour of Sintr(a)/Sy=1/2(c) is
exactly same as depicted in fig. (14(a)). But in presence of axionic source term the amount
of Sintr(a)/Sy=1/2(c) increase for a = 0, a = 0.03 and decrease for a = 0.1, a = 0.3 com-
pared to fig. (14(a)). Also it is important to note that, the amplitude of the maximum and
minimum of the oscillations change in presence of axionic source term.

On the other hand, for v, = emlmazion/H| (1 4 tan o) the entanglement entropy for axion in
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the large mass limiting range is given by the following expression:

Mazion Mazion
co (o0 TG) = S o )

]. i 3 TMazion
(mamon) [ln <1 e (1+ tan 04)2)

z —_—
3T H
2T Magzion

(2In (1 + tan @) + 2™Mazion) ¢~ (1 4 tana)?

2mmagi , (3.186)
(1 —e # " (1+tan a)z)
in which by fixing o = 0 we get the result for Bunch Davies vacuum as given by:
cq (0. Iv] = ) = Singr (0, ] = o)
< () ()
Lt (3.187)

2T Mazion ’
)

However, as mentioned in ref. [14] that due to the complicated sturcture of this solution we
have not use this solution for our further discussion.
Next, in fig. (15), we have depicted the behaviour of entanglement entropy Sintr(c) with

respect to the parameter « in absence ( f;a) = 0) and presence ( féa) = 1077) of axionic source
for the mass parameter v? < 0 and v? > 0 respectively. In fig. (15(a)) and fig. (15(b)) it is

observed that a crossover takes place for v? = 1/4,9/4,25/4 ( ), V2 =1/16,9/16,25/16
(blue) and v? = 0 (red) with small values of the parameter . We also observe that for v? =
1/4,9/4,25/4 ( ) entanglement entropy decreases with increasing value of the parameter

a. On the other hand, for v? = 1/16,9/16,25/16 (blue) and v* = 0 (red) entanglement
entropy increases with increasing value of the parameter . Additionally, we observe that, in
presence of axionic source the entanglement entropy is significantly larger compared to the
result obtained in absence of source contribution. In fig. (15(c)) and fig. (15(d)) it is observed
that no crossover takes place for 1?2 = —1/2 ( ), v2 = —1/4,-9/4,—25/4 (blue) and
v? = —1/16,-9/16,—25/16 (red) with all values of the parameter a. Also it is important
to note that, for all values of #? < 0 entanglement entropy increases with increasing value of
the parameter a.

In table (2) and table (3), we have mentioned the numerical estimate of the normalized
entanglement entropy in absence ( f;,ga) = 0) and presence ( f;a) = 1077) of axionic source
contribution for Bunch Davies vacuum and o vacuum with small mass parameter (12 > 0).
On the other hand, in table (4) and table (5), we have mentioned the numerical estimate
of the normalized entanglement entropy in absence ( f;a) = 0) and presence ( féa) =1077)
of axionic source contribution for Bunch Davies vacuum and « vacuum with large mass
parameter (12 < 0). Here numerical results from both v > 0 and v? < 0 region suggests that
the quantum entanglement is significantly larger in presence of axionic source, compared to
the result obtained in absence of axionic source. It is also important to note that, in presence
of axionic source contribution in small « region (lying within the window 0 < a < 0.3), A.
entanglement entropy is insensitive to the change in the parameter c. B. entanglement
entropy increases with the increase in the value of the mass parameter |v| & mazion/H. But
in absence of axionic source both the observations from the numerical results are completely
opposite.
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3.4 Computation of Rényi entropy using a vacua

In this context one can further use the density matrix to compute the Rényi entropy for a vacuum,
which is defined as:

1

Sq(p, v, ) = . In Tr [pL(p, )]?. with ¢ > 0. (3.188)
—4q

For the Case I and Case II the of the obtained solution for o vacuum with a given SO(1, 3)

principal quantum number p can be written as:

Supn) = | Lo (1 R) - 1o (1= ) | - o (1 559)
—k
1 < (1 1)
In |1 IC,(fl)k . (3.189

using which the interesting part of the Rényi entropy in de Sitter space for a vacuum can be

written as:
o

1
Suimtelonr) = = [ dp 2 S p.vi0). (3190)
p:

Now to study the properties of the derived result we check the following physical limiting
situations as given by:

o If we take the limit ¢ — 1 limit then from the Rényi entropy in o vacuum we get, lim,_,; Sy(p, v, ) #
S(p,v,a). which shows that in presence of axionic source, the entanglement entropy and
Rényi entropy are not same in the limit ¢ — 1. Now if we take further f, — 0 then
entanglement entropy and Rényi entropy both are same.

e Further if we take the limit ¢ — oo limit then from the Rényi entropy in a vacuum we get:

()
. 1+
lim Sy(p,v,a) = —In[pr]max ~ In % . (3.191)
e 1—|y ?

which directly implies the largest eigenvalue of density matrix. Now if we take further f, — 0
in Eqn (3.191) then entanglement entropy and Rényi entropy both are same.

Further substituting the expression for entanglement entropy S(p, v, a) computed in presence of
axion for o vacuum and integrating over all possible SO(1, 3) principal quantum number, lying
within the window 0 < p < 0o, we get:

Sintr(e, ) = [Myg+1n (14 ) M) + ML) (3.192)
where the integrals M 4, /\/lg?;) and M:(,f{q) can be written as:
I @) - L (1 = e

Mg = ﬂ/pzo dp p [1_qln(1 R s (Rl | P CRE)
@_ 1 ¢ [% 5 194
M27q 1 — q =0 pp, (3 9 )

(@)2) "

11 [ d @ﬂ%l)

M) = - dp p? In |1+ 1C,(fio))* (3.195)

1 =g Jp—0 k=1 (1 - \’YISQ)‘_%)

Here it is important to note that:
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e Here the integral Méaq) diverges. Further introducing a change in variable to x = 27p along
with a cut-off Ac the regularized version of this integral can be written as:

AC A3
@__ 1 4 do 22— — ¢ 9 3.196
Maa = “5rit—q ), ©T T o1y (3-196)
e Here for Case I we get one solution for h}(oa)\ as given by,
]’y]ga)] = ¢ ™ (cosh® @ — sinh® o 6727””)_1 : (3.197)

Using this solution we compute the integrals M( ) and ./\/l( ) for Case I with any arbitrary
value of the parameter . Further we use the rescaled SO(l 3) quantum number x = 27p
with cut-off Ac to compute this integral. Consequently we get:

1 AC —T
Mﬁaq) = dr z° q In|{1-— € 5
’ 8% Ja=0 1—q (cosh2 a — sinh? « e—w)
1 g
- In(1- ¢ — 11, (3.198)
1—gq (cosh2 a — sinh? o e—z) e
—k
11 : (1 e )
cosh® a—sinh“ o e=%
M) = wl_q/ da 22 In |14 1C(f{*)* k . (3.199)
o= k=1 1-— e
< (cosh2 a—sinh? a e_f)_%)

(a)

Here the exact expression for M /' is not computable in the small o (i.e. o << 1) limiting
range. To check the consistency of our derived result with the Bunch Davies case we further
take @ = 0 and Ag — oo limit, which gives:

_ @+ D@+1)

1 © 2
AclinooM 36047 (3.200)
Further taking ¢ — 1 and f,§°) — 0 on Eq (3.200) we finally get:
Iy 3\ (0)
6 (07 2> o (0’ 2) = B ae D Mia
@+ D+ 1
= 1 lim ———————~ = — 3.201
[0 e 36047 90’ (3.201)
lim lim lim M(O) =0, (3.202)

f(o) 0 q—1Ac—

which are perfectly consistent with the result obtained in refs. [14] for » = 1/2 and v = 3/2.

Similarly, for Case I we get another solution,

\7(0‘)| = e™ (cosh® a — sinh? o 6_27rp)_1 . (3.203)
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Using this solution we compute the integral Z(® for Case I for any arbitrary value of the
parameter «. Consequently we get:

o 1 Ac x
ng):84/ dx z° llq 111(1— 5 € 5 2>
’ T Jo= —q — g -z
0 1 (cosh « — sinh aeexq) (3.204)
Ly, <1 . )] |
1 )2‘1

—4q (cosh2 a —sinh?a e—*

Further To check the consistency of our derived result with the Bunch Davies case we take
a=0,qg—1and fISO) — 0 with large Ac, which gives:

1 3
c6(0,=)=c6(0,2) = lim lim lim M
2 2 féO)HOqHI Ac—Large 4
1
@ [A% In (1 — eAC) + 4A%}L12 (eAC)
47t
45 |
lim lim lim M) =0, (3.206)
f(O)_>0q—>1 Ac—Large i
p

— 8AcLis (¢¢) + 8Liy () — (3.205)

which are perfectly consistent with the result obtained in refs. [14] for » = 1/2 and v = 3/2.

e On the other hand for arbitrary v and a (Case II) we get:

A
MO = L 2 (- 26. (@ va)
1,9 87'('4 =0 1— q +\<L Y,y

¢ In (1 — (2G«(z,v, a))q)] , (3.207)

- 1-2G T, UV, —k
1+ ;qu(f;Sa))k (g _ (2Gi£x, ” aii_k)] . (3.208)

o 1 1 [he
Méq) = / dz 2° In

@1_q =0

where G4 (z,v,q) is defined in Eqn (3.162). we consider large axion mass (v < 0 where

v — —i|v|) limiting situation which is important to study the physics from Case II. In this
large axion mass limiting situation we consider the window of SO(1,3) principal quantum
number is 0 < p < |v|.

(a)

3,4 for the first solution for m()a)’ in presence

As a result, the regularized integral M](Laq) and M
of o vacuum can be expressed as:

Aw) [ 4 1, (1 — e 2™ (1 4 tan a)z)

&1t |1—¢q
1
M) = —i (1= (1 + tan a)Zq)} for 0 <z <2ry|  (3.209)
D(v,a, A
% for 2r|v| <z < Ac.
Y[
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2 2\ F
(1 —e "™ (14 tan ) )

Av) 1 1 X
—— In |14 CL(flY) for 0 < z < 27|y
smh 1—g ; : (1 — e2™k (1 + tan oz)72k>
1 1 [he
o' R — d 2
My =4 31 1— q /x:m v (3.210)

—k
<1 e‘“(l—&—tana)Q(l—l—tana 62””)2>

(1+tan2 o e—*)?2

q
In |1+ Zqu(féa))k for 27|v| < z < Ac.
k=1

(1 . erk (1+tan o) " 2F (1+tan o 627”’)72k>
(1+tan2 a e—z)~ 2%

and for the second solution for |%(7a)| in presence of o vacuum we get:

.
J;lfri) [1 z . In (1 — €™ (1 + tan a)2)
1
Mgch) - — 1 In (1 — e?mva (1 + tan 04)2(1)] for 0 < z < 27|v| (3.211)
—q
A
M for 27|v| < x < Ac.
8t
q 1 2y (1 4t )2 —k
1 ( —e an« )
A(Z) —— In |1+ Zqu(f,S"‘))k for 0 < z < 27|v|
8t 1—gq =1 (1 — e~ 2k (1 + tan a)72k>
1 1 [he
_— da x>
Miy = { 871 —¢ /x:m v (3.212)

(1 e*(1+tan a)2(1+tana 627’”)2 > -k
q - Zan2
(1+tan2 o« e—7)
q (c)\k
In 1+ Z Ck(fp ) (1 . e*I’“(l—&-tana)*%(l—I—tana 8271"’)72]6)
k=1 (1+tan? q e—#)~2F

for 27|v| < x < Ac.

Here the coefficient function A(v) is defined in Eq (3.171) and other o parameter dependent
functions D(v, a, Ac) and W(v, o, Ac) are defined as:

w1 e (1+ tan a)? (1+ tana 627”’)2
n J—
l—¢q (1+ tan?a e—%)°

1 e~ (1 + tana)? (1 + tana 62’”’)2q
R " <1 ) (1+ tan? o G_I)Qq - G2

to e” (1+ tana)? (1 + tan o e2™)?
W(VvaaAC>Q) = / dx :I)Q L]n 1— ( ) ( - )
e=2mv 1-q (1 + tan? o e~?)

4 (1 + ¢t 2q 14+t 211\ 29
w1 ¢ (1+ tana)™ (1 + an2a e’™) (3214
(1+ tan? o e=*)™

Ac

D(Va «, AC: Q) = /

=27V

dr z° [

1—g¢q

Further, using the results obtained from the first solution for ]’yl(,a)], within the range 0 <
r < 27|v| with 2 < 0, we take ¢ — 1 limit. This gives the following simplified expression
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Renyi entropy in dS (D=4) with ¢=0.9 and f,= Renyi entropy in dS (D=4) with q=0.9 and f,,,=10'7
T T

12— g=0
— a=003
. 10- — a=0.
% 3 — a=03
g S
! E
q @
o) g°
g B
U;; Uf 4
2+
1)
‘ ‘ oL : :
4 6 2 0 2 4 6
2
(a) Normalized Rényi entropy vs v? in 3 + 1 D de (b) Normalized Rényi entropy vs v in 3 +1 D de
Sitter space without axionic source ( Z(,O‘) =0). Sitter space without axionic source ( f;(,a) =107").

Figure 16. Normalized Rényi entropy Sy intr(c)/Sq=1/2(c) vs mass parameter 12 in 3+ 1 D de Sitter
space in absence of axionic source ( f1§°‘> = 0) and in presence of axionic source ( fpa) =10"7) for ¢ = 0.9
and @ = 0 (red),a = 0.03 (blue),a = 0.1 (green),a = 0.3 (violet) with ‘+’ branch of solution of |'y£a)|
and |T 1(702| Here we set the cut-off Ac = 300 for numerical computation.

Renyi entropy in dS (D=4) with ¢=0.7 and f,=0 Renyi entropy in dS (D=4) with ¢=0.7 and fp=10‘7
200 T T T T T T

o

sq,inlr(a)lsq,v=1lz(a)

sq,intr (a)lsq, v=1/2 (a)

0.0

(a) Normalized Rényi entropy vs v? in 3 + 1 D de (b) Normalized Rényi entropy vs v in 3 +1 D de
Sitter space without axionic source ( fz(,o‘) =0). Sitter space without axionic source ( f,S"‘) =107").

Figure 17. Normalized Rényi entropy Sy intr(c)/Sq=1/2(c) vs mass parameter 12 in 3+ 1 D de Sitter
space in absence of axionic source ( f1§°‘> = 0) and in presence of axionic source ( ,S“) =1077) for ¢ = 0.7
and a = 0 (red),a = 0.03 (blue),ax = 0.1 (green),a = 0.3 (violet) with ‘4’ branch of solution of |'yl(,a)|
and |1"1(702| Here we set the cut-off Ac = 300 for numerical computation.

for the integral Mgaq) :

—27v 2
im M@ — V3 | 2(1+tana)? {v — 2 In(1 + tana)} In (1 —e?™ (1 + tana) ) (3.215)
e T g (2™ — (1 + tan)?) T T
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Renyi entropy in dS (D=4) with ¢=0.5 and f,=0 Renyi entropy in dS (D=4) with ¢=0.5 and fp=10'7

— a=0
— a=0.03
— a=0.1

— a=0.3

Sq |nlr(a)lsq v=112(a)
Sq.intr (@) Sq,v=1/2(a)

-4 =2 0 2 4 6

(a) Normalized Rényi entropy vs v? in 3 + 1 D de (b) Normalized Rényi entropy vs v in 3 +1 D de
Sitter space without axionic source ( Z(,O‘) =0). Sitter space without axionic source ( f,S"‘) =107").

Figure 18. Normalized Rényi entropy Sy intr(c)/Sq=1/2() vs mass parameter 12 in 3+ 1 D de Sitter
space in absence of axionic source ( f1§°‘> = 0) and in presence of axionic source ( fpa) =1077) for ¢ = 0.5
and a = 0 (red),a = 0.03 (blue),ax = 0.1 (green),a = 0.3 (violet) with ‘4’ branch of solution of |'yl(,a)|

and |1"1(702| Here we set the cut-off Ac = 300 for numerical computation.

Renyi entropy in dS (D=4) with ¢=0.3 and f,=0 Renyi entropy in dS (D=4) with g=0.3 and f,,=10'7

— a=0

sq,intr(a)lsq,v=112 (a)
Sq.intr(@)/Sq,v=112(x)

(a) Normalized Rényi entropy vs v? in 3 + 1 D de (b) Normalized Rényi entropy vs v in 3 +1 D de
Sitter space without axionic source ( ,S"" =0). Sitter space without axionic source ( ,Ea) =1077).

Figure 19. Normalized Rényi entropy Sy intr(a)/Sq=1/2(c) vs mass parameter 12 in 3+ 1 D de Sitter
space in absence of axionic source ( f,§“> = 0) and in presence of axionic source ( f,ﬂ”‘) =10"7) for ¢ = 0.3
and a = 0 (red),a = 0.03 (blue),ax = 0.1 (green),a = 0.3 (violet) with ‘4’ branch of solution of |'y:,(,°‘)|
and |F,(;ar)L . Here we set the cut-off Ac = 300 for numerical computation.

using which for Bunch davies vacuum (a = 0) we get [14]:

3 —2mv
) 0 _ v 2u _ln(l—e )
;l—% My, = 3\ - . (3.216)
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Renyi entropy in dS (D=4) with =01 and f,=0 Renyi entropy in dS (D=4) with g=0.1 and fp=1[]'7
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(a) Normalized Rényi entropy vs v? in 3 + 1 D de (b) Normalized Rényi entropy vs v in 3 +1 D de
Sitter space without axionic source ( Z(,O‘) =0). Sitter space without axionic source ( f,S“) =1077).

Figure 20. Normalized Rényi entropy Sy intr(c)/Sq=1/2(c) vs mass parameter 12 in 3+ 1 D de Sitter
space in absence of axionic source ( f1§°‘> = 0) and in presence of axionic source ( fpa) =1077) for ¢ = 0.1
and @ = 0 (red),a = 0.03 (blue),ax = 0.1 (green),a = 0.3 (violet) with ‘+’ branch of solution of |"/1(,O‘)|
and |T 1(,?‘,2|.Here we set the cut-off Ac = 300 for numerical computation.

Renyi entropy in dS (D=4) with g-e0 and £,(¥=0 Renyi entropy in dS (D=4) with g0 and f,{¥=10"
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(a) Normalized Rényi entropy vs v? in 3 + 1 D de (b) Normalized Rényi entropy vs v2 in de Sitter space
Sitter space without axionic source (fp = 0). with axionic source (f, = 1077).

Figure 21. Normalized Rényi entropy Sy oc,intr(0t)/Sq—00,y=1/2() Vs mass parameter 2in3+1Dde
Sitter space in absence of axionic source ( ,Sa) = 0) and in presence of axionic source ( f,?“) = 1077) for
q — oo and o = 0 (red),a = 0.03 (blue),a = 0.1 (green),a = 0.3 (violet) with ‘+’ branch of solution of
|fyp0‘)\ and |F(?§)L|, which quantifies largest eigenvalue of density matrix. Here we set the cut-off Ac = 300

for numerical computation.
Now further using |v| >> 1 approximation in Eq (3.215) we get:

4
: (@ _ 27 _om 2, 1 2 A1
|y|>1>1111’1q_>1./\/ll,q =3 (14 tan «) {1 - In(1+ tana)} [1 + (1 +tana)” O (v )} ., (3.217)
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Figure 22. Rényi entropy Sy intr(cr) vs parameter « plot in 3+ 1 D de Sitter space in absence of axionic
source (f,?") =0) for ¢ = 0.1, ¢ = 0.3, ¢ = 0.5, ¢ = 0.7, ¢ = 0.9 with ‘+’ branch of solution of |’y,()a)| and
[Tl

which is consistent with the Bunch Davies limiting result [14]:

9 4
I OxZ e 140 (). 3.218
> 1go1” b e I+o ()] (3.218)
In this context further if we take the sourceless limit fpa) — 0 then the integral /\/l:())aq)
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Figure 23. Rényi entropy Sy intr(c0) vs parameter o plot in 3+ 1 D de Sitter space in presence of axionic
source (flgo‘) =10"") for ¢ = 0.1, ¢ = 0.3, ¢ = 0.5, ¢ = 0.7, ¢ = 0.9 with ‘+’ branch of solution of |’y,()a)| and
ivel)

vanishes:

lim M :(ﬁ])

q—1,|v|>>1,fp,—0 ’

= 0. (3.219)

As a result in the large mass limiting situation with ¢ — 1 the long range correlation can be
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Figure 24. Rényi entropy Sy, intr(c) vs parameter « plot in 3+ 1 D de Sitter space in absence of axionic
source (fIS"‘) =0) for ¢ = 0.1, ¢ = 0.3, ¢ = 0.5, ¢ = 0.7, ¢ = 0.9 with ‘+’ branch of solution of |’y,()a)| and
[Tl

expressed in terms of Rényi entropy as:
. 204 —27v 2 1
lim Sgintr (@) = —e (1+tana) <1 — —In(1+ tanc)
g1, v[>>1,£5 0 3 (g

X [1 + (1 +tana)?* O (I/_l):|

= Sintr(@) = lim ce(a,v). (3.220)
lv|>>1,£ =0
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Figure 25. Rényi entropy Sy inir(c0) vs parameter « plot in 3+ 1 D de Sitter space in presence of axionic
source (fé“) =10"") for ¢ = 0.1, ¢ = 0.3, ¢ = 0.5, ¢ = 0.7, ¢ = 0.9 with ‘+’ branch of solution of |’y,()a)| and
[Tl

Further taking Bunch Davies vacuum (o = 0) we get [14]:

4
Sg.intr(0) ~ 2Le—m 1+0 (u—l)] = Sintr lim ce(0,v). (3.221)

lim
g—1,[u[>>1, f—0 3 v|>>1,£5%) =0
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Figure 26. Rényi entropy Sy intr(c0) vs ¢ plot in 341 D de Sitter space in absence and presence of axionic

source for « =0, a = 0.03 , & = 0.1 and o = 0.3 with ‘+’ branch of solution of |'y£a)| and |T'pn

(04)|.

Similarly using the results obtained from the second solution for \’y;(,a)], within the range
0 < z < 2x|v| with v2 < 0, we take ¢ — 1 limit. This gives the following simplified
expression for the integral Mgaq) :

TV 2
@ V3 |2e*™ (1+ tan o)® {v + In (1 + tan )} In (1 — ™ (1 +tana) )

lim M{) = — -
g1 14 3 | e™tan?a + 2e2™ tana + 2™ — 1 v ’
I M) =o0.

q—L|v[>>1,f,—0 ’

using which for Bunch davies vacuum (a = 0) we get [14]:

o 0 2 (21

e 5 — , lim
g—1 ’ 3 \e™—1 T g—1,|v[>>1,f,—0

As a result in the large mass limiting situation with ¢ — 1 the long range correlation can be
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Small Axion Normalized Parameter Normalized
mass mass Rényi entropy o Rényi entropy
/7 Sg,intr (0,v) Sq,intr (V)
parameter Mazion/H 7Sq,intr(ov%) 7‘sq,intr((¥v%)
v from BD vacuum from a vacuum
(v? >0) (without source) (without source)
0,1,2,3 3.5 VT Y215 |l 0.9,0.1, 00 0.85,1,0.8 <a=0
a=0.03 = 0.95,1.02,0.85
a=01= 1.25,1.04,1.05
a=0.3= 2.1,1.14,2.4
1,851 Vv2,0,2i,4/10¢ 0.9,0.1, 00 1,1,1 =a=0
a=0.03 = 1,1,1
a=0.1= 1,1,1
a=0.3= 1,1,1
V2 : 0.9,0.1, 00 0.95,1,0.9 =a=0
a=0.03 = 1.1,1.01,0.96
a=0.1= 1.01,1,1.05
a=0.3= 1.1,1.01,1.2
Table 6. Comparison between the normalized Rényi entropy obtained from BD vacuum and « vacuum

in absence of axion source (f,Sa) =0) for v2 > 0 and ¢ = 0.9, ¢ = 0.1 and q — oo.

expressed in terms of Rényi entropy as:

lim

Sq,intr (Oé) ~

g—1,|v|>>1,£5 0

Further taking Bunch Davies vacuum (a = 0) we get [14]:

lim

Sq,intr (O) ~

q—>1,|y\>>1,f1§0)—>0

2 2
V3 [ 2e2™ (1 +tana)? {v+In (1 +tana)} In (1 —e™ (1 +tana) )

V3 2V€27r1/

3 €2 tan? v 4+ 2e2™ tan o + 2™ —

Sintr(a) =

lim ce(a,v).

lv>>1,£*) =0

In (1 - 627”’)

3 \e2mw 1 o

= Sintr =

1

s

lim 06(0, l/). (3.226)
‘I/|>>1,féa)—>0

In fig. (16(a)), fig. (17(a)), fig. (18(a)), fig. (19(a)), fig. (20(a)), we have demonstrated the
behaviour of Rényi entropy for ¢ = 0.9, ¢ = 0.7, ¢ = 0.5, ¢ = 0.3 and ¢ = 0.1 with respect to
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Small Axion Normalized Parameter Normalized
mass mass Rényi entropy o Rényi entropy
parameter Mazion | H % %
v from BD vacuum from a vacuum
(v? >0) (with source) (with source)
0,1,2,3 3.5 VT Y215 |1 0.9,0.1, 00 0.2,0.99,0.8 <a=0
a=0.03 = 0.4,1.01,0.9
a=01= 0.78,1.04,1.05
a=03= 12,1.14,1.9
1,851 V2,0, 2i,/10i 0.9,0.1, 00 1,1,1 “a=0
a=0.03 = 1,1,1
a=0.1= 1,1,1
a=0.3= 1,1,1
V2 : 0.9,0.1, 00 1.1,1,0.95 =a=0
a=0.03 = 1,1.005,0.95
a=01= 1,1,1.1
a=03= 2,1.02,1.1
Table 7. Comparison between the normalized entanglement entropy obtained from BD vacuum and «

vacuum in presence of axion source (f,E“) =10"7) for v> > 0 and ¢ = 0.9, ¢ = 0.1 and q¢ — oo.

the mass parameter v2. Here we did the computation in D = 4 de Sitter space in absence
(£ = 0) of axionic source. Similarly in fig. (16(b)), fig. (17(b)), fig. (18(b)), fig. (19(b)),
fig. (20(b)), we have demonstrated the behaviour of Rényi entropy for ¢ = 0.9, ¢ = 0.7,
¢=0.5,¢=0.3 and ¢ = 0.1 with respect to the mass parameter 2. Additionally, the largest
eigenvalue of the density matrix (¢ — o0) in absence and presence of axionic source are
plotted in fig. (21(a)) and fig. (21(b)). Here we did the computation in D = 4 de Sitter space
in presence ( f}@ = 10~") of axionic source. In this both the cases we also have normalized
the Rényi entropy with the result obtained from conformal mass parameter v = 1/2 in
presence of a vacuum. For a given value of the parameter ¢ we have shown the plots for
a=0 (red), « = 0.03 (blue), a = 0.1 ( ) and « = 0.3 (violet) in both the cases. Here
we observe the following features:

— For ¢ = 0.9 case in absence of the axionic source (see fig. (16(a))) in the large mass
parameter range (2 < 0) normalized Rényi entropy asymptotically approaches towards
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Large Axion Normalized Parameter Normalized
mass mass Rényi entropy o Rényi entropy
parameter Mazion | H % %
v from BD vacuum from a vacuum
(1? <0) (without source) (without source)
i s 0.9,0.1, 00 0.64,0.95,0.30 <a=0
a=0.03= 0.65,1.004,0.31
a=01= 0.85,1.02,0.35
a=03= 1.15,1.08,0.85
i v 0.9,0.1, 00 0.25,0.98,0.05 “a=0
a=0.03 = 0.35,0.99,0.10
a=0.1= 0.25,1.005,0.10
a=03= 0.45,1.065, 0.20
V2i ¥ 0.9,0.1,00 0.05,0.97,0.04 “a=0
oa=0.03= 0.10,0.975,0.02
a=0.1= 0.02,0.99,0.05
a=03= 0.15,0.965,0.04
Table 8. Comparison between the normalized Rényi entropy obtained from BD vacuum and « vacuum

. . [
in absence of axion source ( f,S )

zero value. On the other hand in the small mass parameter range (12 > 0) it show
Here the amplitude of the oscillation is larger for
a = 0.3 compared to the other values of o. Also it is important to note that, at
v=1/2,v=3/2and v = 5/2 we get extremas for the oscillation. Further in presence
of the axionic source (see fig. (16(b))) in the large mass parameter range (v < 0)
normalized Rényi entropy rapidly approaces to zero value for all values of the parameter
a considered in this paper. Also in the small mass parameter range (v > 0) the
amplitude of the oscillation is significantly large for a = 0.3. Also it is observed that
for 2 > 0 the long range correlation is larger in presence of the axionic source. But for

oscillations in aperiodic fashion.

v? < 0 the long range correlation is rapidly decaying with f,ga) = 107 and asymptically

=0) for % < 0.

decaying with fzga) = 0 for all values of «.

— For other values of the parameter g i.e. ¢ = 0.7, ¢ = 0.5, ¢ = 0.3 and ¢ = 0.1 cases in
absence of the axionic source (see fig. (17(a)), fig. (18(a)), fig. (19(a)) and fig. (20(a)))

— 61 —




Large Axion Normalized Parameter Normalized
mass mass Rényi entropy « Rényi entropy
parameter Mazion | H % %
v from BD vacuum from a vacuum
(1? <0) (with source) (with source)
i s 0.9,0.1, 00 x,0.96,0.55 =a=0
oa=0.03= x,1.004,0.45
a=01= x,1.02,0.65
a=03= 2.00,1.08,0.87
i v 0.9,0.1, 00 x,0.98,0.32 “a=0
a=0.03 = %,0.99,0.34
a=0.1= %, 1.005,0.35
a=03= x,1.065,0.45
V2i ¥ 0.9,0.1, 00 x,0.97,0.31 <a=0
oa=0.03= %,0.975,0.32
a=01= %, 0.99,0.305
a=03= x,0.965, 0.30

Table 9.

Comparison between the normalized Rényi entropy obtained from BD vacuum and « vacuum

in presence of axion source (fpa) =10"7) for v? < 0.

in the large mass parameter range (> < 0) normalized Rényi entropy asymptotically
approaches towards zero value. On the other hand in the small mass parameter range
(v? > 0) it show oscillations in aperiodic fashion. Here the amplitude of the oscillation
is larger for a = 0.3 compared to the other values of a. Also it is important to note
that, at v = 1/2, v = 3/2 and v = 5/2 we get extremas for the oscillation. Further in
presence of the axionic source (see fig. (17(b)), fig. (18(b)), fig. (19(b)) and fig. (20(b)))
one can observe the exact behaviour as observed without any source contribution. It
also implies that for all ¢ < 0.9 the normalized Rényi entropy is insensitive to the source
contribution.

For ¢ — oo case in absence (see fig. (21(a))) and presence of the axionic source (see
fig. (21(b))) variation of normalized Rényi entropy with 12 for all values of the parameter
« is similar. It is important to note that the amplitudes of the oscillations in v? > 0
region and the satuarion value in 2 < 0 region is larger in presence of axionic source.
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Next, in fig. (22(a)), fig. (22(b)), fig. (22(c)), fig. (22(d)), fig. (22(e)) and fig. (26(b)),
fig. (23(b)), fig. (23(c)), fig. (23(d)), fig. (23(e)), we have depicted the behaviour of Rényi
entropy with respect to the parameter « in absence ( f]§°‘) = 0) and presence ( fZEO‘) =1077)
of axionic source for the mass parameter 2 > 0. In all figures it is observed that a crossover
takes place for v2 = 1/4,9/4,25/4 ( ), v2 =1/16,9/16,25/16 (blue) and v> = 0 (red)
with small values of the parameter a. We also observe that for v? = 1/4,9/4,25/4 ( )
Rényi entropy decreses with increasing value of the parameter a. On the other hand, for
v? =1/16,9/16,25/16 (blue) and v = 0 (red) Rényi entropy increases with increasing value
of the parameter «. Additionally, in presence of axionic source the Rényi entropy is slightly
larger compared to the result obtained in absence of source contribution. In fig. (22(a)),
fig. (22(b)), fig. (22(c)), fig. (22(d)), fig. (22(e)) and fig. (26(b)), fig. (23(b)), fig. (23(c)),
fig. (23(d)), fig. (23(e)), it is observed that no crossover takes place for 12 = —1/2 ( ),
v?=—-1/4,-9/4,-25/4 (blue) and v? = —1/16,-9/16, —25/16 (red) with all values of the
parameter o. Also it is important to note that, for all values of 2 < 0 Rényi entropy increases
with increasing value of the parameter «. Further in fig. (26(a)), fig. (26(b)), fig. (26(c)),
fig. (26(d)), we have shown the variation of Rényi entropy with respect to the paremeter ¢
in absence and presence of axionic source for « = 0 (purple), a = 0.03 ( ), «a =0.1
(cyan) and a = 0.3 (brown) respectively. It is observed that for small values of the param-
eter q the value of the Rényi entropy for a given value of o always increase. On the other
hand for small values of the parameter ¢ Rényi entropy saturates to a finite small value.

In table (6) and table (7), we have mentioned the numerical estimate of the normalized Rényi

entropy in absence ( f,ﬁ") = 0) and presence ( f,SO‘) = 107") of axionic source contribution
for Bunch Davies vacuum and o vacuum with small mass parameter (v? > 0). On the
other hand, in table (8) and table (9), we have mentioned the numerical estimate of the

normalized Rényi entropy in absence ( féa) = 0) and presence ( ZS‘” = 10"7) of axionic source
contribution for Bunch Davies vacuum and o vacuum with large mass parameter (v < 0).
Here numerical results from both v? > 0 and v? < 0 region suggests that the quantum
entanglement is significantly larger in presence of axionic source, compared to the result
obtained in absence of axionic source.

4 Summary
To summarize, in this paper, we have addressed the following issues:

e First we have presented the computation of entanglement entropy in de Sitter space in
presence of axion with a linear source contribution in the effective potential as originating
from Type IIB string theory. To demonstrate this we have derived the axion wave function
in an open chart.

e Next using the o vacuum state we have expressed the wave function in terms of creation and
annihilation operators. Further applying Bogoliubov transformation on a vacuum state we
construct the expression for reduced density matrix.

e Further, using reduced density matrix we have derived the entanglement entropy, which is
consistent with ref. [10] if we set & = 0. In the v? < 0 range we have derived analytical result
for the entanglement entropy. Finally, we have used numerical approximations to estimate
entanglement entropy with any value of v/2.
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e We have also computed the Rényi entropy in presence of axion source. In absence of the
source this result is consistent with ref. [10] in ¢ — 1 limit. Here in »?> < 0 region we
have provided the analytical expression for the Rényi entropy. We have also used numerical
techniques to study the behaviour of Rényi entropy and largest eigenvalue of the density
matrix with any value of v/2.

e Our result provides the necessary condition to generate non vanishing entanglement in pri-
mordial cosmology due to axion.

The future directions of this paper are appended below:

e Using the derived expression for density matrix for generalized o vacua one can further
compute any n point long range quantum correlation to study the implications in the context
of primordial cosmology. It is expected that this result will surely helps to understand the
connection between the Bell’s inequality violation, quantum entanglement and primordial
non-Gaussianity.

e Till now we have studied the necessary condition for generating non zero entanglement
entropy in primordial cosmology. In this connection one can further compute quantum
discord, , entanglement negativity etc. which play significant role to quantify long range
quantum correlations without necessarily involving quantum entanglement.
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