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We investigate the radiation emitted by an ultrarelativistic electron traveling in a 1-dimensional
parabolic potential. Having in mind a simplified model for beamstrahlung, we consider the realistic
case of the electron motion being highly directional, with the transverse momentum being much
smaller than the longitudinal one. In this case we can find solutions of the Dirac equation and
we calculate exactly the radiation emission using first-order perturbation theory. We compare the
results obtained to that obtained via the semi-classical method of Baier and Katkov which includes
quantum effects due to photon recoil in the radiation emission but ignores the quantum nature of
the electron motion. On the one hand, we confirm a prediction of the semi-classical method that
the emission spectrum should coincide with that in the case of a linearly polarized monochromatic
wave. On the other hand, however, we find that the semi-classical method does not yield the exact
result when the quantum number describing the transverse motion becomes small. In this way, we
address quantitatively the problem of the limits of validity of the semi-classical method, which is
known, generally speaking, to be applicable for large quantum numbers. Finally, we also discuss
which beam conditions would be necessary to enter the studied regime where also the motion of the
particles must be considered quantum mechanically to yield the correct spectrum.

I. INTRODUCTION

Strong-field QED is the study of electromagnetic phe-
nomena in the presence of background electromagnetic
fields, whose strength approaches a critical limit, called
the “Schwinger limit” [1–5]. In this limit phenomena that
are of a purely quantum mechanical nature arise, such as
pair production and vacuum birefringence [6, 7, 7–25],
and quantum effects in radiation emission become essen-
tial [2, 12, 26–35, 35–49]. Most of the mentioned stud-
ies consider a plane-wave as a background field, having
in mind processes occurring in the presence of a strong
laser field. In this respect, there is also a growing inter-
est in finding out how the basic strong-field QED pro-
cesses mentioned above are altered in the presence of a
laser beams tightly focused in space other than in time
[48, 50–55]. In this paper, however, our focus is not on
laser fields, but on different methods of calculating ra-
diation emission, in particular a comparison between a
fully quantum calculation compared to a semi-classical
method, which can also be used for the case of lasers [7].

The semi-classical operator method developed by Baier
and Katkov in 1968 [56] is a powerful method to calculate
radiation emission and the probabilities of other quantum
processes. Quantum effects such as spin and recoil during
emission are included in the method but the motion of
the charged particle is considered as classical, i.e., along
a trajectory. Thus, in order to calculate the quantum ob-
servables, only the particle’s trajectory is needed, which
can be found numerically in an arbitrary field configu-
ration. Using this method to calculate nonlinear Comp-
ton scattering in more complex field configurations was
the focus of [46]. Now, finding the wave-function of an
electron in any given field configuration is in general an
impossible task and it is therefore prudent to ask ex-
actly when the method of Baier and Katkov is applica-
ble. This is of course discussed by the authors themselves

and the mentioned conditions are that the particle should
be ultra-relativistic and that the commutator among the
operators corresponding to different velocity components
should be negligibly small, in the sense that [26]∣∣∣〈[Π̂µ, Π̂ν

]〉∣∣∣
ε2 = e |Fµν(x)|

ε2 � 1, (1)

where Π̂µ = p̂µ+eAµ(x), p̂µ is the four-momentum opera-
tor, e > 0 is the elementary charge, Aµ(x) = (ϕ(x),A(x))
is the four-vector potential of the external field, Fµν(x) is
the electromagnetic field tensor and ε is the particle en-
ergy. This condition is, indeed, fulfilled for any currently
imaginable electromagnetic field. For the well-known ex-
act solutions of the Dirac equation in the field configu-
rations of a plane wave [2], the semi-classical operator
method yields exactly the same result as the full quan-
tum calculation. In the final step of the derivation of
the method in [56], it is stated that since the unfolding
of a certain operator has been performed, the expecta-
tion value of this operator can be replaced by its corre-
sponding classical value. This, however, may not always
be allowed, even when the previously mentioned condi-
tions are fulfilled. The field configuration studied in the
present paper is an example of this. In the book [26]
by the same authors, an additional condition has been
added, that one can replace the expectation value of the
operator with the classical value when the quantum state
of the electron is characterized by large quantum num-
bers. This is in line with Bohr’s correspondence prin-
ciple. In the present paper we investigate exactly this
aspect of the method of Baier and Katkov: the method
reproduces the correct quantum result when the quan-
tum numbers describing the motion are large. In [26] the
semi-classical method has, naturally, also been employed
to study the radiation from the relativistic harmonic os-
cillator, which is in essence the problem studied here.
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In this paper we also include a magnetic field such that
the field also can be employed as a simplified model of
“beamstrahlung”, i.e. the radiation emitted when high-
energy dense charged bunches collide. In our solution we
can turn off the magnetic field component and thus also
obtain the results of the harmonic oscillator as in [26]. In
fact, the only effect of the magnetic field is to effectively
make the oscillator twice as strong. Usually, in future lin-
ear colliders, the colliding bunches are of identical shape
and oppositely charged, i.e. an electron bunch colliding
with a positron bunch. In this case during the collision,
the field from one bunch will alter the shape of the other
bunch and vice versa. The full problem is therefore multi-
particle, making it complicated to fully solve it quantum
mechanically. However the classical motion can be solved
in this case, and therefore the semi-classical method of
Baier and Katkov can be applied. In this paper, how-
ever, the main interest is not to make a precise analysis
of beamstrahlung, but to investigate when and why the
semi-classical approach breaks down. We therefore con-
sider the case where a single electron interacts with the
field of a positron bunch as in this way the positron bunch
can be assumed not to change shape during the collision.
This solution would still be valid if one studies the col-
lision of a low-density bunch with a high-density bunch,
such that the low-density bunch has only negligible effect
on the dense one.

As shown in [26], the result of the semi-classical op-
erator method applied to the one-dimensional oscillator
problem yields simply the spectrum obtained in the case
of nonlinear Compton scattering in a linearly polarized
monochromatic plane wave as found in, e.g., [2]. As we
shall see, the correct calculation will deviate from this re-
sult when the quantum number of the discretized trans-
verse motion becomes small. However, since this com-
parison is an important point, below we will also ap-
ply the semi-classical operator method to this problem
[26]. In section §II we will first make some consider-
ations on the electromagnetic field generated from the
relativistic positron bunch and indicate how one arrives
at the parabolic potential approximation. In section §III
we will gain an intuition of the problem and find an ap-
proximated analytical solution of the classical equations
of motion of the problem, enabling us to apply the semi-
classical method of Baier and Katkov in section §VI. In
section §IV we find the approximate wave-functions for
the problem at hand and in section §V we use these wave-
functions to calculate the transition matrix element of
the single-photon radiation emission. In section §VII we
do a side-by-side comparison of the power spectra ob-
tained using the two methods of calculation and discuss
the different regimes of radiation emission which arise.
Finally in section §VIII we draw the main conclusions of
the paper.

We use units where ~ = c = 1, α = e2 and the Feyn-
man slash notation such that /a = aµγ

µ, where γµ are the
Dirac gamma matrices and aµ an arbitrary four-vector.
We adopt the metric tensor ηµν = diag(+1,−1,−1,−1).
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Figure 1: The y-component Fy of the force exerted by a
positron bunch propagating along the positive x-direction
and lying on the x-z plane as function of position and time.
Here, Fmax is the magnitude of the force at x + t = 0 and
y/Σy = 0.75, λ = 2π/ω0 [see Eq. (26)]. The black continuous
line corresponds to the electron’s trajectory using a Gaus-
sian distribution for the charge density of the bunch [57, 58],
whereas the green dashed-dotted line corresponds to the ap-
proximated model described in the text [see equation (3)].

II. MODEL OF THE FIELD

Let us now consider a model of the electromagnetic
field from the dense positron bunch. The bunches to be
used in linear colliders are usually shaped liked sheets,
that is they are much longer than they are wide, and
much thinner than they are wide. By assuming that the
bunch propagates along the positive x direction and it lies
on the x-z plane, the r.m.s. values of the charge distribu-
tion in space are such that Σy � Σz � Σx (see figure 1).
We first consider the field in the co-moving frame of the
bunch. Here, the transverse beam sizes Σy and Σz re-
main unchanged, while the longitudinal becomes longer
by a factor of γb, which is the Lorentz factor of the bunch,
due to the effect of Lorentz contraction. Therefore in this
co-moving frame the bunches are still sheets. The charge
density is often modeled as a Gaussian function, that is

ρ′(r′) = Ne

(2π)3/2Σ′xΣ′yΣ′z
e
−
(
x′2

2Σ′2
x

+ y′2

2Σ′2
y

+ z′2
2Σ′2
z

)
, (2)

where primed quantities refer to quantities in the co-
moving frame and N the number of positrons in the
bunch. To obtain the electric field one can use Gauss’
law, ∇′ · E′(r′) = 4πρ′(r′), as explained in [57, 58].
However, since the bunches are flat, there will be a large
component of the field only orthogonal to the sheet, i.e.,
along the y′ (or y) direction. Moreover, imagining to de-
scribe processes occurring at the center of the bunch, we
can make the leading order expansion of the field com-
ponent, which results in

E′y′(r′) '
4πNe

(2π)3/2Σ′xΣ′yΣ′z
y′. (3)
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To obtain the field in the lab-frame we perform a Lorentz
transformation with velocity given by −βb, with βb be-
ing the velocity of the bunch. The orthogonal component
of the electric field becomes boosted by a factor of the
bunch Lorentz factor γb, which simplifies with the corre-
sponding change in the bunch length Σ′z = γbΣz and one
obtains

Ey(r) = 4πNe
(2π)3/2ΣxΣyΣz

y. (4)

A magnetic field arises according to the Lorentz trans-
formation of the electromagnetic fields:

B⊥(r) = −γbβb ×E
′(r′) = −βbEy(r)e3, (5)

where e3 is a unit vector in the z direction. In order to
neglect the dependence of the fields on x and t, we have
implicitly assumed that the electron moves along the x
direction at a speed close to the speed of light like the
bunch and that the dynamics in the y direction occurs
on a timescale much shorter than Σx. For the parame-
ters chosen in figure 1, for example, one can see that our
approximations result in a trajectory very close to the
exact one. Due to the fact that in a number of situations
one can approximate an electromagnetic field as a linear
function of a coordinate, this model is still useful not only
as a toy model for beamstrahlung but also to identify the
new regime where the transverse motion must be treated
quantum mechanically, instead of classically. In conclu-
sion, the only non-zero components of the background
electromagnetic field in the laboratory frame are given
by

Ey(r) =κy, (6)
Bz(r) =− βbκy, (7)

where

κ = 2Ne√
2πΣxΣyΣz

, (8)

is the field gradient.

III. CLASSICAL MOTION

To gain a basic understanding of the problem at hand
we first consider the classical motion in the given field
configuration. We are interested in the case of an ul-
trarelativistic electron with the motion being mainly di-
rected along the positive x-axis, i.e. the x component of
the velocity v fulfills the condition vx ' 1, whereas the
transverse momentum is much smaller than the longitu-
dinal one. In particular, we assume that the the initial
time is set equal to zero and that vz(0) = 0, in such a
way that vz(t) = 0 for all t > 0. Since the transverse
motion is only along the y direction, it is convenient to
introduce the parameter

ξ = γ0vy,max, (9)

where γ0 is the initial electron Lorentz gamma factor.
The parameter ξ then becomes on the order of unity when
the transverse motion becomes relativistic. We will re-
strict ourselves to the (broad) case where vy,max � 1 and
therefore ξ � γ0. The two conditions vx ' 1 and ξ � γ0
will be employed below to solve the equations of motion.
We use the Lorentz force equation, with the electric and
magnetic force terms given by

qE =

 0
−eκy

0

 , (10)

and

qv ×B = (−e)

 vx
vy
vz

×
 0

0
1

 (−κβby)

= βbeκy

 vy
−vx

0

 ,

(11)

respectively. The non-vanishing components of the
Lorentz equation read

dpx
dt

= βbeκyvy, (12)

dpy
dt

= −eκy − eβbκyvx = −(1 + βbvx)eκy. (13)

Now we use the identity

dp

dt
= dγ

dt
mv + γm

dv

dt
, (14)

where m is the electron mass. By using the equation for
the variation of the energy

m
dγ

dt
= qE · v = −eκyvy, (15)

we obtain

γm
dvx
dt

= q(E + v ×B)x −
dγ

dt
mvx

= (βbeκyvy)− (−eκyvy) vx
= (vx + βb)eκyvy,

(16)

and

γm
dvy
dt

= q(E + v ×B)y −
dγ

dt
mvy

= −eκy − βbeκyvx − (−eκyvy)vy
= −eκy

(
1 + βbvx − v2

y

)
.

(17)

Now we write

vx(t) = 1 + δvx(t), (18)

and

γ(t) = γ0 + δγ(t), (19)
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where γ0 is the initial value of the Lorentz gamma factor
for the electron. So we obtain the exact equations of
motion as

dδvx
dt

= 1
γ0

1
1 + δγ

γ0

(βb + 1 + δvx)eκ
m
yvy, (20)

dvy
dt

= − 1
γ0

1
1 + δγ

γ0

(
1 + βb + βbδvx − v2

y

) eκ
m
y. (21)

Now we wish to find solutions under the conditions
v2
y(t) � 1, |δvx(t)| � 1, |δγ(t)| � γ0 and 1/γ2

b � 1. In
this case the equations simplify significantly and we will
verify that the obtained solutions verify these conditions.
The approximate equations of motion then become

dδvx
dt

= (1 + βb) eκ

γ0m
yvy, (22)

dvy
dt

= −(1 + βb) eκ

γ0m
y. (23)

Here, one can replace βb by unity but we prefer to keep
the symbol βb such that we can obtain the case of a
harmonic oscillator via the replacement βb = 0. Now
the equation for y can be solved with appropriate initial
conditions to obtain

vy(t) = ξ

γ0
cos(ω0t), (24)

y(t) = ymaxsin(ω0t), (25)

where

ω0 =

√
(1 + βb)eκ

γ0m
. (26)

And from the definition of Eq. (9) we obtain that the
amplitude can be expressed in terms of the previously
defined quantities as

ymax = ξ

γ0ω0
. (27)

Now we can solve the equation for the motion along the
x direction.

dδvx
dt

= ω2
0yvy

= ω0

(
ξ

γ0

)2
sin(ω0t)cos(ω0t)

= ω0

2

(
ξ

γ0

)2
sin(2ω0t),

(28)

and upon integration we obtain

δvx(t) = −1
4

(
ξ

γ0

)2
cos(2ω0t) + C1, (29)

where C1 is a constant of integration. Now, the constant
difference between δvx(t) and vx(t) can be absorbed in
the constant of integration C1 in Eq. (29) such that

vx(t) = −1
4

(
ξ

γ0

)2
cos(2ω0t) + C2. (30)

In order to determine the constant C2, we can use v2
x(0)+

v2
y(0) = v2

0 = 1−1/γ2
0 . Thus, v2

x(0) = 1−(1+ξ2)/γ2
0 and

vx(0) ' 1− (1 + ξ2)/2γ2
0 , we can determine the constant

of integration C2 and we obtain:

vx(t) = 1− 1
2γ2

0
− ξ2

4γ2
0
− ξ2

4γ2
0
cos(2ω0t), (31)

which upon integration yields

x(t) =
(

1− 1
2γ2

0
− ξ2

4γ2
0

)
t− ξ2

4γ2
0

sin(2ω0t)
2ω0

. (32)

Now, it is clear that the conditions for the approximate
solutions are fulfilled as long as ξ � γ0. However we must
use Eq. (15) to check when the condition |δγ(t)| � γ0 is
fulfilled. Using Eq. (15) we obtain

dγ

dt
= − ω0

1 + βb

ξ2

2γ0
sin(2ω0t). (33)

And so we can integrate to obtain

γ(t) = γ0 + 1
1 + βb

ξ2

4γ0
[cos(2ω0t)− 1] , (34)

and therefore

δγ(t)
γ0

= 1
1 + βb

ξ2

4γ2
0

[cos(2ω0t)− 1] . (35)

In this way the condition |δγ(t)| � γ0 is equivalent to the
condition ξ � γ0. Therefore, as long as this condition is
fulfilled the neglected terms are smaller than a factor of
at least ξ/γ0 compared to the dominant ones.

IV. SOLUTION OF DIRAC EQUATION

Classically the fields of Eq. (6) and (7) gives a force
as in Hooke’s law and therefore harmonic oscillations as
seen in section (III). Harmonic oscillator wave functions
should therefore be involved in the solution of the Dirac
equation. We have E(r) = −∇ϕ(r) so due to the simple
structure of the electric field in Eq. (6) the potential
depends only on the y-coordinate, i.e. we have

ϕ(y) = −κy
2

2 . (36)

A vector potential which gives us the magnetic field of
Eq. (7) is
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A(y) = βbκ

2 (y2, 0, 0). (37)

The Dirac equation in an external field reads

(
/̂p+ e /A(r)−m

)
ψ(r, t) = 0, (38)

where ψ(r, t) is the electron bispinor wave function. This
can also be rewritten as

i
∂ψ(r, t)
∂t

= Ĥψ(r, t), (39)

with

Ĥ = α · Π̂− eϕ(r) + γ0m, (40)

where αi = γ0γi, i = 1, 2, 3, and Πi = p̂i + eAi(r)
(for electron). We consider a problem where the poten-
tials have no time dependence and then take the usual
approach [59] of finding the stationary states and write

ψ(r, t) = e−iεt
(
φ(r)
χ(r)

)
, (41)

where ε will be the energy. This leads to

(ε− V (r)−m)φ(r) = σ · (−i∇ + eA(r))χ(r), (42)

(ε− V (r) +m)χ(r) = σ · (−i∇ + eA(r))φ(r), (43)

where σ denote the three Pauli matrices. Now from Eq.
(42) we find

χ(r) = 1
ε+ eϕ(y) +m

σ · Π̂φ(r), (44)

and inserting this in Eq. (43) we obtain a differential
equation for φ(r)

(ε+ eϕ(y)−m)φ(r)

= σ · (−i∇ + eA(y)) 1
ε+ eϕ(y) +m

σ · Π̂φ(r).
(45)

To find the solution for φ(r) we need to rewrite this such
that we can isolate the Laplacian of φ(r). The product
rule for the gradient gives us a term where it acts on
(ε+ eϕ(y) +m)−1 and one where it acts on σ · Π̂φ(r) so
this gives us

(ε+ eϕ(y)−m)φ(r)

= −iσ ·∇
(

1
ε+ eϕ(y) +m

)
σ · Π̂φ(r)

− 1
ε+ eϕ(y) +m

iσ ·∇
(
σ · Π̂φ(r)

)
+ σ · eA(y) 1

ε+ eϕ(y) +m
σ · Π̂φ(r)

= −iσ ·∇
(

1
ε+ eϕ(y) +m

)
σ · Π̂φ(r)

+ 1
ε+ eϕ(y) +m

σ · (−i∇ + eA(y))σ · Π̂φ(r)

= −iσ ·∇
(

1
ε+ eϕ(y) +m

)
σ · Π̂φ(r)

+ 1
ε+ eϕ(y) +m

[
σ · Π̂

]2
φ(r)

= iσy ·
eϕ′(y)

(ε+ eϕ(y) +m)2σ · Π̂φ(r)

+ 1
ε+ eϕ(y) +m

[
σ · Π̂

]2
φ(r).

(46)

Multiplying by (ε+ eϕ(y) +m) on both sides we obtain

(
(ε+ eϕ(y))2 −m2

)
φ(r)

= iσy ·
1

ε+ eϕ(y) +m
eϕ′(y)σ · Π̂φ(r) +

[
σ · Π̂

]2
φ(r)

= −i 1
ε+ eϕ(y) +m

(σy · eEy(y))σ · Π̂φ(r) +
[
σ · Π̂

]2
φ(r)

= −i
ε+ eϕ(y) +m

(
eEy(y)Π̂y + iσ · (eE(y)× Π̂)

)
φ(r)

+
[
σ · Π̂

]2
φ(r).

(47)

Now we need to consider the term
[
σ · Π̂

]2
by letting it

act on a test function f .

[σ · (p̂+ eA(y))] [σ · (p̂f + eA(y)f)]
= p̂2f + σ · (∇× [eA(y)]) f
+ 2eAx(y)p̂xf + e2A2(y)f.

(48)

Then, finally, we obtain

[
p̂2 + eσ ·B(y) + 2eAx(y)p̂x
− 2εeϕ(y) + e2A2(y)− e2ϕ2(y)

− i 1
ε+ eϕ(y) +m

(
eEyΠ̂y + iσ · (eE(y)× Π̂)

)
−
(
ε2 −m2)]φ(r) = 0.

(49)
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This is the exact differential equation for φ(r). In Eq.
(49) the dominant terms driving the dynamics are the
terms 2eAx(y)p̂x − 2εeϕ(y). We will try with a separa-
ble solution which yields free motion in the x-direction
such that this becomes 2eAx(y)px (no longer an opera-
tor) which is under most circumstances nearly equal the
other term −2εeϕ(y). These two terms correspond to the
adding of the electric and magnetic forces on the parti-
cle. It turns out that in the regime we are interested in,
many of the terms in Eq. (49) can be neglected.

A. e2ϕ2(y) term

If e2ϕ2(y) should be much smaller than −2εeϕ(y)
we should have that 2ε � −eϕ(y). The most strin-
gent condition is then to use −eϕmax = −eϕ(ymax) =
eκy2

max/2 = eκξ2/2γ2
0ω

2
0 . Our condition then becomes

1 � ξ2

γ2
0

1
4(1+βb) , a condition which will be fulfilled as we

require exactly that ξ � γ0. The same argument goes
for the e2A2(y) term.

B. eσ ·B(y) term

Here we should have −2εeϕ(y) � eBz(y) correspond-
ing to

2εeκy
2

2 � eκy, (50)

which reduces to

y � 1
ε
, (51)

which is seen to be roughly the Compton wavelength di-
vided by a factor of γ0. The problem could, in fact, be
solved while including this term, and the effect would
be that the spin up and spin down wave-functions are
shifted by the distance 1/ε compared to eachother. This
is however completely negligible. As we will see later,
the transition to the new regime happens when the typ-
ical length of the problem becomes on the order of the
Compton wavelength, and this condition is a factor of γ0
below this.

C. eEyΠ̂y
ε+eϕ(y)+m

term

We obtain the most stringent condition by inserting
the maximum value of the classical momentum and so

eEyΠ̂y

ε+ eϕ(y) +m
' eκypy,max

ε
' eκymξ

ε
. (52)

We should then have

eκymξ

ε
� −2εeϕ(y) = εeκy2, (53)

which reduces to

y � ξ

γ0

1
ε
, (54)

and since we require that γ0 � ξ if Eq. (51) is fulfilled,
then so is Eq. (54).

D. σ·(eE×Π̂)
ε+eϕ(y)+m

We have that σ ·(E×Π̂) = σxEy(y)pz−σzEy(y)(px+
eAx(y)) . The previous terms have either had the matrix
structure of the identity or σz while here we also have a
term proportional to σx i.e. a mixing between the spin
states. The σz term is on the same size as the one from
section IVB and therefore negligible. The mixing term
will be even smaller as pz will be 0 initially and on the
order of m in the final state, so a factor of γ0 smaller
than the already negligible small correction.
Now that we have argued for the smallness of the ad-

ditional terms we are left with the equation

[
p̂2 + 2eAx(y)p̂x − 2εeϕ(y)−

(
ε2 −m2)]φ(r) = 0.

(55)
This gives us

[
−∇2 + eκβy2(−i∂x) + εeκy2 − (ε2 −m2)

]
φ(r) = 0.

(56)
To solve this equation we try the ansatz φ(r) =
I(y)eipxx+ipzzs where s is any 2-component vector and
so we obtain the following differential equation only in
the y-coordinate,

[
− d2

dy2 + eκ(βbpx + ε)y2 − (ε2 − p2
x − p2

z −m2)
]
I(y) = 0.

(57)
By defining

1
L

= 4
√
eκ(βbpx + ε), (58)

and introducing the dimensionless variable,

η = y/L, (59)

we obtain that

[
d2

dη2 − η
2 + L2 (ε2 − p2

x − p2
z −m2)] I(η) = 0, (60)
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and defining

a = L2 (ε2 − p2
x − p2

z −m2) , (61)

equation (60) becomes

[
d2

dη2 − η
2 + a

]
I(η) = 0, (62)

which has normalizable solutions when a = 2n + 1 with
n integer (see e.g. [60, 61]), which we denote In(η). And
so the solutions to Eq. (55) are given by

φn(r) = ei(pxx+pzz)In(η(y))s, (63)

when the constants are related by

ε2
n = 1

L2 (2n+ 1) + p2
x + p2

z +m2, (64)

and the solutions can be written explicitly as

In(η) = Nne
−η2/2Hn(η), (65)

where Nn is a normalization constant to be found and
Hn(η) are the Hermite polynomials normalized such that´∞
−∞Hm(x)Hn(x)e−x2

dx =
√
π2nn!δnm where δnm is the

Kronecker delta function. We would like to normalize
In(η) such that

ˆ
|In(η)|2dy = 1, (66)

which gives us that

Nn = 1√
2nL
√
πn!

. (67)

So we have our solutions to the Dirac equation as

ψ(r, t) = 1√
2LxLz

(
In(η)s

σ·(−i∇+eA(y))
ε+eϕ(y)+m In(η)s

)
ei(pxx+pzz−εnt),

(68)
where LxLz is a normalization area in the xz plane (1
particle per area). To obtain a more explicit expression
for the lower two components in the bispinor of Eq. (68)
we insert the Pauli matrices to obtain

σ · (−ie2
d

dy
+ eA(y))In(η)

= y2In(η)eκβb

2 σx − iσy
dIn(η)
dy

=
(

0 In(η)η2C − 1
L
dIn
dη

In(η)η2C + 1
L
dIn
dη 0

) (69)

where e2 is a unit vector in the y-direction and we defined
C = eκβbL

2

2 . Calculating the spin dependent part of Eq.
(68), we define

U↑(y) =


In(η)

0
pzIn(η)

εn+eϕ(y)+m
pxIn(η)+In(η)η2C+ 1

L
dIn(η)
dη

εn+eϕ(y))+m

 , (70)

U↓(y) =


0

In(η)
pxIn(η)+In(η)η2C− 1

L
dIn(η)
dη

εn+eϕ(y)+m
−pzIn(η)

εn+eϕ(y)+m

 . (71)

Finally, since the potential (−eϕ(y)) in the denominator
is much smaller than the energy εn (this is the same con-
dition as in subsection IVB) we can make the following
approximation, valid when γ0 � ξ

pxIn(η) + Inη
2C + 1

L
dIn(η)
dη

εn + eϕ(y) +m

=
pxIn(η) + In(η)η2C + 1

L
dIn(η)
dη

(εn +m) (1 + eϕ(y)
εn+m )

'
pxIn(η) + In(η)η2C + 1

L
dIn(η)
dη

(εn +m) (1− eϕ(y)
εn +m

)

'
pxIn(η)− px

εn+meϕ(y)In(η) + In(η)η2C + 1
L
dIn(η)
dη

εn +m

'
pxIn(η) + In(η)η2D + 1

L
dIn(η)
dη

εn +m
,

(72)

where D = eκ( px
εn+m+βb)L2

2 ' eκ(1+βb)L2

2 , and so we ob-
tain

U↑(y) =


In(η)

0
pzIn(η)
εn+m

pxIn(η)+In(η)η2D+ 1
L
dIn(η)
dη

εn+m

 , (73)

U↓(y) =


0

In(η)
pxIn(η)+In(η)η2D− 1

L
dIn(η)
dη

εn+m
−pzIn(η)
εn+m

 , (74)

such that our solutions, finally, can be spanned by the
two solutions
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ψ↑(r, t) = 1√
2LxLz

ei(pxx+pzz−εnt)U↑(y) (75)

ψ↓(r, t) = 1√
2LxLz

ei(pxx+pzz−εnt)U↓(y) (76)

It was earlier stated that the normalization was for one
particle per area, however unproven. To show that
this is correct within our approximation, we calculate´
ψ†(r, t)ψ(r, t)dV . We have

ˆ
ψ†↑(r, t)ψ↑(r, t)dV

= 1
2

ˆ
dy

|In(η)|2 +
[
pxIn(η) + In(η)η2C + 1

L
dIn(η)
dη

εn + eϕ(y) +m

]2 ,

(77)

where the integration over dxdz has canceled out with
the area LxLz in the front factor of Eq. (75). We show
here the case up spin-up, but the result is the same for
spin-down.

By using the properties that the derivative of the In(η)
function, as they are harmonic oscillator wave functions,
is related to the stepped up and down wave-functions we
find that we should add a normalization factor on the
wave function of

1√
1 + p2

x−(En+m)2+( 3
2n

2+ 3
2n+ 3

4 )D2+( 1
L2 +pxD)(n+ 1

2 )
2(εn+m)2

.

(78)
To estimate the size of this correction we also need to
know the typical size of n. The solutions In(η) rapidly
drop off, for large n, when beyond the classical turning
points which can be found from Eq. (64) and (55) to
correspond to η2 > 2n + 1. We have that e(Ax(y) −
ϕ(y)) ∼ Dη2 and therefore nD ∼ −eϕ(ymax). Thus we
have terms that are on the order of −eϕ(ymax)/εn or
this factor squared, which is therefore of the same size
as the correction found in section IVA. The term n/L2

can be seen to be on the same order by replacing n ∼
−eϕ(ymax)/D and using the definition of L. Therefore,
as long as γ0 � ξ the normalization of Eq. (75) and (76)
is correct within our accuracy.

V. RADIATION EMISSION

Now that we have obtained the wave-functions we can
calculate the probability of radiation emission by us-
ing the transition matrix element from an initial state
ψi(x) to a final state ψf (x) while emitting a photon with
momentum four-vector kµ = (ω,k) and polarization ε,
which is given by

Sfi =
ˆ
d4xψ̄f (x)ie

√
4π

2ωV /ε
∗eikxψi(x). (79)

Then the differential rate of emission dW is usually given
by

dW = |Sfi|2
1
T

V d3pf
(2π)3

V d3k

(2π)3 , (80)

where V is the normalization volume and T the inter-
action time, factors which eventually cancel out. In our
case the density of final states of the electron instead
becomes V d3pf

(2π)3 → dpxdpzLxLz
(2π)2

∑
nf
, where LxLz is a nor-

malization area. This change is due simply to the fact
that one quantum number is discrete instead of contin-
uous. Inserting our wave-functions from Eq. (76) we
obtain

Sfi = ie

√
4π

2ωV
1

2LxLz

ˆ
d4xŪf (y)/ε∗Ui(y)

× e−ikyyei(px,i−px,f−kx)xei(pz,i−pz,f−kz)z

× ei(εf+ω−εi)t,

(81)

and carrying out the trivial integrations we obtain,

Sfi = ie

√
4π

2ωV
1

2LxLz
(2π)3

ˆ
Ūf (y)/ε∗Ui(y)e−ikyydy

× δ(px,i − px,f − kx)δ(pz,i − pz,f − kz)
× δ(εf + ω − εi).

(82)

Since we need this quantity squared, we must con-
sider the meaning of the delta-function squared.
Here we take the usual approach to obtain fac-
tors of the normalization volume and time, i.e.
[δ(px,i − px,f − kx)δ(pz,i − pz,f − kz)δ(εf + ω − εi)]2 =
LxLzT
(2π)3 δ(px,i − px,f − kx)δ(pz,i − pz,f − kz)δ(εf + ω − εi)
and so we obtain

|Sfi|2 = 4πe2

2ωV
1

(2LxLz)2 (2π)6

×
∣∣∣∣ˆ Ūf (y)/ε∗Ui(y)e−ikyydy

∣∣∣∣2
× LxLzT

(2π)3 δ(px,i − px,f − kx)δ(pz,i − pz,f − kz)

× δ(εf + ω − εi).
(83)

Now integrating over final electron momentum we obtain
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ˆ
dpxdpzLxLz

(2π)2

∑
nf

|Sfi|2

=
∑
nf

4πe2

2ωV
1

(2LxLz)2 (2π)6

×
∣∣∣∣ˆ Ūf (y)/ε∗Ui(y)e−ikyydy

∣∣∣∣2
× LxLzT

(2π)3
LxLz
(2π)2 δ(εf + ω − εi)

=
∑
nf

e2

4ωV (2π)2
∣∣∣∣ˆ Ūf (y)/ε∗Ui(y)e−ikyydy

∣∣∣∣2
× Tδ(εf + ω − εi).

(84)

Now we must only add the photon density of states from
Eq. (80) and we obtain the differential rate as

dW =
∑
nf

e2

8πω

∣∣∣∣ˆ Ūf (y)/ε∗Ui(y)e−ikyydy
∣∣∣∣2

× δ(εf + ω − εi)ω2dωdΩ.

(85)

Now we wish to integrate over dcosθ in dΩ = dΦdcosθ
to get rid of the last delta-function. To do this we use
the energy relation of Eq. (64) to write the final energy
and use that the momentum delta functions have fixed
px,f = px,i − kx and pz,f = pz,i − kz. Now writing the
photon momentum vector k in spherical coordinates,

k = ω(cosθ, sinθcosΦ, sinθsinΦ), (86)

we have that

pz,f =− kz = −ωsinθsinΦ, (87)
px,f =px,i − ωcosθ. (88)

In this case Eq. (64) for the final energy εf becomes

ε2
f = (2n+ 1)

√
eκ(px,i + εi − ω(1 + cosθ))

+ (px,i − ωcosθ)2 + ω2sin2θsin2Φ +m2.
(89)

Now we wish to carry out the integration over dcosθ so
we must transform the delta function so

δ(εf (cosθ) + ω − εi) = δ(cosθ − cosθ0)
| dεfdcosθ (cosθ)|

, (90)

where cosθ0 is the solution to the equation

εf (cosθ) + ω − εi = 0, (91)

which we will find later. We obtain from Eq. (89)

2εf
dεf
dcosθ = (2n+ 1) −eκω

2
√
eκ(px,i + εi − ω(1 + cosθ))

+ 2(px,i − ωcosθ)(−ω)

+ ω2sin2Φ d

dcosθ (sin2θ),
(92)

from which we can isolate dεf
dcosθ .

dεf
dcosθ = 1

εf

(
− (2n+ 1) eκω

4
√
eκ(px,i + εi − ω(1 + cosθ))

−ωpx,i + ω2cosθcos2Φ
)
.

(93)

And so we have integrated over all the delta functions
and can write the differential rate as

dW =
∑
nf

e2

8πω′

∣∣∣∣ˆ Ūf (y)/ε∗Ui(y)e−ikyydy
∣∣∣∣2 1
| dεfdcosθ |

ω2dωdΦ.

(94)
To find the solution of Eq. (91) we will recall that we
consider ultra-relativistic particles such that θ is small
meaning we can perform the series expansions of cosθ '
1− θ2

2 and sinθ ' θ. Inserting this in Eq. (89) we obtain

(εi − ω)2 = (2n+ 1)
√
eκ(px,i + εi − ω(2− θ2

2 )

+ (px,i − ω + ω
θ2

2 )2 + ω2θ2sin2Φ +m2,

(95)

which leads us to the sought after solution of Eq. (91)

θ0 =
[
(εi − ω)2 − (2n+ 1)

√
eκ(px,i + εi − 2ω)

−(px,i − ω)2 −m2]1/2
/
[
(px,i − ω)ω + ω2sin2Φ

+ ω/4
px,i + εi − 2ω (2n+ 1)

√
eκ(px,i + εi − 2ω)

]1/2
.

(96)

Now we have all the quantities necessary to evaluate the
rate from Eq. (94).

VI. BAIER METHOD

From [46] it can be seen that the differential power
emitted in the semi-classical operator method is given by
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d2P

dωdΩ = 1
T

e2

4π2ω
′2

ε2 + ε′2

2ε2

∣∣∣∣∣∣
∞̂

−∞

(n− v) eiω
′(t−n·r)dt

∣∣∣∣∣∣
2

+ω2m2

2ε4

∣∣∣∣∣∣
∞̂

−∞

eiω
′(t−n·r)dt

∣∣∣∣∣∣
2
 ,

(97)

where ε′ = ε − ω, ω′ = ωε/(ε − ω), n =
(cosθ, sinθcosΦ, sinθsinΦ) is the direction of emission and
r(t) and v(t) are the classical position and velocity vec-
tors, respectively. It is beneficial to first look at the in-
tegral from the second term and insert the motion found
in section III

∞̂

−∞

eiω
′(t−n·r)dt

=
∞̂

−∞

e
iω′(t−cosθ

[(
1− 1

2γ2
0
− ξ2

4γ2
0

)
t− 1

4

(
ξ
γ0

)2 sin(2ω0t)
2ω0

]
)

× e−iω
′sinθcosΦ ξ

γ0ω0
sin(ω0t)dt.

(98)

If we change variable to τ = ω0t and expand cosθ as
earlier this can be rewritten as

∞̂

−∞

eiω
′(t−n·r)dt

= 1
ω0

ˆ
e
iω′( τ

2γ2
0ω0

[1+ 1
2 ξ

2+γ2
0θ

2])

× e
iω′
(

1
8ω0

(
ξ
γ0

)2
sin(2τ)−sinθcosΦ ξ

γ0ω0
sin(τ)

)
dτ.

(99)

Now we know that

e
iω′
(

1
8ω0

(
ξ
γ0

)2
sin(2τ)−sinθcosΦ ξ

γ0ω0
sin(τ)

)
, (100)

is a 2π periodic function so we can write it as a Fourier
series

e
iω′
(

1
8ω0

(
ξ
γ0

)2
sin(2τ)−sinθcosΦ ξ

γ0ω0
sin(τ)

)
=

∞∑
n=−∞

cne
−inτ ,

(101)
with coefficients given by

cn = 1
2π

ˆ π

−π
e
i

(
nτ+ ω′

8ω0

(
ξ
γ0

)2
sin(2τ)−sinθcosΦ ω′ξ

γ0ω0
sin(τ)

)
= A0(−n,−α1,−α2) = A0(n, α1, α2),

(102)

where we have defined

Am(n, α1, α2)

= 1
2π

ˆ π

−π
cosm(τ)ei(α1sin(τ)−α2sin(2τ)−nτ)dτ,

(103)

as in [2, 26], with

α1 = sinθcosΦ ω′ξ

γ0ω0
, (104)

and

α2 = ω′

8ω0

(
ξ

γ0

)2
. (105)

When inserting this in Eq. (99) we obtain

∞̂

−∞

eiω
′(t−n·r)dt

= 1
ω0

∞∑
n=−∞

cn

ˆ
e
iτ( ω′

2γ2
0ω0

[1+ 1
2 ξ

2+γ2
0θ

2]−n)
dτ

= 2π
ω0

∞∑
n=−∞

A0(n, α1, α2)δ( ω′

2γ2
0ω0

(
1 + 1

2ξ
2 + γ2

0θ
2
)
− n).

(106)

Now calculating
´∞
−∞ (n− v) eiω′(t−n·r)dt is straightfor-

ward. For the y-component we have

∞̂

−∞

(n− v)y e
iω′(t−n·r)dt

=
∞̂

−∞

(
sinθcosΦ− ξ

γ0
cos(ω0t)

)
× eiω

′(t−cosθv0t−sinθcosΦ ξ
γ0ω0

sin(ω0t))dt.

(107)

The first term is simply a constant (no τ dependence)
times the integral we have already calculated, and the
cosine factor in the second term means we simply need
to replace A0(n, α1, α2) with A1(n, α1, α2) and so

∞̂

−∞

(n− v)y e
iω′(t−n·r)dt

= 2π
ω0

∞∑
n=−∞

[
sinθcosΦA0(n, α1, α2)− ξ

γ0
A1(n, α1, α2)

]
× δ( ω′

2γ2
0ω0

(
1 + 1

2ξ
2 + γ2

0θ
2
)
− n).

(108)
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The z-component is simply a constant times the result
from Eq. (106), since vz = 0, so we have

∞̂

−∞

(n− v)z e
iω′(t−n·r)dt

= 2π
ω0

∞∑
n=−∞

sinθsinΦA0(n, α1, α2)

× δ( ω′

2γ2
0ω0

(
1 + 1

2ξ
2 + γ2

0θ
2
)
− n).

(109)

In Eq. (97) we see that we need these quantities squared
and so we must consider the meaning of the delta function
δ( ω′

2γ2
0ω0

(
1 + 1

2ξ
2 + γ2

0θ
2) − n) squared. This came from

an integral over the phase τ and so the usual approach
is that [

δ( ω′

2γ2
0ω0

(
1 + 1

2ξ
2 + γ2

0θ
2
)
− n)

]2

= δ( ω′

2γ2
0ω0

(
1 + 1

2ξ
2 + γ2

0θ
2
)
− n)∆τ

2π ,
(110)

where ∆τ is the phase-length which is ω0T where T is
the interaction time, which we can divide with on both
sides of Eq. (97) to obtain the energy emitted per unit
time. We therefore obtain that

∣∣∣∣ˆ (n− v) eiω
′(t−n·r)dt

∣∣∣∣2
= (2π)2

ω2
0

Tω0

2π δ( ω′

2γ2
0ω0

(
1 + 1

2ξ
2 + γ2

0θ
2
)
− n)

×
∞∑

n=−∞

[
sinθcosΦA0(n, α1, α2)− ξ

γ0
A1(n, α1, α2)

]2

+ [sinθsinΦA0(n, α1, α2)]2 .
(111)

Now we wish to carry out the integration over dθ so
we recognize that the content of the delta function is a
function of θ which we define as g(θ) to use the formula
δ(g(θ)) = δ(θ−θ0,B)/|dgdθ (θ0,B)| where θ0,B is the solution
to g(θ0,B) = 0. So

g(θ) = ω′

2γ2
0ω0

(
1 + 1

2ξ
2 + γ2

0θ
2
)
− n, (112)

g′(θ) = ω′

ω0
θ, (113)

and we then find the zero as

θ0,B = 1
γ0

√
2γ2

0ω0n

ω′
−
(

1 + ξ2

2

)
. (114)
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Figure 2: The case of n = 4 and ξ = 0.1. The label ’QM’
refers to the fully quantum calculation and ’Baier analytical’
to the semi-classical method of Baier & Katkov.

The other solution, −θ0,B is not allowed by our choice of
coordinate system where 0 ≤ θ ≤ π. Here we see that
we should have n ≥ 1 to have any solutions. Once again
approximating sinθ ' θ we have that

ˆ
dΦθdθ

∣∣∣∣ˆ (n− v) eiω
′(t−n·r)dt

∣∣∣∣2
=
ˆ
dΦ2πT

ω′

∞∑
n=−∞

[
θ0,BcosΦA0(n, α1, α2)− ξ

γ0
A1(n, α1, α2)

]2

+ [θ0,BsinΦA0(n, α1, α2)]2 ,
(115)

and for the second term of Eq. (97), we obtain

∣∣∣∣ˆ eiω
′(t−n·r)dt

∣∣∣∣2 = 2π
ω2

0
Tω0

∞∑
n=−∞

A2
0(n, α1, α2)

× δ( ω′

2γ2
0ω0

(
1 + 1

2ξ
2 + γ2

0θ
2
)
− n).

(116)

Integrating this term over all angles as well, we obtain

ˆ
dΦθdθ

∣∣∣∣ˆ eiω
′(t−n·r)dt

∣∣∣∣2
=
ˆ
dΦ2πT

ω′

∞∑
n=−∞

A2
0(n, α1, α2).

(117)

So in total we obtain the emitted power dP (energy per
unit time) differential in the emitted photon energy as
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dP

dω
= e2

2πω
′
ˆ
dΦ

∞∑
n=1

×

(
ε′2 + ε2

2ε2

[{
θ0,BcosΦA0(n, α1, α2)− ξ

γ0
A1(n, α1, α2)

}2

+ {θ0,BsinΦA0(n, α1, α2)}2
]

+ω2m2

2ε4 A2
0(n, α1, α2)

)
.

(118)

In this form it is clear which terms correspond to which
from Eq. (97), however it is not immediately obvi-
ous that it is identical to that found in [26]. To ob-
tain this we must carry out the square in the term{
θ0,BcosΦA0(n, α1, α2)− ξ

γ0
A1(n, α1, α2)

}2
. This will

give us a a term −2θ0,BcosΦA0(n, α1, α2) ξγ0
A1(n, α1, α2)

which we will rewrite by employing the relation found in
[2] stating that

α1A1(n, α1, α2) = (n− 2α2)A0(n, α1, α2)
+ 4α2A2(n, α1, α2),

(119)

and from this we can express cosΦA1(n, α1, α2) in terms
of A0 and A2, which after some rewriting will lead us to
the expected result

dP

dω
= e2

2π
ω

γ2
0

ˆ
dΦ

∞∑
n=1

×
(
−A2

0 + ξ2
(

1 + u2

2 (1 + u)

)(
A2

1 −A0A2
))

,

(120)

where u = ω
ε−ω .

VII. RESULTS AND DISCUSSION

Now we have calculated the radiation emission using
two different approaches to the same problem. One is
fully quantum mechanical, and the other a semi-classical
approach. A third method which is well known in the
literature [62–65] is to approximate the emission as hap-
pening in a constant crossed field and use the formula for
radiation emission in this case. This is generally consid-
ered applicable when ξ � 1 and so we will also make this
comparison when this condition is fulfilled.

When dealing with radiation emission the quantum pa-
rameter is defined by

χ =
e
√
−(Fµνpν)2

m3 , (121)

0
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Figure 3: The case of n = 8, ξ = 5, χ = 7.81. The label ’QM’
refers to the fully quantum calculation, ’Baier numerical’ to
the semi-classical method of Baier & Katkov for 15 periods
of oscillation, ’Baier analytical’ to the analytical results ob-
tained from the semi-classical method corresponding to the
limit of many oscillations, and the label ’CCF’ corresponds to
the constant crossed field approximation. This figure shows
the ’doubly quantum’ regime where the semi-classical method
breaks down.

and tells us how important quantum effects such as re-
coil and spin are. When χ � 1 these effects are small.
However the effect of low quantum number is not covered
by this parameter, and is a separate condition. We will
consider the peak value in terms of the parameters of our
problem which is then given by

χmax = κymax
2γ0

Ec
, (122)

where Ec = m2

e is the Schwinger critical field. From the
wave-functions seen in Eq. (75) we know that the har-
monic oscillator function In(η) will start tending towards
0 when η >

√
2n, corresponding to the classical ampli-

tude of oscillation. Thus ymax can also be accurately
written as ymax = L

√
2n when n is large so

χmax = κ
√

2nL2γ0

Ec
. (123)

Setting px ' ε and βb ' 1 we have

1
L
' 4
√

2eκpx, (124)
1

2pxL4 = eκ (125)

and so we have that

χmax =
√

2n
(
λC
L

)3
, (126)

where λC = 1/m is the Compton wavelength. In the
special case of the harmonic oscillator, the momentum
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Figure 4: The case of n = 120, ξ = 1. The label ’QM’
refers to the fully quantum calculation, ’Baier numerical’ to
the semi-classical method of Baier & Katkov for 15 periods of
oscillation, ’Baier analytical’ to the analytical results obtained
from the semi-classical method corresponding to the limit of
many oscillations. Here we see how for quite large values of
the quantum number the semi-classical method is good.

space wave-function is the same as the space wave func-
tion save only for a different variable, such that instead
of In(y/L) we have In(qyL) and therefore since the func-
tion In(η) decreases rapidly for η2 > 2n we can also write
q2

y,max = 2n/L2. And so we express the other parameter
usually considered when dealing with radiation emission
ξ in terms of the parameters of our solutions to obtain
that

ξ = qy,max

m
= λC

L

√
2n. (127)

And combining this with Eq. (126) we obtain the useful
relation

χmax = ξ3

2n. (128)

For weak fields, meaning a small field gradient κ, L will
become large, and so we will denote L� λC as the weak
field gradient regime and vice versa. Below we will dis-
cuss features of the radiation spectrum shown in the fig-
ures in the different regimes. In the figures the label ’QM’
corresponds to the exact calculation of Eq. (94), ’Baier
analytical’ corresponds to Eq. (120). ’Baier numerical’
corresponds to using the formula of Eq. (97) by numeri-
cally solving the equations of motion corresponding to a
time of 15 oscillations in the field numerically, and then
performing the integration over angles and time numer-
ically as done in [46]. The label ’CCF’ corresponds to
the radiation emitted when applying the constant crossed
field approximation.

A. Weak field gradient regime, L� λC

In this regime when the quantum number n is small,
both χmax and ξ will be small as seen from Eq. (126) and
Eq. (127). A small value of χmax means the only quan-
tum effects for n small are those due to the quantization
of the motion. Since ξ will be small, the radiation is in the
dipole regime, meaning different harmonics are clear and
most radiation comes from the first harmonic. In figure 2
we have shown a plot of the radiation spectrum in this
regime using the exact calculation and the semi-classical
approximation. Coincidentally the two calculations yield
same result for the first harmonic, and differences are
only seen for higher harmonics. So differences are only
seen in the parts of the spectrum where the radiation
yield is small. Another difference is that the exact cal-
culation only allows a finite number of harmonics corre-
sponding to transitions from the initial state with quan-
tum number ni to one with lower quantum number, and
the last harmonic thus corresponds to transition to the
ground state and for photon energies above the thresh-
old corresponding to this harmonic, no radiation can be
emitted. With the semi-classical method this is not the
case and the sum over harmonics is infinite. This case
of the weak field gradient regime is the regime of planar
channeling of positrons for low energies. For channeling
of relativistic positrons, the positron also experiences a
potential which is close to parabolic. However in chan-
neling, low quantum numbers for the motion can only be
achieved while one is also in the dipole regime. Therefore
in [26] there is a section on calculating the (dominant)
radiation from the first harmonic in this regime of low
quantum numbers which does not use their developed
semi-classical method. Although planar channeling of
positrons is in this regime, we think that it would be dif-
ficult to see the effects seen in figure 2 because the slight
anharmonicity of the true potential would also yield con-
tributions at higher harmonics, which would likely be
larger than these effects.

B. Strong field gradient regime, L� λC

If one wants to see big differences in the whole of the
spectrum as seen in figure 3, one must be in the strong
field regime and have small value of n. In this regime
one will always have large χ such that recoil and spin is
important, and for small n one has the additional quan-
tum effect of the quantized motion i.e. one needs the
wave-function instead of the trajectory.
In figure 3 we have shown an example of this which

could be dubbed the “doubly quantum regime”, where it
is seen that the correct calculation deviates significantly
from the constant crossed field approximation (CCF) but
also from the result of the semi-classical operator method
which is more general, but evidently fails in the regime
of low quantum numbers. This transition from the usual
regime to the doubly quantum regime happens when the
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Figure 5: The case of n = 40, ξ = 1. The label ’QM’ refers to
the fully quantum calculation, ’Baier numerical’ to the semi-
classical method of Baier & Katkov for 15 periods of oscilla-
tion, ’Baier analytical’ to the analytical results obtained from
the semi-classical method corresponding to the limit of many
oscillations. Here we see how for smaller values of the quan-
tum number one begins to see small deviations between the
semi-classical method and the correct result.

n quantum number is small and L = 1
m which can be

related to a certain beam density as we will see below.
In figure 4 and figure 5 we show the radiation spectrum

for ξ = 1 but for a different value of the quantum number
n of the radiating particles. Here it is seen that as n is
large as in the n = 120 case the agreement between the
exact calculation and the semi-classical approach is good
while when it becomes smaller, in the case of n = 40 the
agreement becomes worse. In figure 6 we show the radi-
ation spectrum in the regime where the constant crossed
field approximation is applicable and see that while there
are small differences between the semi-classical method
and the exact calculation in the position of the harmon-
ics, see e.g. the position of 3rd and 4th harmonic peak,
the overall size of the spectrum coincides quite well, while
the CCF approximation seems to slightly overestimate
the radiation emitted at low frequencies. So to see major
differences one needs an even smaller value of n as is the
case seen in figure 3.

C. Beam parameter considerations

To gain an understanding of when these new effects
could arise in beamstrahlung, we wish to approximate
the parameters we have introduced in terms of the usually
given beam parameters, see table I. From Eq. (8) we have
that κ relates to the peak density as

κ = 4πρ0, (129)

where ρ0 = ρ(0, 0, 0). So using Eq. (125) we have that

1
L4 = 8πeρ0ε. (130)
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Figure 6: The case of n = 40, ξ = 30. The label ’QM’
refers to the fully quantum calculation, ’Baier numerical’ to
the semi-classical method of Baier & Katkov for 15 periods
of oscillation and ’CCF’ to the constant crossed field approx-
imation. Here we see how, also in the regime where the CCF
approximation may be applied, the deviation from the correct
results is small when n = 40.

Now we can define the critical density ρc as that corre-
sponding to L = 1/m so m4 = 8πeρcε, or

ρc = m4

8πeε . (131)

So to be in the doubly quantum regime one should reach
this density and have a small quantum number, i.e. that
the transverse beam size becomes comparable to the
Compton wavelength. This also gives us another way
of expressing the length parameter of the problem L in
terms of the critical density since

1
L4 = m4 ρ0

ρc
, (132)

and so we also have that

(
λC
L

)4
= ρ0

ρc
. (133)

Now we can use Eq. (126) to obtain an estimate of the
quantum number corresponding to the particles with the
largest amplitude, which will contribute most to the ra-
diation spectrum. This gives us

√
2nmax = χmax/

(
ρ0

ρc

)3/4
. (134)

Now we wish to obtain an expression giving us the quan-
tum number corresponding to the largest amplitude of
oscillation when crossing a bunch in terms of the usual
beam parameters such that we can see how this scales
and in what regime these effects would become impor-
tant. We have that
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Machine CLIC CLIC ILC ILC HER 2017 CLIC mod.
ε 190 GeV 1500 GeV 100 GeV 250 GeV 4 GeV 1500 GeV
N 5.2× 109 3.7× 109 2.0× 1010 2.0× 1010 6.5× 1010 3.7× 109

Σx 149nm 40nm 904nm 474nm 10.7µm 4µm
Σy 2.9nm 1nm 7.8nm 5.9nm 62nm 10pm
Σz 70µm 44µm 300µm 300µm 5mm 44µm
χmax 0.32 10.7 0.025 0.12 1.65× 10−5 0.11
ρmax 7.13× 106eV3 8.72× 107eV3 3.92× 105eV3 9.89× 105eV3 8.16× 102eV3 8.72× 107eV3

ρc 1.67× 1011eV3 2.12× 1010eV3 3.18× 1011eV3 1.27× 1011eV3 7.9× 1012eV3 2.12× 1010eV3

λC/L 0.081 0.25 0.033 0.0528 0.0032 0.25
√

2nmax 608 657 674 808 512 6.6
ξmax 49 166 22.5 43 1.63 1.67

Table I: Beam parameters.

ρ0

ρc
= Ne

(2π)3/2ΣxΣyΣz
8πeε
m4

= 8πNe2γ0

(2π)3/2ΣxΣyΣzm3 .

(135)

Now we use Eq. (122) and insert κ from Eq. (8) and set
ymax = Σy

χmax = 4γ0Ne
2

√
2πm2ΣxΣz

,

So introducing oi = Σim we have

χmax/

(
ρ0

ρc

)3/4
= 4γ0Ne

2
√

2πoxoz

(
(2π)3/2oxoyoz

8πNe2γ0

)3/4

= 4

√
4√
2π

(oxoyoz)3/4

oxoz
(Nγ0e

2)1/4,

(136)

and so

nmax = 1
4
√

2π
(oxoyoz)3/2

(oxoz)2 (Nγ0e
2)1/2. (137)

To obtain an expression for ξ we can use the expression
for the amplitude Eq. (27) and set it equal Σy so that

ξmax = Σyγ0

√
2eκ
ε

= 2
(2π)1/4

√
Ne2γ0oy
oxoz

. (138)

From the fact that ymax = L
√

2n and that the tran-
sition to the doubly quantum regime happens when
L ' 1/m and n small, we can get an estimate of
how small the beam-size has to be. So we have that

Σy,crit ' 10λC
√

20 = 17 pm. Currently the accelerator
SuperKEKB has beams with a size of 62 nm while fu-
ture machines such as CLIC has proposed 1 nm beams.
In table I we have shown the beam parameters of a
current electron-positron accelerator, superKEKB, along
with some that are still on the drawing board namely
the CLIC and ILC. From the large value of

√
2nmax it is

clear that the effects we have seen in this paper will not
be important, i.e. the semi-classical method will provide
the correct result. If the beams are reshaped, making
them even smaller in the y-direction and larger in the
x-direction, nmax will go down, as can be seen from Eq.
(137). For HER (superKEKB) if we reduce Σy by a fac-
tor of 100 and increase Σx with the same amount, the
luminosity is unchanged but we then have nmax = 13.
However, because of the low energy and so, not being
close to the critical density ρc we would only be in the
weak field gradient regime where χmax � 1. To be in the
doubly quantum regime we have considered CLIC with 3
TeV center of mass energy and reshaped the beams in the
same way. This is the “CLIC mod.” case from table I.
Here it is seen that χmax = 0.11, so the usual quantum
effects would start to come into play, and at the same
time we have a small quantum number of nmax = 22.
This reshaping of the beams would be beneficial since χ
is reduced while keeping the luminosity the same, thus
reducing the emitted energy to beamstrahlung. This is
the original purpose of having the bunches shaped like
sheets. We see here, that if this strategy is taken to
the extreme, one will enter this new regime of radiation
emission.

VIII. CONCLUSION

From first principles we have calculated the radia-
tion emission from a relativistic spin- 1

2 particle in a har-
monic oscillator like potential which showed interesting
features, allowing us to find a new regime of radiation
emission where another quantum effect besides the usual
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ones, come into play, namely the quantization of the mo-
tion. This effect is absent in the well studied examples
of non-linear Compton scattering in a plane wave where
the semi-classical method of Baier and Katkov yields the
correct result. Contrary, in the field configuration stud-
ied here, the semi-classical operator method fails for low
quantum numbers. This is interesting in itself, but we
also tried to see when one would enter this regime in
the case of beamstrahlung. We found that current ma-
chines and the ones currently on the drawing board are
far away from being in this regime, however if the strat-
egy of making bunches shaped like sheets, which is the

strategy to avoid energy loss due to beamstrahlung, is
taken to the extreme, one enters this new regime of ra-
diation emission where the quantization of the motion of
the radiating particle becomes important.
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