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Abstract

The satellite record has revealed substantial land surface “greening” in the northern

hemisphere over recent decades. Process‐based Earth system models (ESMs) attri-

bute enhanced vegetation productivity (greening) to CO2 fertilisation. However, the

models poorly reproduce observed spatial patterns of greening, suggesting that they

ignore crucial processes. Here, we explore whether fine‐scale land cover dynamics,

as modified by ecological and land‐use processes, can explain the discrepancy

between models and satellite‐based estimates of greening. We used 500 m satellite‐
derived Leaf Area Index (LAI) to quantify greening. We focus on semi‐natural vege-
tation in Europe, and distinguish between conservation areas and unprotected land.

Within these ecological and land‐use categories, we then explored the relationships

between vegetation change and major climatic gradients. Despite the relatively short

time‐series (15 years), we found a strong overall increase in LAI (i.e., greening) across

all European semi‐natural vegetation types. The spatial pattern of vegetation change

identifies land‐use change, particularly land abandonment, as a major initiator of veg-

etation change both in‐ and outside of protected areas. The strongest LAI increases

were observed in mild climates, consistent with more vigorous woody regrowth

after cessation of intensive management in these environments. Surprisingly, rates

of vegetation change within protected areas did not differ significantly from unpro-

tected semi‐natural vegetation. Overall, the detected LAI increases are consistent

with previous, coarser‐scale, studies. The evidence indicates that woody regrowth

following land abandonment is an important driver of land surface greening through-

out Europe. The results offer an explanation for the large discrepancies between

ESM‐derived and satellite‐derived greening estimates and thus generate new ave-

nues for improving the ESMs on which we rely for crucial climate forecasts.

K E YWORD S

LAI, land abandonment, land surface greening, Leaf Area Index, remote sensing, vegetation

change, woody expansion

1 | INTRODUCTION

Humans have driven the Earth's atmosphere, geosphere and bio-

sphere well beyond conditions typical of the current interglacial. A

key manifestation of the Anthropocene is global‐scale land surface

modifications (Steffen, Broadgate, Deutsch, Gaffney, & Ludwig,

2015), especially vegetation change, which strongly controls the glo-

bal energy balance and the fluxes of major elements including car-

bon, nitrogen and water. Vegetation can therefore accelerate or
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decelerate further climatic or atmospheric change. Vegetation is also

controlled by atmospheric and climatic change, resulting in various

feedback loops between vegetation and the atmosphere (Bonan,

2016).

These feedback loops are partly regulated by biological processes

that act on very different time scales. At the fast end, photosyn-

thetic rates and stomatal aperture can be adjusted within seconds.

On longer time scales, individual plants may adjust anatomically to

prevailing environmental conditions, for example, increasing stomatal

density in response to elevated atmospheric CO2 (Woodward, 1987).

Even slower, range shifts in slow‐reproducing or slow‐dispersing
trees may take millennia (Svenning & Skov, 2004), while evolutionary

adaptations to environmental conditions can play out over millions

of years (Osborne & Beerling, 2006). Observed vegetation change is

thus a complex end result of many interacting processes that oper-

ate at different spatial and temporal scales.

One particularly conspicuous and relevant example of such com-

plex vegetation change is land surface “greening.” Greening refers to

increases in several variables that are associated with vegetation

productivity, “activity” or density. These variables include Nor-

malised Difference Vegetation Index (NDVI), Leaf Area Index (LAI)

and net primary production (NPP) and are derived from satellite‐
based observation since the early 1980s. The satellite data show

that greening is a global phenomenon, although particularly prevalent

in the northern hemisphere (Buitenwerf, Rose, & Higgins, 2015; De

Jong, Verbesselt, Schaepman, & Bruin, 2012; Garonna et al., 2014;

Mao et al., 2016; Nemani et al., 2003; Zhu et al., 2016).

Identifying the drivers of observed greening is a complex task,

but recent studies have made advances using Earth system models

(ESMs) (Anav et al., 2013; Mao et al., 2016; Murray‐Tortarolo et al.,

2013; Zhu et al., 2016). ESMs are process‐based models used in cli-

mate forecasts. In the land surface components of these models LAI,

the one‐sided leaf area (m2) per ground area (m2) is a key variable.

Simulation experiments can therefore be used to predict LAI under

various climate and atmospheric change scenarios. By comparing

modelled LAI with satellite observations, it is possible to identify the

most important forcing variables (e.g., atmospheric CO2 or tempera-

ture) that drive LAI increases. In these comparisons, satellite‐derived
greening rates are assumed to be representative of actual greening.

Current models reproduce the global average of satellite‐based
greening rates fairly accurately. However, the models performed

poorly at simulating the spatial pattern of satellite‐based greening

estimates (Mao et al., 2016). For example, ESMs tended to overesti-

mate greening in western North America, while severely underesti-

mating greening in Europe. This may indicate that important

processes are either not well represented or not well parametrised

in ESMs. A misrepresentation of processes suggests that sufficient

mechanistic understanding of the system is lacking, while mis-

parametrisation, although less severe, introduces error into model

projections. This is problematic, as ESMs are the primary tool for cli-

mate forecasts.

Leaf Area Index predictions in ESMs can likely be improved by

including more and better‐parametrised plant functional types (now

typically 4–16) and by better representing seasonal leaf phenology

(Anav et al., 2013). However, the spatial discrepancies between

modelled and satellite‐derived LAI suggest an additional issue. Both

individual species and vegetation types (e.g., biomes) may not be

present in all locations with suitable environmental conditions. This

situation, often referred to as disequilibrium, can be caused by eco-

logical processes such as dispersal limitation (Svenning & Skov,

2004), competitive exclusion (Svenning & Sandel, 2013) or by distur-

bance such as fire (Bond, Woodward, & Midgley, 2005).

In this study, we hypothesise that disequilibrium resulting from

land‐use and ecological succession may explain the mismatches

between modelled and observed greening rates in Europe. Specifi-

cally, we expect that succession towards more woody vegetation

states, that is, forest regrowth, in semi‐natural vegetation is an

important driver of observed greening over the past decades.

Succession towards closed‐canopy forest is the norm for envi-

ronments that can support tall trees and in which disturbance, for

example, by humans, fire or mammalian herbivores, is not frequent

or severe enough to keep the vegetation open (Bond et al., 2005).

However, if succession does indeed contribute to observe greening,

it also raises the question of which processes have initiated or

expedited succession. To assess whether land‐use change in the

form of intensified conservation efforts during the past decades

has affected greening in semi‐natural vegetation, we contrast areas

managed for biodiversity conservation with areas managed for

other objectives.

Finally, we address a common assumption in large‐scale analyses

of satellite data, which is that greening follows a linear trajectory

(De Jong et al., 2012). When analysing time‐series for many millions

of pixels, it is unfeasible to assess each pixel individually and select

an appropriate model. Moreover, such an approach would obstruct a

comparison of rates of change between pixels. However, practical

considerations aside, there is no a priori reason to expect that LAI

change should be linear. In fact, many ecological processes relevant

to vegetation change are known to be highly non‐linear, including
population growth, seed dispersal kernels and the transition from

one vegetation state to another. Indeed, empirical and theoretical

work shows that transitions from disturbance‐maintained partly open

vegetation to closed‐canopy forest can happen very rapidly (Aleman

& Staver, 2018; Smit, Ruifrok, Klink, & Olff, 2015). To assess the

impact of assuming linear change in LAI time‐series studies, we esti-

mate the degree of non‐linearity using a time‐series segmentation

approach.

In summary, the main study aim was to determine whether fine‐
scale land cover can explain mismatches between satellite and

model‐based estimates of land surface greening. Specifically, can land

abandonment in Europe, followed by ecological succession, account

for observed greening that outpace model‐based estimates? We fur-

thermore ask whether other forms of land‐use (protected vs. unpro-

tected areas) affect greening rates. Finally, we ask whether the

widespread statistical assumption of linear change in land surface

studies based on satellite data is likely to affect reported estimates

of change.
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2 | MATERIALS AND METHODS

2.1 | Data

2.1.1 | Leaf Area Index

LAI for broadleaved vegetation can be interpreted as the one‐sided
leaf area (m2) per ground area (m2) and as half the total leaf area per

ground area for needle‐leaved vegetation (Myneni, Knyazikhin, &

Park, 2015). LAI therefore contains information on both the struc-

ture of vegetation (e.g., broadleaved vs. conifer forest) and produc-

tivity (e.g., dense vs. sparse canopies). To quantify vegetation

dynamics, we used LAI derived from the MODIS sensor on NASA's

Terra satellite. The LAI product is provided as 8‐day composite

images at 500‐m resolution (Myneni et al., 2015, downloaded 6 May

2016). Product quality control layers were used to discard pixels

with poor‐quality data and only retain pixels with confidence classes

“best result possible” and “good, very usable.”

2.1.2 | Natura 2000

Natura 2000 is the primary network of protected areas within the

European Union. In 2015, it consisted of 23,115 terrestrial reserves

that together cover approximately 18% (794,368 km2) of the EU

land surface. Within the network, large differences between sites

exist in terms of reserve size, connectivity, protection status before

the inception of Natura 2000 in 1992, implementation of manage-

ment strategies, etc. The boundaries of Natura 2000 protected areas

for 2015 were extracted from a digital map by the European Envi-

ronment Agency (2016b).

2.1.3 | Land cover

In order to delineate areas that are not intensively used by humans,

we used the 2006 version of the CORINE land cover product to

select nine classes of “natural” and “semi‐natural” land cover types.

These land cover types will henceforth be referred to as semi‐natural
vegetation, recognizing that nearly all such areas have been influ-

enced by human activities to some degree. Land cover types and

details of area are given in Table 1. The CORINE land cover map

was downloaded as a grid with a cell size of 100 × 100 m (European

Environment Agency, 2016a). We ensured that the 2006 land cover

map was representative of the entire 2001–2015 study period by

performing a sensitivity analysis using earlier (2000) and later (2012)

versions of CORINE land cover. Estimates of temporal LAI change

produced using the 2000 and 2012 land cover maps were qualita-

tively and quantitatively similar to results using 2006 land cover.

2.1.4 | Environmental data

To quantify LAI change along environmental gradients, we used

monthly mean temperatures (Hijmans et al. 2005) and monthly mean

soil moisture balance calculated from estimates of actual

evapotranspiration, precipitation and run‐off (Trabucco & Zomer,

2010). Both temperature and moisture impose fundamental con-

straints on plant functioning. These variables are not independent

(Pearson's ρ = 0.66) as soil moisture is partly regulated by evapotran-

spiration, which in turn is partly regulated by temperature. However,

since temperature not only affects plant functioning through water

relations, but also directly affects physiological (e.g., photosynthetic

rate) and behavioural (e.g., leaf expansion) processes, there is a need

to interpret both variables separately and interactively. Data for all

variables are long‐term averages over 1960–1990 and were

extracted from global grids with a resolution of 30 arcsec (±1 km).

2.2 | Data harmonisation

For every 500 m LAI grid cell, we determined the cover of selected

semi‐natural vegetation types and discarded cells with <80% semi‐
natural vegetation cover. Each remaining cell was then assigned to a

semi‐natural land cover type, based on the dominant type within the

cell. The 80% cut‐off ensures a focus on areas dominated by semi‐
natural vegetation, while still allowing the inclusion of mosaic land-

scapes, where the cover of semi‐natural vegetation might be <100%

in most pixels. A sensitivity analysis using higher (92%) and lower

(68%) cut‐offs showed that the 80% cut‐off did not qualitatively

affect estimates of temporal LAI change and that quantitative differ-

ences were minimal.

Within this subset of cells, we determined the area under Natura

2000 protection and excluded cells with <80% Natura 2000 cover

from the change analysis, that is, we compared cells without Natura

2000 protection to cells with >80% Natura 2000 protection. Envi-

ronmental data (temperature and soil moisture) were re‐projected
and resampled to the 500 m LAI grid. These operations yielded a

data set with 1,534,477 Natura 2000 pixels and 4,074,014 pixels

TABLE 1 Proportion of the study area occupied by selected semi‐
natural CORINE land cover classes (vegetation types)

Vegetation type
Area (% of
study area)

Area inside N2000 (% of
previous column)

Broadleaved forest 19.5 39.1

Coniferous forest 35.3 18.2

Mixed forest 14.5 21.4

Transitional

woodland‐shrub
11.1 20.3

Sclerophyllous

vegetation

4.0 39.9

Natural grasslands 5.6 41.3

Inland marshes 0.3 81.6

Peat bogs 4.9 34.1

Moors and

heathlands

4.8 44.7

Note. The third column shows area within the Natura 2000 network.

The total study area is 1,402,123 km2 and is further described in text

and Figure 1.
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vegetation

Natural grasslands 5.6 41.3

Inland marshes 0.3 81.6

Peat bogs 4.9 34.1

Moors and 4.8 44.7
heathlands

Note. The third column shows area within the Natura 2000 network.
The total study area is 1,402,123 km2 and is further described in text
and Figure 1.

evapotranspiration, precipitation and run-off (Trabucco & Zomer,

2010). Both temperature and moisture impose fundamental con—

straints on plant functioning. These variables are not independent

(Pearson‘s /) = 0.66) as soil moisture is partly regulated by evapotran—

spiration, which in turn is partly regulated by temperature. However,

since temperature not only affects plant functioning through water

relations, but also directly affects physiological (e.g., photosynthetic

rate) and behavioural (e.g., leaf expansion) processes, there is a need

to interpret both variables separately and interactively. Data for all

variables are long-term averages over 19601990 and were

extracted from global grids with a resolution of 30 arcsec (:1 km).

2.2 I Data harmonisation

For every 500 m LAI grid cell, we determined the cover of selected

semi-natural vegetation types and discarded cells with <80% semi-

natural vegetation cover. Each remaining cell was then assigned to a

semi-natural land cover type, based on the dominant type within the

cell. The 80% cut-off ensures a focus on areas dominated by semi-

natural vegetation, while still allowing the inclusion of mosaic land—

scapes, where the cover of semi-natural vegetation might be <100%

in most pixels. A sensitivity analysis using higher (92%) and lower

(68%) cut-offs showed that the 80% cut-off did not qualitatively

affect estimates of temporal LAI change and that quantitative differ—

ences were minimal.

Within this subset of cells, we determined the area under Natura

2000 protection and excluded cells with <80% Natura 2000 cover

from the change analysis, that is, we compared cells without Natura

2000 protection to cells with >80% Natura 2000 protection. Envi—

ronmental data (temperature and soil moisture) were re-projected

and resampled to the 500 m LAl grid. These operations yielded a

data set with 1,534,477 Natura 2000 pixels and 4,074,014 pixels
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outside Natura 2000. Most protected areas were small, with a med-

ian of 11 selected pixels per Natura 2000 area (approximately

2.75 km2). All spatial operations were performed using the raster

package (Hijmans, 2018) in R (R Core Team, 2018).

2.3 | Change analysis

2.3.1 | Temporal LAI change

We quantified the magnitude of LAI change for all selected pixels

using annual means from 2001 to 2015. Previous studies have typi-

cally averaged LAI over the most productive part of the year, thus

focussing on growing season productivity. Here, we chose to be

more inclusive and use LAI data over the entire year. This allowed

us to quantifying greening that results from temporal shifts in the

annual growing cycle, for example, because of earlier warming‐in-
duced leaf emergence in spring (Menzel et al., 2006) or prolonged

autumn growth as a result of changing community composition (Frid-

ley, 2012). Moreover, aggregating reflectance‐based time‐series to

annual values results in more reliable estimates of change (Forkel

et al., 2013). We quantified changes in annual LAI means using the

Theil‐Sen estimator, which is a robust non‐parametric estimator of

linear slope. Preliminary testing showed that for these data, Theil‐
Sen slopes were near‐identical to an alternative robust measure of

change as described in (Buitenwerf et al., 2015). Theil‐Sen analyses

were implemented using the rkt package (Marchetto, 2015) for R (R

Core Team, 2018).

2.3.2 | LAI change in protected versus unprotected
land

In comparing LAI change between areas in and outside of the Natura

2000 network, it must be recognised that environmental conditions

within the study area vary substantially. Similarly, the biogeographic

template (e.g., regional species pools, glaciation history) varies con-

siderably across Europe. To account for this variation, we only com-

pared pixels with similar climates, within the same vegetation type

(similar ecological processes) and within a 50 km radius (similar bio-

geographic setting). Environmental similarity between pixels was

defined as the minimum Euclidean distance in multidimensional envi-

ronmental space, which consisted of scaled monthly mean tempera-

tures and monthly mean soil moisture.

2.3.3 | Non‐linearity of LAI change trajectory

To gain further insight into the (potentially non‐linear) shape of LAI

time‐series, we employed a time‐series trend‐break analysis. This

algorithm identifies how many contiguous linear segments best

describe a time‐series. A slope and intercept are estimated for each

linear segment.

The algorithm was applied to the full 8‐day interval LAI time‐ser-
ies from 2001 to 2015. First, each time‐series is decomposed into

seasonal, multi‐year trend and noise components. For the trend‐

break analysis, we focussed on the multi‐year trend component, for

which we set a minimum segment length of 3 years, yielding a maxi-

mum of five linear segments in the 15‐year time‐series. Due to com-

putational limitations, the trend‐break analysis was performed on a

random subset (50%) of pixels selected in the steps described previ-

ously. Trend‐break analyses were implemented using the bfast pack-

age (Verbesselt, Hyndman, Newnham, & Culvenor, 2010) for R (R

Core Team, 2018).

3 | RESULTS

3.1 | Magnitude of LAI change

Leaf Area Index increased in 84% of pixels with semi‐natural vegeta-
tion across Europe (Figure 1 and Supporting Information Figure S1).

The largest increases were detected in Eastern Europe, particularly

in Poland, the Czech Republic, Slovakia and Romania. The most

notable decreases were detected in the Landes forest of south‐west-

ern France, the Ardennes region of Belgium, the British Isles and in

parts of northern Scandinavia. More moderate decreases were

detected in the southern Alps and south‐western Sweden.

Absolute LAI increases were greatest in high‐biomass vegetation

types (i.e., forest). In low‐biomass vegetation, absolute increases

were less pronounced but still positive for the majority of pixels (Fig-

ure 2a). However, when change was expressed in relative terms, that

is, as a proportion of long‐term mean annual LAI within each pixel,

increases were the largest in vegetation types of intermediate bio-

mass and woody cover (Figure 2b).

Without taking account of climatic, ecological and biogeographi-

cal differences between pixels, Figure 2 shows that the magnitude

of LAI increase was similar in protected and unprotected areas.

There were minor differences, for example, LAI in forests and grass-

land tended to increase more inside than outside Natura 2000, while

LAI in partly wooded vegetation types (transitional woodland‐shrub
and sclerophyllous vegetation) increased slightly more outside Nat-

ura 2000. However, the variance of LAI increase within each vegeta-

tion type was large (Figure 2), potentially reflecting climatic and

biogeographic differences between pixels of the same vegetation

type. Surprisingly, comparing only climatically, ecologically and bio-

geographically analogous pixels did not expose differences between

pixels with contrasting protection status. Differences between analo-

gous pixels in‐ and outside N2000 were unimodally distributed

around zero for all vegetation types (Supporting Information Fig-

ure S1).

Although taking account of the climate did not expose expected

differences between protected and unprotected areas, climatic con-

ditions strongly modulated observed LAI dynamics. Notably, the

smallest LAI increases occurred in the coldest areas within all vege-

tation types (Figure 3), consistent with a temperature constraint on

productivity and woody cover. In most vegetation types, LAI

increases were greater in areas with intermediate temperatures than

in the warmest areas, yielding a hump‐shaped relationship between

ΔLAI and mean annual temperature. A similar relationship emerged
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outside Natura 2000. Most protected areas were small, with a med—

ian of 11 selected pixels per Natura 2000 area (approximately

2.75 kmz). A“ spatial operations were performed using the raster

package (Hijmans, 2018) in R (R Core Team, 2018).

2.3 I Change analysis

2.3.1 I Temporal LAI change

We quantified the magnitude of LAI change for all selected pixels

using annual means from 2001 to 2015. Previous studies have typi—

cally averaged LAI over the most productive part of the year, thus

focussing on growing season productivity. Here, we chose to be

more inclusive and use LAI data over the entire year. This allowed

us to quantifying greening that results from temporal shifts in the

annual growing cycle, for example, because of earlier warming-in—

duced leaf emergence in spring (Menzel et al., 2006) or prolonged

autumn growth as a result of changing community composition (Frid—

Iey, 2012). Moreover, aggregating reflectance-based time-series to

annual values results in more reliable estimates of change (Forkel

et al., 2013). We quantified changes in annual LAI means using the

Theil-Sen estimator, which is a robust non-parametric estimator of

linear slope. Preliminary testing showed that for these data, Theil-

Sen slopes were near-identical to an alternative robust measure of

change as described in (Buitenwerf et al., 2015). Theil-Sen analyses

were implemented using the rkt package (Marchetto, 2015) for R (R

Core Team, 2018).

2.3.2 I LAI change in protected versus unprotected
land

In comparing LAI change between areas in and outside of the Natura

2000 network, it must be recognised that environmental conditions

within the study area vary substantially. Similarly, the biogeographic

template (e.g., regional species pools, glaciation history) varies con—

siderably across Europe. To account for this variation, we only com—

pared pixels with similar climates, within the same vegetation type

(similar ecological processes) and within a 50 km radius (similar bio—

geographic setting). Environmental similarity between pixels was

defined as the minimum Euclidean distance in multidimensional envi—

ronmental space, which consisted of scaled monthly mean tempera—

tures and monthly mean soil moisture.

2.3.3 I Non-linearity of LAI change trajectory

To gain further insight into the (potentially non-linear) shape of LAI

time-series, we employed a time-series trend-break analysis. This

algorithm identifies how many contiguous linear segments best

describe a time-series. A slope and intercept are estimated for each

linear segment.

The algorithm was applied to the full 8-day interval LAI time-ser—

ies from 2001 to 2015. First, each time-series is decomposed into

seasonal, multi-year trend and noise components. For the trend-

break analysis, we focussed on the multi-year trend component, for

which we set a minimum segment length of 3 years, yielding a maxi—

mum of five linear segments in the 15-year time-series. Due to com—

putational limitations, the trend-break analysis was performed on a

random subset (50%) of pixels selected in the steps described previ—

ously. Trend-break analyses were implemented using the bfast pack—

age (Verbesselt, Hyndman, Newnham, & Culvenor, 2010) for R (R

Core Team, 2018).

3 I RESULTS

3.1 I Magnitude of LAI change

Leaf Area Index increased in 84% of pixels with semi-natural vegeta—

tion across Europe (Figure 1 and Supporting Information Figure 51).

The largest increases were detected in Eastern Europe, particularly

in Poland, the Czech Republic, Slovakia and Romania. The most

notable decreases were detected in the Landes forest of south-west—

ern France, the Ardennes region of Belgium, the British Isles and in

parts of northern Scandinavia. More moderate decreases were

detected in the southern Alps and south-western Sweden.

Absolute LAI increases were greatest in high-biomass vegetation

types (i.e., forest). In low-biomass vegetation, absolute increases

were less pronounced but still positive for the majority of pixels (Fig—

ure 2a). However, when change was expressed in relative terms, that

is, as a proportion of long-term mean annual LAI within each pixel,

increases were the largest in vegetation types of intermediate bio—

mass and woody cover (Figure 2b).

Without taking account of climatic, ecological and biogeographi—

cal differences between pixels, Figure 2 shows that the magnitude

of LAI increase was similar in protected and unprotected areas.

There were minor differences, for example, LAI in forests and grass—

land tended to increase more inside than outside Natura 2000, while

LAI in partly wooded vegetation types (transitional woodland-shrub

and sclerophyllous vegetation) increased slightly more outside Nat—

ura 2000. However, the variance of LAI increase within each vegeta—

tion type was large (Figure 2), potentially reflecting climatic and

biogeographic differences between pixels of the same vegetation

type. Surprisingly, comparing only climatically, ecologically and bio—

geographically analogous pixels did not expose differences between

pixels with contrasting protection status. Differences between analo—

gous pixels in- and outside N2000 were unimodally distributed

around zero for all vegetation types (Supporting Information Fig—

ure 81).

Although taking account of the climate did not expose expected

differences between protected and unprotected areas, climatic con—

ditions strongly modulated observed LAI dynamics. Notably, the

smallest LAI increases occurred in the coldest areas within all vege—

tation types (Figure 3), consistent with a temperature constraint on

productivity and woody cover. In most vegetation types, LAI

increases were greater in areas with intermediate temperatures than

in the warmest areas, yielding a hump-shaped relationship between

ALAI and mean annual temperature. A similar relationship emerged
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between ΔLAI and soil moisture, with the largest LAI increases in

areas with intermediate soil moisture and smaller LAI increases in

dry and very wet areas (Figure 4).

3.2 | Non‐linearity of LAI change trajectory

26.5% of pixels changed monotonically (Mann‐Kendall p < 0.05), and

the patterns shown in Figures 1–4 were very similar when only con-

sidering pixels with monotonic LAI change.

Figure 5 shows that for the majority of pixels (60%), a standard

linear regression without any abrupt break points was the best

model to describe ΔLAI. Approximately 20% of pixels were best

described by two linear segments, 13% by three linear segments and

a small minority by more than three linear segments. This pattern

was consistent across vegetation types.

However, vegetation type affected the relationship between the

magnitude of temporal LAI change and the non‐linearity of the time‐
series giving rise to that change. For example, in broadleaved forest,
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between ALAI and soil moisture, with the largest LAI increases in

areas with intermediate soil moisture and smaller LAI increases in

dry and very wet areas (Figure 4).

3.2 I Non-linearity of LAI change trajectory

26.5% of pixels changed monotonically (Mann-Kendall p < 0.05), and

the patterns shown in Figures 14 were very similar when only con—

sidering pixels with monotonic LAI change.

Figure 5 shows that for the majority of pixels (60%), a standard

linear regression without any abrupt break points was the best

model to describe ALAI. Approximately 20% of pixels were best

described by two linear segments, 13% by three linear segments and

a small minority by more than three linear segments. This pattern

was consistent across vegetation types.

However, vegetation type affected the relationship between the

magnitude of temporal LAI change and the non-linearity of the time-

series giving rise to that change. For example, in broadleaved forest,
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the largest LAI increases emerged from the most complex LAI time‐
series, that is, time‐series best captured by four or five linear seg-

ments. In contrast, conifer and mixed forests showed the opposite

pattern, with the largest LAI increases emerging from linear time‐ser-
ies (a single segment). Since two to five linear segments could

describe a multitude of possible change trajectories, it is complicated

to summarise and interpret these results further. Nonetheless, the

results suggest that linear models may not be appropriate to quantify

LAI change in the most rapidly changing areas in at least five out of

the nine main semi‐natural vegetation types in Europe.

Finally, within vegetation types, the relationship between time‐
series complexity and the rate of LAI increase tended to be similar

for protected and unprotected pixels. The largest exception was

transitional woodland scrub, where in protected pixels, the greatest

LAI increase emerged from linear (one segment) time‐series, while in

unprotected pixels, the greatest LAI increase emerged from the most

complex time‐series (five segments).

4 | DISCUSSION

In this study, we assessed whether land‐use, land‐use change and

ecological processes contribute to land surface greening in European

semi‐natural vegetation. These processes may explain important mis-

matches between satellite‐derived (“observed”) and modelled green-

ing rates. We found widespread LAI increases (i.e., greening)

throughout Europe's semi‐natural vegetation. Greening rates in con-

servation areas did not exceed greening in unprotected semi‐natural
vegetation, suggesting that increased conservation efforts have not

contributed to greening. However, the spatial signature of LAI

increase strongly suggests that land‐use change in the form of land

abandonment allows succession (forest regrowth) to proceed. Finally,

we show that although the degree of non‐linearity in LAI time‐series
is substantial, linear models appropriately capture inter‐annual LAI

dynamics on most of the land surface.

4.1 | LAI increases

Despite the relatively short time‐series (2001–2015), we detected

greening in 84% of pixels with semi‐natural vegetation. This result is

consistent with previous studies that detected greening from satel-

lite data, although not directly comparable. Previous studies have

used coarser‐scale land cover and greenness data (De Jong et al.,

2012), inevitably mixing semi‐natural vegetation with intensively

farmed land, where inter‐annual LAI tends to be highly variable due

to, for example, crop rotation cycles. The higher‐resolution LAI data

used here in combination with a high‐resolution land cover map

allowed us to focus on land with semi‐natural vegetation and

describe the greening signal for individual vegetation types.

Relative increases (i.e., ΔLAI expressed in percentages) were

highest in “transitional woodland‐shrub” and “sclerophyllous vegeta-

tion,” consistent with increasing woody cover in these semi‐open
vegetation types (Timmermann, Damgaard, Strandberg, & Svenning,

2015). The large absolute increases in forests may not represent

increases in woody cover, but rather forest growth, where increas-

ingly tall trees support a denser canopy and thus increase LAI (Pret-

zsch, Biber, Schutze, Uhl, & Rotzer, 2014). However, since we

quantified LAI as the integral throughout the entire year, it is likely

that part of the observed greening is due to increasingly long green

seasons (Buitenwerf et al., 2015). Longer green seasons in Europe

result from longer growing seasons due to spring warming (Menzel

et al., 2006), but at local scales, other processes may contribute,

including the spread of evergreens (Hernández, Dios, Montes, Sainz‐
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the largest LAI increases emerged from the most complex LAI time-

series, that is, time-series best captured by four or five linear seg—

ments. In contrast, conifer and mixed forests showed the opposite

pattern, with the largest LAI increases emerging from linear time-ser—

ies (a single segment). Since two to five linear segments could

describe a multitude of possible change trajectories, it is complicated

to summarise and interpret these results further. Nonetheless, the

results suggest that linear models may not be appropriate to quantify

LAI change in the most rapidly changing areas in at least five out of

the nine main semi-natural vegetation types in Europe.

Finally, within vegetation types, the relationship between time-

series complexity and the rate of LAI increase tended to be similar

for protected and unprotected pixels. The largest exception was

transitional woodland scrub, where in protected pixels, the greatest

LAI increase emerged from linear (one segment) time-series, while in

unprotected pixels, the greatest LAI increase emerged from the most

complex time-series (five segments).

4 I DISCUSSION

In this study, we assessed whether land-use, land-use change and

ecological processes contribute to land surface greening in European

semi-natural vegetation. These processes may explain important mis—

matches between satellite-derived (“observed”) and modelled green—

ing rates. We found widespread LAI increases (i.e., greening)

throughout Europe's semi-natural vegetation. Greening rates in con—

servation areas did not exceed greening in unprotected semi-natural

vegetation, suggesting that increased conservation efforts have not

contributed to greening. However, the spatial signature of LAI

increase strongly suggests that land-use change in the form of land

abandonment allows succession (forest regrowth) to proceed. Finally,

we show that although the degree of non-linearity in LAI time-series

is substantial, linear models appropriately capture inter-annual LAI

dynamics on most of the land surface.

4.1 I LAI increases

Despite the relatively short time-series (200172015), we detected

greening in 84% of pixels with semi-natural vegetation. This result is

consistent with previous studies that detected greening from satel—

lite data, although not directly comparable. Previous studies have

used coarser-scale land cover and greenness data (De Jong et al.,

2012), inevitably mixing semi-natural vegetation with intensively

farmed land, where inter-annual LAI tends to be highly variable due

to, for example, crop rotation cycles. The higher-resolution LAI data

used here in combination with a high-resolution land cover map

allowed us to focus on land with semi-natural vegetation and

describe the greening signal for individual vegetation types.

Relative increases (i.e., ALAI expressed in percentages) were

highest in “transitional woodland-shrub” and “sclerophyllous vegeta—

tion,” consistent with increasing woody cover in these semi-open

vegetation types (Timmermann, Damgaard, Strandberg, & Svenning,

2015). The large absolute increases in forests may not represent

increases in woody cover, but rather forest growth, where increas—

ingly tall trees support a denser canopy and thus increase LAI (Pret—

zsch, Biber, Schutze, Uhl, & Rotzer, 2014). However, since we

quantified LAI as the integral throughout the entire year, it is likely

that part of the observed greening is due to increasingly long green

seasons (Buitenwerf et al., 2015). Longer green seasons in Europe

result from longer growing seasons due to spring warming (Menzel

et al., 2006), but at local scales, other processes may contribute,

including the spread of evergreens (Herna’ndez, Dios, Montes, Sainz-
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Ollero, & Canellas, 2017; Thiele, Kollmann, & Andersen, 2009;

Walther et al., 2007) and immigration by species that can take

advantage of warmer autumn temperatures (Fridley, 2012).

We also explored relationships between ΔLAI and temperature

and moisture, which are the primary climatic drivers of vegetation

dynamics in this area (Ciais, Reichstein, & Viovy, 2005; Jung et al.,

2017). ΔLAI peaked at intermediate to high MAT and MAM, that is,

in climatically mild areas (Figures 3 and 4).

If temperature and moisture indeed cause LAI to increase, there

are two broad possible explanations. First, climatically mild areas

may simply allow LAI to increase faster compared to areas with

more extreme climates. Mild climates could simply allow biochemi-

cal and physiological growth processes to proceed at faster rates,

but more indirect effects can also be important. For example, mild

climates support intrinsically faster‐growing species (Reich, Walters,

& Ellsworth, 1997), and climate warming may extend the effective

growing season length (i.e., the number of growing hours or days)

more in mild than in harsher climates (Garonna et al., 2014). Sec-

ond, areas with mild climates may have a higher potential LAI.

Physiological processes set limits on the potential natural vegeta-

tion (i.e., when vegetation is at equilibrium with the environment)

for a given set of environmental conditions (Hickler et al., 2012).

For example, cold temperatures restrict ranges of European trees

(Körner et al., 2016), while drought limits tree establishment and

causes canopy dieback in southern Europe (Castro, Zamora, Hódar,

& Gómez, 2005; Lloret, Siscart, & Dalmases, 2004). Alternatively,

LAI at the start of the observation period may be further from the

potential LAI because it has been suppressed by humans, for
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Ollero, & Canellas, 2017; Thiele, Kollmann, & Andersen, 2009;

Walther et al., 2007) and immigration by species that can take

advantage of warmer autumn temperatures (Fridley, 2012).

We also explored relationships between ALAI and temperature

and moisture, which are the primary climatic drivers of vegetation

dynamics in this area (Ciais, Reichstein, & Viovy, 2005; Jung et al.,

2017). ALAI peaked at intermediate to high MAT and MAM, that is,

in climatically mild areas (Figures 3 and 4).

If temperature and moisture indeed cause LAl to increase, there

are two broad possible explanations. First, climatically mild areas

may simply allow LAl to increase faster compared to areas with

more extreme climates. Mild climates could simply allow biochemi—

cal and physiological growth processes to proceed at faster rates,

but more indirect effects can also be important. For example, mild

climates support intrinsically faster-growing species (Reich, Walters,

& Ellsworth, 1997), and climate warming may extend the effective

growing season length (i.e., the number of growing hours or days)

more in mild than in harsher climates (Garonna et al., 2014). Sec—

ond, areas with mild climates may have a higher potential LAI.

Physiological processes set limits on the potential natural vegeta—

tion (i.e., when vegetation is at equilibrium with the environment)

for a given set of environmental conditions (Hickler et al., 2012).

For example, cold temperatures restrict ranges of European trees

(Korner et al., 2016), while drought limits tree establishment and

causes canopy dieback in southern Europe (Castro, Zamora, Hodar,

& Gomez, 2005; Lloret, Siscart, & Dalmases, 2004). Alternatively,

LAI at the start of the observation period may be further from the

potential LAI because it has been suppressed by humans, for
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example, because climatically mild areas are also the most suitable

for agriculture. A release from agriculture through land abandon-

ment could then result in rapid LAI increases towards the potential

maximum.

While testing the purely ecological mechanisms suggested above

would require additional data, there is good evidence to support

release from agriculture (land abandonment) as a driving process.

The spatial signature of LAI increase strongly corresponds to areas

where land abandonment is widespread, such as in Eastern Europe

and mountainous regions of southern and central Europe (Figure 1

and Supporting Information Figure S1). Land‐use dynamics are a

complex interplay of spatial and temporal processes, but a few key

socioeconomic and political developments can account for an impor-

tant part of the spatial signature in LAI change (MacDonald et al.,

2000; Navarro & Pereira, 2012; Plieninger et al., 2016). The dissolu-

tion of the Soviet Union in 1991 ended large‐scale government‐
planned and subsidised agriculture across Eastern Europe, resulting

in widespread abandonment of cropland (Estel et al., 2015; Kuem-

merle et al., 2016; MacDonald et al., 2000; Skaloš et al., 2015).

Simultaneously, the early 1990s saw reforms to the EU's Common

Agricultural Policy, which was designed to implement agricultural

subsidies. Measures to counter overproduction and adapt to increas-

ingly free markets forced less profitable areas out of cultivation, par-

ticularly affecting regions of Portugal, Spain and Italy (Fuchs, Herold,

Verburg, Clevers, & Eberle, 2015; Regos et al., 2016). Upon aban-

donment, succession towards increasingly woody plant communities

is no longer inhibited (Gellrich, Baur, Koch, & Zimmermann, 2007;

Timmermann et al., 2015).
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example, because climatically mild areas are also the most suitable

for agriculture. A release from agriculture through land abandon—

ment could then result in rapid LAI increases towards the potential

maximum.

While testing the purely ecological mechanisms suggested above

would require additional data, there is good evidence to support

release from agriculture (land abandonment) as a driving process.

The spatial signature of LAI increase strongly corresponds to areas

where land abandonment is widespread, such as in Eastern Europe

and mountainous regions of southern and central Europe (Figure 1

and Supporting Information Figure 51). Land-use dynamics are a

complex interplay of spatial and temporal processes, but a few key

socioeconomic and political developments can account for an impor—

tant part of the spatial signature in LAI change (MacDonald et al.,

2000; Navarro & Pereira, 2012; Plieninger et al., 2016). The dissolu—

tion of the Soviet Union in 1991 ended large-scale government-

planned and subsidised agriculture across Eastern Europe, resulting

in widespread abandonment of cropland (Estel et al., 2015; Kuem—

merle et al., 2016; MacDonald et al., 2000; Skalos et al., 2015).

Simultaneously, the early 19905 saw reforms to the EU's Common

Agricultural Policy, which was designed to implement agricultural

subsidies. Measures to counter overproduction and adapt to increas—

ingly free markets forced less profitable areas out of cultivation, par—

ticularly affecting regions of Portugal, Spain and Italy (Fuchs, Herold,

Verburg, Clevers, & Eberle, 2015; Regos et al., 2016). Upon aban—

donment, succession towards increasingly woody plant communities

is no longer inhibited (Gellrich, Baur, Koch, & Zimmermann, 2007;

Timmermann et al., 2015).
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In summary, these results suggest that ESMs may be improved

by representing turnover in the composition and structure of plant

communities that are initiated by changes in land‐use and driven by

ecological processes. Furthermore, the discrepancy between

observed and modelled LAI may be even larger than recent studies

suggest, since physiological processes that translate atmospheric

CO2 into primary productivity (i.e., plant growth) are not well repre-

sented in ESMs (Fatichi, Leuzinger, & Körner, 2014). Small‐scale CO2

enrichment experiments suggest that at least some European forest

trees are not carbon limited at ambient CO2 (Bader et al., 2013),

although this does not exclude the possibility of carbon limitation at

pre‐industrial CO2.

4.2 | LAI decreases

Although LAI increased in most semi‐natural vegetation, several

regions had predominantly negative ΔLAI. One such “browning”
hotspot was the Landes forest in south‐western France (Figure 1),

where the 2009 storm Klaus caused major windthrow in the planted

maritime pine (Pinus pinaster) forests that dominate this region

(Mora, Banos, Regolini, & Carnus, 2014). LAI decreases in the United

Kingdom cannot be easily explained by such an episodic disturbance

since the majority of semi‐natural vegetation consists of moors,

heaths and grassland. Compared to mainland Europe, the United

Kingdom has large populations of deer (Gill & Morgan, 2010;
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In summary, these results suggest that ESMs may be improved

by representing turnover in the composition and structure of plant

communities that are initiated by changes in land-use and driven by

the

observed and modelled LAI may be even larger than recent studies

ecological processes. Furthermore, discrepancy between

suggest, since physiological processes that translate atmospheric

C02 into primary productivity (i.e., plant growth) are not well repre—

sented in ESMs (Fatichi, Leuzinger, & Korner, 2014). Small-scale C02

enrichment experiments suggest that at least some European forest

trees are not carbon limited at ambient C02 (Bader et al., 2013),

although this does not exclude the possibility of carbon limitation at

pre-industrial C02.

4.2 I LAI decreases

Although LAI increased in most semi-natural vegetation, several

regions had predominantly negative ALAI. One such “browning”

hotspot was the Landes forest in south-western France (Figure 1),

where the 2009 storm Klaus caused major windthrow in the planted

maritime pine (Pinus pinaster) forests that dominate this region

(Mora, Banos, Regolini, & Camus, 2014). LAI decreases in the United

Kingdom cannot be easily explained by such an episodic disturbance

since the majority of semi-natural vegetation consists of moors,

heaths and grassland. Compared to mainland Europe, the United

Kingdom has large populations of deer (Gill & Morgan, 2010;
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Putman, Langbein, Green, & Watson, 2011) and sheep (European

Commision, 2017), suggesting that intense grazing and browsing

pressure in open vegetation types may be responsible for the

anomalous LAI decreases in the United Kingdom. Herbivore suppres-

sion of woody plant growth (Churski, Bubnicki, Jedrzejewska, Kui-

jper, & Cromsigt, 2017) may also be responsible for LAI declines in

northern Scandinavia, where intense reindeer grazing has been

shown to reduce shrub cover (Cohen et al., 2013; den Herder, Virta-

nen, & Roininen, 2008). In addition, northern Scandinavia has been

subjected to outbreaks of geometrid moths, which defoliate large

areas of birch forest (Jepsen et al., 2009) and may be related to cli-

mate change (Hagen, Jepsen, Ims, & Yoccoz, 2007; Young, Cairns,

Lafon, & Moen, 2014).

4.3 | LAI change in protected versus unprotected
land

Counter to our expectations, the magnitude of LAI change in Natura

2000 protected areas did not differ consistently from unprotected

areas (Figure 2). This suggests that management implemented under

Natura 2000 directives did not significantly modify ΔLAI. Manage-

ment goals and the level of implementation are known to vary

widely among Natura 2000 sites, with some sites being managed pri-

marily to protect rare bird or plant species and others more generally

to maintain or increase biodiversity (Kremer, Stegen, Gomez‐Zamal-

loa, & Szedlak, 2015). This variability in the mode and intensity of

human impact may prevent a uniform response signal in a complex

variable such as LAI.

4.4 | Non‐linearity of LAI change trajectory

Although ΔLAI did not differ between Natura 2000 and unprotected

sites, there appeared to be some differentiation in the shapes of LAI

change trajectories for certain vegetation types (Figure 5). The shape

of the change trajectory refers to the number of linear segments

needed to accurately describe the LAI time‐series in a pixel. The

shape of the change trajectory cannot easily be interpreted ecologi-

cally without more information on underlying processes. However,

differences in the relationship between the magnitude of vegetation

change (ΔLAI) and the change trajectory (number of linear segments)

between Natura 2000 and unprotected areas may indicate a man-

agement effect on vegetation dynamics that does not (yet) affect

ΔLAI. An example of management intervention in Natura 2000 areas

may be continuation of traditional farming practices. Such practices

are typically extensive and labour intensive, and are in certain cases

subsidised by the EU (Bignal & McCracken, 2000; Lomba, Alves,

Jongman, & Mccracken, 2015; Olmeda, Keenleyside, Tucker, &

Underwood, 2014).

If differences in change trajectories signal management induced

changes to ecosystem functioning, they may precede impending

divergence in LAI magnitude and hence serve as early warning flags

for future vegetation change (Verbesselt et al., 2016). Alternatively,

or simultaneously, it is possible that management does not affect

vegetation state but rather the resistance or resilience to (environ-

mental or anthropogenic) perturbations.

4.5 | Biodiversity implications

Just like the major shifts in land‐use following land abandonment

affect biodiversity (Cramer, Hobbs, & Standish, 2008; Guilherme &

Pereira, 2013; Queiroz, Beilin, Folke, & Lindborg, 2014), the poten-

tially subtle effects of Natura 2000 management on vegetation

change trajectories are also likely to have consequences for biodiver-

sity. Although direct links to, for example, the distribution and popu-

lation dynamics of individual species are difficult to make without

more detailed ground‐based data, our findings generate some useful

question and hypotheses for future studies. For example, partially

wooded vegetation types had the largest proportional increases in

LAI (Figure 2b). These increases were smaller in Natura 2000 areas

than in unprotected areas, suggesting lower rates of woody expan-

sion under Natura 2000 management. However, it has been argued

that woody expansion may be favourable for overall biodiversity

(Navarro & Pereira, 2012). Forests, especially old‐growth forests, are

important reservoirs of biodiversity in Europe because they engineer

structurally complex habitat and support a large number of species

that are associated with dead wood (Lassauce, Paillet, Jactel, & Bou-

get, 2011; Ódor et al., 2006). Furthermore, old‐growth forests may

be more resilient to climate fluctuations (Musavi et al., 2017).

Despite these benefits of old‐growth forest, a large proportion of

European biodiversity depends on open and semi‐open habitats.

Such species are threatened by uniform succession towards dense

woody vegetation. For example, species of butterfly require both

forest and open vegetation and are already declining due to loss of

forest glades (Freese et al., 2006; Van Swaay, Warren, & Loïs, 2006).

The general woody regrowth is clearly linked to fundamental societal

changes driving the abandonment of extensive traditional agricultural

land‐use, and it seems unrealistic to reinstall such practices across

large areas. A more tractable solution may be to promote restoration

of diverse assemblages of wild large herbivores, via facilitating spon-

taneous comebacks and via reintroduction, that is, trophic rewilding

(Svenning et al., 2016), which in the past have been able to maintain

substantial open and semi‐open vegetation in European temperate

landscapes (Sandom, Ejrnaes, Hansen, & Svenning, 2014; Van Wie-

ren, 1995).

In conclusion, land surface greening is both widespread and pro-

nounced in Europe's semi‐natural vegetation. The spatial pattern of

greening strongly suggests a large role for woody regrowth following

land abandonment. Both land‐use change and ecological dynamics

are not well represented in current Earth system models, and may

thus significantly improve ESM predictive ability. The importance of

land‐use change and ecological dynamics does not preclude effects

of climate change; particularly drying in southern Europe and winter/

spring warming in northern Europe (European Environment Agency,

2017), N deposition (McCarthy, Oren, Finzi, & Johnsen, 2006) or

direct effects of elevated atmospheric CO2 on for example, commu-

nity composition or the rate of woody canopy closure (Körner,
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Putman, Langbein, Green, & Watson, 2011) and sheep (European

Commision, 2017), suggesting that intense grazing and browsing

pressure in open vegetation types may be responsible for the

anomalous LAI decreases in the United Kingdom. Herbivore suppres—

sion of woody plant growth (Churski, Bubnicki, Jedrzejewska, Kui—

jper, & Cromsigt, 2017) may also be responsible for LAI declines in

northern Scandinavia, where intense reindeer grazing has been

shown to reduce shrub cover (Cohen et al., 2013; den Herder, Virta—

nen, & Roininen, 2008). In addition, northern Scandinavia has been

subjected to outbreaks of geometrid moths, which defoliate large

areas of birch forest (Jepsen et al., 2009) and may be related to cli—

mate change (Hagen, Jepsen, lms, & Yoccoz, 2007; Young, Cairns,

Lafon, & Moen, 2014).

4.3 I LAI change in protected versus unprotected
land

Counter to our expectations, the magnitude of LAl change in Natura

2000 protected areas did not differ consistently from unprotected

areas (Figure 2). This suggests that management implemented under

Natura 2000 directives did not significantly modify ALAI. Manage—

ment goals and the level of implementation are known to vary

widely among Natura 2000 sites, with some sites being managed pri—

marily to protect rare bird or plant species and others more generally

to maintain or increase biodiversity (Kremer, Stegen, Gomez-Zamal—

loa, & Szedlak, 2015). This variability in the mode and intensity of

human impact may prevent a uniform response signal in a complex

variable such as LAI.

4.4 I Non-linearity of LAI change trajectory

Although ALAI did not differ between Natura 2000 and unprotected

sites, there appeared to be some differentiation in the shapes of LAI

change trajectories for certain vegetation types (Figure 5). The shape

of the change trajectory refers to the number of linear segments

needed to accurately describe the LAl time-series in a pixel. The

shape of the change trajectory cannot easily be interpreted ecologi—

cally without more information on underlying processes. However,

differences in the relationship between the magnitude of vegetation

change (ALAI) and the change trajectory (number of linear segments)

between Natura 2000 and unprotected areas may indicate a man—

agement effect on vegetation dynamics that does not (yet) affect

ALAI. An example of management intervention in Natura 2000 areas

may be continuation of traditional farming practices. Such practices

are typically extensive and labour intensive, and are in certain cases

subsidised by the EU (Bignal & McCracken, 2000; Lomba, Alves,

Jongman, & Mccracken, 2015; Olmeda, Keenleyside, Tucker, &

Underwood, 2014).

If differences in change trajectories signal management induced

changes to ecosystem functioning, they may precede impending

divergence in LAI magnitude and hence serve as early warning flags

for future vegetation change (Verbesselt et al., 2016). Alternatively,

or simultaneously, it is possible that management does not affect

vegetation state but rather the resistance or resilience to (environ—

mental or anthropogenic) perturbations.

4.5 I Biodiversity implications

Just like the major shifts in land-use following land abandonment

affect biodiversity (Cramer, Hobbs, & Standish, 2008; Guilherme &

Pereira, 2013; Queiroz, Beilin, Folke, & Lindborg, 2014), the poten—

tially subtle effects of Natura 2000 management on vegetation

change trajectories are also likely to have consequences for biodiver—

sity. Although direct links to, for example, the distribution and popu—

lation dynamics of individual species are difficult to make without

more detailed ground-based data, our findings generate some useful

question and hypotheses for future studies. For example, partially

wooded vegetation types had the largest proportional increases in

LAI (Figure 2b). These increases were smaller in Natura 2000 areas

than in unprotected areas, suggesting lower rates of woody expan—

sion under Natura 2000 management. However, it has been argued

that woody expansion may be favourable for overall biodiversity

(Navarro & Pereira, 2012). Forests, especially old-growth forests, are

important reservoirs of biodiversity in Europe because they engineer

structurally complex habitat and support a large number of species

that are associated with dead wood (Lassauce, Paillet, Jactel, & Bou—

get, 2011; Odor et al., 2006). Furthermore, old-growth forests may

be more resilient to climate fluctuations (Musavi et al., 2017).

Despite these benefits of old-growth forest, a large proportion of

European biodiversity depends on open and semi-open habitats.

Such species are threatened by uniform succession towards dense

woody vegetation. For example, species of butterfly require both

forest and open vegetation and are already declining due to loss of

forest glades (Freese et al., 2006; Van Swaay, Warren, & Loi's, 2006).

The general woody regrowth is clearly linked to fundamental societal

changes driving the abandonment of extensive traditional agricultural

land-use, and it seems unrealistic to reinstall such practices across

large areas. A more tractable solution may be to promote restoration

of diverse assemblages of wild large herbivores, via facilitating spon—

taneous comebacks and via reintroduction, that is, trophic rewilding

(Svenning et al., 2016), which in the past have been able to maintain

substantial open and semi-open vegetation in European temperate

landscapes (Sandom, Ejrnaes, Hansen, & Svenning, 2014; Van Wie—

ren, 1995).

In conclusion, land surface greening is both widespread and pro—

nounced in Europe‘s semi-natural vegetation. The spatial pattern of

greening strongly suggests a large role for woody regrowth following

land abandonment. Both land-use change and ecological dynamics

are not well represented in current Earth system models, and may

thus significantly improve ESM predictive ability. The importance of

land-use change and ecological dynamics does not preclude effects

of climate change; particularly drying in southern Europe and winter/

spring warming in northern Europe (European Environment Agency,

2017), N deposition (McCarthy, Oren, Finzi, & Johnsen, 2006) or

direct effects of elevated atmospheric C02 on for example, commu—

nity composition or the rate of woody canopy closure (Korner,
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2006; LaDeau & Clark, 2001). Both climate change and CO2 may

not only act directly at the physiological level to stimulate carbon

assimilation and growth, but also construct novel ecosystems by

affecting species ranges and competitive interactions within plant

communities, which are both likely contributors to observed green-

ing.
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