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Abstract
Multi-year droughts strongly impact food production and water management. Thus, predictions for the next
decade are required for decision makers. This study analyzes the decadal prediction skill of the Global
Precipitation Climatology Centre Drought Index (GPCC-DI) and its components, namely the Standardized
Precipitation Index (SPI-DWD) adapted by the German Meteorological Service (Deutscher Wetterdienst,
DWD) and the Standardized Precipitation Evapotranspiration Index (SPEI) within the German global decadal
prediction system. The decadal predictions are recalibrated. The prediction skills of the two prediction types
ensemble mean predictions and probabilistic predictions are evaluated against those of the commonly applied
reference predictions observed climatology and uninitialized simulations. The evaluation of 4-year mean
droughts for the lead-year period 1–4 at 5° spatial resolution shows high prediction skills for the SPEI in
the tropics, especially northern Africa, and several heterogeneously distributed hot spots for the SPI-DWD.
The advantage of GPCC-DI is its global coverage, but it hardly enhances the SPI-DWD and SPEI skills.
The recalibration clearly enhances ensemble mean prediction skills in slightly improving correlations and
in strongly reducing standard deviations as well as large conditional biases in decadal predictions. For
probabilistic predictions, impacts of conditional biases and recalibration are less prominent. To meet user
requirements decadal drought predictions with higher temporal and spatial resolutions are analyzed. 1-year
mean droughts for lead year 1 mostly show smaller prediction skills than 4-year means because of larger
small-scale noise, but some regions reveal improved skills due to regional processes predictable at the 1-year
time scale, e.g. over the western United States. Drought predictions at 2° resolution show similar spatial skill
patterns with enhanced fine-scale structures mostly without losing prediction skill. A user-oriented evaluation
of the decadal GPCC-DI prediction for the severe North African drought of 2008–2011 reproduces most
observed drought index tendencies in both prediction types, but intensities are often underestimated. Finally,
the decadal GPCC-DI prediction for 2018–2021 presents a drought over North Africa and Arabia and wetting
over the Northern Hemisphere in both prediction types. For 2018, predicted patterns are similar but with
smoothed intensities. In summary, decadal drought prediction skill depends on the indices, time periods, and
areas considered. However, the analyzed drought indices can provide skillful high-resolution information for
several future time periods and regions meeting user needs for decadal drought predictions.

Keywords: decadal climate prediction, drought index, probabilistic prediction, bias correction, evaluation,
user need

1 Introduction

Multi-year large-scale droughts have devastating
impacts on society due to their strong influence on
water resources and food security as well as eco-
nomic development (Benson and Clay, 1998), e.g.
in the United States in the 1930s (Schubert et al.,
2004), in the Sahel in the 1970–1980s (Janicot et al.,
1996) or in south-western Asia, southern Europe
and the United States in 1998–2002 (Hoerling and
Kumar, 2003). Local stakeholders and political de-
cision makers need precise information on extreme
events to implement necessary adaptation measures
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(Changnon, 2003). Several user workshops held at
the German Meteorological Service (Deutscher Wetter-
dienst, DWD) have revealed that government agencies
and international organizations from the forestry,
agriculture, humanitarian disaster risk reduction and
water management sectors have a strong interest in
multi-year drought information on the 1–10-year time
scale (https://www.dwd.de/EN/climate_environment/
climateresearch/climateprediction/decadalprediction/
start_decadalprediction.html).

The still rather new research area of decadal climate
predictions (Murphy et al., 2010) focuses on this multi-
year to decadal time period, bridging seasonal forecasts
and centennial climate projections, which is of particular
interest for medium-term planners, managers, and policy
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makers (Meehl et al., 2009). Decadal predictability is
thought to be generated from both boundary conditions,
such as greenhouse gases and aerosols (Van Olden-
borgh et al., 2012), and the initialization of ocean
(Matei et al., 2012), sea ice and land surface data (Bel-
lucci et al., 2015). The German research project MiKlip
(Decadal Climate Prediction, Mittelfristige Klimaprog-
nosen) develops the German global decadal climate pre-
diction system which offers prediction skill e.g. for
European summer temperatures, extra-tropical cyclone
tracks, oceanic carbon uptake, and the Quasi-Biennial
Oscillation (Marotzke et al., 2016). The DWD aims
at providing operational decadal climate predictions for
the next 1–10 years by the end of 2019, enabling, for
instance, multi-year global drought predictions as de-
scribed in this paper.

Droughts are characterized by a shortage of avail-
able water (Heim, 2002). They can be quantified by
means of drought indices describing the anomalies of
water availability compared to a long-term climatology
(Palmer, 1965). Various indices have been developed
based on different purposes and datasets: the Palmer
Drought Severity index (PDSI, Palmer, 1965) makes
use of many input data, such as precipitation, evap-
otranspiration, runoff, soil water storage capacity and
recharge, and water loss from soil, some of which are
not easy to obtain for the whole globe (Lloyd-Hughes
and Saunders, 2002). The PDSI is highly standard-
ized but uses parameterizations for evapotranspiration
and several empirical relationships. Another example is
the Reconnaissance Drought Index (RDI, Tsarikis and
Vangelis, 2005) which describes the ratio of precipi-
tation and potential evapotranspiration (PET) and can
also be standardized. Yet, PET has to be parameter-
ized and the RDI fails if PET equals zero. The Stan-
dardized Precipitation Index (SPI) is defined by divid-
ing the precipitation anomaly by its standard deviation
(Mckee et al., 1993). It cannot consider enhanced tem-
perature and evapotranspiration in a changing climate
and fails in arid areas (Lloyds-Hughes and Saunders,
2002). However, this problem can be reduced using the
SPI-DWD as adapted by DWD (Pietzsch and Bissolli,
2011). The Standardized Precipitation Evapotranspira-
tion Index (SPEI, Vicente-Serrano et al., 2010) stan-
dardizes the climatic water balance, i.e. precipitation mi-
nus PET. Again, the determination of PET is challeng-
ing. When applying Thornthwaite (1948) for PET pa-
rameterization, the SPEI fails in cold areas. As both SPI
and SPEI are recommended by the World Meteorologi-
cal Organization (WMO, 2009), Ziese et al. (2014) have
developed the Global Precipitation Climatology Centre
Drought Index (GPCC-DI), which combines SPI-DWD
and SPEI. As a result, this new drought index enables
past and present-day drought monitoring with nearly
global coverage.

The drought indices described are used for op-
erational drought monitoring and generation of out-
looks for the next months, e.g. the North Ameri-
can Drought Monitor (https://gis.ncdc.noaa.gov/maps/

ncei/drought/na), the SPEI Global Drought Monitor
(http://sac.csic.es/spei/) or the GPCC Drought Index
Product (ftp://ftp.dwd.de/pub/data/gpcc/html/gpcc_di_
doi_download.html). Concerning decadal drought pre-
dictions, no operational outlooks exist until now. How-
ever, several research studies outline prediction skills for
droughts or drought-related variables in certain regions
often related to teleconnections to sea surface tempera-
tures (SSTs): Ramesh et al. (2017) find predictability of
periods of cool tropical Pacific SSTs that last for sev-
eral years up to a decade and are linked to prolonged
North American droughts, such as the Dust Bowl in
the 1930s. Skillful decadal predictions are also possi-
ble for soil water storage over North America if soil
conditions are properly initialized (Chikamoto et al.,
2015). However, limited skill is found in decadal pre-
cipitation predictions of nine coarse general circulation
models (GCMs) over the continental United States. This
can be improved by statistical downscaling for high res-
olution impact assessments (Salvi et al., 2017). Rainfall
in the Sahel is connected to Atlantic, Indian Ocean and
Eastern Mediterranean SSTs (Diatta and Fink, 2014;
Paxian et al., 2016; Paeth et al., 2017). However, var-
ious decadal prediction skills are found in an ensemble
of initialized GCMs because of differing ocean initial-
izations and teleconnection patterns (Gaetani and Mo-
hino, 2013; Martin and Thorncroft, 2014). Sheen
et al. (2017) present skillful predictions of Sahel rain-
fall on inter-annual to multi-year time scales. For Eu-
rope, Ionita et al. (2017) find valuable inter-annual to
decadal prediction skills for summer droughts due to
lagged relationships to Mediterranean SSTs; Reason
et al. (2006) show strong teleconnections between tropi-
cal Pacific SSTs and dry spells for some areas in south-
ern Africa.

In light of all this, this study aims at investigating the
skill of global decadal drought predictions in applying
the GPCC-DI approach and its components SPI-DWD
and SPEI to decadal predictions of the German decadal
prediction system. The drought predictions are evaluated
for 4-year means at 5° spatial resolution. This is the stan-
dard configuration the MiKlip community has defined
for decadal prediction evaluation. Additionally, higher
temporal and spatial resolutions (1-year means and 2°
resolution) are investigated for the purpose of meeting
user needs for decadal drought predictions. Observed
climatology and uninitialized simulations are chosen as
reference predictions for evaluation because they are
most commonly applied by climate data users on the
decadal time scale. Furthermore, recalibration is applied
to improve decadal prediction skills. For this reason,
Section 2 of the paper presents the model and observa-
tional datasets used. Section 3 describes the GPCC-DI
method, the recalibration approach and the evaluation
strategy applied for decadal predictions. Section 4 shows
the skill results for decadal predictions of the input vari-
ables and components of the GPCC-DI in standard con-
figuration. This is needed to understand the sources of
the GPCC-DI skill (chapter 4.1) as well as the GPCC-DI
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skill itself, including the impacts of standard deviation,
conditional bias and recalibration (chapter 4.2). The sec-
tion also presents user-oriented skill analyses in higher
resolution and a user-oriented evaluation of a single
event (chapter 4.3) as well as the decadal GPCC-DI pre-
diction for the next years (chapter 4.4). Finally, Sec-
tion 5 summarizes the results, draws major conclusions
and gives a short outlook.

2 Data

In order to obtain and evaluate global decadal GPCC-DI
predictions simulations from the German global decadal
climate prediction system, corresponding uninitialized
climate simulations and different observational datasets
have been used.

2.1 Decadal climate predictions

The global decadal predictions result from the Ger-
man decadal climate prediction system in the ‘base-
line 1’ configuration, which means the Max Planck In-
stitute for Meteorology Earth System Model Low Res-
olution (MPI-ESM-LR) is combined with the ‘base-
line 1’ procedure to initialize the model with obser-
vations (MÜller et al., 2012; Pohlmann et al., 2013;
Marotzke et al., 2016). MPI-ESM-LR is based on
the coupled GCM ECHAM6/MPI-OM. Its atmospheric
component features a horizontal resolution of T63
(∼ 1.9°) with 47 vertical levels, whereas the ocean
has a GR15 (∼1.5°) resolution with 40 levels (Jung-
claus et al., 2013; Pohlmann et al., 2013; Stevens
et al., 2013). The ‘baseline 1’ initialization procedure
combines full-field initialization in the atmosphere and
anomaly initialization in the ocean. It nudges a MPI-
ESM-LR assimilation run to temperature, surface pres-
sure, divergence, and vorticity fields from ERA40 at-
mospheric reanalyses (Uppala et al., 2005) before 1990
and ERA-Interim reanalyses (Dee et al., 2011) after
1990. In the oceanic component, temperature and salin-
ity anomalies from ORAS4 reanalyses (Balmaseda
et al., 2013) of the European Centre for Medium-Range
Weather Forecasts (ECMWF) are used. Global decadal
predictions have been initialized from this MPI-ESM-
LR assimilation run on 1 January in every year from
1961 until 2018, i.e. 58 decades, for a simulation pe-
riod of 10 years. For each decade, a ten member en-
semble is simulated using 1-day-lagged initialization for
each member (Pohlmann et al., 2013). External forc-
ing has been derived from observations and the RCP4.5
scenario (Representative Concentration Pathway, Moss
et al., 2010) before and after 2005, respectively.

2.2 Uninitialized climate simulations

For evaluating global decadal predictions, correspond-
ing uninitialized climate simulations applying the same
model configuration and external forcing and covering
the same time period are used. In this way the effect of

initialization on decadal prediction skill is investigated
(Goddard et al., 2013). The uninitialized MPI-ESM-LR
simulations combine the ‘historical’ and ‘rcp45’ exper-
iments of the fifth phase of the Coupled Model Inter-
comparison Project (CMIP5, Taylor et al., 2012) before
and after 2005, respectively. Ten MPI-ESM-LR ensem-
ble members have been simulated to fit the ensemble
size of the decadal climate predictions.

2.3 Observational data

Since this study relies on the GPCC-DI approach devel-
oped by Ziese et al. (2014), the same sources for grid-
ded global observations of monthly temperature means
and precipitation totals are used. Land-surface precipita-
tion for the time period 1901–2013 at 1° spatial resolu-
tion is taken from GPCC Full Data Reanalysis Version 7
(Schneider et al., 2015). This dataset is the most ac-
curate precipitation reanalysis of GPCC; it supports cli-
mate model validation analyses and is based on 75,000
global stations with at least 10 years of record length.
The precipitation station anomalies have been interpo-
lated to a regular 1° grid, and the corresponding GPCC
Climatology V2015 (Meyer-Christoffer et al., 2015)
has been added. Concerning temperature, the Climate
Prediction Center (CPC) of the National Centers for En-
vironmental Prediction (NCEP) has combined the sta-
tion data from the Global Historical Climatology Net-
work version 2 (GHCN, Peterson and Vose, 1997) and
the Climate Anomaly Monitoring System (CAMS, Ro-
pelewski et al., 1984). For station interpolation, a back-
ground climatology and an objective analysis scheme
based on Cressman (1959) applying several iterations
through the grid at stepwise smaller radii of influence
and implemented into the Grid Analysis and Display
System (GrADS) have been used. The resulting NOAA
CPC GHCN_CAMS dataset (Fan and Van den Dool,
2008) of land-surface temperatures from 1948 to the
present at 0.5° spatial resolution is used in this study.

3 Methods

The following sections present the theoretical definition
of the GPCC-DI, its application to decadal predictions
as well as the recalibration and evaluation approaches
used in this study for decadal predictions.

3.1 Definition of the GPCC-DI

As defined by Ziese et al. (2014), the GPCC-DI is de-
termined in two steps (Fig. 1): first, the SPI-DWD and
SPEI are calculated per grid box applying Gamma and
Log Logistic distribution functions for parameter esti-
mation, respectively. However, even the calculation of
the adjusted SPI-DWD (Pietzsch and Bissolli, 2011)
fails in very dry areas with monthly precipitation near
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Figure 1: Concept of calculating the GPCC-DI in two steps: determination of SPI-DWD and SPEI from monthly temperature and
precipitation (step 1) and averaging of GPCC-DI from monthly SPI-DWD and SPEI (step 2).

0 mm because the maximum of the Gamma distribu-
tion is not larger than zero, as required for the deter-
mination of the SPI (Wu et al., 2007). The PET for de-
termining the SPEI is calculated following Thornth-
waite (1948) based on temperature and astronomical
data because the availability of detailed global obser-
vational input data for other parameterizations, e.g. the
FAO Penman-Monteith equation (Allen et al., 1998),
is restricted (Ziese et al., 2014). However, the applied
algorithm defines PET as 0 mm in cold regions with
monthly temperatures close to or below 0 °C, and the
calculation of SPEI fails.

Thus, in a second step, the GPCC-DI is computed
for each grid box by averaging both indices if available
and applying one index if only one is available in or-
der to reach nearly global coverage. This drought index
has been developed to enable past and present-day near
global drought monitoring (Ziese et al., 2014) extending
other regionally limited approaches. It is transferred to
decadal predictions to facilitate homogeneous drought
predictions for global comparison studies. It describes
the standardized anomaly of available water relating to
the standard deviation σ of a standardized normal distri-
bution (similar to SPI and SPEI). Its general interpreta-
tion follows that of the SPI (Lloyd-Hughes and Saun-
ders, 2002): positive values correspond to wet condi-
tions, values between −1 and 1 to normal conditions,
and negative values to droughts (Ziese et al., 2014). Due
to differing definitions of different drought indices (see
introduction section), the GPCC-DI combination of two
indices, however, makes the resulting drought informa-
tion more robust and less sensitive to outliers: positive
values of the GPCC-DI denote the physical conditions
causing large amounts of both rainfall and climatic water
balance (precipitation minus PET), i.e. high rainfall and
low PET; values between −1 and 1 indicate both nor-
mal conditions and those of discordant indices as well
as negative values those of low rainfall and high PET.
This means that the impact of rainfall in defining the
GPCC-DI is twice as large as that of PET.

3.2 Calculation of the GPCC-DI for decadal
predictions

Since decadal predictability arises from slowly vary-
ing components of the climate system, e.g. the ocean,
spatial and temporal smoothing is useful in skill analy-

sis in order to reduce (the influence of) unpredictable
small-scale noise (Räisänen and Ylhäisi, 2011, God-
dard et al., 2013). On the other hand, climate data
users need high spatial and temporal resolution for cli-
mate impact studies. To fulfil these contrasting require-
ments, the global GPCC-DI decadal predictions are cal-
culated for the MiKlip standard configuration, i.e. 4-year
means (January–December) on a 5° spatial grid. In addi-
tion, further skill analyses are also performed for 1-year
means and on a 2° spatial grid.

For parameter calculation, the following reference
time periods are chosen: 1967–1970 to 2010–2013 for
4-year means (Fig. 2) and 1970 to 2013 for 1-year means
(Figure S1), which provide the maximum evaluation
time periods possible. 1967–1970 and 1970 represent
the first time periods available for all possible lead-
year periods, i.e. year 1–4 until 7–10 for 4-year means
and year 1 until 10 for 1-year means, when decadal
predictions start in 1961. 2010–2013 and 2013 are the
last time periods available for the evaluation of 4-year
and 1-year means because 2013 is the last year in the
series of high-quality precipitation observations used in
this study.

The input values for parameter calculation are
monthly precipitation and monthly PET data com-
puted from temperature and astronomical data follow-
ing Thornthwaite (1948). Since the chosen drought
indices are standardized values, all input data originating
from decadal predictions, uninitialized simulations, and
observations have to be aggregated before running pa-
rameter calculation. This aggregation may include tem-
poral smoothing, spatial interpolation via first order con-
servative remapping, and ensemble averaging of all ten
members. The parameters of the SPI and SPEI distribu-
tion functions are computed from precipitation and cli-
matic water balance (precipitation minus PET) values of
all years in the reference time period, but separately for
each dataset (decadal predictions, uninitialized simula-
tions, observations), temporal smoothing (1-year, 4-year
means), spatial resolution (5°, 2°), ensemble averaging
(all single members for the probabilistic forecast, en-
semble mean for the ensemble mean forecast), and grid
box. Finally, the estimated SPI and SPEI parameters are
used to compute time series of SPI-DWD adapted by
DWD following Pietzsch and Bissolli (2011), SPEI,
and GPCC-DI for the whole time period of all three
datasets.
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Figure 2: Concept of determining the reference time period for parameter calculation (here 1967–1970 to 2010–2013 for 4-year means, see
Figure S1 for 1-year means). The horizontal bars denote decadal predictions from lead year 1 to lead year 10 (written as 0). The first (1961,
1962, . . . , 1967, . . . , 1970) and last start years (2010, . . . , 2013, . . . , 2017) are highlighted. A jump in start years is indicated in between. The
red boxes denote the start and end of the reference time period, and the green arrows describe all years considered for lead year dependent
evaluation.

3.3 Recalibration of decadal predictions

For analyzing the prediction skill of temperature, pre-
cipitation and PET of all three datasets, the same pre-
processing steps to SPI, SPEI, and GPCC-DI have
been taken concerning temporal smoothing (1-year and
4-year means), spatial resolution (5° and 2°), ensemble
averaging of ten members, and anomaly calculation with
respect to the reference time periods for parameter cal-
culation. For the evaluation of decadal predictions (see
below), anomalies are calculated separately for model
and observations as well as for different lead-year peri-
ods. Thus, the model drift from initialization to model
climatology, i.e. the lead time dependent bias between
model and observations, is implicitly considered (God-
dard et al., 2013; Boer et al., 2016) following the sug-
gestion by the International Clivar Project Office (ICPO,
2011) for lead time dependent bias adjustment over all
start dates.

Additionally, the Decadal Climate Forecast Recal-
ibration Strategy (DeFoReSt) of Pasternack et al.
(2018) has been developed within the MiKlip com-
munity: It applies the parametric drift correction of
Kruschke et al. (2015) considering the drift along lead-
year periods by means of a third order polynomial
(Gangstø et al., 2013) and a linear trend in polynomial
parameters over start dates to allow for non-stationary
model drifts (Kharin et al., 2012). This mean or uncon-
ditional bias and drift adjustment has been extended by
a similar third order parametric adjustment of the con-
ditional bias, i.e. the bias depending on the magnitude,
and a quadratic parametric recalibration of the ensem-
ble spread. A cross validation approach leaves out all

decadal predictions initialized within the 10-year pre-
diction period as training data for the estimation of the
correction parameters of a certain 10-year decadal pre-
diction. The method reveals improved prediction skill
compared to the simple lead time dependent bias adjust-
ment (Pasternack et al., 2018).

This recalibration approach has been applied to all
considered variables and indices. However, the approach
is univariate and cannot assure the consistency of cor-
rected precipitation and temperature (or PET) values as
input variables of the GPCC-DI. Thus, the SPI-DWD,
SPEI, and GPCC-DI have been calculated from consis-
tent original model data and corrected after index calcu-
lation. Note that the correction of the ensemble spread
only influences the probabilistic forecasts but has no im-
pact on the ensemble mean forecasts because the ensem-
ble mean is not changed.

3.4 Evaluation of decadal predictions

For each variable and index, the skill of decadal pre-
dictions in reproducing past observations is assessed in
comparison to the reference forecasts observed climatol-
ogy in the reference time period (see Section 3.2), i.e. the
mean without trend extrapolation, and uninitialized sim-
ulations which are both commonly applied by climate
data users on the decadal time scale. The evaluation time
period equals the reference time period of parameter es-
timation. Two different prediction types are evaluated:
the ensemble mean prediction and the probabilistic pre-
diction of the ensemble distribution.

Concerning the ensemble mean prediction, the mean
squared error skill score (MSESS, Murphy, 1988; God-
dard et al., 2013; Kadow et al., 2016) compares the
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mean squared error MSEP,O between decadal predictions
P j and observations O j over j = 1, n years or start dates
to the error MSER,O between reference forecast R j and
observations O j (Eq. 3.1):

MSESSP,R,O = 1 −
MSEP,O

MSER,O
,

with MSEP,O =
1
n

n∑

j=1

(P j − O j)
2

(3.1)

Following Murphy (1988) and Goddard et al. (2013)
the MSESS with the reference forecast observed clima-
tology can be decomposed into the square of the cor-
relation coefficient rp,o between predictions and obser-
vations and the square of the conditional bias which is
based on rp,o and the quotient between predicted and
observed standard deviations sp and so, respectively
(Eq. 3.2). The decomposition of the MSESS calculated
with the reference forecast uninitialized simulations is
more complex applying correlations and conditional bi-
ases between both decadal predictions and observations
as well as uninitialized simulations and observations:

MSESSP,R,O = r2
P,O −

(
rP,O −

sP

sO

)2
(3.2)

For the probabilistic prediction, the anomalies of the
three input datasets are separated into three terciles or
categories of equal frequency describing above normal,
normal and below normal conditions with respect to
the reference time period. The ranked probability score
RPSP,O defines the squared error between predicted and
observed cumulative probabilities P j,k and O j,k, respec-
tively, over j = 1, n years or start dates and k = 1,
K categories. P j,k results from the distribution of ensem-
ble members, O j,k = 0 if observations lie within a cate-
gory higher than k and O j,k = 1 else. The ranked prob-
ability skill score (RPSS, Ferro et al., 2008; Wilks,
2011; Kruschke et al., 2014) compares the RPSP,O of
decadal predictions to the RPSR,O of a reference predic-
tion (Eq. 3.3):

RPSSP,R,O = 1 −
RPSP,O

RPSR,O
,

with RPSP,O =
1
n

n∑

j=1

K∑

k=1

(P j,k − O j,k)2
(3.3)

Both skill scores give values larger/smaller than 0 if the
decadal prediction is more/ less skillful in reproducing
past observations than the reference prediction. If the
skill score is 0, both are equally skillful. If it is 1, the
decadal prediction perfectly matches past observations.
Please note that the two reference predictions may show
strong differences, e.g. the uninitialized simulations re-
veal a large temperature trend in the reference time pe-
riod due to rising atmospheric greenhouse gas concen-
trations fitting well to real observations. The averaged
observed climatology does not show such a temperature

trend and is less skillful. Since decadal predictions con-
tain information on both long-term trend and initializa-
tion, their temperature skill score compared to observed
climatology is larger than that with respect to uninitial-
ized simulations which are more skillful due to the in-
cluded trend. Indeed, the skill score compared to clima-
tology reveals the benefit of long-term trend and initial-
ization and that with respect to uninitialized simulations
the advantage of initialization only (see further below).

Significance of the skill scores is tested via bootstrap-
ping, i.e. 500 random samples of equal size are cho-
sen from the reference time period with replacement
and evaluated applying a significance level of 95 %.
The MSESS and RPSS have been calculated with the
MurCSS and ProblEMS software tools of the Cen-
tral Evaluation System of the MiKlip project for stan-
dardized evaluation of decadal predictions, respectively
(Illing et al., 2014).

4 Results

In the results section the decadal prediction skills of
the input variables and components of the GPCC-DI are
verified in MiKlip standard configuration to clarify the
sources of the GPCC-DI skill. Then, the GPCC-DI skill
itself and the influences of standard deviation, condi-
tional bias and recalibration are presented. Furthermore,
the user-oriented skill analyses in higher temporal and
spatial resolution and a user-oriented evaluation of a sin-
gle event are shown. Finally, the decadal prediction of
the GPCC-DI for the next years is given.

4.1 Decadal prediction skill of the GPCC-DI
input variables in standard configuration

The decadal prediction skill of recalibrated ensemble
mean and probabilistic predictions of the GPCC-DI in-
put variables and components is evaluated in MiKlip
standard configuration, i.e. 4-year means for the lead-
year period 1–4 at 5° spatial resolution. This evaluation
is the background analysis to understand the sources of
the decadal prediction skill of the GPCC-DI (see below).
Prediction skill often reveals similar patterns for ensem-
ble mean and probabilistic predictions, but strong dif-
ferences are found in comparison to different reference
predictions.

First, recalibrated precipitation predictions (Fig. 3)
reveal rather heterogeneous skill patterns, but several
hot spot regions can be identified. Both prediction types
show some skill with respect to the reference prediction
observed climatology in western Africa, northern Eu-
rope, and some parts of Asia and North America. Com-
pared to uninitialized simulations skill is even higher,
especially in southern Africa, northern Europe, Central
Asia, and the Arctic regions, highlighting the impact of
initialization on precipitation prediction skill for the next
four years. However, prediction skill for precipitation is
much lower than for temperature or PET (see below) be-
cause precipitation is not clearly linked to the long-term
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Figure 3: Decadal prediction skill of MPI-ESM-LR for 4-year mean precipitation predictions for lead-year period 1–4 and 5° spatial resolu-
tion: MSESS (top) and RPSS (bottom) compared to the reference forecasts observed climatology (left) and uninitialized simulations (right).
Precipitation observations have been taken from the GPCC Full Data Reanalysis Version 7. Dots denote significant skill scores at a signifi-
cance level of 95 %.

greenhouse gas trend. Furthermore, precipitation reveals
small-scale variations in time and space which are less
predictable by slow decadal climatic processes, e.g. in
the ocean, than more homogeneous temperature vari-
ations. Thus, large-scale precipitation variations might
be predictable but small-scale noise can hardly be fore-
seen. Limited decadal prediction skill of global GCMs
for precipitation has already been stated in former stud-
ies (Gaetani and Mohino, 2013; Martin and Thorn-
croft, 2014) and can be improved by higher resolution,
e.g. in statistical downscaling approaches (Salvi et al.,
2017).

For temperature predictions (Fig. 4, top), high posi-
tive skill is widely spread over the whole globe. High-
est values are found in the tropics and Arctic regions in
comparison to observed climatology. Skill is still high
in these regions but disappears in northern Asia and
parts of Europe, North America, and Africa with respect
to uninitialized simulations, especially for probabilistic
predictions. This confirms that a large part of decadal
temperature prediction skill is explained by the long-
term greenhouse gas trend.

Decadal PET predictions (Fig. 4, bottom) inherit
high skill over the whole tropics from their temperature
input dataset. PET cannot be calculated for several re-
gions on the northern Hemisphere due to low monthly
temperatures. Skill is especially high in whole north-
ern Africa, East Asia, and Brazil compared to observed
climatology as well as north-eastern Africa, India, and
Brazil with respect to uninitialized simulations. As for
temperature, skill strongly decreases for probabilistic

predictions in comparison to the latter reference fore-
cast.

For probabilistic predictions of the SPI-DWD (Fig. 5,
top), similar skill patterns to precipitation are found but
with slightly less significance. This also holds for en-
semble mean predictions compared to observed clima-
tology, but more negative MSESS values can be stated
than for precipitation. This is because the standardiza-
tion of the SPI-DWD increases the standard deviation of
the smoothed ensemble mean precipitation to high ob-
served values. This also increases the conditional bias
which can be partly reduced by recalibration. Ensem-
ble mean prediction skill compared to uninitialized sim-
ulations reveals large positive values nearly over the
whole globe because the conditional biases of uninitial-
ized simulations are much larger than those of recali-
brated decadal predictions. The impacts of conditional
bias and recalibration on prediction skill will be further
explained in the evaluation of the GPCC-DI decadal pre-
diction skill.

Probabilistic SPEI predictions (Fig. 5, bottom) in-
herit skillful patterns from PET but with less intensity,
especially in northern Africa and Central and South
America compared to observed climatology as well as
parts of Africa and America with respect to uninitial-
ized simulations. The ensemble mean predictions com-
pared to observed climatology reveal slightly more neg-
ative skill values than PET, but high significant skill
over northern Africa, Arabia, and America remains. The
comparison to uninitialized simulations shows again
large areas of high positive skill but partly shifted com-
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Figure 4: Decadal prediction skill of MPI-ESM-LR for 4-year mean temperature (top) and PET predictions (bottom) for lead-year period
1–4 and 5° spatial resolution: MSESS (first and third row) and RPSS (second and forth row) compared to the reference forecasts observed
climatology (left) and uninitialized simulations (right). Temperature observations have been taken from the NOAA CPC GHCN_CAMS
dataset. Dots denote significant skill scores at a significance level of 95 %.

pared to PET, e.g. from northern to southern Africa. This
can be explained by impacts of the precipitation skill be-
cause SPEI is defined by the standardization of precipi-
tation minus PET.

4.2 Decadal prediction skill of the GPCC-DI
in standard configuration

The GPCC-DI predictions (Fig. 6) show a global cover-
age in averaging SPI-DWD and SPEI or taking the one
index existing. On the northern Hemisphere GPCC-DI
skill is mostly equal to SPI-DWD skill. However, in

northern Africa GPCC-DI and SPEI skills do not ex-
actly match because the SPI-DWD exists for some time
periods (but not for all) and influences the GPCC-DI
skill. Thus, the GPCC-DI skill compared to observed
climatology is more restricted to north-eastern Africa
and Arabia. The skill with respect to uninitialized simu-
lations reveals often higher significance and some im-
provements over north-western Africa. However, the
GPCC-DI does not clearly improve the single decadal
prediction skills of SPI-DWD and SPEI.

To explain these skill results of recalibrated
GPCC-DI predictions, Fig. 7 presents the decomposi-
tion of the MSESS. For the comparison to observed
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Figure 5: Decadal prediction skill of MPI-ESM-LR for 4-year mean SPI-DWD (top) and SPEI predictions (bottom) for lead-year period
1–4 and 5° spatial resolution: MSESS (first and third row) and RPSS (second and forth row) compared to the reference forecasts observed
climatology (left) and uninitialized simulations (right). Precipitation and temperature observations have been taken from the GPCC Full
Data Reanalysis Version 7 and the NOAA CPC GHCN_CAMS dataset, respectively. Dots denote significant skill scores at a significance
level of 95 %.

climatology, the correlations and conditional biases be-
tween decadal predictions and observations are shown.
GPCC-DI shows quite high correlations over the whole
globe, especially over northern Africa, northern Europe,
Central Asia, and Brazil. Conditional biases are slightly
negative over most regions because recalibration is used
for conditional bias correction (see below). Thus, the
MSESS is only slightly reduced compared to correla-
tions (see Eq. (3.2), Fig. 6). For the comparison to unini-
tialized simulations, the differences between the correla-
tions and conditional biases described before and those
between uninitialized simulations and observations are

shown, i.e. the gain of decadal predictions with respect
to uninitialized simulations. Decadal predictions reveal
mostly better correlations to observations than unini-
tialized simulations, e.g. over Canada, northern Europe,
Central Africa, and Central Asia. The gain in condi-
tional biases is very high because recalibrated decadal
predictions show only small biases compared to strongly
negative conditional biases of uninitialized simulations.
Thus, the MSESS is strongly positive over the whole
globe (Fig. 6).

Generally, the recalibration of GPCC-DI predictions
following Pasternack et al. (2018) slightly improves
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Figure 6: Decadal prediction skill of MPI-ESM-LR for 4-year mean GPCC-DI predictions for lead-year period 1–4 and 5° spatial resolution:
MSESS (top) and RPSS (bottom) compared to the reference forecasts observed climatology (left) and uninitialized simulations (right).
Precipitation and temperature observations have been taken from the GPCC Full Data Reanalysis Version 7 and the NOAA CPC
GHCN_CAMS dataset, respectively. Dots denote significant skill scores at a significance level of 95 %.

Figure 7: Decomposition of the MSESS of MPI-ESM-LR for 4-year mean GPCC-DI predictions for lead-year period 1–4 and 5° spatial
resolution: Correlation coefficients (top) and conditional biases (bottom) between decadal predictions and observations for the comparison
to the reference forecast observed climatology (left). For the comparison to the reference forecast uninitialized simulations (right), the
differences between the correlation coefficients and conditional biases on the left side and those between uninitialized simulations and
observations are shown, i.e. the gain of decadal predictions w.r.t. uninitialized simulations. Precipitation and temperature observations
have been taken from the GPCC Full Data Reanalysis Version 7 and the NOAA CPC GHCN_CAMS dataset, respectively. Dots denote
significance at a significance level of 95 %.
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correlations but clearly reduces the large negative con-
ditional biases of original predictions in reducing the
standard deviations (Figure S2). This results in strongly
improved MSESS values with respect to both refer-
ence forecasts without changing spatial skill patterns.
Improvements of probabilistic predictions are less pro-
nounced because impacts of conditional biases on ter-
cile probabilities are less prominent when terciles are
built separately for predictions and observations (Fig-
ure S3). The effect of the ensemble spread correction is
found to be rather negligible because the original spread
of the MiKlip decadal prediction ensemble is already
quite appropriate. In addition, Figure S4 in the supple-
ment presents the corresponding correlation coefficients
for all considered input variables and components of the
GPCC-DI.

Finally, the GPCC-DI skills of lead-year periods 4–7
and 7–10 have been calculated to analyze the skill devel-
opment over the full 10-year decadal time period (Fig-
ure S5). Prediction skills remain at similar size in most
regions and do not clearly drop down until the end of
the decade as expected from decreasing impacts of ini-
tialization, except for ensemble mean predictions with
respect to observed climatology.

4.3 Decadal prediction skill of the GPCC-DI
in user-oriented evaluation

User workshops showed that climate data users need
decadal predictions with much higher temporal and spa-
tial resolution (https://www.dwd.de/EN/climate_
environment/climateresearch/climateprediction/
decadalprediction/start_decadalprediction.html). Thus,
Fig. 8 reveals the 1-year mean GPCC-DI prediction
skills for lead year 1. Compared to lead-year period
1–4, the skill for 1-year means drops down over many
regions in both prediction types, but negative skill
scores are reduced as well. This is because correlations
mostly decrease due to higher impacts of small-scale
noise, but conditional biases are reduced because of
smaller standard deviations. Some regions reveal larger
prediction skills and higher correlations caused by
regional-scale processes predictable only for 1-year
means, e.g. the western United States due to prediction
skill of the 1-year mean Pacific Decadal Oscillation
(not shown), southern Africa and Australia reaching
significant positive values. Ensemble mean predictions
compared to uninitialized simulations reveal positive
skill for nearly the whole globe. Thus, user-oriented
GPCC-DI predictions with higher temporal resolution
are possible. Skill decreases in some areas, but new
skillful regions emerge.

Furthermore, Fig. 9 presents 4-year mean GPCC-DI
prediction skills for lead-year period 1–4 and a higher
spatial resolution of 2°. For all prediction types and ref-
erence forecasts, the highly-resolved skill patterns re-
veal similar spatial distributions to the 5° resolution, but
fine-scale features emerge, even if no orographic struc-
tures are evident. Prediction skills do not drop down at

higher resolution but remain at a similar level. So do as
well conditional biases and correlations. However, sig-
nificance is reached in some small-scale areas where
no significance is found at low resolution, e.g. in some
parts of Africa, Asia, and eastern Europe. The zoom over
Europe underlines that skillful regional decadal predic-
tions are possible. For the DWD focus area of Germany,
ensemble mean predictions compared to uninitialized
simulations are skillful over the whole area and prob-
abilistic predictions over the northern and eastern parts.
Thus, GPCC-DI predictions at higher spatial resolution
for user applications can reveal improved spatial pat-
terns without losing prediction skill.

Again, the corresponding correlation coefficients for
the GPCC-DI at different lead-year periods and higher
temporal and spatial resolution are presented in the sup-
plement (Figure S6).

Finally, user workshops revealed that climate data
users also appreciate the evaluation of prominent
single events in addition to the robust statistical skill
analysis over many years to build trust in predic-
tions (https://www.dwd.de/EN/climate_environment/
climateresearch/climateprediction/decadalprediction/
start_decadalprediction.html), even if evaluating single
events is strongly impacted by chance. Thus, Fig. 10
presents the evaluation of an exemplary decadal predic-
tion of MPI-ESM-LR for the 4-year mean GPCC-DI
of lead-year period 1–4 and 2° spatial resolution with
observations. The time period 2008–2011 has been
chosen revealing the strongest drought of the whole
reference period in north-eastern Africa where decadal
prediction skill is very high. The observed GPCC-DI
shows strong drought patterns over northern Africa,
the Arabian Peninsula, Madagascar, Argentina, Mex-
ico, and northern Canada (Fig. 10, top left). Wetter
conditions have been observed over most of North
America, north-eastern Europe, northern and central
Asia, Indonesia, Australia, and Namibia.

The recalibrated ensemble mean GPCC-DI predic-
tion of MPI-ESM-LR (initialized in 2008) reveals sim-
ilar drought patterns over north-eastern Africa and the
Arabian Peninsula as expected from the high prediction
skill in this region (Fig. 10, top right). Most global dry
and wet tendencies of observations are captured by the
predictions, but intensities of events are often underesti-
mated. This results from high correlations of GPCC-DI
tendencies as well as decreased conditional biases and
standard deviations due to recalibration. Thus, more
skillful GPCC-DI predictions are achieved if the stan-
dard deviation of the standardized index is reduced to
about 50 % of the observed one (not shown). Major dis-
crepancies in GPCC-DI tendencies can be found over
southern Europe, western Russia, Namibia, and Aus-
tralia.

The recalibrated probabilistic GPCC-DI prediction
shows the probabilities of the three terciles below-
normal, normal, and above-normal based on the distri-
bution of ensemble members. The tercile boundaries of
the observed GPCC-DI equal those of the standardized

https://www.dwd.de/EN/climate_environment/climateresearch/climateprediction/decadalprediction/start_decadalprediction.html
https://www.dwd.de/EN/climate_environment/climateresearch/climateprediction/decadalprediction/start_decadalprediction.html
https://www.dwd.de/EN/climate_environment/climateresearch/climateprediction/decadalprediction/start_decadalprediction.html
https://www.dwd.de/EN/climate_environment/climateresearch/climateprediction/decadalprediction/start_decadalprediction.html
https://www.dwd.de/EN/climate_environment/climateresearch/climateprediction/decadalprediction/start_decadalprediction.html
https://www.dwd.de/EN/climate_environment/climateresearch/climateprediction/decadalprediction/start_decadalprediction.html
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Figure 8: Decadal prediction skill of MPI-ESM-LR for 1-year mean GPCC-DI predictions for lead year 1 and 5° spatial resolution:
MSESS (top) and RPSS (bottom) compared to the reference forecasts observed climatology (left) and uninitialized simulations (right).
Precipitation and temperature observations have been taken from the GPCC Full Data Reanalysis Version 7 and the NOAA CPC
GHCN_CAMS dataset, respectively. Dots denote significant skill scores at a significance level of 95 %.

normal distribution, i.e. around ±0.44. Thus, Fig. 10
(top left) approximately displays the three observed ter-
ciles as brown, white and green sectors of the color bar.
The tercile boundaries of the probabilistic prediction
are slightly shifted away from standardized values due
to recalibration. However, the probabilities of terciles
can be compared because terciles are calculated sepa-
rately for observations and predictions. The probabilis-
tic prediction reveals a similar distribution of global dry
and wet patterns to the ensemble mean prediction, thus,
capturing most observed tendencies (Fig. 10, bottom).
However, it shows stronger drying than the ensemble
mean prediction over western North America and north-
western Africa, thus, overestimating observed droughts.
It also show stronger wetting over northern Alaska and
north-eastern Greenland than the ensemble mean pre-
diction often improving the agreement to observations.
Thus, the prediction types reveal rather similar results,
but both should be investigated because differences are
prominent over some regions as already found in the
skill analysis.

4.4 Decadal prediction of the GPCC-DI for
next years

The final results section presents a decadal prediction of
MPI-ESM-LR (initialized in 2018) for the 4-year mean
GPCC-DI of lead-year period 1–4, i.e. years 2018–2021,
and 2° spatial resolution (Fig. 11). Recalibrated ensem-
ble mean predictions show a large drought over north-
eastern Africa and the Arabian Peninsula and small dry-
ing patterns over West and Central Africa as well as

South America. Wetting is predicted for many north-
ern Hemispheric regions, especially for Greenland and
parts of Siberia. The recalibrated probabilistic predic-
tions generally confirm these findings, however, reveal
stronger drying probabilities over north-western and
Central Africa, South America and India as well as more
intense wetting tendencies over northern Europe, Siberia
and Indonesia.

A decadal prediction for the 1-year mean GPCC-DI
of lead year 1, i.e. year 2018, is shown in Figure S7. Sim-
ilar drying and wetting patterns to 2018–2021 are found
but more smoothed with less intensities or probabilities
of occurrence. The only prominent feature is the drying
over northern Africa and the Arabian Peninsula. The ob-
served GPCC Drought Index Product (ftp://ftp.dwd.de/
pub/data/gpcc/html/gpcc_di_doi_download.html) aver-
aged over January to June 2018 indicates the predicted
drought over northern Africa and Arabia as well as
wetting over many northern Hemispheric regions (not
shown). In contrast to predictions, stronger drying has
been observed over eastern Australia and wetting over
the United States, the Mediterranean area, and East
Africa. The prominent summer drought over Central Eu-
rope could not be found in both observed and predicted
GPCC-DI. However, please note that until now only the
mean of six observed months of the year 2018 is avail-
able.

Generally, we recommend climate data users to apply
decadal drought predictions only for those time periods
and regions where significant positive skill is found in
the past.

ftp://ftp.dwd.de/pub/data/gpcc/html/gpcc_di_doi_download.html
ftp://ftp.dwd.de/pub/data/gpcc/html/gpcc_di_doi_download.html
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Figure 9: Decadal prediction skill of MPI-ESM-LR for 4-year mean GPCC-DI predictions for lead year 1–4 and 2° spatial resolution at
global scale (top) and zoomed-in over Europe (bottom): MSESS (first and third row) and RPSS (second and forth row) compared to the
reference forecasts observed climatology (left) and uninitialized simulations (right). Precipitation and temperature observations have been
taken from the GPCC Full Data Reanalysis Version 7 and the NOAA CPC GHCN_CAMS dataset, respectively. Dots denote significant skill
scores at a significance level of 95 %.

5 Summary and conclusions

This study has analyzed the skill of global decadal
drought predictions in determining the GPCC-DI (Ziese
et al., 2014) and its components SPI-DWD and SPEI for
decadal predictions of MPI-ESM-LR. Ensemble mean
and probabilistic drought predictions have been evalu-
ated via MSESS and RPSS, respectively. Uninitialized
MPI-ESM-LR simulations and the observed climatol-
ogy based on GPCC Full Data Reanalysis Version 7
precipitation and NOAA CPC GHCN_CAMS temper-
ature data have been selected as reference predictions.

For both ensemble mean and probabilistic predictions,
the recalibration of Pasternack et al. (2018) has clearly
improved the standard ICPO (2011) correction. Major
results of the decadal drought prediction skill are sum-
marized in the following:

The evaluation in MiKlip standard configuration,
i.e. 4-year means for lead-year period 1–4 at 5° spa-
tial resolution, reveals high decadal prediction skill for
temperatures on the whole globe and for PET in the
tropics, especially in northern Africa, as well as sev-
eral heterogeneously distributed skill hot spots for pre-
cipitation. SPI-DWD and SPEI show similar skill pat-
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Figure 10: Observed GPCC-DI for 2008–2011 (top left) and decadal prediction of MPI-ESM-LR (initialized in 2008) for 4-year mean
GPCC-DI for lead-year period 1–4 and 2° spatial resolution: ensemble mean prediction of GPCC-DI values (top right) and probabilistic
predictions of below-normal (bottom left), normal (not shown) and above-normal conditions (bottom right) describing the probabilities of
terciles based on the distribution of ensemble members. Precipitation and temperature observations have been taken from the GPCC Full
Data Reanalysis Version 7 and the NOAA CPC GHCN_CAMS dataset, respectively.

terns to precipitation and PET, respectively. GPCC-DI
presents a global coverage but hardly improves the skill
of its components SPI-DWD and SPEI. The recalibra-
tion strongly improves prediction skills in slightly en-
hancing correlations and clearly reducing standard devi-
ations and large negative conditional biases of original
predictions. The MSESS compared to uninitialized sim-
ulations is strongly positive over many regions over the
globe because recalibrated decadal predictions reveal
much smaller conditional biases than uninitialized sim-
ulations. Impacts of conditional biases are less promi-
nent for probabilistic predictions. In most areas predic-
tion skills remain at similar size until the end of the
decade, except for ensemble mean predictions with re-
spect to observed climatology.

Additionally, user-oriented decadal GPCC-DI pre-
dictions with higher temporal and spatial resolutions are
evaluated. Prediction skills of 1-year means for lead year
1 are smaller than those of 4-year means over many
areas due to increased small-scale noise, but some re-
gions reveal reduced negative skills or higher positive
skills due to regional processes relevant at the 1-year
time scale, e.g. in the western United States. Predic-
tion skills at 2° resolution show similar spatial patterns
to the 5° resolution but with fine-scale structures, e.g.
over the focus area of Germany. They do not decrease
at higher resolution but remain mostly at a similar level.

Furthermore, a user-oriented evaluation of the decadal
GPCC-DI prediction of a prominent single event, i.e. the
strong north-eastern African drought in 2008–2011, re-
veals that most observed global drought and wet tenden-
cies are reproduced, but intensities are often underesti-
mated. This results from high correlations but reduced
standard deviations. Ensemble mean and probabilistic
predictions reveal mostly similar tendencies, except for
some regions in North America and Africa.

Finally, a decadal GPCC-DI prediction for
2018–2021 presents a large drought over north-eastern
Africa and the Arabian Peninsula and strong wetting
over Greenland and parts of Siberia in both ensemble
mean and probabilistic predictions. The prediction for
2018 reveals similar patterns to 2018–2021 but more
smoothed with less intensities and probabilities of
occurrence and agrees well with the already available
GPCC-DI observations of January to June in 2018.

Several conclusions can be drawn from these find-
ings: (1) the skill of decadal drought predictions strongly
depends on the considered evaluation criteria: drought
index, reference prediction, prediction type, time period,
and region. SPI-DWD and SPEI show strongly differing
results due to various input variables. So do the different
reference predictions observed climatology and unini-
tialized simulations. Ensemble mean and probabilistic
predictions often reveal similar skills, but differences
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Figure 11: Decadal prediction of MPI-ESM-LR (initialized in 2018) for 4-year mean GPCC-DI for lead-year period 1–4 and 2° spatial
resolution: ensemble mean prediction of GPCC-DI values (top) and probabilistic predictions of below-normal (bottom left), normal
(not shown) and above-normal conditions (bottom right) describing the probabilities of terciles based on the distribution of ensemble
members. Precipitation and temperature observations have been taken from the GPCC Full Data Reanalysis Version 7 and the NOAA CPC
GHCN_CAMS dataset, respectively.

emerge with respect to the reference prediction unini-
tialized simulations which often show higher conditional
biases than recalibrated decadal predictions. Drought
prediction skill features large variability in time, con-
cerning temporal smoothing, and space but mostly re-
mains at similar size when shifting from the beginning
to the end of a decade and from lower to higher spatial
resolution. The described results are calculated by robust
statistical approaches involving 58 decades, 10 model
ensemble members, cross validation, and significance
tests via bootstrapping in order to exclude random im-
pacts. Thus, the presented prediction skills just reflect
the state of the art of global decadal drought predic-
tions: The applied MPI-ESM-LR model is able to re-
produce several physical processes enabling predictions
for certain variables in certain time periods and regions,
e.g. the PDO prediction skill for lead year 1 related to
precipitation and SPI-DWD prediction skill in the west-
ern United States. Other physical processes enabling ad-
ditional prediction skill are not captured by this global
decadal prediction system until now. Limited or differ-
ing decadal prediction skills of GCMs have already been
stated, e.g. for precipitation over the continental United
States (Salvi et al., 2017) or in the Sahel (Gaetani and
Mohino, 2013; Martin and Thorncroft, 2014).

(2) The drought prediction skill of decadal MPI-
ESM-LR predictions is able to significantly improve the
commonly used reference predictions observed clima-
tology and uninitialized simulations for several time pe-
riods and regions. Thus, based on these findings a user-
oriented skill matrix can be built to decide if drought
prediction skill for a certain user need (time period, re-
gion) with respect to a certain reference prediction ap-
plied until now is found and for which evaluation crite-
ria (drought index, prediction type). However, not every
single user need can be fulfilled because prediction skill
is limited as described. Promising hot spots of drought
prediction skill are central South America, northern and
central Africa, and northern Europe for 4-year means
as well as the western United States, northern Africa,
and Australia for 1-year means. In other regions precip-
itation (Central Asia and the Arctic regions) and PET
predictions (whole tropics) are skillful. Some of these
skill hot spots confirm recent research studies: Inter-
annual to decadal prediction skill has already been found
for North American droughts (Ramesh et al., 2017) and
soil water storage (Chikamoto et al., 2015), Sahel rain-
fall (Sheen et al., 2017), European summer droughts
(Ionita et al., 2017), and some southern African dry
spells (Reason et al., 2006).
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(3) The GPCC-DI has been developed to enable past
and present-day drought monitoring with global cover-
age (Ziese et al., 2014) and transferred to decadal pre-
dictions to facilitate as well near global predictions.
However, due to its concept of averaging SPI-DWD and
SPEI values its decadal prediction skill hardly improves
that of its components. SPI-DWD and SPEI are gener-
ally more appropriate to reach high decadal prediction
skills in certain regions. The GPCC-DI presents a ho-
mogenous drought index for global comparison studies
with mostly lower prediction skill. Thus, the choice of
considered drought index strongly depends on the kind
of application.

(4) The recalibration of Pasternack et al. (2018) is
able to strongly enhance the ensemble mean prediction
skill of decadal predictions in slightly improving corre-
lations and clearly reducing conditional biases and thus,
standard deviations. Original variables like precipitation
already reveal strongly smoothed ensemble mean stan-
dard deviations compared to observations. However, the
standard deviation of standardized drought indices is as
high as the observed one producing large conditional bi-
ases and making the reduction of standard deviations for
skill improvement especially necessary. Thus, the user-
oriented standardization of variables in order to reach
observed high standard deviations is only recommended
if correlations are high enough to assure that skill is not
deteriorated by large conditional biases. If correlations
are low, standardization is not recommended because
larger standard deviations would then even worsen the
skill. The improvements of the probabilistic prediction
skill due to recalibration are less pronounced because
impacts of conditional biases and standard deviations
are smaller.

Finally, some aspects of this study might motivate
further research to reduce uncertainties and improve
decadal drought predictions: Concerning the methodi-
cal concept, some tests have recently been performed
to improve the calculation of SPI-DWD and SPEI by
optimizing applied probability density functions and fit-
ting approaches. The SPI-DWD adaptation term could
be adapted to large model ensembles to avoid too strong
adjustments towards negative indices. The calculation
of PET could be improved in applying more satisfied
approaches, e.g. the FAO Penman-Monteith equation
(Allen et al., 1998), and more complex drought in-
dices than SPI and SPEI could be applied to decadal
predictions, such as hydrological indices. However, pre-
diction skill of the needed complex input variables
has to be found. Concerning spatial resolution, further
skill analyses are planned for global decadal predic-
tions of the MPI-ESM-HR (High Resolution, Müller
et al., 2018) system at 1° resolution and the downscaled
predictions of the regional climate model COSMO-
CLM (CCLM, Rockel et al., 2008) at 0.5° resolution
over Europe and the empirical-statistical downscaling
method EPISODES at 0.11° resolution over Germany
(Kreienkamp et al., 2018). Comparisons to other global
decadal prediction systems as done in the Decadal Cli-

mate Prediction Project (DCPP, Boer et al., 2016) might
also be of interest. Finally, the skill of multi-year sea-
sonal drought predictions might be investigated to an-
alyze if seasonally defined droughts are more skillful
in certain regions. The major aim is to provide user-
oriented decadal drought predictions at high temporal
and spatial resolution as an operational climate service
at DWD.
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