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Abstract
A standard approach for model reduction of linear input-output systems is bal-
anced truncation, which is based on the controllability and observability properties of
the underlying system. The related dominant subspaces projection model reduction
method similarly utilizes these system properties, yet instead of balancing, the associ-
ated subspaces are directly conjoined. In this work, we extend the dominant subspace
approach by computation via the cross Gramian for linear systems, and describe an a-
priori error indicator for this method. Furthermore, efficient computation is discussed
alongside numerical examples illustrating these findings.

Keywords Controllability · Observability · Cross Gramian · Model reduction ·
Dominant subspaces · HAPOD · DSPMR
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1 Introduction

Input-output systems map an input function to an output function via a dynamical
system. The input excites or perturbs the state of the dynamical system and the output
is some transformation of the state. Typically, these input and output functions are
low dimensional while the intermediate dynamical system is high(er) dimensional. In
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applications from natural sciences and engineering, the dimensionality of the dynam-
ical system may render the numerical computation of outputs from inputs excessively
expensive or at least demanding.
Model reduction addresses this computational challenge by algorithms that pro-
vide surrogate systems, which approximate the input-output mapping of the original
system with a low(er) dimensional intermediate dynamical system. Practically, the
trajectory of the dynamical system’s state is constrained to a subspace of the original
system’s state-space, for example, by using truncated projections.
A standard approach for projection-based model reduction of input-output systems is
balanced truncation [27], which transforms the state-space unitarily to a representa-
tion that is sorted (balanced) in terms of the input’s effect on the state (controllability)
as well as the state’s effect on the output (observability) and discards (truncates) the
least important states according to this measure.
Instead of balancing, this work investigates a dominant subspaces approach [32] that
conjoins the most controllable and most observable subspaces into a projection. This
unbalanced model reduction method may yield larger or less accurate reduced order
systems, yet allows a computationally advantageous formulation while also preserv-
ing stability and providing an error quantification. The dominant subspace model
reduction method has been investigated in [2, 23, 24, 32, 39], with [32] being the
original source which is already referenced by the earlier work [24].
The approach proposed in this work combines the method from [32] with the cross
Gramian (matrix) [13], which encodes controllability and observability information
of an underlying input-output system. For this cross-Gramian-based dominant sub-
space method, an a-priori error indicator is developed, and the numerical issues
arising in the wake of large-scale systems are addressed, specifically by utiliz-
ing the hierarchical approximate proper orthogonal decomposition (HAPOD) [18].
Compared to other cross Gramian and SVD model reduction techniques such as
[22]; the proposed method does not need multiple decompositions, but a single
HAPOD.
The considered class of input-output systems are generalized linear
(time-invariant) systems1, mapping input u : R → R

M via the state
x : R → R

N—a solution to an ordinary differential equation—to the output
y : R → R

Q:

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(1)

with a system matrix A ∈ R
N×N , an input matrix B ∈ R

N×M , an output matrix
C ∈ R

Q×N , and a mass matrix E ∈ R
N×N . In the scope of this work, we assume

E to be non-singular as well as the matrix pencil (A, E) to be asymptotically stable,
meaning the eigenvalues of the associated generalized eigenproblem lie in the open
left half-plane. This type of system arises, for example, in spatial discretizations of
partial differential equations using the finite element method.

1Sometimes, the term descriptor system is used for this type of system, yet typically descriptor systems
explicitly allow a singular mass matrix. Hence, we decided to use the term generalized linear system.
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In Section 2, the cross Gramian for generalized linear systems is introduced, followed
by Section 3, briefly describing projection-based model reduction, and extending
the dominant subspace projection method to the cross Gramian together with an
error indicator. The proposed model reduction technique is then tested numerically
in Section 4, and a summary is given in Section 5.

2 Generalized cross Gramian

In this section, the cross-Gramian matrix, introduced in [13], is briefly reviewed from
the point of view of generalized linear time-invariant (LTI) systems (1).
Fundamental to system-theoretic model reduction are the controllability and observ-
ability operators [1], which are given for (1) by the generalized controllability
operator C : L2 → R

N and the generalized observability operator O : RN → L2:

C(u) :=
∫ ∞

0
eE−1AtE−1Bu(t)dt,

O(x0) := CeE−1AtE−1x0.

The (generalized) cross Gramian2 is then defined as a composition of the generalized
controllability and observability operators:

WX := C ◦ O =
∫ ∞

0
eE−1AtE−1BCeE−1AtE−1dt ∈ R

N×N, (2)

and jointly quantifies controllability and observability of square systems—systems
with the same number of inputs and outputs M = Q. For linear, square systems with
E = I , the cross Gramian solves a Sylvester matrix equation [13]; for E �= I , the
generalized cross Gramian solves a Sylvester-type equation:

AWXE + EWXA = −BC,

which can be shown using integration-by-parts of (2):

WX =
∫ ∞

0
eE−1AtE−1BCeE−1AtE−1dt

= (E−1A)−1eE−1AtE−1BCeE−1AtE−1
∣∣∣∞
0

−(E−1A)−1
∫ ∞

0
eE−1AtE−1BCeE−1At (E−1A)E−1dt

⇒ AWX = EeE−1AtE−1BCeE−1AtE−1
∣∣∣∞
0

− EWXAE−1

⇒ AWXE + EWXA = EeE−1AtE−1BCeE−1At
∣∣∣∞
0

= −BC.

Besides the cross Gramian, the (generalized) controllability Gramian
WC := CC∗ and (generalized) observability Gramian WO := O∗O are defined
accordingly [37, 41]. For systems with a symmetric Hankel operator H := OC,

2Note that the term generalized cross Gramian is used in [38] for cross Gramians of unstable systems.
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H = H ∗ [29], for example, all SISO (single-input-single-output) systems, the
(generalized) cross Gramian has the property:

WXWX = COCO = C(OC)∗O = CC∗O∗O = WCWO . (3)

Hence, for symmetric systems, either, WX or {WC, WO} can be used interchange-
ably, if controllability and observability are to be concurrently evaluated. For
non-symmetric and especially non-square systems, an approximation to the cross
Gramian is defined, based on the column-wise partitioning of the input matrix B and
row-wise partitioning of the output matrix C:

B = (
b1 . . . bM

)
, C = (

c1 . . . cQ

)ᵀ .
For B̄ := ∑M

m=1 bm and C̄ := ∑Q
q=1 c

ᵀ
q , the non-symmetric generalized cross

Gramian [20] for (1) is defined as follows:

WZ :=
∫ ∞

0
eE−1AtE−1B̄C̄eE−1AtE−1dt, (4)

which is the cross Gramian of the average system (E, A, B̄, C̄).
The (non-symmetric) generalized cross Gramian (2) can be computed numerically,
for example, using the Hessenberg-Schur algorithm [14], the alternating direction
implicit (ADI) algorithm [5–7], or as an empirical cross Gramian [16].

3 Model reduction

One of the main numerical applications of the cross Gramian is model (order) reduc-
tion, which aims to determine lower order surrogate systems for (1), with respect to
the state-space dimension N := dim(x(t)). The reduced order model (ROM) with
xr : R → R

n, n 	 N ,

Erẋr(t) = Arxr(t) + Bru(t),

ỹ(t) = Crxr(t),

has a reduced system matrix Ar ∈ R
n×n, a reduced input matrix Br ∈ R

n×M , a
reduced output matrix Cr ∈ R

Q×n and a reduced mass matrix Er ∈ R
n×n, such that

the reduced system’s output ỹ : R → R
Q approximates the full order model’s output:

‖y − ỹ‖
‖y‖ 	 1,

in a suitable norm.
Following, the projection-based dominant subspaces model reduction method is
extended to exploit the cross Gramian for computation, and the practical computation
of the cross-Gramian-based dominant subspaces is discussed.
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3.1 Projection-based model reduction

A commonplace approach to construct reduced order models is mapping the state-
space trajectory x(t) to a lower dimensional subspace, using a reduction operator
V1 : RN → R

n and a lifting operator U1 : Rn → R
N [33]:

xr(t) := V1x(t) → x(t) ≈ U1xr(t).

In the case of (generalized) linear systems (1), the operators U1 ∈ R
N×n and

V1 ∈ R
n×N , can be directly applied to the system components A, B , C, and E to

obtain the reduced quantities:

Ar := V1AU1, Br := V1B, Cr := CU1, Er := V1EU1. (5)

Hence, the aim is the computation of suitable reducing and lifting operators U1, V1,
which are typically assumed to be bi-orthogonal V1U1 = I . The dominant subspaces
method, considered in this work, is additionally orthogonal V1 := U

ᵀ
1 ; thus, the

reduction process is a Galerkin projection, which is stability preserving, if the sym-
metric part of the system matrixA is negative definite, and the mass matrixE positive
definite [8, Sec. II.C] (strictly dissipative systems),

A + Aᵀ < 0 ∧ E > 0. (6)

This is a generalization of the stability preservation for systems with
E = I , mentioned in [32, Sec. 4.3]. If a system does not fulfill (6), a stabilization
procedure, see for example [4, Sec. 4], can be applied to the ROM.

3.2 Dominant Subspaces

The dominant subspaces projection model reduction (DSPMR) is introduced in
[32, Sec. 4.3]. The idea behind DSPMR is, instead of balancing controllability and
observability Gramians, to combine the associated principal subspaces obtained from
approximate systemGramians. This yields a simple model reduction algorithmwhich
is based upon low-rank factors of the controllability and observability Gramians.
In [32], a low-rank Cholesky (LR Chol) factor is used, while [23] utilizes singular
vectors of a truncated singular value decomposition (tSVD),

WC

LR Chol≈ ZCZ
ᵀ
C, WO

LR Chol≈ ZOZ
ᵀ
O,

WC

tSVD≈ UCDCU
ᵀ
C, WO

tSVD≈ UODOU
ᵀ
O .

The controllability and observability subspaces encoded in the matrix factors are
now conjoined and orthogonalized, by either a rank-revealing SVD ([32]) or a rank-
revealing QR decomposition ([23, 24]). Either the left singular vectors U or the Q

factor can be taken as Galerkin projections, respectively:

QR
QR= [

UC UO

] → U1 := Q,

UDVᵀ SVD= [
UC UO

] → U1 := U,
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see also [2, Sec 2.1.7]. Compared to POD (proper orthogonal decomposition)
[1, Ch. 9.1], which in this context is equivalent to using solely the controllability
subspace (basis) UC as a Galerkin projection, DSPMR incorporates controllability
and observability information. Yet, in comparison to balanced POD [30, 36, 45], the
truncated controllability and observability subspaces UC , UO are not balanced, but
directly concatenated.
An extension to the DSPMR method is also proposed in [32], called refined dom-
inant subspace projection model reduction. The eponymous refinement is given
by weighting factors ωC, ωO > 0 for the controllability and observability sub-
space bases respectively. The weighting factors are selected as the Frobenius
norm of the respective low-rank factors, ωC := ‖ZC‖−1

F and ωO := ‖ZO‖−1
F ,

yielding:

QR
QR= [

(ωCZC) (ωOZO)
] → U1 := Q,

UDVᵀ SVD= [
(ωCZC) (ωOZO)

] → U1 := U .

Obviously, this is only sensible for the Cholesky factor variant, as the norm of the
(orthonormal) singular vectors is one.
The weighting normalizes the system Gramian factors. This normalization equili-
brates the influence of controllability (WC depends only on {A, B}) and observability
(WO depends only on {A, C}), which may be skewed, i.e., due to different scaling
of B and C. A similar idea for combining weighted subspaces is also used in the
cotangent lift method from [31].

3.3 Cross-Gramian-Based Dominant Subspaces

Instead of the controllability and observability Gramians, also the cross Gramian can
be used to obtain a dominant subspace projection. A truncated SVD of the cross
Gramian (based on a pre-selected rank or approximation error),

WX
tSVD= UXDXV

ᵀ
X , (7)

produces left and right singular vectors aggregated in matrices UX and VX, which
induce subspaces associated to controllability (UX) and observability (VX) of the
underlying system (A, B, C, E) [47, Sec. B].
In [40, Sec. 4.3], it is noted, that the sole use of either, UX or VX, as a Galerkin
projection, will largely omit observability or controllability information respectively.
Hence, both subspaces should be incorporated in the reducing and lifting operator.
Balanced truncation, for example, determines a suitable Petrov-Galerkin projection,3

where U1 �= V1, by simultaneous diagonalization of the controllability and observ-
ability Gramians, while approximate balancing applies the left and right singular
vectors of the cross Gramian as oblique projections directly [34].

3Balanced truncation yields a Galerkin projection for state-space symmetric systems,
A = Aᵀ, B = Cᵀ, E = Eᵀ [9].
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For the proposed variant of the dominant subspace method (for an algorithmic
description see Section 3.3.1), the left and right singular vectors are conjoined as
before, but also scaled column-wise by the associated singular values:

[
(UXDX) (VXDX)

] SVD= UCODCOV
ᵀ
CO → U1 := UCO .

Here, the singular values are used to scale the singular vectors, since the majoriza-
tion property [40, Remark 2.1] relates the singular values of the cross Gramian with
the (absolute value of the) cross Gramian’s eigenvalues, which in turn are equal to
the Hankel singular values of a symmetric system (3). So, instead of normalizing the
controllability and observability subspaces (as a whole), as in refined DSPMR, based
on the common controllability-observability measure (the singular values of the cross
Gramian), the vectors spanning the compound subspace are scaled individually. Here
explicitly a rank-revealing SVD is used, instead of a QR decomposition, as the sin-
gular values DCO will be used for an error indicator in Section 3.4. An advantage of
the cross-Gramian-based dominant subspace projection method is this common mea-
sure of minimality [12]: The singular values σi = DCO,ii associated jointly to the
“controllability” and “observability” subspaces.

3.3.1 Algorithmic computation

The computation of the proposed cross-Gramian-based dominant subspace projec-
tion, as well as the classic dominant subspace projection consists of two phases: first,
the computation of the system Gramians, either the cross Gramian or the controlla-
bility and observability Gramians; second, the assembly of the reducing (and lifting)
operator.
For large-scale systems, the computation of dense system Gramians, which are of
dimension N ×N , may be infeasible or at least inefficient. To this end, low-rank rep-
resentations of the Gramians can be computed, for the cross Gramian, in example by
the implicitly restarted Arnoldi algorithm [40], the factorized iteration [3], a factored
ADI [5] or a low-rank empirical cross Gramian [19].
Overall, the cross-Gramian-based dominant subspace algorithm is summarized by
the following:

1. Compute (low-rank) cross Gramian:

(a) As solution to a matrix equation: AWXE + EWXA = −BC,
(b) or by quadrature: WX = ∫ ∞

0 eE−1AtE−1BCeE−1AtE−1dt .

2. Compute (truncated) SVD of the cross Gramian:

UXDXV
ᵀ
X

tSVD= WX.

3. Compute (rank-revealing) SVD of conjoined and weighted left and right singular
vectors:

U1D1V1
SVD= [

(UXDX) (VXDX)
]
.
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4. Apply left singular vectors to system matrices following (5):

Ar := U
ᵀ
1 AU1, Br := U

ᵀ
1 B, Cr := CU1, Er := U

ᵀ
1 EU1.

The Galerkin projection U1 is the cross-Gramian-based dominant subspace projec-
tion. In principle, a similar procedure can be conducted using controllability and
observability Gramians, yet it is not immediately clear if the SVD of the (weighted)
conjoined singular vectors

[
(UCDC) (UODO)

]
yields an equally useful measure.

The efficiency of computing a low-rank approximation of WX depends on the rank
of BC and the symmetry of A. Usually, this means, the more (linearly) independent
inputs and outputs a system has, and the less symmetric a system matrix is, the higher
the rank of the approximated cross Gramian.

3.4 Error indicator

In this section, an error indicator for the cross-Gramian-based dominant subspace
method is developed. Previous works, such as [35, 39, 44, 46], already introduced
error bounds for the Hardy H2-norm. Here, an H2-error indicator of simple structure
using time-domain quantities is proposed, which is loosely related to the simplified
balanced gains approach from [11]. The H2-norm is particularly interesting, since
an error estimation has relevance for the frequency-domain and the time-domain
[43, Ch. 2], and it also describes the energy (L2-norm) of the system’s impulse
response. Before this error indicator is derived, a straightforward property of the
matrix exponential is presented.

Lemma 1 Given matrices A ∈ R
N×N and U ∈ R

N×n, n ≤ N , the following holds:

UeUAUᵀ
Uᵀ = UUᵀeAUUᵀ = eUUᵀAUUᵀ.

Proof The proof is a trivial consequence on the associativity of the matrix product.

UeUᵀAUUᵀ = U(

∞∑
k=0

1

k! (U
ᵀAU)k)Uᵀ

= U(I + (UᵀAU) + 1

2
(UᵀAU)(UᵀAU) + . . . )Uᵀ

= UUᵀ(I + AUUᵀ + 1

2
AUUᵀAUUᵀ + . . . )

= UUᵀeAUUᵀ
.

Next, the error indicator is constructed, which is derived from the L2-norm of the
impulse response error system, and we assume, for ease of exposition but without
loss of generality, E = I :(

ẋ(t)

ẋr (t)

)
=

(
A 0
0 Ar

)(
x(t)

xr(t)

)
+

(
B

Br

)
u(t)

ye(t) = (
C −Cr

)(
x(t)

xr(t)

)
.
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We consider only SISO systems for this error indicator and unit impulse (Dirac
impulse) inputs u(t) ≡ δ(t), defined by the properties:∫

δ(t)dt = 1, δ(t �= 0) = 0. (8)

First, the H2-norm of the error system, in impulse response form, is transformed in a
manner so that Lemma 1 can be applied. Note that the error system of a SISO system
is also a SISO system with a scalar and thus symmetric impulse response:

‖ye‖2L2
= tr

( ∫ ∞

0
(
(
C −Cr

)(
eAt 0
0 eAr t

)(
B

Br

)
)2dt

)

= tr
( ∫ ∞

0
(CeAtB − Cre

Ar tBr)
2dt

)

= tr
(
C

∫ ∞

0
eAtBCeAt − eAtBCr e

Ar tU
ᵀ
1

−U1e
Ar tBrCeAt + U1e

Ar tBrCre
Ar tU

ᵀ
1 dtB

)
,

applying the definition of the reduced quantities (5), and subsequently the result of
Lemma 1, gives the following:

‖ye‖2L2
= tr

(
C

∫ ∞

0
eAtBCeAt − eAtBCeU1U

ᵀ
1 AtU1U

ᵀ
1

− U1U
ᵀ
1 eAU1U

ᵀ
1 tBCeAt

+ U1U
ᵀ
1 eAU1U

ᵀ
1 tBCeU1U

ᵀ
1 AU1U

ᵀ
1 dtB

)
.

The next step is approximating the matrix exponentials eAU1U
ᵀ
1 t and eU1U

ᵀ
1 At by the

homogeneous system’s solution operator,

eAU1U
ᵀ
1 t ≈ eAt , eU1U

ᵀ
1 At ≈ eAt ,

which allows to factor the previous representation to the following:

‖ye‖2L2
≈ tr

(
C

∫ ∞

0
(I − U1U

ᵀ
1 )(eAtBCeAt )(I − U1U

ᵀ
1 )dtB

)
.

Now, we move the projection error terms (I −U1U
ᵀ
1 ) out of the integral, identify the

resulting expression with the cross Gramian WX, and exploit the cyclic permutability
of the trace argument:

‖ye‖2L2
≈ tr

(
C(I − U1U

ᵀ
1 )

∫ ∞

0
eAtBCeAtdt (I − U1U

ᵀ
1 )B

)

= tr
(
(I − U1U

ᵀ
1 )WX(I − U1U

ᵀ
1 )BC

)
.

The (full) SVD of the cross Gramian is given by adding to its truncated SVD,

WX
tSVD= UXDXV

ᵀ
X , (the SVD of) its truncated remainder:

WX
SVD= UXDXV

ᵀ
X + U2D2V

ᵀ
2 .
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Together with an observation on the truncated SVD’s singular vectors:

UX = [
(UXDX) (VXDX)

] [
D−1

X

0

]
= U1D1V

ᵀ
1

[
D−1

X

0

]
,

VX = [
(UXDX) (VXDX)

] [
0

D−1
X

]
= U1D1V

ᵀ
1

[
0

D−1
X

]
,

the following simplification entails:

(I − U1U
ᵀ
1 )WX(I − U1U

ᵀ
1 )

= (I − U1U
ᵀ
1 )(UXDXV

ᵀ
X + U2D2V

ᵀ
2 )(I − U1U

ᵀ
1 )

= (I − U1U
ᵀ
1 )(U2D2V

ᵀ
2 )(I − U1U

ᵀ
1 ).

Next, the VON NEUMANN’s trace inequality [26], which assumes (without loss of
generality) descendingly ordered singular values σk(·) ≥ σk+1(·) is applied, followed
by the Cauchy-Schwarz inequality (with σ(·) being the vector of singular values):

‖ye‖2L2
≈ tr

(
(I − U1U

ᵀ
1 )(U2D2V2)(I − U1U

ᵀ
1 )BC

)

≤
N∑

k=1

σk(D2)σk(BC) = 〈σ(D2), σ (BC)〉

≤ ‖σ(D2)‖2‖σ(BC)‖2 = ‖D2‖F ‖BC‖F .

Since the singular values ofD2 correspond to the truncated tail of the cross Gramian’s
singular values, and BC is of rank one, due to the SISO nature of the system, we
obtain the following:

‖ye‖2L2
� ‖BC‖2

√√√√ N∑
k=n+1

σ 2
k (WX). (9)

Note that ‖BC‖2 = ‖B‖2‖C‖2, as B and Cᵀ are column vectors. Overall, this
derivation yields the following error indicator:

Error Indicator The L2 impulse response model reduction error for a cross-Gramian-
based dominant subspaces reduced order model is approximated by the following:

‖y − ỹ‖L2 �

√√√√√‖B‖2‖C‖2
√√√√ N∑

k=n+1

σ 2
k (WX). (10)

Remark 1 Using the Cauchy-Schwarz inequality as in [15], this impulse response
error indicator can be extended to squarely integrable inputs u ∈ L2.

The error indicator directly extends to symmetric MIMO systems, utilizing
CeAB = (

CeAB
)ᵀ and noting ‖BC‖2 ≤ ‖B‖2‖C‖2. For (just) square MIMO
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systems, the derivation would have to be adapted, leading to an error indicator that is
not based on the cross Gramian’s singular values any more, which is essential to the
practical computation detailed in Section 3.5. Alternatively, it extends to any MIMO
systems by either using the averaged system (A,

∑M
i=1 bi,

∑Q
j=1 c

ᵀ
j ) associated to the

non-symmetric cross Gramian (4) [20], or, selecting a SISO sub-system (A, bk, c
ᵀ
� ),

for example based on the following:

(k, �) = argmax
i,j

〈|bi |, |cj |〉.

Furthermore, the error indicator holds also for systems with E �= I , E > 0:

‖y − ỹ‖L2 �

√√√√√‖E−1B‖2‖C‖2
√√√√ N∑

k=n+1

σ 2
k (WX),

which follows from: Eẋ(t) = Ax(t) + Bu(t) ⇒ ẋ(t) = E−1Ax(t) + E−1Bu(t).

3.5 Fused computation

Even for moderately sized systems, the computation of the (cross) Gramian’s singu-
lar vectors may be a computationally challenging task.4 To compute the dominant
subspace projections from the cross Gramian, or the controllability and observability
Gramians, the hierarchical approximate proper orthogonal decomposition (HAPOD)
[18] is used.
The HAPOD enables a swift computation of left singular vectors of arbitrary parti-
tioned data sets (matrices), based on a selected projection error (on the input data)
ε > 0 and a tree hierarchy with the data (Gramian) partitions as leafs. The tree
hierarchy utilized for the experiments in this work is given by a combination of
special topologies discussed in [18], the incremental HAPOD (maximally unbal-
anced binary tree) and the distributed HAPOD (star). Two incremental HAPODs are
performed for the Gramian partitions respectively, and subsequently, a distributed
HAPOD of the resulting singular vectors from both sub-trees yield the dominant
subspace projection. Figure 1 illustrates the overall HAPOD tree.
Since the HAPOD computes only left singular vectors, but the right singular vectors
of the cross Gramian are also needed, the HAPOD of the cross Gramian (left singular
vectors) and the transposed cross Gramian (right singular vectors) is computed. In
the following numerical examples, the (full-order) empirical linear cross Gramian
[16, Sec. 3.1.3] is used, as in-memory storage of the Gramian(s) is possible. For
settings, where only parts of the cross Gramian can be kept in memory, the low-rank
empirical cross Gramian [19] for the left singular vectors, and the low-rank empirical
cross Gramian of the adjoint system for the right singular vectors, can be utilized,

4For the presented numerical examples the SVDs of system Gramians comprises the dominant fraction of
computation time.
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Fig. 1 HAPOD tree topology for the cross-Gramian-based dominant subspaces method. Pentagons sym-
bolize partitions of the cross Gramian (left) and the adjoint cross Gramian (right), respectively. Circles
mark sub-PODs, while a square represents the root-POD returning the overall (HA)POD described in
Section 3.5. In the context at hand, PODs correspond to SVDs

since the cross Gramian of the adjoint system is equal to the system’s transposed
cross Gramian as follows:

W̃X :=
∫ ∞

0
eE−ᵀAᵀtE−ᵀCᵀBᵀeE−ᵀAᵀtE−ᵀdt

=
∫ ∞

0
(CE−1eAE−1t )ᵀ(E−1eAE−1tB)ᵀdt

Lemma 1=
∫ ∞

0
(CeE−1AtE−1)ᵀ(eE−1AtE−1B)ᵀdt

=
∫ ∞

0
(eE−1AtE−1BCeE−1AtE−1)ᵀdt = W

ᵀ
X .

Since a projection-error-driven SVD method is used, the following error bound
holds,5 for a given projection error ε > 0:

N∑
k=1

‖(I − U1U
ᵀ
1 )WX,∗k‖2 =

N∑
k=n+1

σ 2
k (WX) ≤ ε2.

This means the error indicator (9) can be bounded using the prescribed cross
Gramian’s projection error as follows:

‖y − ỹ‖L2 �
√

‖B‖2‖C‖2
√∑N

k=n+1 σ 2
k (WX) ≤ √

ε‖B‖2‖C‖2, (11)

thus making it an a-priori error indicator. This approximate error prediction for a
given projection error ε and the Euclidean norms (spectral norms) of the input and
output operators, without computing any system Gramians, is the main advantage
of this method. The tightness of this error indicator is evaluated in the following
numerical results.

5This is shown for the HAPOD in [18]. Specifically, the mean L2 projection error,
1
N

∑N
k=1 ‖(I − U1U

ᵀ
1 )WX,∗k‖2 ≤ ε2, is bounded by the HAPOD, which has to be taken into account for

the practical computation.
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4 Numerical results

Following, two numerical examples are presented to illustrate the previous findings.
These numerical experiments are conducted using MATLAB 2018a [25]. The system
Gramians needed for the dominant subspace methods, the controllability and observ-
ability Gramian for plain and refined DSPMR as well as balanced truncation, and the
cross Gramian for the cross-Gramian-based dominant subspaces, are computed as
empirical Gramians [16] using emgr—empirical Gramian framework in version 5.7
[17]. All simulated trajectories for the construction of these empirical dominant sub-
spaces are computed using the implicit Euler method, and the HAPOD is computed
via [21].

4.1 FOMbenchmark

The first numerical example compares the cross-Gramian-based dominant subspace
method with the classic unrefined and refined dominant subspace method6 as well as
(empirical) balanced truncation7 for the “FOM” example in [32], which is also part
of the SLICOT Benchmark Collection [10]. This linear SISO system (with E = I )
of the structure:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

is of order N = 1006, and the system components are given by the following:

A1 =
( −1 100

−100 −1

)
, A2 =

( −1 200
−200 −1

)
, A3 =

( −1 400
−400 −1

)
,

A4 =

⎛
⎜⎜⎜⎝

−1
−2

. . .
−1000

⎞
⎟⎟⎟⎠ , A =

⎛
⎜⎜⎝

A1
A2

A3
A4

⎞
⎟⎟⎠ ,

C = (
C1 C2

)
, C1 = (

10 . . . 10
) ∈ R

6, C2 = (
1 . . . 1

) ∈ R
1000,

B = Cᵀ.

The empirical Gramians are constructed using random binary input, and the reduced
systems are tested with impulse input, to evaluate the error indicator.
In Fig. 2, the (empirical) balanced truncation, the (empirical) dominant subspaces
method, the (empirical) refined dominant subspaces method, the (empirical) cross-
Gramian-based dominant subspaces method, the predicted error (11), and the error
indicator (10) are compared, for a given projection error ε ∈ {10−3, . . . , 10−12} of

6The refined DSPMR method is computed with weighting coefficients ωC = ‖ZO‖F‖ZC‖F
,

ωO = 1 of the controllability and observability factors respectively for numerical reasons.
7In the numerical experiments at hand, low-rank Gramians are balanced, whereas the rank is determined
by the projection error of the POD compression of the empirical controllability and observability Gramian.
In this sense, this method is related to balanced POD [36].
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Fig. 2 Model reduction error of the FOM benchmark example from Section 4.1 for low-rank empirical
balanced truncation (LREBT), dominant subspaces (DSPMR), refined dominant subspaces (DSPMR-R),
cross-Gramian-based dominant subspaces (WXDS), the predicted H2-error (H2PRE), and the H2-error
indicator (H2IND)
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the utilized empirical cross Gramians. The same projection error is selected for the
controllability and observability Gramians used by the unrefined DSPMR, refined
DSPMR, and low-rank empirical balanced truncation.
In Fig. 2a, the prescribed projection error of the respective Gramians is plotted against
the resulting relative L2 model reduction error. For a given projection error, the
refined DSPMR and DSPMR-R method produce the lowest model reduction error,
and low-rank balanced truncation the largest, while the proposed cross-Gramian-
based dominant subspace method is in-between. The error indicator overestimates the
error for larger and underestimates for smaller projection errors, the predicted error is
reasonably close to the error indicator. Note that the error indicator is the square root
of the projection error scaled by a constant; hence, it appears as a line in the log-log
plot.
Figure 2 b depicts the resulting reduced order of the tested methods against the model
reduction error. Balanced truncation produces the smallest, and DSPMR, DSPMR-R
the largest reduced models, again the cross-Gramian-based method is in-between.
These results follow intuitions that DSPMR produces the most accurate, but largest
subspaces, while balanced truncation may have a smaller, and hence less accurate
subspaces. Hence, the cross-Gramian-based dominant subspace method appears as a
compromise. The error indicator is rather coarse, which is due to its simple structure.

4.2 Convection benchmark

The second numerical example evaluates the convection benchmark [42, Convec-
tion]8 from the Oberwolfach Benchmark Collection [28]. This is a two-dimensional
computational fluid dynamics application of thermal flow modeled by a convection-
diffusion partial differential equation:

∂T

∂t
= κ∇2T − v∇T + q̇

with the solution temperature T (x, t), the thermal conductivity κ , the fluid speed v

of fixed direction, and the heat generation rate q̇. The model is discretized in space
using the finite element method, yielding a generalized linear system (1) of order
N = 9669 ≈ 104, a single input M = 1, five outputs Q = 5, and E �= I . For a more
detailed description of this benchmark, see [28] and references therein. This model
is tested in two variants: First, in a symmetric setting with zero flow speed v = 0,
and second, in a non-normal setting with a flow speed v = 0.5. Due to the (non-
square) MIMO nature of the system, we use the average system (see (4)) for the error
indicator computation.
This set of experiments is organized in the same manner as Section 4.1, but con-
ducted for the prescribed projection errors ε ∈ {10−2, . . . , 10−8}. As indicated in
Section 3.4, the average system (averaged over outputs) C̄ := ∑Q

q=1 c
ᵀ
q is used for

the computation of the error indicator. The resulting reduced order models are tested
with impulse input u(t) = δ(t).

8http://modelreduction.org/index.php/Convection
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Fig. 3 Model reduction error of the symmetric convection benchmark from Section 4.2 for low-rank
empirical balanced truncation (LREBT), dominant subspaces (DSPMR), refined dominant subspaces
(DSPMR-R), cross-Gramian-based dominant subspaces (WXDS), the predicted H2-error (H2PRE), and
the H2-error indicator (H2IND)
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Fig. 4 Model reduction error of the non-normal convection benchmark from Section 4.2 for low-rank
balanced truncation (LREBT), dominant subspaces (DSPMR), refined dominant subspaces (DSPMR-R),
cross-Gramian-based dominant subspaces (WXDS), the predicted H2-error (H2PRE) and the H2-error
indicator (H2IND)
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4.2.1 Symmetric variant

The experimental results of the symmetric variant (v = 0) are depicted in Fig. 3.
In Fig. 3a, the prescribed projection error for the (empirical) system Gramians ver-
sus the resulting relative L2 model reduction error is plotted. As in Section 4.1, the
DSPMR method produces the ROMs with the lowest model reduction error. The
refined DSPMR exhibits slightly larger model reduction errors for small projection
errors; otherwise, it is following the plain DSPMR method. Reduced systems from
(empirical) balanced truncation and the (empirical) cross-Gramian-based dominant
subspace method result in similar errors, while the error indicator behaves like an
upper bound to the cross-Gramian-based model reduction error.
Figure 3 b shows the model reduction error for the reduced orders resulting from the
prescribed projection error. Balanced truncation achieves the smallest and DSPMR
the largest reduced models, the cross-Gramian-based dominant subspace method
reduced order model dimension lies in-between, and the error indicator shows a
similar behavior as the latter.

4.2.2 Non-normal variant

The experimental results of the non-normal variant (v = 0.5) are presented in Fig. 4.
Overall, the plots Fig. 4a and Fig. 4b are similar to the symmetric variant, with
a reasonably close predicted error, which is equal for symmetric and non-normal
benchmark variants. Yet, in case of the non-normal benchmark variant, the error
indicator is not as tight, compared to the symmetric variant.

5 Summary

In this work, we revisited the dominant subspaces projection model reduction method,
and presented a variant based on the cross Gramian matrix for generalized
linear systems. This model reduction algorithm requires only a single low-rank
(HAPOD) decomposition of the cross Gramian, and provides an a-priori error indi-
cator. Overall, the cross-Gramian-based dominant subspaces technique is a system-
theoretic model reduction method with a simple formulation, efficient computation,
conditional stability preservation, and error quantification. The error indicator for
the cross-Gramian-based dominant subspace model reduction could be enhanced, for
example, by fitting the known singular values exponentially and incorporate such an
empirical decay rate. The applicability of this method to control-affine nonlinear sys-
tems will be subject of future work, which is in principal possible due to the utilized
empirical Gramian computation leading to empirical dominant subspaces.

Acknowledgments This work is dedicated to the late Thilo Penzl, who wrote the preprint version of [32]
20 years (at this time of writing) ago, in 1999, and, moreover, 2019 marks the year of his 20th death
anniversary. Thilo Penzl died December 17, 1999, but his work and ideas inspire researchers in model
reduction and matrix equations to date.
The authors thank the two anonymous reviewers for their helpful feedback and comments.

2550



Cross-Gramian-based dominant subspaces

Funding information Open access funding provided by Max Planck Society. This study is supported by
the German Federal Ministry for Economic Affairs and Energy (BMWi), in the joint project: “MathEn-
ergy – Mathematical Key Technologies for Evolving Energy Grids,” sub-project: Model Order Reduction
(Grant No. 0324019B).

Code availability section The source code of the presented numerical examples can be obtained from:
http://runmycode.org/companion/view/3270 and is authored by: CHRISTIAN HIMPE.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems, Adv. Des. Control, vol. 6. SIAM
Publications, Philadelphia (2005). https://doi.org/10.1137/1.9780898718713

2. Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-
theoretic perspective. Arch. Comput. Methods Eng. 21(4), 331–358 (2014). https://doi.org/10.1007/
s11831-014-9111-2

3. Benner, P.: Solving large-scale control problems. IEEE Control Syst Mag. 14(1), 44–59 (2004).
https://doi.org/10.1109/MCS.2004.1272745

4. Benner, P., Himpe, C., Mitchell, T.: On reduced input-output dynamic mode decomposition. Adv.
Comput. Math. 44(6), 1821–1844 (2018). https://doi.org/10.1007/s10444-018-9592-x
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