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Resonance inversion in a superconducting cavity coupled to artificial atoms
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We demonstrate how heating of an environment can invert the line shape of a driven cavity. We consider
a superconducting coplanar cavity coupled to multiple artificial atoms. The measured cavity transmission is
characterized by Fano-type resonances with a shape that is continuously tunable by bias current through nearby
(magnetic flux) control lines. In particular the same dispersive shift of the microwave cavity can be observed as a
peak or a dip. We find that this Fano-peak inversion is possible due to a tunable interference between a microwave
transmission through a background with reactive and dissipative properties and through the cavity affected by
bias-current induced heating. The background transmission occurs due to crosstalk between the control and
transmission lines. We show how such background can be accounted for by Jaynes-Cummings type models
via modified boundary conditions between the cavity and transmission lines. We find generally that whereas
resonance positions determine system energy levels resonance shapes give information on system fluctuations
and dissipation.
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I. INTRODUCTION

A Fano resonance [1] is a fundamental effect of wave
propagation. It appears in a wide range of physical systems,
including light propagation in photonic devices [2], light inter-
action with nano- and microstructures [3–7], charge transport
in nanoelectronics [8], and inelastic scattering of elementary
particles [1]. The Fano resonance emerges due to an interfer-
ence effect between two parallel paths connecting input and
output scattering states: transmission through a continuous-
mode or wide background state and transmission through a
discrete or narrow energy level. The resulting resonance can
be both admitting or reflecting (antiresonance) depending on
the details of the system. As many other interference effects, it
has numerous practical applications in metrology and optical
engineering [2,8].

In microwave devices, wanted or unwanted Fano-type
resonances can easily emerge, for example, from capacitive
or inductive background coupling between different ports
of a resonant circuit [9]. In the following, we call this
type of coupling a microwave background. In state-of-the-
art superconducting quantum-information devices [10–13] a
large number of qubits with their control lines are integrated
into a small-sized chip, with possible further size optimiza-
tion to reduce decoherence mechanisms, such as nonequi-
librium quasiparticle tunneling [14] or field focusing [15].
A quantum-state measurement in such circuits is commonly
based on microwave transmission through readout resonators

[16]. When increasing circuit complexity and scaling up qubit
numbers, it is difficult to avoid multiple interference paths
for microwave signals propagating through the circuit. It is
then also of high interest to understand in detail how Fano
resonances can appear in such circuits and how to account for
them in most commonly used theoretical models.

In this article we investigate microwave transmission
across a superconducting coplanar resonator coupled to mul-
tiple artificial atoms. The measured transmission is character-
ized by Fano-type resonances with a shape that is continu-
ously tunable by current bias through nearby magnetic-flux
control lines. In particular, we observe that the very same
dispersive shift of the cavity can be seen as either a peak or
a dip, depending on the current bias. The experiment is also
characterized by large off-resonance transmission.

We investigate the observed effects further by establishing
a theoretical model for cavity transmission in the presence
of a microwave background. The background transmission
accounts for a crosstalk between the input and output trans-
mission lines through control lines bypassing the coplanar
microwave cavity. We find that the well-known Jaynes- and
Tavis-Cummings models [17–20] of the cavity-atom inter-
action are valid also for the considered system. The back-
ground transmission can be accounted for by modifying
boundary conditions between the cavity and transmission-line
microwave fields.

Using the established model, we find that dissipation and
incoherent transitions can strongly affect the cavity line shape.
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A transformation from a peak to a dip, which we call here
a resonance inversion, is possible through a changing inter-
ference between a background microwave transmission, with
reactive and dissipative properties, and a cavity transmission,
with dissipative or incoherent dynamics. A dip appears when
the cavity transmission is comparable with the background
transmission and dissipation.

Based on the established model, we explain the observed
experimental features as an interplay between bias-induced
heating and background transmission: The applied dc bias
currents cause local heating of the bias leads, which in turn
induce incoherent energy-level transitions in the cavity-atom
system. Increasing rates of such transitions, by increasing the
bias currents, reduces the cavity transmission and smoothly
changes the spectroscopic response of the device from a
peak to a dip, the latter appearing when the cavity trans-
mission becomes comparable with the background transmis-
sion and dissipation. This allows for the full tunability of
the Fano resonance shape. We also demonstrate how the
local temperature of the system as well as average qubit T1

and T2 times can be estimated from the line shape of the
resonator.

The article is organized as follows. In Sec. II we introduce
our model of microwave transmission across a coplanar res-
onator coupled to artificial atoms. We show how microwave
propagation beside the cavity can be included by additional
terms in the cavity-line boundary conditions. In Sec. III we
study theoretically the effect of dissipation and decoherence
on the form of Fano resonances. In particular, we show how
the line shape of a microwave resonator can change from a
peak to a dip in various situations. In Sec. IV we present
our experimental results and estimate the local temperature
of the cavity-qubit system under different biasing conditions
from the line shape of the resonator. We also discuss how
to estimate average qubit T1 and T2 times from the res-
onator line shape. Conclusions and discussion are given in
Sec. V.

II. SYSTEM AND MODEL

The system we consider is shown in Fig. 1(a). Microwaves
propagate in two semi-infinite transmission lines (TLs). The
TLs are connected to each other through a two-sided cavity
and through a background. The cavity is described by a
resonant element Z and coupling capacitors Cci. The back-
ground coupling between the TLs is described by a paral-
lel impedance Zb. Multiple superconducting artificial atoms
(transmons) can be embedded in the cavity, affecting its
resonance frequency, as described below.

We start building a theoretical model for this circuit in
Sec. II A by introducing a quantized model of microwave
radiation in TLs. In Sec. II B we account for the coupling
between the cavity and the TLs and in Sec. II C between the
cavity and the artificial atoms. In Sec. II D we show how the
parallel transmission channel can be included in the model
by additional terms in microwave boundary conditions. A full
solution in the linear limit is derived in Sec. II E and a master
equation for simulation in a more general situation is given in
Sec. II F.

FIG. 1. (a) Incoming and outgoing microwave fields propagate
in two semi-infinite transmission lines with characteristic impedance
Z0. They are connected via capacitors Cc to a microwave resonator
modeled by an element Z . The transmission lines are also connected
directly to each other through background impedance Zb. (b) A
coplanar microwave resonator can be modeled as an LCR resonator
[21]. (c) N superconducting transmon artificial atoms [22] (crossed
boxes) embedded in the coplanar resonator interact with the cavity
mode through coupling capacitors Cgi.

A. Microwave radiation in open transmission lines

1. Radiation states

Microwave radiation in the left TL can be described by a
traveling-field solution for the magnetic flux [17,23–25]

�̂(x < 0, t ) =
√

h̄Z0

2ω0

[
âL

in(t − x/c) + âL
out (t + x/c) + H.c.

]
.

(1)

We associate the position x = 0 as the cavity boundary and
the space is semi-infinite, −∞ < x < 0. The capacitance C′
and inductance L′ per unit length define the characteristic
impedance Z0 = √

L′/C′ and the effective speed of light c =
1/

√
L′C′. We work in the narrow-bandwidth approximation

[23] and therefore the cavity resonance frequency ω0 (defined
more detailed below) appears in the equation. The operator
âL

in(t ) annihilates and âL
in(t )† creates an incoming photon.

These operators satisfy the commutation relations[
âL

in(t ), âL
in(t ′)†

] = δ(t − t ′). (2)

The same relation is valid also for the corresponding
outgoing-field photon operators âL

out (t ). We can also define
photon operators of specific frequencies

âL
in/out (ω) = 1√

2π

∫ ∞

−∞
dteiωt âL

in/out (t ). (3)

063804-2



RESONANCE INVERSION IN A SUPERCONDUCTING … PHYSICAL REVIEW A 99, 063804 (2019)

We then have

âL
in/out (t ) = 1√

2π

∫ ∞

−∞
dωe−iωt âL

in/out (ω). (4)

The commutation relations of these fixed-frequency operators
have the form [

âL
in(ω), âL

in(ω′)†
] = δ(ω − ω′). (5)

A similar definition is made for the operators describing
fields on the right of the cavity, âR

in and âR
out.

2. Microwave transmission and reflection

The microwave properties we study in this paper are the
microwave reflection s11(ω) and the microwave transmission
s12(ω). They are defined through the output amplitudes when
having a coherent input from one side and no input from the
other side. By assuming a coherent input of frequency ω from
the left, we define

s11(ω) =
〈
âL

out (ω)
〉

〈
âL

in(ω)
〉 , (6)

s12(ω) =
〈
âR

out (ω)
〉

〈
âL

in(ω)
〉 . (7)

In theoretical modeling, these relations can be determined
through solving microwave boundary conditions and cavity
equations of motion, as described below.

B. Open transmission line connected to cavity

We continue building the model by considering first a situ-
ation where there are no transmons embedded in the cavity,
i.e., the setup of Fig. 1(b). We further assume the absence
of parallel transmission (Zb = ∞) and that the cavity has no
intrinsic dissipation (R = ∞). We describe the photonic state
inside the cavity by a single-mode Hamiltonian

Ĥ0 = h̄ω0â†â. (8)

Here the operator â(†) is the cavity photon annihilation
(creation) operator satisfying [â, â†] = 1. The coupling-
normalized resonance frequency is

ω0 = 1√
L(C + 2Cc)

. (9)

Here L (C) is the inductance (capacitance) of the cavity and
Cc is the coupling capacitance between the cavity and a TL.
From here on we assume the case of symmetric coupling
Cc1 = Cc2 = Cc.

The interaction between the semi-infinite TLs and the
cavity is described by boundary conditions at the two sides
of the cavity [17]. On the left-hand side we write

âL
out (t ) = √

γ â(t ) − âL
in(t ). (10)

The operators are time dependent since the condition is given
in the Heisenberg picture. Similarly for the right-hand side,

âR
out (t ) = √

γ â(t ) − âR
in(t ). (11)

The decay rate is now identical in the two directions and has
the form

γ =
(

Cc

C + 2Cc

)2 Z0

ZLC
ω0, (12)

where the characteristic impedance of the resonator is ZLC =√
L/(C + 2Cc). This treatment of the cavity field is valid for

high quality factors Q = ω0/2γ � 1.
The cavity field operator also satisfies the Heisenberg

equation of motion [17]

ˆ̇a(t ) = i

h̄
[Ĥ0, â(t )] − γ â(t ) + √

γ
[
âL

in(t ) + âR
in(t )

]
. (13)

This is found to be also more generally valid, with proper
redefinition of Hamiltonian Ĥ0, accounting for the presence
of artificial atoms, and also in the presence of reactive and
dissipative parallel coupling.

C. Cavity interacting with artificial atoms

It is straightforward to account for the presence of artificial
atoms in the above treatment. We first consider the case of
including them as two-level systems and after this generalize
the treatment to the case of multilevel atoms.

1. Interaction with two-level systems

For transverse cavity-atom couplings gi � ω0, the system
is described in the rotating-wave approximation by the Tavis-
Cummings Hamiltonian [17]

Ĥ0 = h̄ω0â†â + h̄
n∑

i=1

�i

2
σ̂ i

z +
n∑

i=1

h̄gi(â
†σ̂ i

− + âσ̂ i
+). (14)

Here σ̂ i
+(−) is the spin raising (lowering) operator of two-level

system i. Boundary conditions (10) and (11) and Heisenberg
equation of motion (13) keep their form.

Here, when gi � |	i|, where 	i = �i − ω0, the system
shows effectively a longitudinal coupling between the res-
onator and the two-level systems. This is called a dispersive
coupling regime. For a single-atom environment, the resulting
Hamiltonian has the form [10,26]

Ĥ ′
0 = h̄(ω0 + χσ̂z )â†â + h̄

2
(� + χ )σ̂z. (15)

Here we have defined the dispersive shift

χ = g2

	
. (16)

Corrections to this Hamiltonian are higher orders in g/	 � 1.
We see that the effective resonance frequency of the cavity
then depends on the state of the two-level system and can
have values ω0 ± χ . This type of Hamiltonian can be used
to describe a driven cavity if the neglected energy-level an-
harmonicity is small compared to the energy-level broaden-
ing [27]. For low photon-number distributions the relevant
condition is g2/|	| × (g/	)2 � γ , which is assumed to be
true when considering a dispersive regime in this article. This
coupling regime is commonly used for readout of supercon-
ducting qubits [16].
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A generalization of the dispersive Hamiltonian to account
for multiple two-level systems is straightforward,

Ĥ ′
0 = h̄

(
ω0 +

n∑
i=1

χiσ̂
i
z

)
â†â + h̄

2

n∑
i=1

(�i + χi )σ̂
i
z .

Here χi = g2
i /	i, gi � |	i|, and we have neglected cavity-

mediated couplings between the two-level systems [26,28],
i.e., we assume gig j/|	i/ j | � (�i − � j )2.

2. Interaction with multilevel systems

In our experiment, the cavity interacts with transmon ar-
tificial atoms. For multilevel artificial atoms with low anhar-
monicity like the transmon also higher energy levels need to
be accounted for [22]. This can be the case even though only
two lowest (photon-dressed) atom states would be populated.

A Hamiltonian of a resonator connected to one multilevel
atom can be written generally in the form

Ĥ0 = h̄ω0â†â +
∑

j

E j | j〉〈 j| +
∑
k,l

h̄gkl (â + â†)|k〉〈l|.

(17)

Here Ej is the energy of the atom-state | j〉 and j = 0, 1, 2, . . ..
The effective Hamiltonian in the dispersive regime here has
the form

Ĥ ′
0 = ĤC +

∑
j

E j | j〉〈 j| +
∑
j>0

h̄χ j−1, j | j〉〈 j|, (18)

where the resonator-atom coupling is described by

ĤC = h̄â†â

⎛
⎝ω0 − χ01|0〉〈0| +

∑
j>0

(χ j−1, j − χ j, j+1)| j〉〈 j|
⎞
⎠

(19)

and

χ j−1, j = j
g2

Ej/h̄ − Ej−1/h̄ − ω0
. (20)

If only two lowest (photon-dressed) transmon levels are
populated, the correction to the dispersive-shift operator of
Eq. (15) is accounted for by the replacement [22]

g2

	
σ̂zâ

†â ←
(

g2

	
− g2

	 − EC/h̄

)
σ̂zâ

†â. (21)

Here the charging energy EC corresponds to the anharmonic-
ity of the artificial atom.

Finally, transmons can be described as parallel LiCi circuits
with coupling capacitors Cgi, see Fig. 1(c). The explicit form
of the cavity-qubit couplings can then be expressed as a
function of these linear-circuit elements [22]. Here they have
the form

h̄gi = h̄

2

√
ω0�i

Cgi√
CCi

. (22)

We assume here small coupling capacitors Cgi,Cc � C,Ci.
The lowest energy-level splittings are in the same limit
�i = 1/

√
Li(Ci + Cgi ), the pure cavity frequency ω0 =

1/
√

L(C + 2Cc + ∑
i Cgi ), and the charging energies Ei

C =
e2/2(Ci + Cgi ).

FIG. 2. (a) A background described by an inductor L connect-
ing the input and output transmission lines. (b) A background
with inductive and dissipative properties, the latter described by a
resistor Rb.

The dispersive shifts of a multitransmon system as well as
of higher excited states of single transmons have been studied
experimentally in Refs. [29–31].

D. Background

We now extend the above model to also account for a par-
allel transmission with the cavity, i.e., element Zb in Fig. 1(a).
We first consider a reactive (capacitive or inductive) coupling
beside the cavity and after this extend the analysis to also
account for dissipative background.

1. Reactive background

In the case of purely reactive background, as in Fig. 2(a),
the boundary conditions of Eqs. (10) and (11) can be shown
to generalize to (Appendix B)

âL
out (t ) = √

γ â(t ) − 1

1 + 2iε
âL

in(t ) − 2iε

1 + 2iε
âR

in(t ), (23)

âR
out (t ) = √

γ â(t ) − 1

1 + 2iε
âR

in(t ) − 2iε

1 + 2iε
âL

in(t ). (24)

Here we have introduced a parameter describing the reactive
response of a parallel inductance Lb,

ε = Z0

ω0Lb
= Z0

|Zb(ω0)| . (25)

We consider explicitly the case of a parallel inductor, whereas
the result for a parallel capacitor is obtained by a sign change
ε → −ε (Appendix C). The limit ε → 0 then gives the previ-
ous input-output relations for two-sided cavity, Eqs. (10) and
(11). Essential is that the Heisenberg equation of motion for
the cavity field, Eq. (13), stays the same, irrespective of the
values of γ and ε.

It should be emphasized that since the Heisenberg equa-
tion of motion for the cavity field stays the same, models
of driven cavities [27,29,32,33] or dispersive quantum-state
measurement [16,22] can be directly generalized to cover also
the presence of background transmission, just by using the
modified boundary conditions (23) and (24) when evaluating
properties of the outgoing fields (from the unchanged solution
for the cavity field).
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2. Dissipative background

A finite resistivity of the background can be introduced
by adding a negative imaginary part to parameter ε, i.e., by
replacing

ε ← ε − iεd. (26)

The exact relation to the model shown in Fig. 2 can be derived
to be (Appendix A)

ε − iεd = −i
Z0

Z∗
b (ω0)

= Z0(ω0Lb − iRb)

ω2
0L2

b + R2
b

, (27)

Zb(ω) = iωLbω + Rb. (28)

The model is valid for arbitrary strengths of the background
transmission, as long as the cavity mode is coupled only
weakly to the transmission lines and the background changes
weakly within cavity linewidth γ . Note that variables ε and εd

are dimensionless.

3. Removing the background from experimental data

We can also remove the Fano resonance from an experi-
mental data to recover the pure cavity spectrum. For example,
if we have only input from one side of the cavity and we
have measured the transmission also when artificial atoms and
the resonator are tuned far away, which result we mark now
sbackground

12 = 2(ε − iεd )/[i − 2(ε − iεd )], the above results im-
ply that

√
γ〈

âL
in

〉 〈â〉 = (
s12 − sbackground

12

)
. (29)

Here s12 is the measured transmission in the presence of
resonator and artificial atoms. Since the cavity equation of
motion is independent of the background, the left-hand side
of Eq. (29) is also the transmission in the absence of the
background. We must then have

sfree
12 = s12 − sbackground

12 . (30)

Here sfree
12 is the transmission in a hypothetical experiment,

where the background is not present. This relation remains
to be valid for all strengths of the background transmission.

The transformation from the measured background trans-
mission to the cavity boundary parameter ε has the
form

ε − iεd = i

2

sbackground
12

1 + sbackground
12

. (31)

E. Solution for a linear cavity

In the case of a linear cavity, we can solve the outfields
as a function of input directly by Fourier transformation. This
solution is valid also for a cavity-atom system in the dispersive
limit when no atom transitions occur, or when transitions are
slow and can be accounted for by statistical averaging.

In the case of a dissipationless cavity and background we
have(

âL
out (ω)

âR
out (ω)

)
= 1

(1 + 2iε)(1 − 2i f )

(
4ε f − 1 −2i(ε + f )

−2i(ε + f ) 4ε f − 1

)

×
(

âL
in(ω)

âR
in(ω)

)
, (32)

where

f (ω) = γ

2(ω0 − ω)
. (33)

The possible dispersive shift of the cavity frequency is now
incorporated in ω0. Here we consider explicitly the case of
a nondissipative background (εd = 0), but the result in the
general case can be obtained by replacement (26).

The scattering amplitude can be shown to be here:

s12 = 2ε

i − 2ε
+ γ

γ + i(ω0 − ω)

= γ + 2ε(ω0 − ω)

(1 + 2iε)[γ + i(ω0 − ω)]
. (34)

The special cases ε = 0 or γ = 0 give the transmission am-
plitudes when the parallel transmission does not contribute or
the cavity does not contribute, correspondingly. The reflection
amplitude has the form

s11 = − 1

1 + 2iε
+ γ

γ + i(ω0 − ω)

= 2εγ + ω − ω0

(−i + 2ε)[γ + i(ω0 − ω)]
. (35)

For a nondissipative system the transmission and reflection
powers sum to 1,

|s11|2 + |s12|2 = 1. (36)

Here the solution also satisfies the commutation relations[
âL

out (t ), âL
out (t

′)†
] = δ(t − t ′), (37)[

âR
out (t ), âR

out (t
′)†

] = δ(t − t ′), (38)

which is obtained only by assuming that this is true for the
input fields, Eq. (2), demonstrating consistency of the theory.

In the linear solution, the effect of intrinsic dissipation of
the cavity field can be accounted for by adding an imaginary
part to the resonance frequency, i.e., replacing

ω0 ← ω0 − i
κ

2
. (39)

This corresponds in the parallel LCR circuit of Fig. 1 to [24]

κ = 1

RC
= ω0

Qint
, (40)

where in the second form we have defined an internal quality
factor Qint = ω0RC. The equivalent energy decay rate is then

1

RC
= κ. (41)

This approach assumes implicitly κ � ω0.
At finite temperatures, a dissipative system performs fluc-

tuations. In our analysis, based on expectation values of
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Eqs. (6) and (7), temperature plays a role only in the case
of a nonlinear system, since otherwise thermal fluctuations
average out. This is since for a linear system, thermal fluctua-
tions result in an additional width of the Gaussian probability
distribution of the field quadratures around the classical mean
[17]. Similarly, thermal radiation emitted by the background
is not expected to contribute to average transmission and
reflection.

F. General system: Master equation simulation

We can simulate a more general cavity-atom system using
a Lindblad master equation [17]

ˆ̇ρ = i

h̄
[ρ̂, Ĥ ] + LL[ρ̂] + LR[ρ̂] +

n∑
i=1

Li
q[ρ̂]. (42)

Here ρ̂ is the reduced density matrix of the resonator and
artificial atoms. The Hamiltonian Ĥ now accounts for a co-
herent drive, i.e., operator âL

in, in a way shown below. Lindblad
operators LL/R then describe decay to (and excitations from)
TLs and Lindblad operators Li

q decoherence (decay and de-
phasing) of artificial atoms.

1. Lindblad operators

As previously, we assume that cavity-qubit couplings are
small, gi � ω0,�i, and that possible differences between
decay rates related to different shifted values of the cavity
frequency can be neglected. The Lindblad superoperator LL

then describes cavity photon transitions due to interaction
with the left TL,

LL[ρ̂] = γ −

2
(2âρâ† − â†âρ − ρâ†â)

+ γ +

2
(2â†ρâ − ââ†ρ − ρââ†). (43)

The decay rate to the left TL satisfies in thermal equilibrium

γ − = γ

[
1 + 1

exp
( h̄ω0

kBT

) − 1

]
, (44)

and correspondingly for the thermal excitation rate

γ + = γ

[
1

exp
( h̄ω0

kBT

) − 1

]
. (45)

We then have γ − = γ −(T = 0) + γ +. Similarly for the inter-
action with right TL described by superoperator LR.

Intrinsic dissipation and fluctuations of artificial atoms can
also be added by Lindblad superoperators. In the case of two-
level systems we have

Li
q[ρ̂] = κ−

i

2
(2σ̂ i

−ρσ̂ i
+ − σ̂ i

+σ̂ i
−ρ − ρσ̂ i

+σ̂ i
−)

+ κ+
i

2
(2σ̂ i

+ρσ̂ i
− − σ̂ i

−σ̂ i
+ρ − ρσ̂ i

−σ̂ i
+), (46)

where κ±
i are the corresponding transition rates of two-level

system i. These rates are affected by the electromagnetic
environment as seen by the transmons [34]. The temperature
dependence of κ±

i is equivalent to Eqs. (44) and (45).

Additionally, qubit pure dephasing [35] can be accounted
for within an operator

Lφ[ρ̂] =
∑

i

κ i
φ

2

(
σ̂ i

zρσ̂ i
z − ρ

)
. (47)

Similarly, it is possible to account for cavity dephasing by
replacement σ̂z ← σ̂a = 2â†â − 1. In the experiment analysis,
we find that resonator dephasing due to coupling to multiple
atoms can be modeled rather well within such a model. Fur-
thermore, in the linear case (Sec. II E), such cavity dephasing
can also be accounted for as cavity loss (κ > 0), discussed in
more detail below, in Sec. III D 1.

2. Coherent drive in the Hamiltonian

We consider the case of an incoming coherent radiation
from the left-hand side TL. The presence of such coherent
drive is accounted for by an effective Hamiltonian [17]

Ĥ = Ĥ0 + Ĥd, (48)

where the drive appears as a term

Ĥd = ih̄
√

γ A(t )â† + H.c. (49)

This form is derived by assuming〈
âL

in(t )
〉 = A(t ), (50)

and 〈âR
in(t )〉 = 0. For example, in the dispersive regime, the

corresponding total Hamiltonian of a driven cavity coupled to
single two-level system can be written in the form

Ĥ ′
0 = h̄(ω0 − ω + χσ̂z )â†â + h̄

2
(�0 + χ )σ̂z + α

2
(â + â†).

(51)

Here we have gone into the rotating frame with respect to
drive frequency ω and assumed that α = 2ih̄

√
γ A(t )eiωt is

a real number [so that A(t ) ∝ ie−iωt ]. The generalization to
multilevel atoms and multiatom systems is straightforward.

3. Solution for the outfield

For obtaining the average output fields, 〈âout (t )〉 and
〈b̂out (t )〉, we first determine the steady-state solution for the
cavity field, 〈â(t )〉, obtained from solving the master equa-
tion (42) with Hamiltonian (48). After this the solution for
the outfield is obtained from the boundary conditions (23)
and (24) with inserting the assumed form of the input field
〈âL

in(t )〉 = A(t ).

III. FANO RESONANCES AND THE EFFECT
OF DECOHERENCE

In this section we investigate microwave transmission
across a two-sided cavity in the presence of background
transmission and decoherence (dissipation and fluctuations).
We start in Sec. III A by giving a short summary of the form
of the conventional Fano resonance. In Sec. III B we solve the
Fano resonance in the case of a linear cavity with no internal
or background dissipation. In Sec. III C we study the influence
of dissipation in the case of a linear cavity. In Sec. III D we
study a cavity connected to single or multiple dissipative two-
level systems subjected to heating and fluctuations. Finally,

063804-6



RESONANCE INVERSION IN A SUPERCONDUCTING … PHYSICAL REVIEW A 99, 063804 (2019)

in Sec. III E we estimate the size of contribution from higher
energy levels of transmons.

A. Conventional Fano function

In a Fano resonance [1,2,8], the spectral response of a
resonant system is asymmetric around the resonance fre-
quency due to an interference effect between two scattering
amplitudes: scattering through a background with a constant
(or wide) state density and scattering through a discrete (or
narrow) energy level. The conventional form of the Fano
interference is characterized by only a single variable: Fano
parameter q. Here the total scattering amplitude |s|, or spectral
density |s|2, are of the form (neglecting normalization factors)

|s| ∝ |q + η|√
1 + η2

, |s|2 ∝ (q + η)2

1 + η2
, (52)

where η is a broadening-normalized drive frequency with
respect to the resonance frequency η = (ω0 − ω)/(�/2), with
� being a parameter describing the resonant-state broadening.
Two central limits of this function are q → ∞, giving a
Lorentzian shaped peak, and q = 0, giving a a Lorentzian
shaped dip. This description then catches resonant enhance-
ment as well as resonant suppression as two limits of one
formalism.

B. Decoherence-free linear oscillator

Consider first the case of dissipation-free linear cavity.
Here one can use the analytical solutions of Eqs. (34) and (35),
which give

|s12|2 = 1

1 + q2

(q + η)2

1 + η2
. (53)

Here we have identified

q = 1

2ε
, (54)

η = ω0 − ω

γ
. (55)

From Eq. (25) we obtain that for |Zb(ω0)| → ∞, q → ∞, and
transmission probability |s12|2 is a Lorentzian peak. For any
finite parallel coupling (finite q) interference occurs, which is
perfectly destructive when q = −η, meaning

ω = ω0 + γ

2ε
. (56)

The response near the resonance frequency can also be a dip,
q = 0, when |Zb(ω0)| → 0. Such a form then needs a very
strong parallel transmission. In the following, we show that
when the system is dissipative, a dip in the transmission can
appear also for a weak parallel transmission.

C. Lossy linear oscillator

Consider now including dissipation in the cavity when
having a weak parallel transmission ε � 1. A finite intrinsic
quality factor of the cavity can be accounted for by adding
an imaginary part ω0 ← ω0 − iκ/2. The solution of Eq. (34)
is also valid here. Transmission |s12(ω)| for several values

Frequency ω (units of ω0)

T
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2
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εd = 0 (Rb = 0) εd = 0.05 (Rb > 0)

Increasing cavity loss

�
�

�

�

FIG. 3. The effect of intrinsic cavity loss on transmission |s12(ω)|
in the presence of weak background transmission ε = 0.05. We
increase the dephasing rate κ/2 as indicated by the plot legends
in units of 10−2ω0. When the rate is increased the curve minimum
and maximum change as visualized by the arrows. In particular,
without dissipation in the background (εd = 0), increase of cavity
decoherence lowers the maximum and increases the minimum of
|s12(ω)|. With a dissipative background (εd = 0.05) both minimum
and maximum decrease with increasing cavity decoherence in the
considered range κ/2 ∈ [0, 0.01]ω0. For higher κ the minimum starts
to rise. We consider a linear cavity with resonance frequency ω0 and
coupling to each transmission line γ = 2 × 10−3ω0.

of loss rate κ (or equivalently dephasing rate κ/2) is shown
in Fig. 3 (εd = 0). We find that the intrinsic loss reduces
transmission and “straightens” the interference structure. We
note that simultaneously the reflection dip also gets less deep
(not plotted).

Consider then adding small dissipation also in the (weak)
parallel transmission. A finite resistivity in the parallel chan-
nel can be accounted for by a replacement ε ← ε − iεd. We
first note that without a reactive part in the parallel channel
(finite ε), we never get an asymmetric resonance curve (tilt).
Again, resistivity in the parallel channel reduces transmission
on resonance, but the two dissipative effects do not simply
sum up as an effective increased cavity dissipation rate.
Instead, if we assume a fixed background dissipation and
increase the cavity dissipation (or dephasing), an interesting
effect appears: the minimum value of |s12| decreases with
increasing cavity decoherence and reaches zero, see Fig. 3
(εd = 0.05). Using Eq. (34) one can derive that the minimum
transmission is exactly zero when

κ = γ
εd

ε2 + ε2
d

. (57)

This zero transmission occurs for

ω = ω0 + γ

2

ε

ε2 + ε2
d

. (58)

For larger cavity decoherence rates the minimum increases
again (plotted later in Fig. 8). The reflection |s11|, Eq. (35), is
also here always a dip. We then find that an inverted line shape
can occur also in the case of weak parallel transmission, when
both the cavity and the background dissipate radiation.
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FIG. 4. The effect of incoherent transitions in a dispersively
coupled two-level system on cavity transmission |s12(ω)| in the
presence of weak background transmission ε = 0.05. The transition
rates κ− and κ+ are increased as indicated by the plot legends in
units of 10−2ω0. When the transition rates are increased the curve
minimum and maximum change as visualized by the arrows. We
consider the case of a large dispersive shift g2/	 = −15γ , and fast
decay to ground state κ−(T = 0) = 4γ . The resonance frequency ω0

accounts for the dispersive shift of the ground state and coupling to
each transmission line γ = 2 × 10−3ω0.

D. Coupling to two-level systems

We consider now the case of a cavity with no internal losses
(κ = 0) but which is coupled to a two-level system exhibiting
incoherent transitions between its two states. In particular,
we demonstrate two other ways to obtain peak inversion:
(1) fast-incoherent-transitions induced cavity dephasing and
(2) reduced resonant-state population. Furthermore, a simple
fitting formula combining these two effects is useful in the
analysis of experimental data, as discussed in Sec. IV.

1. Cavity dephasing due to cavity frequency switching

Stochastic switchings of the two-level systems induce
dephasing of the signal propagating through the cavity. In
the dispersive coupling regime, this noise corresponds to
stochastic jumping of the frequency between two values, i.e.,
to telegraphic noise. An example of this effect (not mixed
with the reduced population effect, Sec. III D 2) is when one
has a high asymmetry between excitation and decay rates,
κ+ � κ−. Here the two-level system is mostly in its ground
state with stochastic short-time visits in its excited state.

Numerical results for the effect of incoherent transitions
in a dispersively coupled two-level system on transmission
|s12(ω)| are shown in Fig. 4. We simultaneously increase
the excitation and relaxation rate of the two-level system
with the same amount, i.e., keeping detailed balance (thermal
equilibrium statistics), Eqs. (44) and (45). The total dispersive
shift is assumed to be much larger than the cavity broadening
|2g2/	| � γ , and we consider a weak drive power. We find
that here incoherent hopping can create a very similar effect
to s12 as cavity dissipation, see Fig. 3. We however note
that for ground-state populations p < 1, the above dephasing
mechanism can be differentiated from pure cavity loss by

seeking for weak additional peaks (or dips) corresponding
dispersive shifts from the excited states of the artificial atoms.

The similarity to internal decay can be understood as that
in this limit a single jump of the two-level system is enough
to dephase the system, and that for superpositions of photon
numbers the effect of dephasing and decay is qualitatively
the same. More detailed, intrinsic cavity loss with rate κ

and pure dephasing of the cavity with κφ affect the average
transmission amplitude s12 equivalently when

κ

2
= κφ. (59)

In the presence of multiple two-level systems, the dynam-
ics also have few simple limits. For relaxation rates much
larger than the excitation rates κ−

i � κ+
i , with strong disper-

sive shifts, the effective dephasing rate is roughly the sum of
individual two-level system excitations rates,

κφ ≈
∑

i

κ+
i . (60)

Furthermore, the noise spectral density of an ensemble of dis-
persively coupled two-level systems is in thermal equilibrium
[36]

S(ω) =
∫

dt{eiωt 〈X̂ (t )X̂ (0)〉 − 〈X̂ 2〉}

=
∑

i

χ2
i

[
1

cosh2
( h̄�i

2kBT

)
]

2κi

ω2 + κ2
i

, (61)

where X = ∑
i χiσ

i
z and κi is the decay rate of two-level

system i at zero temperature. This describes random tele-
graphic noise of thermally excited two-level systems. For low
temperatures we have

S(ω) ≈
∑

i

χ2
i

[
4

1 + exp
( h̄�i

kBT

)
]

2κi

ω2 + κ2
i

= 8
∑

i

(
χi

κi

)2

κ+
i

1

1 + (
ω
κi

)2 . (62)

In the limit of fast decay, κi � χi, the dephasing can be treated
perturbatively within the Lindblad formalism, Sec. II F 1.
Here one gets the dephasing rate

κφ ≈ 8
∑

i

κ+
i

(
χi

κ−
i

)2

. (63)

We note that in this limit, the contribution from individual
two-level systems is then weaker than (maximally) in the
strong-coupling case, κφ � ∑

i κ
+
i .

2. Reduced resonant-state population

In the considered system, resonance inversion can emerge
also without the presence of cavity loss or dephasing, if the
population of the probed state goes essentially below 1. A
clean example is a regime, where the qubit switching is much
slower than the cavity decay to transmission lines, κ+/− � γ ,
so that the effect of hopping is to just modify qubit state
populations. In particular for multiqubit environments under
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FIG. 5. Transmission through a cavity with strong dispersive
coupling (χ � γ ) to a two-level system that is with probability
p in its ground state giving the effective resonance frequency ω0

(including the dispersive shift). We assume a weak background
transmission ε = 0.05 and decrease population p as indicated by the
plot legends. When the population is decreased the curve minimum
and maximum change as visualized by the arrows. In the case of
dissipation-free background (εd = 0) the reduction in population
decreases the maximum and increases the minimum transmission.
In the case of dissipative background (εd = 0.05) the reduction in
population decreases the maximum and the minimum transmission
in the shown range of p. The coupling to each transmission line
γ = 2 × 10−3ω0.

heating, it can then occur that the population of the probed
state is not 1, but well below it.

Applying Eq. (34) and assuming that the transmission
through the cavity in the nonresonant state is negligible,
meaning here a background transmission 2(ε − iεd )/(i −
2ε + 2iεd ) with probability 1 − p, we get for the average
transmission

s12 = 2(ε − iεd )

i − 2(ε − iεd )
+ p

γ

γ + i(ω0 − ω)
. (64)

The effect of reducing probability p is visualized in Fig. 5. For
the dissipation-free background, Fig. 5 (εd = 0), the interfer-
ence structure straightens, but for the dissipative background,
Fig. 5 (εd = 0.05), the transmission becomes increasingly
skewed and again touches zero. The curve touches zero with
population

p = 1 − εd

εd + 2ε2
d + 2ε2

(65)

and the frequency where this occurs is

ω = ω0 + εγ

εd + 2ε2
d + 2ε2

. (66)

3. Combined effect

In a setup with multiple two-level systems, the two above
described effects (stochastic artificial-atom switchings and re-
duced resonant-state population) can coexist. An approxima-
tive model then includes both the finite additional broadening
κ > 0, and the reduced resonant-state population p < 1. Here

Switching rate κ± (units of g2/Δ)

Increasing two-level system hopping (high T )

|s12|
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FIG. 6. Transmission across a linear oscillator with a frequency
switching between two values separated by 2g2/	. We consider a
situation without (ε = εd = 0, left panel) and with (ε = εd = 0.05,
right panel) a background transmission. The switching rate κ± is
the same for both directions and the dispersive shift is much larger
than the cavity linewidth g2/	 = 13γ and γ = 10−3ω0. Without
a background transmission (left panel) and with weak switching
rates κ± < γ , we observe a statistical average of transmission for
two equally populated cavity-frequency states. When increasing the
switching rate, the two transmission peaks merge into a motional-
averaged single resonance peak [37]. In the presence of a weak
dissipative background transmission (right panel), the two Fano-type
peaks evolve to two dips (when κ± � γ ) and finally from a single
motional-averaged dip to a single tilted peak.

we have the transmission

s12 = 2(ε − iεd )

i − 2(ε − iεd )
+ p

γ

γ + κ/2 + i(ω0 − ω)
(67)

= 2(ε − iεd )

i − 2(ε − iεd )
+ p′ γ ′

γ ′ + i(ω0 − ω)
. (68)

In the second form, we have defined effective population p′
and coupling γ ′,

p′ = p
γ

γ + κ/2
, (69)

γ ′ = γ + κ

2
. (70)

Within these new parameters also Eqs. (65) and (66) are
valid. Furthermore, the population p′ is now the effective
spectroscopic signal strength of resonance at frequency ω0.

4. Motional averaging and a limitation of the dephasing
rate by dispersive coupling

As an interesting example, showing the diversity of the
problem as well as a limitation of the effective cavity dephas-
ing rate, we consider a cavity frequency that switches with
identical hopping rates in the two directions, i.e., κ+ = κ− =
κ . Such symmetry appears in the high-temperature limit.

The resulting transmission |s12(ω)| as a function of the
common hopping rate κ and in the absence of the background
is visualized in Fig. 6 (left panel). Three regimes can be
identified. First, if the excitation and decay rates are small
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compared to the system dynamics κ � γ , the solution for
the transmission is a statistical average over two results, cor-
responding to the two frequencies of the dispersively shifted
cavity. Second, when the hopping rate exceeds γ , maximum
transport reduces significantly due to effective dephasing of
cavity resonance frequency. These are the two regimes consid-
ered in the preceding subsections. Third, when the excitation
and decay rates dominate the dispersive shift 2g2/	, motional
averaging emerges [37], where switching is so fast that only
the average value of the cavity frequency is observed.

When a weak parallel transmission with dissipation is then
included, Fig. 6 (right panel), the low-hopping rate peaks are
changed to skewed Fano-type peaks. When the hopping rates
are increased, the skewed peaks evolve into dips. A motionally
averaged common dip emerges in the limit of high hopping
rates. Finally, a skewed Fano-type peak is recovered in the
limit of very high hopping rates. Our important observation
here (case γ � χ ) is then that the effective dephasing rate
due to stochastic switching of dispersively coupled two-level
systems is limited by the dispersive coupling, i.e., κφ < χ .

We note that a similar line-shape transformation can
also occur without the presence of dispersive-shift hopping,
but, through other phenomena reducing the cavity transmis-
sion, such as photon blockade when increasing drive power
[27,32,38]. Such higher drive amplitudes can be useful for
quantum sensors [39] or quantum simulation [34,40].

E. Higher levels of artificial atoms

Higher excited states of artificial atoms can influence the
observed peak transformation. A Hamiltonian that can be used
to account for higher excited states is given in Sec. II C 2.

For transmon artificial atoms, a simple estimate for the
population of excited states at a given temperature can
be made. Here the anharmonicity EC is usually 5%–10%
of the lowest energy-level spitting h̄�. This means that for
moderate temperatures the populations can be assumed to be
the ones of a harmonic oscillator,

Pn ≈ 1

1 + N

(
N

N + 1

)2

, (71)

N = 1

exp β� − 1
. (72)

This formula can then be used to estimate how significantly
the higher energy levels contribute to cavity dephasing. In
our experiment, the local temperature varies in a range that
implies P1 � 0.2, giving P2 � 0.05. This means that higher
excited states are not significantly populated and their contri-
bution to the analyzed effects stays negligible. For simplicity,
we then neglect their contribution from the theoretical model.
It should however be noted that for transmons, the second
excited energy levels strongly modify the dispersive shifts of
the first excited states, see Sec. II C 2.

IV. EXPERIMENT

Our experiment includes eight transmon artificial atoms
embedded in a driven coplanar microwave resonator [38]. The
equivalent circuit model is shown in Fig. 2(a) with the cavity-
atom coupling scheme of Fig. 2(c). The energy levels of the
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FIG. 7. Measured microwave transmission |s12| through a copla-
nar cavity coupled to eight transmons as a function of coil current I ,
used to tune one transmon, and drive frequency ω. The resonance po-
sition is periodic as a function of the current (transmon inductance),
whereas the line shape transforms from a peak to a dip when current
|I| is increased. Transmission curves at pointed current bias points
are shown in Fig. 8.

transmons are individually tunable by local magnetic fluxes
applied across Josephson inductors realized in a SQUID ge-
ometry. The magnetic fluxes are created by dc bias currents
through eight nearby coils. The energy levels of the multiatom
environment affect the effective cavity resonance frequency,
which is probed by measuring the microwave transmission s12

through the cavity. Further technical details of the experiment
are given in Appendix E and in Ref. [38].

A. Uncalibrated system: Resonance inversion by heating

An example of measured microwave transmission s12 is
shown in Fig. 7. Here we probe the system in the neigh-
borhood of the dispersively shifted cavity n = 1 mode at
base temperature T ≈ 20 mK. This mode has pure frequency
ω0/2π = 6.674 GHz. We are in the weak-drive limit and
the data are normalized according to maximal transmission
at high powers. We sweep single coil current I to tune one
transmon. All other coil currents are zero.

In Fig. 7 we observe an avoided energy-level crossing
between the cavity and the tuned transmon. The observed
resonance-frequency variation is periodic as a function of cur-
rent I , as expected from SQUID flux periodicity. An additional
random offset flux threads the SQUID loops leading to an
offset from the symmetry-point I = 0. An unexpected feature
is the reduction of on-resonance transmission with increasing
|I|, with a line shape changing from a peak to a dip. This
is a general feature of the experiment in different biasing
conditions and cool downs.

The experimental data at several current biases is compared
to master-equation simulations in Figs. 8(a)–8(d). At these
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FIG. 8. (a) Experimental data of Fig. 7 for indicated values of
coil current I , showing a reduction of maximum transmission and
transition from a peak to a dip when current is increased. (b) The
change of the line shape as given by master-equation (ME) simula-
tion of cavity coupled dispersively to eight two-level systems. When
temperature is increased the transmission minimum and maximum
reduce. (c) and (d) A comparison for wider range of applied currents
and temperatures. (e) The transmon two-level system energies and
equivalent dispersive shifts used in the ME simulation. (f) A ME
simulation with T = 190 mK and varying common qubit decay κi.
The curve keys give equivalent decay rates at T = 0 in units of
the resonator coupling γ = 2π × 0.7 MHz. The curve minimum
decreases with increasing κi. Fitting such a curve to experimental
data (at known temperatures) can be used to estimate the average
decay rate of qubits.

bias points the cavity-transmon coupling is dispersive. We
simulate the system as a linear resonator coupled to eight
two-level systems. An important feature of the experiment
is the large background transmission, here |s12| � 0.2. This
background transmission corresponds to model parameter ε −
iεd = 0.062 − i0.06 and was measured separately when the
cavity resonance frequency was tuned far away (by tuning
qubits) and by using the connection (31). The background
transmission originates most probably in a crosstalk between
the transmission lines, flux-bias lines, and the sample-box
bonding. For more details see Appendix E.

In master-equation simulations, we use the hypothesis that
dc current causes heating of the cavity-atom system. As a

result, stochastic excitations (and decays) of the heated two-
level systems make the resonator frequency fluctuate. The
assumption of elevated temperature is supported by additional
experiments on the base-temperature dependence, which im-
ply that for large coil currents T ∼ 0.2 K. Furthermore,
a spectroscopy of higher excitation manifolds described in
Ref. [38] implied T ∼ 0.15 K. At such temperatures, thermal
populations of higher excited states of transmons are however
small: it is consistent to describe transmons as two-level sys-
tems. The base temperature itself was experimentally found
to depend on the coil currents only weakly. The origin of the
observed local heating is most probably resistive heating in the
Copper-PCB leads in combination with a weak thermalization
of the chip to the sample box. We also note that a qualitatively
similar dip in microwave transmission can be caused by a
direct reflection from two-level systems [41]. However, in this
case the effect of a temperature would be opposite, i.e., zero
temperature would give the (deepest) dip. This process can
also be ruled out by tuning the qubits, since such mechanism
would work only at qubit frequencies, whereas the observa-
tion is that the dip appears at the cavity frequency.

In master-equation simulations, we use measured cavity-
transmon couplings gi/2π ≈ 110 MHz and anharmonicities
EC ≈ 410 MHz [38]. The coupling of the cavity to trans-
mission lines as given by high-power transmission is γ =
2π × 0.7 MHz, in accordance with the value obtained from
microwave circuit simulations. The used qubit energies are
distributed around the resonance frequency, with a restriction
that total dispersive shift 20 MHz is reproduced. Therefore,
here only an estimation of the qubit frequencies can be made,
following from that the experimental control was not cali-
brated (a calibrated situation is studied below). In our system,
only this uncalibrated situation however allows for observing
the heating induced inversion of the line shape, since after the
calibration the system is always at an elevated temperature.
The distribution of frequencies (and thereby dispersive shifts)
used in the simulation is shown in Fig. 8(e). It should also be
noted that in reality the qubit frequencies also shift slightly
when magnetic flux across the target qubit is being changed,
which is not accounted for by the simulation. An exception
is the last transmission curve (T = 250 mK), where the res-
onance curve is shifted 10 MHz upwards to account for the
changed resonator frequency shift due to tuning of the target
qubit.

In Fig. 8(f) we visualize how the peak form can also be
used to estimate the T1 times of the qubits. Here we fix the sys-
tem temperature to T = 190 mK. The higher the decay rate,
the higher the dephasing rate becomes. Simultaneously, the
fine structure smoothens out. The observed peak depths and
forms, together with assuming temperatures obtained from
other observations, lets us to conclude that an average qubit
decay rate is between 2–3γ , which means T1 ∼ 50–80 ns.
It should be noted that the T1 time measured for a single-
qubit sample was essentially longer, T1 ∼ 500 ns. Such direct
measurement of T1 in the eight qubit sample was however
not possible. The relatively short theoretical value is further
supported by simulations when qubits are tuned on resonance
with the cavity, see Sec. IV B.

In Fig. 9(a) we additionally consider fitting the peak inver-
sion by the model of a linear resonator with increasing internal
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FIG. 9. (a) Transmission across a linear cavity with internal
dephasing κφ (solid lines) compared to the master equation (ME)
simulation of eight heated two-level systems (dashed lines). In the
linear cavity model, the effect of a heated multiqubit environment
is accounted for by the introduced phenomenological dephasing rate
κφ , given in the units of cavity coupling γ = 2π × 0.7 MHz. The
parentheses value corresponds to the sum of excitation rates of all
qubits in the ME model, κ� = ∑8

i=1 κ+
i . The curve minima decrease

with increasing κ . (b) A comparison between the phenomenological
dephasing rate κφ and the corresponding master-equation rate κ� .
Here the temperature (x axis) is defined by the master-equation
simulation.

dephasing rate κφ (or equivalently internal loss rate κ/2).
Such a simplified model accounts for transitions in the heated
two-level system ensemble as an effective cavity dephasing
rate κφ . We obtain that an increase of dephasing rate gives
a qualitatively similar line-shape transformation as the full
master-equation model with heating (the latter plotted here
as dashed lines). Furthermore, the dephasing rates are close
to the sums of the excitation rates of two-level systems, see
Fig. 9(b) [see also Eq. (60)].

B. Calibrated system: Transmission in different backgrounds

In this section we study transmission while tuning the
effective resonance frequency of the cavity. Since the back-
ground transmission is in our system frequency dependent, see
Appendix E, the change of the cavity frequency corresponds
to changing the background.

We consider here the case of a fully calibrated system,
allowing for the control of all eight transmons and thereby the
dressed-cavity frequency. In comparison to the uncalibrated
system studied in Sec. IV A, here a significant total current
flows always in the flux-bias lines, leading to an elevated
temperature of the system. We then cannot reproduce the
resonance inversion effect in this operation scheme (transfor-
mation from a peak to a dip by heating).

In Fig. 10 we consider transmission when different number
of qubits (from N = 0 to N = 4) are on resonance with the
cavity mode. We study transmission around the lower reso-
nance peak of the splitted cavity-qubit peak [38]. The equiv-
alent background parameters εtot = ε − iεd are also shown
in Fig. 10 (from N = 0 to N = 4) and were determined
from off-resonance data. The experimental data are compared
to master-equation simulations with calibration-determined
qubit frequencies and dispersive shifts, shown in Fig. 10
(bottom right). We have fixed the qubit decays to κi = 3γ ,
in accordance with the dispersive-regime analysis, Sec. IV A.

Frequency ω/2π (GHz)

T
ra

n
sm

is
si

o
n
|s 1

2
|

T
ra

n
sm

is
si

o
n
|s 1

2
|

T
ra

n
sm

is
si

o
n
|s 1

2
|

D
is

p
.
sh

if
t
−χ

(M
H

z)

εtot = 0.12 − 0.22i εtot = −0.16 − 0.14i

εtot = −0.15 − 0.04i εtot = −0.16 − 0.05i
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FIG. 10. Measured transmission when different number of qubits
(from N = 0 to N = 4) are on resonance with the cavity. The
background parameter εtot = ε − iεd is different for each N . The
master-equation (ME) simulation treats temperature T as a free
fitting parameter. A fit based on the model of a linear resonator with
resonant-state population p and dephasing rate κφ , Eq. (67), is plotted
as dashed lines. (Bottom right) Two-level system frequencies and
dispersive shifts before the on-resonance tuning, i.e., case N = 0.
The two-level systems tuned on resonance are marked by numbers
1 → 4.

We use temperature as a free fitting parameter. We find a good
agreement between the theory and experiment by varying
simulation temperature between 130–175 mK. This range of
temperatures is consistent with the analysis of Sec. IV A. We
have then obtained a reliable estimate for the local tempera-
ture at each bias point.

In Fig. 10 we additionally fit the observed line shapes with
the model of a linear resonator with (resonant-state) popula-
tion p and phenomenological dephasing rate κφ , see Sec. III D.
The fit is similar to the one obtained from the master-equation
simulation. We find that the population p reduces when the
first qubit is brought on resonance. This is since on-resonance
transition frequencies between nearby photon numbers are
not anymore approximately constant: heating of the resonator
takes the system away from the subspace providing the trans-
mission resonance. On the other hand, bringing dispersively
coupled qubits on resonance decreases broadening, since their
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stochastic-hopping induced dephasing is removed. This leads
to tendency of reducing κφ when N increases. It also leads to
reduction of p and finally to disappearance of the resonance
behind the noise when N > 5 [38].

We also note that the line shapes are generally affected by
pure dephasing of artificial atoms. In the considered setup,
however, the width given by average qubit lifetimes already
reproduces the observed linewidths well. This means that
here dephasing of qubits is dominated by the fast qubit
decay, T1 ∼ 50–80 ns. Such linewidth fitting, together with
the dispersive-regime line-shape analysis, demonstrates how
T1 and T2 times can, in principle, be estimated independently,
without resorting to time-domain measurements.

V. CONCLUSIONS AND DISCUSSION

In this work we have investigated Fano resonances in
microwave transmission across a two-sided cavity coupled to
multiple artificial atoms and in the presence of a microwave
background. The background was effectively formed by the
artificial-atom control circuitry. Present and future microwave
quantum-information applications wrap together high number
of qubits and control lines in a finite sized chip and a sample
box, where Fano resonances can easily occur. We have then
studied in detail how to account for such resonances in most
common quantum-microwave models and particularly how
the line shapes of the energy levels can connect to dissipation
and fluctuations in such systems, helping to better understand
possibly complex spectroscopic data of this type of devices.

An important theoretical result was that the background
does not necessarily affect the equation of motion of the
cavity and artificial atoms. Instead, it can be included to
theoretical results obtained, for example, from the well-known
Jaynes- and Tavis-Cummings models afterwards by applying
modified linear boundary conditions. Its effect can also be
subtracted out (and undone) straightforwardly from measure-
ment data [38]. This property remains to be valid also for time-
dependent fields (measurement pulses), higher drive powers,
and beyond the two-level system and dispersive-regime ap-
proximations. Furthermore, we showed how temperature of
the multiqubit environment can be estimated from the line
shape of the resonator, as well as how average T1 and T2 times
of qubits can be determined without doing direct time-domain
measurements (or independently of them).

It should also be noted that all dephasing mechanisms
of superconducting microwave resonators due to coupling to
spurious two-level systems [42–45] are not yet fully under-
stood. The results obtained here for the behavior of Fano-type
resonances also apply to studies of such systems generally.
Systems as described here can also be used as quantum
simulators to experimentally study the involved physical phe-
nomena.
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APPENDIX A: MICROWAVE SCATTERING
IN A LINEAR CIRCUIT

In this Appendix we apply a classical circuit model to
study microwave transmission and reflection in our system.
This model assumes that the (whole) system can be described
as a set of lumped circuit elements. The model accounts for
superconducting artificial atoms as LC resonators.

In this approach, we derive scattering properties by apply-
ing Kirchhoff rules at the cavity boundaries. For this, we first
identify the total voltage and total current due to forward (in)
and backward (out) propagating fields at the two sides of the
cavity. On the left-hand side these are [24]

V L = V L
in + V L

out, (A1)

IL = V L
in

Z0
− V L

out

Z0
, (A2)

and on the right-hand side

V R = V R
in + V R

out, (A3)

IR = −V R
in

Z0
+ V R

out

Z0
. (A4)

These variables are Fourier components of the total prop-
agating field, e.g., V L = V L(ω). The reflection s11 and the
transmission s12 amplitudes are here

s∗
11 = V L

out

V L
in

, (A5)

s∗
12 = V R

out

V L
in

. (A6)

We assume here V R
in = 0. The complex conjugation is needed

here in comparison to Eqs. (6) and (7) since the impedance
treatment assumes implicitly a time dependence ∼V (ω)eiωt ,
which is opposite to the time dependence of annihilation
operators ∼â(ω)e−iωt .

We first consider the case of parallel impedance (Cc =
0). This gives two boundary conditions, which state cur-
rent conservation and voltage drop across the impedance
Zb(ω),

V L
in

Z0
− V L

out

Z0
= −V R

in

Z0
+ V R

out

Z0
, (A7)

Zb

(
V L

in

Z0
− V L

out

Z0

)
= V L

in + V L
out − (

V R
in + V R

out

)
. (A8)
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Using V R
in = 0 the solution is

s∗
11 = 1

1 + 2Z0
Zb

, (A9)

s∗
12 =

2Z0
Zb

1 + 2Z0
Zb

. (A10)

We can now study more detailed the effect of dissi-
pation in the parallel channel. In the main text this was
done by introducing the imaginary part εtot = ε − iεd. In
the impedance approach the equivalent parameter is iεtot =
Z0/Z∗

b (ω) = Z0Zb/|Z∗
b (ω)|2. Dissipation is included, for ex-

ample, by changing the impedance from Zb(ω) = iωLbω to
Zb(ω) = iωLbω + Rb, with a series resistance Rb > 0. This

approach also shows that a dissipative part renormalizes the
reactive term ε. This is studied further below. We note that
in a direct comparison of Eqs. (A9) and (A10) to s11 and
s12 given in the main text, Eqs. (34) and (35), an overall
minus-sign difference appears due to different definition of
scattering-state phases, for more details see Appendix B.

Similarly, we can construct boundary conditions for ar-
bitrary cavity couplings Zc1 = 1/iωCc1 and Zc2 = 1/iωCc2.
Here we allow for different coupling capacitance of the cavity
to the left-hand side (Cc1) and the right-hand side (Cc2) TLs.
We then consider Kirchhoff equations for the input and output
fields as well for the voltage on the island between capaci-
tances Cc1/2, which we mark now V . The resulting equations
have the form

⎛
⎜⎜⎝

1
Z0

+ 1
Zc1(ω) + 1

Zb(ω) − 1
Zc1(ω) − 1

Zb(ω)

− 1
Zc1(ω)

1
Z (ω) + 1

Zc1(ω) + 1
Zc2(ω) − 1

Zc2(ω)

1
Zb(ω)

1
Zc2(ω) − 1

Z0
− 1

Zc2(ω) − 1
Zb(ω)

⎞
⎟⎟⎠

⎛
⎜⎝

V L
out

V

V R
out

⎞
⎟⎠ =

⎛
⎜⎜⎝

1
Z0

− 1
Zc1(ω) − 1

Zb(ω)

1
Zc1(ω)

− 1
Zb(ω)

⎞
⎟⎟⎠V L

in .

The answer for the output fields and for the island voltage
as a function of the input V L

in can then be found easily by
a matrix inversion. For the considered symmetric coupling,
Cc1 = Cc1 = Cc, the analytical solution is

s∗
11 = 2Z0

[
Z2

c + Z (2Zc + Zb)
]

(2Z + Z0 + Zc)[Z0(2Zc + Zb) + ZcZb]
, (A11)

s∗
12 = ZcZb(2Z + Zc) − Z2

0 (2Zc + Zb)

(2Z + Z0 + Zc)[Z0(2Zc + Zb) + ZcZb]
. (A12)

A comparison between the single-mode treatment of the
main text and the impedance approach considered here is
shown in Fig. 11. We consider dissipationless background
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FIG. 11. Microwave transmission amplitude |s12| across a linear
two-sided cavity. We do a comparison between the single-mode
treatment (solid lines) and impedance approach (dashed lines). The
cavity is described by an LC oscillator. (a) Transmission peak
without the presence of background transmission with Cc/C = 0.05,
0.2, 0.4. In the single-mode approximation this corresponds to γ =
(0.5, 8, 32) × 10−3ω0. The resonance peak widens with increasing
Cc or γ . The single-mode treatment is here a good approximation
and becomes exact in the limit Cc/C → 0. (b) Transmission for
Cc/C = 0.1 with increasing dissipationless background transmission
corresponding to ε = 0.05, 0.2, 1.0. Here the single-mode treatment
is a good approximation for all strengths of the background transmis-
sion. The off-resonance transmission increases when increasing ε.

transmission. Here the impedance model is exact, whereas the
single-cavity-mode model used in the main text is an approxi-
mation. We find that if Cc � C, the single-cavity-mode model
works well for all strengths of parallel transmission, i.e., for
all values of ε.

A comparison in the case of dissipative background is
shown in Fig. 12. We determine εtot = ε − iεd from identi-
fication iεtot = Z0/Z∗

b (ω) = Z0Zb/|Z∗
b (ω)|2 by using Zb(ω) =

iωLbω + Rb and insert this parameter into the single-mode
model. We find again that for Cc � C the exact linear solution
and the approximative single-cavity-mode model are practi-
cally the same.
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FIG. 12. Microwave transmission amplitude |s12| across a linear
two-sided cavity for varying background inductance Lb and fixed
background resistivity Rb. We do comparison between the single-
mode treatment (solid lines) and impedance approach (dashed lines)
of the cavity. (a) Transmission for Cc/C = 0.1 with reducing in-
ductance with fixed resistivity. The equivalent ε parameters are ε =
0.027, 0.10, 0.18 and dissipative part εd = 0.0015, 0.023, 0.08. The
off-resonance transmission increases when increasing ε (reducing
inductance). (b) Transmission for Cc/C = 0.1 with reducing induc-
tance further with fixed resistivity. The equivalent ε parameters are
ε = 0.21, 0.32, 0.50 and dissipative part εd = 0.046, 0.12, 0.55.
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APPENDIX B: DERIVING BOUNDARY CONDITIONS AND
HEISENBERG EQUATIONS OF MOTION

The boundary conditions and Heisenberg equations of
motion can be derived by starting from a Lagrangian approach
for an open transmission line interacting with a cavity. Here
we discretize the transmission line to elements of length
δx with capacitance to ground δxC′ and inductance δxL′ in
between. We apply this approach to the case of free cavity
(no transmons), whereas generalization to the case of cavity
embedding multiple transmons is straightforward.

In this approach, the total Hamiltonian of the system can
be derived to be

Htot = HR + HL + Hres + Hint. (B1)

The Hamiltonian that describes the right-hand open transmis-
sion line is

HR =
∞∑

r=2

Q2
r

2δxC′ +
∞∑

r�2

(�r − �r−1)2

2L′δx
+ QQ1

C
+ Q2

1

2Cs
.

(B2)

Indices r ∈ [1,∞] refer to nodes of the discretized trans-
mission line, value r = 1 corresponds to the node next to
the cavity. Variables �r and Qr correspond to a magnetic
flux and charge at node r and an effective series capacitance
is defined as 1/Cs = 1/Cc + 1/C. The flux (charge) variable
of the resonator is � (Q). Similarly for the left-hand side
Hamiltonian,

HL =
−2∑

l=−∞

Q2
l

2δxC′ +
∑
l�−1

(�l − �l−1)2

2L′δx

QQ−1

C
+ Q2

−1

2Cs
.

(B3)

A Hamiltonian that describes the in-line resonator is

Hres = Q2

2C
+ �2

2L
. (B4)

The inductance L and capacitance C are defined in Fig. 1(b).
Finally, the direct interaction between the two transmission
lines (background) is described by

Hint =
(
�̂1 − �̂−1

)2

2Lb
+ Q−1Q1

C
, (B5)

where Lb is the assumed inductive coupling through the
background. Also a direct-coupling-type term through the
resonator appears.

The Heisenberg equations of motion for the transmission
lines in the limit δx → 0 result in a wave equation whose
solution can be written as in Eq. (1).

The Heisenberg equations at the node r = 1 are

ˆ̇�1(t ) = Q̂

C
+ Q̂−1

C
+ Q̂1

Cs
, (B6)

ˆ̇Q1(t ) = 1

L′
∂�̂(x = 0+, t )

∂x
+ �̂−1 − �̂1

Lb
. (B7)

Similarly for the left-hand side (l = −1)

ˆ̇�−1(t ) = Q̂

C
+ Q̂1

C
+ Q̂−1

Cs
, (B8)

ˆ̇Q−1(t ) = − 1

L′
∂�̂(x = 0−, t )

∂x
+ �̂1 − �̂−1

Lb
. (B9)

Equation (B7) is satisfied by

Q̂1(t ) =
√

h̄

2ω0Z0

[−âR
in(t ) + aR

out (t )
]

+ i

ω0Lp

√
h̄Z0

2ω0

[
âL

in(t ) + aL
out (t )

]

− i

ω0Lp

√
h̄Z0

2ω0

[
âR

in(t ) + âR
out (t )

] + H.c. (B10)

Similarly

Q̂−1(t ) =
√

h̄

2ω0Z0

[−âL
in(t ) + âL

out (t )
]

+ i

ω0Lp

√
h̄Z0

2ω0

[
âR

in(t ) + âR
out (t )

]

− i

ω0Lp

√
h̄Z0

2ω0

[
âL

in(t ) + âL
out (t )

] + H.c. (B11)

Our approach to find an approximative solution for
this problem is the following. We first assume that ωc ≡
1/CsZ0 � ω0 and can thereby neglect the time derivatives
in Eqs. (B6) and (B8). Within this approximation we can
directly establish boundary conditions between the cavity and
TL fields to be used later. This approximation can be shown
to correspond to neglecting terms �γ in final equation of
motion for the cavity. This simplification leads to boundary
conditions

Q̂−1 = −Q̂
Cc

C + 2Cc
, (B12)

Q̂1 = −Q̂
Cc

C + 2Cc
. (B13)

Using Eqs. (B10)–(B12) and inserting Q̂ = i
√

h̄
2ZLC

[â†(t ) −
â(t )] we get

αâ(t ) = −âL
in(t ) + âL

out (t ) + ε
[
âL

in(t ) + âL
out (t )

]
+ ε∗[âR

in(t ) + âR
out (t )

]
, (B14)

ε = i
Z0

ω0Lb
, (B15)

α = −i
Cc

C + 2Cc

√
Z0

ZLC

√
ω0. (B16)

Here we choose ZLC = √
L/(C + 2Cc) [and ω0 =

1/
√

L(C + 2Cc)] since this choice removes mixing of â and â†

in the following cavity equations of motion, i.e., diagonalizes
an equivalent cavity Hamiltonian. We have also implicitly
assumed that there is no mixing between annihilation and
creation operators between the system and the environment,
following from a rotating-wave approximation.
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Analogously we establish a solution using Eq. (B13),

αâ(t ) = −âR
in(t ) + âR

out (t ) + ε
[
âR

in(t ) + âR
out (t )

]
+ ε∗[âL

in(t ) + âL
out (t )

]
. (B17)

The boundary conditions given in the main text follow a
convention used in Ref. [17] and correspond to redefinition of
the phase of the incoming field operator as âL

in ← −iâL
in and

the outgoing-field operator as âL
out ← iâL

out. Similarly âR
in ←

−iâR
in and âR

out ← iâR
out. It should be noted that in comparison

to the impedance approach, we have now effectively changed
the signs of outfield amplitudes, changing signs of functions
s11 and s12. The previously derived boundary conditions are in
this notation

αâ(t ) = âL
in(t ) + âL

out (t ) + iε
[−âL

in(t ) + âL
out (t )

]
− iε

[−âR
in(t ) + âR

out (t )
]
, (B18)

αâ(t ) = âR
in(t ) + âR

out (t ) + iε
[−âR

in(t ) + âR
out (t )

]
− iε

[−âL
in(t ) + âL

out (t )
]
, (B19)

ε = Z0

ω0Lb
, (B20)

α = Cc

C + 2Cc

√
Z0

ZLC

√
ω0 = √

γ . (B21)

We can also express the outfields as a function of infields

âL
out (t ) = αâ(t ) − 1

1 + 2iε
âL

in(t ) − 2iε

1 + 2iε
âR

in(t ), (B22)

âR
out (t ) = αâ(t ) − 1

1 + 2iε
âR

in(t ) − 2iε

1 + 2iε
âL

in(t ). (B23)

The Heisenberg equations of motion for the cavity are
(under a rotating-wave approximation and using the new
notation)

ˆ̇a(t ) = −iω0â(t ) + α

2

[
âL

in − âL
out

] + α

2

[
âR

in − âR
out

]
. (B24)

Inserting the solutions of Eqs. (B22) and (B23) in the cavity
equation of motion we get

ˆ̇a(t ) = −iω0â(t ) − α2â(t ) + α
[
âL

in(t ) + âR
in(t )

]
. (B25)

We obtain that (in the presence of the background) the equa-
tion of motion for the cavity remains unchanged, i.e., is inde-
pendent of ε. The interference between propagation through
the cavity and parallel inductor is described by Eqs. (B22) and
(B23). These important results can be understood qualitatively
as a consequence of that the two transmission channels,
through cavity and through the background, are in parallel
and therefore their common transmittance is the sum of the
individual ones. The only limitation of this model is therefore
the validity of the single-mode treatment of the cavity (weak
coupling of the cavity to the transmission lines).

APPENDIX C: FANO CURVE TILT DIRECTION

An important detail of a Fano interference is the tilt direc-
tion of the Fano curve, i.e., on which side of the resonance
frequency is the minimum. The direction of the tilt is in

our examples always rightwards. It is determined by two
properties: (i) The change of the phase between the resonator
input and output and (ii) the nature of the parallel coupling
(capacitive or inductive).

In the case of a λ/2 resonator the output and input fields
are related at resonance as bout (ω0)/ain(ω0) = (−1)n+1 for
modes n = 1, 2, . . .. The first mode (n = 1) then keeps the
sign and the second mode (n = 2) inverts the sign. The in-
line resonator of Fig. 1(b) inverts the sign at the resonance
and is then equivalent to n = 2, 4, . . .. In other words, the
in-line resonator and coplanar resonator are equivalent for
full-wavelength modes. However, we find that the model
based on an in-line resonator can effectively describe also
odd modes (n = 1, 3, . . .), if one makes a switch between an
inductive and capacitive parallel coupling, i.e., changes the
sign of ε. This is also the reason why our theoretical model
considers explicitly a parallel inductor, but analysis of the
experiment interprets the value of ε to originate from a parallel
capacitor.

APPENDIX D: TRANSMISSION IN THE I-Q PLANE

In this paper we mainly concentrate on describing the
effect of decoherence by looking at the amplitude of transmis-
sion |s12|. The amplitude shows a peak (or a dip) at resonance,
where the phase shifts rapidly. In particular, at a perfect Fano
dip the amplitude touches zero and the phase jumps between
two values.

In this Appendix we visualize the behavior of the am-
plitude and the phase at the same time by representing the
previously studied line shape transformation in the I-Q plane,
see Fig. 13. Here the I axis corresponds to the in-phase com-
ponent, i.e., to the real part of s12. Then the Q axis corresponds
to the quadrature component, i.e., to the imaginary part of s12.

For completeness, we first plot (on the left-hand side of
Fig. 13) the result for the case of background-free system ε =
εd = 0, where the amplitude is a Lorentzian. The background-
free transmission forms a circle in the I-Q plane, approaching
zero for |ω − ω0| → ∞. For a lossy cavity κ > 0, the radius
of the circle decreases below 1. In the case of reducing
probability p, the behavior is analogous. A difference is that
off-resonance transmission approaches faster zero for p → 0.

When adding weak nondissipative background transmis-
sion, 0 < ε � 1 with εd = 0, the point (0,0) (zero transmis-
sion) can be can be touched from bottom right, but only
if κ = 0 and p = 1. Otherwise this point is not touched.
For ε = εd > 0, however, loss in the cavity transport can be
balanced by a loss in the background transmission, so that zero
transmission is again reached. As found before, this occurs for
the highest plotted κ and lowest plotted p. Here, unlike in the
case of a weak nondissipative background transmission, the
circles touch zero almost exactly from below, resulting in that
the transmission dip is rather symmetric around this point.
Similarly, in the case of strong parallel transport ε →= ∞,
εd = 0, and p = 1, corresponding to the case of a conventional
Fano dip as described in Sec. III B (q = 0), we obtain a
transmission circle which has a center at (−0.5, 0), touching
zero exactly from below, at the resonance ω = ω0.
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FIG. 13. In-phase (Re[s12]) and quadrature (Im[s12]) components of the transmitted field of Figs. 3 and 5. The frequency is swept from
0.95ω0 to 1.05ω0. Dots mark frequency differences of 1.25γ . The three top figures represent changes when increasing cavity loss rate κ/2 = κφ

(as given by the curve keys) in three different backgrounds (titles). The three bottom figures represent changes when decreasing resonant-state
population p in the same backgrounds. The radius of the transmission circles reduce when increasing κ or decreasing p, as visualized by the
arrows. For ε = εd = 0, zero transmission [point (0,0)] appears only in the asymptotic limits |ω − ω0| → ∞ or p → 0. For ε = εd > 0 the
transmission circles can overtake and touch zero transmission [point (0,0)] from below, corresponding to a dip and zero in the transmission.

APPENDIX E: EXPERIMENT DETAILS

In this Appendix we give additional information to the
experimental setup, the control-line layout, the background
transmission, and the used lumped-element background
model. More details of the experiment are given in Ref. [38].

In Fig. 14(a) we show an optical micrograph of the sample.
The experimental realization includes eight transmon artificial
atoms embedded in a driven coplanar microwave resonator.
The transmon artificial atoms are tuned by applying a mag-
netic flux across the superconducting loops of two parallel
Josephson junctions, see Fig. 14(b). The equivalent circuit
model is given in Fig. 1. The bonding in the sample box is
shown in Fig. 14(c).

The measured transmission |s12| is characterized by large
background transmission. In Fig. 15 we show wide-bandwidth
transmission, between 6.5 and 6.8 GHz, in the setup studied
in Figs. 7 and 8. Such background transmission appears in
different cool downs and is constant as a function of drive
power. This means that it can be modeled as a linear circuit
element in transmission. The background transmission (as
well as the reduction of the cavity transmission when in-
creasing control current) was negligibly small in an additional
experiment that included only a single transmon in the cavity.
These results imply that the Fano resonance occurs due to
a crosstalk between the transmission lines and the multiple
control lines.

FIG. 14. (a) Optical micrograph of the chip including eight transmon artificial atoms embedded in a driven coplanar microwave resonator.
(b) The transmon qubits are tuned by local current lines connected to dc bias lines outside the chip. (c) The chip inside the sample box.
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FIG. 15. Measured transmission |s12| in a broader bandwidth,
drive frequency ω/2π varying between 6.5 and 6.8 GHz, for three
values of the coil current used to tune one transmon. The data is
normalized according to high power cavity transmission, assumed to
reach the theoretical maximum ≈0.9 for ε − iεd = 0.062–0.06i. The
maximal transmission on-resonance reduces when increasing the coil
current.

The background transmission is not a constant as a function
of frequency. In most parts the variation is however small
within the bandwidth of the resonator (within few MHz),
and can be treated as a constant in the model. The large-
scale variations then correspond to different parameters in
the equivalent model, studied in Fig. 10. Notable is that the
maximal background transmission at 6.55 GHz is of similar
magnitude as maximal transmission on-resonance with the
cavity. At high powers, however, the maximal (cavity-peak)
transmission |s12| was roughly two times higher.

The background impedance can be both inductive or ca-
pacitive. In particular, it is inductive on the left-hand side and
capacitive on the right-hand side of the local maximum near
6.56 GHz (see also the discussion of the Fano tilt direction in
Appendix C). This change reflects the appearance of a wide
resonance in the background transmission around this region.
At each frequency the background transmission can however
be modeled within the simple lumped-element model, having
resistor Rb in series with capacitor or inductor, see Fig 15. The

TABLE I. Summary of model parameters at different drive
frequencies.

ω/2π (GHz) Rb (�) 1/ωCb (�) ωLb (�) ε εd

6.405 0 0 330 −0.15 0
6.415 10 0 310 −0.16 0.05
6.46 78 0 300 −0.15 0.04
6.51 160 0 170 −0.16 0.14
6.56 160 0 0 0 0.31
6.585 170 100 0 0.12 0.22
6.66 400 420 0 0.062 0.06

parameters at the specifically studied point in Fig. 10 are listed
in Table I.

In Fig. 10, to remove small structure originating in the
changing background transmission, the measured data |s12|
is modified by first removing the constant (but frequency
dependent) off-resonance transmission from the on-resonance
data, and then replacing it by a background transmission given
by the parameter εtot, which was chosen to be the background
transmission at the exact resonance frequency (given in
Table I). Such substitution is allowed as long as changes
within the cavity bandwidth γ stay small. This substitution
helps to better identify the transmission changes due to the
cavity transmission only.

The observed capacitive coupling is supported by mi-
crowave simulations of the experimental layout, which give
a capacitive coupling ∼50 fF across the multiple dc flux bias
lines beside the cavity (impedance ∼400 �). However, the
coupling from the input conductor to the bias leads does not
occur through a direct coupling between the cavity and nearby
conducting strips, for which we simulate a still a relatively
high value �3 fF (occurring due to narrow ground conductors
in the cavity). It can however be mediated via sample box
walls. In the probed frequency range, the equivalent resistance
Rb varies from zero up to the free space impedance (377 �),
suggesting radiation loss to nearby conductors and/or to free
space.
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