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Abstract

Modular graph forms are a class of modular covariant functions which appear in the
genus-one contribution to the low-energy expansion of closed string scattering ampli-
tudes. Modular graph forms with holomorphic subgraphs enjoy the simplifying prop-
erty that they may be reduced to sums of products of modular graph forms of strictly
lower loop order. In the particular case of dihedral modular graph forms, a closed
form expression for this holomorphic subgraph reduction was obtained previously by
D’Hoker and Green. In the current work, we extend these results to trihedral modular
graph forms. Doing so involves the identification of a modular covariant regularization
scheme for certain conditionally convergent sums over discrete momenta, with some el-
ements of the sum being excluded. The appropriate regularization scheme is identified
for any number of exclusions, which in principle allows one to perform holomorphic
subgraph reduction of higher-valence modular graph forms with arbitrary holomorphic
subgraphs.
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1 Introduction

In the genus-one contribution to the low-energy expansion of closed string amplitudes, a
natural generalization of non-holomorphic Eisenstein series known as modular graph forms
arises [1–12]. A modular graph form can be understood as an assignment of a certain modular
covariant function1 to a scalar Feynman graph on the torus. As will be reviewed in more
detail below, a general modular graph form can be written as

C
[
A
B

]
(τ) =

′∑
p1,...,pw∈Λ

n∏
r=1

(τ2/π)
1
2
ar+ 1

2
br

(pr)ar (p̄r)br

m∏
i=1

δ

(
n∑
r=1

Γi r pr

)
(1.1)

The index i = 1, · · · ,m runs over all of the vertices of the Feynman graph, while the index
r = 1, · · · , n runs over all edges. The variables pr = mr + nrτ take values in an integer
lattice Λ and may be interpreted as the discrete momenta along each edge of the graph; τ is
the modular parameter of the torus. Throughout this work, a prime on a sum indicates that
the point pr = 0 is excluded (in addition to any exclusions which are explicitly indicated).
All of the information about the graph is contained in the connectivity matrix Γir, which
enforces momentum conservation at each vertex, as well as in the arrays

A = [a1, . . . , an] B = [b1, . . . , bn] (1.2)

which catalogue the exponents of the holomorphic momenta pr and anti-holomorphic mo-
menta p̄r, respectively. The weight of the modular graph form is

∑n
r=1

(
ar−br

2
, br−ar

2

)
.

An interesting special class of modular graph forms are those with holomorphic subgraphs,
namely those whose graphs contain a closed subgraph with only holomorphic momenta along
its edges. A holomorphic subgraph containing n vertices of valence greater than two is
naturally referred to as an n-point holomorphic subgraph. By definition, the anti-holomorphic
exponents bi vanish along the edges of a holomorphic subgraph, and hence the presence of
such subgraphs is (depending on the graph topology) easily diagnosed by the presence of
two or more zeros in the lower entries of the exponent matrix [A B]T on the left hand side
of (1.1).

Modular graph forms with holomorphic subgraphs admit a reduction to sums of products
of simpler modular graph forms. In other words, modular graph forms with holomorphic

1Throughout, we will call a function f modular covariant of weight (w, w̄) if it transforms under modular
transformations as

f

(
aτ + b

cτ + d

)
= (cτ + d)w(cτ̄ + d)w̄f(τ)

(
a b
c d

)
∈ SL(2,Z)

We refer to w and w̄ as the holomorphic and anti-holomorphic weight, respectively.
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subgraphs are always reducible to more primitive components. The precise rules for such a
reduction were first analyzed in [1], and will be reviewed in Section 3. However, those results
were limited to the case of dihedral modular graph forms (i.e. forms whose graphs contain
two vertices, to each of which at least three edges are attached). In the current work, we
aim to extend these results to higher-valence modular graph forms.

That such an extension is physically useful can be seen in recent works on one-loop four-
gluon scattering in heterotic string theory [13], which will be previewed in Section 4.3. More
broadly, since many other amplitudes in string theory, including graviton scattering in type
IIB with more than four external particles [14,15], as well as amplitudes involving fermionic
particles [16], can be expanded using modular graph forms, it is expected that simplifying
relations such as the ones derived in this paper will play an important role in many other
contexts.

The derivation of holomorphic subgraph reduction formulae for higher valence modular
graph forms is similar in spirit to the derivation in the dihedral case. However, there is one
conceptual novelty which arises: in the process of obtaining holomorphic subgraph reduction
formulae, one encounters divergent sums of the form

′∑
p 6=p1,...,pn

1

p
(1.3)

where n+ 1 is the valence of the holomorphic subgraph. These must be replaced by suitably
defined expressions, which we denote by Q1(p1, . . . , pn). Although the sums (1.3) can be
evaluated using the Eisenstein summation prescription, from a mathematical point of view
there is an obvious ambiguity in how these techniques are applied – see Appendix B for more
details. For the case of n = 1, the correct expression for (1.3) in the context of holomorphic
subgraph reduction was obtained in [1]. Generalizing the result of [1], we make an ansatz
for Q1(p1, . . . , pn) with one free parameter, which is fixed by requiring that the final result
be modular covariant. As we will show in detail in Section 5, the appropriate expression for
the current problem is found to be

Q1(p1, . . . , pn) = −
n∑
i=1

1

pi
− π

(n+ 1)τ2

n∑
i=1

(pi − p̄i) (1.4)

This paper is structured as follows. We begin in Section 2 with a brief review of the
origin of modular graph forms in physics, and proceed in Section 3 to give a more technical
overview of previous results on holomorphic subgraph reduction of dihedral modular graph
forms. In Section 4, we extend these previous results to trihedral modular graph forms.
Here, we also discuss applications of the resulting formula to heterotic-string amplitudes.
Finally, in Section 5 we discuss the most general case of holomorphic subgraph reduction
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and prove that (1.4) is the appropriate regularization of (1.3) leading to modular covariant
holomorphic subgraph reduction formulae.

2 Modular graph functions and forms in physics

In addition to the massless supergravity spectrum, string theory predicts an infinite tower
of massive particles with masses of order (α′)−1/2. Though the direct production of such
particles seems unlikely in the near or distant future, one may hope to identify this stringy
spectrum indirectly through the effective interactions it induces. Such effective interactions
are weighted by factors of α′, and hence appear as an expansion in increasing numbers of
derivatives of supergravity fields. If we restrict to the sector of effective interactions of type
IIB involving only the graviton (with the axio-dilaton taken to be constant), then we have
an effective action of the form [17]

Seff =
1

κ2

∫
d10x
√
−gE

∞∑
m=1

∞∑
n=0

(α′)m+n−1cm,n(η)D2nRm + . . . (2.1)

In the above, D2nRm represents schematically some contraction of 2n factors of the Einstein-
frame covariant derivative with m factors of the Einstein-frame curvature tensor. The expo-
nent of α′ was chosen such that the Einstein-Hilbert term is of order O(α′ 0). The coefficient
functions cm,n(η) are functions of the complex axio-dilaton η = χ + ie−φ, where we have
avoided using the usual notation τ for this quantity since τ will be used to refer to the
modular parameter of a torus in what follows.

To what degree can the functions cm,n(η) be determined? Since D2nRm is a scalar, so
too are the functions cm,n(η). Furthermore, because the action and Einstein-frame metric
are invariant under SL(2,R) (or rather SL(2,Z) in the full string theory), we expect that
cm,n(η) enjoys this same property. However, what can be said beyond these simple results?

The most immediate set of further results follow from a linearized supersymmetry anal-
ysis, which reveals that besides the Einstein-Hilbert term,

D2nRm = 0 for m = 1, 2, 3 (2.2)

This statement can be recast as a prediction for superstring perturbation theory, namely that
the one-, two-, and three-graviton amplitudes vanish. Indeed, this vanishing is well-known.
Thus one may focus on the case of m ≥ 4. In the simplest case of m = 4, it is known [18–21]
that

c4,0(η) = π3/2 E3/2(η) c4,1(η) = 0 c4,2(η) = π5/2 E5/2(η) (2.3)
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where Es(η) is the non-holomorphic Eisenstein series, defined as

Es(η) =
′∑

(m,n)∈Z2

ηs2
πs|m+ n η|2s

(2.4)

where the prime superscript over the summation represents exclusion of the point (m,n) =
(0, 0). These admit the following Fourier expansion,

Es(η) = 2π−s ηs2 ζ(2s) + 2
Γ
(
s− 1

2

)
Γ(s)

π
1
2
−s η1−s

2 ζ(2s− 1)

+
4
√
η2

Γ(s)

∑
N 6=0

N
1
2
−sσ2s−1(|N |) e2πiNη1 Ks− 1

2
(2πη2|N |) (2.5)

with ζ the Riemann zeta function, σ the divisor function, and K the modified Bessel function
of the second kind.

What is remarkable about the identifications in (2.3) is that they are fully non-perturbative
results. The perturbative contributions are given by the first two terms of (2.5) which involve
only η2 = Im (η), while all of the non-perturbative contributions are contained in the Fourier
expansion involving the axion η1 = Re (η), which couples to D-instantons. From this, one
concludes for example that the coefficient of the effective interaction R4 receives perturba-
tive corrections only at tree and one-loop level, while the D4R4 term receives perturbative
corrections only at tree and two-loop level.2 The vanishing of the two-loop contribution to
R4 was verified in [22], while the vanishing of the one-loop contribution and calculation of
the two loop contribution to D4R4 was performed in [23]. In addition, in [24] the coupling
of the axion to D-instantons was calculated and found to match with the non-perturbative
portions of c4,0(η) in (2.5).

Unfortunately, for n > 2 there are far fewer non-perturbative results for the coefficients
c4,n(η) (see [25] for a further review of what is known). Instead, in these cases one must
generally settle for perturbative results obtained via calculation of four-graviton scattering
amplitudes. For example, one may begin with the four-graviton tree-level amplitude A(4)

0 ,
which takes the familiar form

A(4)
0 =

R4η2
2

stu

Γ(1− s)Γ(1− t)Γ(1− u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)

= R4η2
2

[
1

stu
+ 2ζ(3) + ζ(5)(s2 + t2 + u2) + 2ζ(3)2stu+O(s4

ij)

]
(2.6)

2Recall that (2.5) is given in Einstein frame, so that before counting powers of η2 to determine the order

in perturbation theory, we must multiply by η
1/2
2 to convert to string frame.
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where the Mandelstam invariants s, t, u are given in terms of the Lorentz invariant combi-
nations sij = −α′

4
(ki + kj)

2 via s = s12 = s34, t = s14 = s23, and u = s13 = s24. Note that
in the above, we have used the fact that momentum conservation and the on-shell condition
k2
i = 0 require s+ t+ u = 0. The first term in (2.6) is one-particle reducible and hence does

not contribute to the α′ corrections of the effective action, whereas each of the latter terms
O(snij) has an interpretation as the leading order contribution to the coefficient c4,n(η). From
this point of view, the vanishing of (the first term of) c4,1(η) is seen to be a result of the
condition s+ t+ u = 0.

Having identified the tree-level contributions to c4,n(η), we may now proceed to one-loop.
In this case, the amplitude is given by [2]

A(4)
1 = 2πR4

∫
F

dτ1 ∧ dτ2

τ 2
2

B4(s, t, u; τ) (2.7)

where τ is the modular parameter of the worldsheet torus and F is the usual fundamental
domain F = {τ ∈ C

∣∣ |τ1| ≤ 1
2
, τ2 > 0, |τ | ≥ 1}. The partial amplitudes B4(s, t, u; τ) may

be written in terms of scalar Green’s functions on the torus as

B4(s, t, u; τ) =
4∏
i=1

∫
Σ

d2zi
τ2

exp

{ ∑
1≤i<j≤4

sijG(zi − zj|τ)

}
(2.8)

where zi are coordinates on the torus Σ. The scalar Green’s function on the torus admits
the following Fourier representation,

G(z|τ) =
′∑

p∈Λ

τ2

π|p|2
e2πi(nα−mβ) (2.9)

where z = α + βτ with α, β ∈ R/Z. As usual, the integers m,n parametrize the discrete
momenta of the torus p = m+ nτ , which take values in an integer lattice Λ. It is then clear
that the partial amplitude B4(s, t, u; τ) is a modular function of τ .

We may now expand B4(s, t, u; τ) in a power series in sij to obtain

B4(s, t, u; τ) =
∞∑
w=0

1

w!

4∏
i=1

∫
Σ

d2zi
τ2

V (s, t, u; zi; τ)w (2.10)

where

V (s, t, u; zi; τ) =
∑

1≤i<j≤4

sijG(zi − zj|τ) (2.11)

7



In this form, we see that the term of order w will contribute to the D2wR4 term in the
effective action. Thus for example if w = 0, then one finds

B4(s, t, u; τ) =

(∫
d2zi
τ2

)4

= 1 (2.12)

and therefore

A(4)
1 = 2πR4

∫
F

dτ1 ∧ dτ2

τ 2
2

=
2π2

3
R4 (2.13)

Indeed, switching to Einstein frame, this means that the one-loop contribution to c4,0(η) is
2π2

3
η
−1/2
2 , which is exactly what is observed from (2.3) and (2.5).

For w 6= 0, the partial amplitudes B4(s, t, u; τ) are non-constant functions of τ . By world-
sheet modular invariance, these functions must be invariant under SL(2,Z) transformations.
The functions arising in this context are known as modular graph functions [2–4], and have
been the subject of recent study in both physics [1, 5–12] and mathematics [26–30]. They
are special cases of the modular graph forms given in (1.1).

The name modular “graph” function derives from the fact that these functions may be
represented by Feynman graphs on the torus. As usual, we represent a Green’s function
graphically by an edge in a Feynman diagram,

zi zj
= G(zi − zj|τ) (2.14)

The integration over the position of a vertex z on which r Green’s functions end is denoted by
an unmarked filled black dot, in contrast with an unintegrated vertex zi which is represented
by a marked unfilled white dot. The basic ingredients in the graphical notation are depicted
in the graph below,

· · ·

z1 z2 zr−1 zr
=

∫
Σ

d2z

τ2

r∏
i=1

G(z − zi|τ) (2.15)

For our purposes, we will be interested only in those cases in which all positions on the torus
have been integrated over, and hence all nodes in the diagram are filled and unmarked.

Thus far we have been discussing exclusively the four-graviton amplitudes and the as-
sociated D2nR4 terms in the effective action. However, insofar as modular graph functions
are concerned, we may easily generalize to functions corresponding to graphs with arbitrary

8



numbers of vertices. If we denote by νij the exponent of sij in the expansion (2.10), then
the power series expansion of Bm is given by a Feynman graph Γ with associated integral,

CΓ(τ) =

(
m∏
k=1

∫
Σ

d2zk
τ2

) ∏
1≤i<j≤m

G(zi − zj|τ)νij (2.16)

The graph Γ has m vertices, labelled by k = 1, · · · ,m and νij edges between vertices i and
j, with the total number of edges given by the weight w of the graph Γ,3

w =
∑

1≤i<j≤m

νij (2.17)

in analogy to the w introduced in (2.10). In terms of the Fourier series for the Green’s
function (2.9), this expression is given by,

CΓ(τ) =
′∑

p1,...,pw∈Λ

(
w∏
r=1

τ2

π|pr|2

)
m∏
i=1

δ

(
w∑
r=1

Γirpr

)
(2.18)

For such functions, all of the information about the graph Γ is contained in its connectivity
matrix Γir, where the index i = 1, · · · ,m runs over all of the vertices of Γ and the index
r = 1, · · · , w runs over all of the edges. When the edge r does not end on the vertex i, we
have Γir = 0, while otherwise we have Γir = ±1, with the sign depending on the orientation
conventions for the momenta flowing into the vertices.

Finally, one may further generalize this class of functions to modular graph forms, which
can have arbitrary exponents for their holomorphic and anti-holomorphic momenta. The
general form of these was shown in (1.1). These objects are no longer modular invariant,
but are manifestly modular covariant, transforming as

C
[
A
B

](
ατ + β

γτ + δ

)
=

(
γτ + δ

γτ̄ + δ

) 1
2

(a−b)

C
[
A
B

]
(τ) (2.19)

where α, β, γ, δ ∈ Z and αδ − βγ = 1. The total exponents of holomorphic and anti-
holomorphic momenta are given respectively by the following sums,

a =
m∑
r=1

ar b =
m∑
r=1

br (2.20)

Modular graph forms are an interesting generalization of modular graph functions that allow
for the derivation of important relations between modular graph functions [1]. From the
physical point of view, modular graph forms appear when the integrand in (2.8) contains
prefactors in front of the Koba-Nielsen factor [13–16]. For a more detailed introduction to
modular graph forms, see e.g. [1, 5]. For recent extensions to higher genus, see [31–33].

3This notion of weight should not be confused with the modular weight of the graph function, which in
the current case is zero.
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3 Holomorphic subgraph reduction of dihedral graphs

We now give a brief overview of the holomorphic subgraph reduction procedure for dihedral
graphs, as introduced in [1]. Since we will present the calculation of the trihedral holomorphic
subgraph reduction formulae in detail in Section 4, we will refrain from providing technical
details here, instead focusing on the main conceptual points that will carry over to the later
calculation. For more details the reader is referred to [1].

A generic dihedral modular graph form with a holomorphic subgraph may be represented
by the following graph,

•

p

••
p+ ••
p−

•

The solid line represents an arbitrary number ` of parallel lines with total momentum p

flowing from left to right. The dashed lines represent single lines with only holomorphic
momenta flowing through them (i.e. vanishing exponents b±). The corresponding lattice
sum is then given by

C
[
a+ a− A
0 0 B

]
=

′∑
p1,...,p`,p+,p−∈Λ

(τ2/π)
1
2
a0

(p+)a+(p−)a−

∏̀
r=1

(τ2/π)
1
2
ar+ 1

2
br

(pr)ar (p̄r)br
δ

(∑̀
α=0

pα

)
(3.1)

where a0 = a+ + a−, p0 = p+ + p−, and the exponents for each of the ` momenta in p are
collected in A,B. In order for this sum to be absolutely convergent, we restrict to a0 ≥ 3.
The basic strategy of holomorphic subgraph reduction is to isolate the two holomorphic
edges, utilize the momentum-conserving delta-function to rewrite

1

(p+)a+(p−)a−
=

1

(p+)a+(−p− p+)a−
(3.2)

and then to perform a partial-fraction decomposition in p+. Once this has been done, the
summation over p+ can be performed explicitly. The resulting expression then has one less
momentum, and thus one less edge, than the original modular graph form. This implies
that modular graph forms with a holomorphic subgraph are reducible to sums of products
of modular graph forms of lower loop order.

A subtlety in this procedure is that by naively distributing the sum over the partial-
fraction decomposition, divergent or conditionally convergent sums can be produced. In
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particular, sums of the form

Qk(p0) ≡
′∑

p6=p0

1

pk
k ≥ 1 (3.3)

arise, which are not absolutely convergent for k = 1, 2. To rectify this issue, we must find
appropriate definitions for these sums. The definitions which were chosen in [1] were

Q1(p0) = − 1

p0

− π

2τ2

(p0 − p̄0)

Q2(p0) = − 1

p0
2

+ Ĝ2 +
π

τ2

Qk(p0) = − 1

p0
k

+ Gk k ≥ 3 (3.4)

Here, the functions Gk are defined as

Gk(τ) = πk/2Gk(τ) k ≥ 3 (3.5)

Ĝ2(τ) = πĜ2(τ) (3.6)

with Gk the holomorphic Eisenstein series,

Gk(τ) =
∑

(m,n)6=(0,0)

1

πk/2(mτ + n)k
k ≥ 2 (3.7)

The function Ĝ2 is the non-holomorphic but modular covariant regularization of the condi-
tionally convergent series G2,

Ĝ2(τ) = lim
s→0

∑
(m,n)6=(0,0)

1

π(mτ + n)2 |mτ + n|s
=
π

3
− 8π

∞∑
n=1

σ1(n)qn − 1

τ2

(3.8)

with σk(n) the divisor sum.

As will be explained in detail later, the choice (3.4) is not unique. An important point
is that the term − π

2τ2
p0 in Q1(p0) and the term π

τ2
in Q2(p0) have different modular weights

than the sums on the respective left-hand sides. But when plugged into the full expression
resulting from partial fraction decomposition of (3.2), these terms of abnormal modular
weight cancel out, leading to a total result with the expected modular properties. This will
be a guiding principle for us in what follows.
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For completeness, we quote the final result for the holomorphic subgraph reduction of
dihedral graphs forms [1],4

C
[
a+ a− A
0 0 B

]
=(−1)a−τ

1
2
a0

2 Ga0 C
[
A
B

]
−
(
a0

a+

)
C
[
a0 A
0 B

]
+

a+∑
k=4

(
a0 − 1− k
a+ − k

)
τ

1
2
k

2 Gk C
[
a0 − k A

0 B

]

+

a−∑
k=4

(
a0 − 1− k
a− − k

)
τ

1
2
k

2 Gk C
[
a0 − k A

0 B

]
+

(
a0 − 2

a+ − 1

){
τ2Ĝ2 C

[
a0 − 2 A

0 B

]
+ C

[
a0 − 1 A
−1 B

]}
(3.9)

4 Extension to trihedral graphs

In this section, we will generalize the holomorphic subgraph reduction procedure outlined in
the previous section to trihedral modular graph forms.

When the graph corresponding to a modular graph form has dihedral topology, it is
sufficient to consider only two-point holomorphic subgraphs in order to arrive at a general
formula for holomorphic subgraph reduction. For trihedral topology however, there are
two cases that need to be distinguished: graphs with two- and three-point holomorphic
subgraphs. The case of two-point holomorphic subgraphs will be treated in section 4.1, and
is a straightforward generalization of the dihedral result. In section 4.2, we will discuss the
case of three-point subgraphs. Since this case requires additional regularizations of the form
(3.4) and is considerably more complex, we go through the calculation in full detail.

4.1 Two-point holomorphic subgraph reduction

A general trihedral graph with two-point holomorphic subgraph is depicted in the following
figure:

4There are some simple differences between our form of this equation and the form in [1], which are
mostly due to convention. One thing which is not due to convention, however, is the presence of an extra
factor of πτ2 in the coefficient of the last term of (5.14) in [1], which should not be present.
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•

p3

••

p1

••

p2

••
p+ ••

p−

•

As before, solid lines represent potentially several parallel edges whose momenta all flow in
the indicated direction and add up to the momentum pi in the label. Note that either p1 or
p3 must have more than one edge, lest the graph becomes dihedral. The dashed lines, which
represent single edges with holomorphic momenta, form a two-point holomorphic subgraph
of the total graph. The general lattice sum for such graphs is

C
[
A1

B1

∣∣∣∣a+ a− A2

0 0 B2

∣∣∣∣A3

B3

]
=

′∑
pj∈Λ

(∏ 1

pAp̄B

)
1

p
a+
+ p

a−
−
δp1, p2+p++p−δp1, p3 (4.1)

with the summation being over the momenta of each edge. The exponent arrays Ai, Bi,
i = 1, 2, 3, take the form

Ai = [a
(i)
1 , . . . , a

(i)
Ri

] Bi = [b
(i)
1 , . . . , b

(i)
Ri

] (4.2)

with Ri giving the number of elements in the i-th array. As in the previous case we have
introduced the collective momenta pi, defined by

pi =

Ri∑
ni=1

p(i)
ni

(4.3)

as well as the shorthand notation

∏ 1

pAp̄B
≡
(τ2

π

) 1
2

(a++a−) ∏
i=1,2,3

Ri∏
ni=1

(τ2

π

) 1
2

(a
(i)
ni

+b
(i)
ni

) 1

(p
(i)
ni )a

(i)
ni

1

(p̄
(i)
ni )b

(i)
ni

(4.4)

The formula for two-point trihedral holomorphic subgraph reduction is a straightforward
generalization of that in the dihedral case. Because the holomorphic subgraph effectively
forms a dihedral graph with the edges (A2, B2), the result can be obtained from (3.9) by
replacing [A,B] with [A2, B2] and adding the [A1, B1] and [A3, B3] blocks to the left and
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right in all C[. . . ] expressions. For a0 = a+ + a− ≥ 3, we have

C
[
A1

B1

∣∣∣∣a+ a− A2

0 0 B2

∣∣∣∣A3

B3

]
=(−1)a+τ

1
2
a0

2 Ga0 C
[
A1

B1

∣∣∣∣A2

B2

∣∣∣∣A3

B3

]
−
(
a0

a+

)
C
[
A1

B1

∣∣∣∣a0 A2

0 B2

∣∣∣∣A3

B3

]
+

a+∑
k=4

(
a0 − k − 1

a+ − k

)
τ

1
2
k

2 Gk C
[
A1

B1

∣∣∣∣a0 − k A2

0 B2

∣∣∣∣A3

B3

]

+

a−∑
k=4

(
a0 − k − 1

a− − k

)
τ

1
2
k

2 Gk C
[
A1

B1

∣∣∣∣a0 − k A2

0 B2

∣∣∣∣A3

B3

]
+

(
a0 − 2

a+ − 1

)(
τ2Ĝ2 C

[
A1

B1

∣∣∣∣a0 − 2 A2

0 B2

∣∣∣∣A3

B3

]
+ C

[
A1

B1

∣∣∣∣a0 − 1 A2

−1 B2

∣∣∣∣A3

B3

])
(4.5)

4.2 Three-point holomorphic subgraph reduction

We now proceed to the main focus of this work, which is holomorphic subgraph reduction
of 3-point holomorphic subgraphs in trihedral modular graph forms. The graphs in question
are shown in the following figure,

•

•

•

••

•

•

•• •• •

p4p6

p1

p2

p5 p3

The dashed holomorphic edges form a three-point subgraph, and the general formula for
such graphs is

C
[
A1 a2

B1 0

∣∣∣∣A3 a4

B3 0

∣∣∣∣A5 a6

B5 0

]
=

′∑
pj∈Λ

(∏ 1

pAp̄B

)
1

pa22 p
a4
4 p

a6
6

δp1+p2,p3+p4δp3+p4,p5+p6 (4.6)

with the summation being over the momenta of each edge. The notation is as before, though
we have redefined

∏ 1

pAp̄B
≡
(τ2

π

) 1
2

(a2+a4+a6) ∏
i=1,3,5

Ri∏
ni=1

(τ2

π

) 1
2

(a
(i)
ni

+b
(i)
ni

) 1

(p
(i)
ni )a

(i)
ni

1

(p̄
(i)
ni )b

(i)
ni

(4.7)
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In what follows, we will also use the notation pij = pi−pj and a0 = a2 +a4 +a6. To evaluate
(4.6), we may begin by using the delta functions to replace p2 and p4 by p6 and the various
external momenta pi. In particular, we may rewrite

C
[
A1 a2

B1 0

∣∣∣∣A3 a4

B3 0

∣∣∣∣A5 a6

B5 0

]
=

′∑
p
(i)
n

′∑
p6 6=p15,p35

(∏ 1

pAp̄B

)
1

pa66 (p6 − p15)a2(p6 − p35)a4
(4.8)

Since
∏

1
pAp̄B

does not depend on p6, we can focus on evaluating the following sum

S =
′∑

p6 6=p15,p35

1

pa66 (p6 − p15)a2(p6 − p35)a4
(4.9)

4.2.1 Decomposing S

In order to perform the sum (4.9), we first separate out all cases in which p15 and p35 are
equal to each other or to zero. In particular, there are five cases to study,

p15 = p35 = 0 L1 =
′∑
p6

1

pa06

p15 = p35 6= 0 L2 =
′∑

p6 6=p15

1

pa66 (p6 − p15)a2+a4

p15 6= 0 p35 = 0 L3 =
′∑

p6 6=p15

1

pa6+a4
6 (p6 − p15)a2

p15 = 0 p35 6= 0 L4 =
′∑

p6 6=p35

1

pa6+a2
6 (p6 − p35)a4

p15, p35 6= 0 p15 6= p35 L5 =
′∑

p6 6=p15,p35

1

pa66 (p6 − p15)a2(p6 − p35)a4
(4.10)

The function S is the sum of the above five terms. We may now evaluate them one by one.
The first sum is trivial,

L1 = Ga0 (4.11)

To evaluate the second sum, we begin by utilizing the following partial fraction identity

1

pa(q − p)b
=

a∑
k=1

(
a+ b− k − 1

a− k

)
1

pkqa+b−k +
b∑

k=1

(
a+ b− k − 1

b− k

)
1

qa+b−k(q − p)k
(4.12)
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which allows us to rewrite L2 as

(−1)a2+a4L2 =
′∑

p6 6=p15

[
a6∑
k=1

(
a0 − k − 1

a6 − k

)
1

pk6 p
a0−k
15

+

a2+a4∑
k=1

(
a0 − k − 1

a2 + a4 − k

)
1

(p15 − p6)kpa0−k15

]

=

a6∑
k=1

(
a0 − k − 1

a6 − k

)
Qk(p15)

pa0−k15

+

a2+a4∑
k=1

(
a0 − k − 1

a2 + a4 − k

)
Qk(p15)

pa0−k15

(4.13)

We now use the regularizations (3.4) for the Qk. Upon applying the following identities,

a1∑
k=1

(
a1 + a2 − k − 1

a1 − k

)
+

a2∑
k=1

(
a1 + a2 − k − 1

a2 − k

)
=

(
a1 + a2

a1

)
(

a0 − 3

a2 + a4 − 2

)
+

(
a0 − 3

a6 − 2

)
=

(
a0 − 2

a6 − 1

)
(4.14)

the sum L2 simplifies to

(−1)a2+a4L2 =

a6∑
k=4

(
a0 − k − 1

a6 − k

)
Gk

pa0−k15

+

a2+a4∑
k=4

(
a0 − k − 1

a2 + a4 − k

)
Gk

pa0−k15

−
(
a0

a6

)
1

pa015

+

(
a0 − 2

a6 − 1

)
1

pa0−1
15

(
p15Ĝ2 +

π

τ2

p̄15

)
(4.15)

Crucially, note that the π
τ2

terms in Q2(p1) have cancelled with the π
2τ2
p0 terms of Q1(p1),

just as in the dihedral case. Recall that this was necessary for obtaining a modular covariant
final result, since such terms had different modular weight than the other terms. In what
follows, we will need the generalization of this modular covariant regularization to sums with
more exclusions, i.e. Q1(p1, . . . , pn). This is explored in detail in section 5.

The sum L3 can be obtained from (4.15) by replacing a6 → a4 + a6 and a2 + a4 → a2.
L4 can be reached by similar relabelings, so we may now proceed directly to L5. To begin,
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we apply the decomposition formula (4.12) twice to obtain

(−1)a2+a4L5 =

a6∑
k=1

k∑
`=1

(
a2 + a6 − k − 1

a6 − k

)(
a4 + k − `− 1

k − `

)
Q`(p15, p35)

(p15)a2+a6−k(p35)a4+k−`

+

a6∑
k=1

a4∑
`=1

(
a2 + a6 − k − 1

a6 − k

)(
a4 + k − `− 1

a4 − `

)
Q`(p31, p35)

(p15)a2+a6−k(p35)a4+k−`

+

a2∑
k=1

a4∑
`=1

(
a2 + a6 − k − 1

a2 − k

)(
a4 + k − `− 1

a4 − `

)
(−1)k

Q`(p31, p35)

(p15)a2+a6−k(p31)a4+k−`

+

a2∑
k=1

k∑
`=1

(
a2 + a6 − k − 1

a2 − k

)(
a4 + k − `− 1

k − `

)
(−1)k

Q`(−p15, p31)

(p15)a2+a6−k(p31)a4+k−`

(4.16)

with the Q`(p1, p2) being the obvious generalizations of (3.3) with two exclusions in the sum.

4.2.2 Evaluating L5

In order to evaluate (4.16), we may insert the expressions for Q`(p1, p2) as in the case of L2.
In particular, we use

Q1(p1, p2) = − 1

p1

− 1

p2

− x π
τ2

(p1 + p2 − p̄1 − p̄2)

Q2(p1, p2) = − 1

p1
2
− 1

p2
2

+ Ĝ2 +
π

τ2

Qk(p1, p2) = − 1

p1
k
− 1

p2
k

+ Gk k ≥ 3 (4.17)

These are the obvious generalizations of (3.4). The only subtlety is the choice of x in the
regularized expression for Q1(p1, p2). As discussed before, we must choose x such that all
terms of abnormal modular weight cancel between Q1(p1, p2) and Q2(p1, p2). In fact, the
correct choice is found to be x = 1/3, and so we set x equal to that value henceforth. This
choice will be justified in Section 5.3, where it arises as a special case of the general expression
(5.22) for an arbitrary number of excluded momenta.

Returning to the evaluation of L5, we may insert (4.17) and rewrite (4.16) as

(−1)a2+a4L5 =

a6∑
k=1

(
a2 + a6 − k − 1

a6 − k

)
1

(p15)a2+a6−k(p35)a4+k
Xk(p15, p35)

+

a2∑
k=1

(
a2 + a6 − k − 1

a2 − k

)
(−1)k

(p15)a2+a6−k(p31)a4+k
Xk(−p15, p31) (4.18)
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where we have defined the following function

Xk(p, q) =−
k∑
`=1

(
a4 + k − `− 1

k − `

)(
q

p

)`
−

a4∑
`=1

(
a4 + k − `− 1

a4 − `

)(
q

q − p

)`
+

k∑
`=4

(
a4 + k − `− 1

k − `

)
q`G` +

a4∑
`=4

(
a4 + k − `− 1

a4 − `

)
q`G`

−
(
a4 + k

a4

)
+

(
a4 + k − 2

k − 1

)(
q2Ĝ2 +

π

τ2

qq̄

)
(4.19)

4.2.3 Summation over non-holomorphic momenta

With (4.19), we have completed the evaluation of the five sums Li listed in (4.10) which
make up the sum S in (4.9). In order to obtain our final formula for three-point holomorphic
subgraph reduction of (4.8), we must now carry out the sums over the remaining momenta.
We denote the completely summed versions of the Li by Li, such that our final answer is
given by

C
[
A1 a2

B1 0

∣∣∣∣A3 a4

B3 0

∣∣∣∣A5 a6

B5 0

]
=

5∑
i=1

Li (4.20)

To begin, one calculates (recall that a0 = a2 + a4 + a6)

L1 =
′∑
p
(i)
n

(∏ 1

pAp̄B

)
L1 δp1,p3δp3,p5 = τ

1
2
a0

2 Ga0 C
[
A1

B1

∣∣∣∣A3

B3

∣∣∣∣A5

B5

]
(4.21)

For the second contribution (4.15), one has

(−1)a2+a4L2 =
′∑
p
(i)
n

p1 6=p5

(∏ 1

pAp̄B

)
(−1)a2+a4L2 δp1,p3

=

a6∑
k=4

(
a0 − k − 1

a6 − k

)
τ

1
2
k

2 Gk C
[
A1

B1

∣∣∣∣A3

B3

∣∣∣∣A5 a0 − k
B5 0

]

+

a2+a4∑
k=4

(
a0 − k − 1

a2 + a4 − k

)
τ

1
2
k

2 Gk C
[
A1

B1

∣∣∣∣A3

B3

∣∣∣∣A5 a0 − k
B5 0

]
+

(
a0 − 2

a6 − 1

){
τ2Ĝ2 C

[
A1

B1

∣∣∣∣A3

B3

∣∣∣∣A5 a0 − 2
B5 0

]
+ C

[
A1

B1

∣∣∣∣A3

B3

∣∣∣∣A5 a0 − 1
B5 −1

]}
−
(
a0

a6

)
C
[
A1

B1

∣∣∣∣A3

B3

∣∣∣∣A5 a0

B5 0

]
(4.22)
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The third contribution can be obtained from this by relabeling a6 → a4+a6 and a2+a4 → a2,
moving the p15-column to the first block, and introducing an overall sign,

(−1)a4+a6L3 =

a4+a6∑
k=4

(
a0 − k − 1

a4 + a6 − k

)
τ

1
2
k

2 Gk C

[
A1 a0 − k
B1 0

∣∣∣∣∣A3

B3

∣∣∣∣∣A5

B5

]

+

a2∑
k=4

(
a0 − k − 1

a2 − k

)
τ

1
2
k

2 Gk C

[
A1 a0 − k
B1 0

∣∣∣∣∣A3

B3

∣∣∣∣∣A5

B5

]

+

(
a0 − 2

a4 + a6 − 1

){
τ2Ĝ2 C

[
A1 a0 − 2
B1 0

∣∣∣∣∣A3

B3

∣∣∣∣∣A5

B5

]
+ C

[
A1 a0 − 1
B1 −1

∣∣∣∣∣A3

B3

∣∣∣∣∣A5

B5

]}

−
(

a0

a4 + a6

)
C

[
A1 a0

B1 0

∣∣∣∣∣A3

B3

∣∣∣∣∣A5

B5

]
(4.23)

The fourth contribution can be obtained by relabeling a6 → a2 + a6 and a2 + a4 → a4 in
(4.22), moving the p15-column to the second block, and introducing an overall sign,

(−1)a2+a6L4 =

a2+a6∑
k=4

(
a0 − k − 1

a2 + a6 − k

)
τ

1
2
k

2 Gk C

[
A1

B1

∣∣∣∣∣A3 a0 − k
B3 0

∣∣∣∣∣A5

B5

]

+

a4∑
k=4

(
a0 − k − 1

a4 − k

)
τ

1
2
k

2 Gk C

[
A1

B1

∣∣∣∣∣A3 a0 − k
B3 0

∣∣∣∣∣A5

B5

]

+

(
a0 − 2

a2 + a6 − 1

){
τ2Ĝ2 C

[
A1

B1

∣∣∣∣∣A3 a0 − 2
B3 0

∣∣∣∣∣A5

B5

]
+ C

[
A1

B1

∣∣∣∣∣A3 a0 − 1
B3 −1

∣∣∣∣∣A5

B5

]}

−
(

a0

a2 + a6

)
C

[
A1

B1

∣∣∣∣∣A3 a0

B3 0

∣∣∣∣∣A5

B5

]
(4.24)

Finally, we must consider the contribution due to L5, which is given by (4.18) summed
over the remaining momenta. To simplify the result, we introduce the following shorthand
notation

C
[
m1

n1

∣∣∣∣m2

n2

∣∣∣∣ ] ≡ (−1)m1+n1+m2+n2 C
[
A1 m1

B1 n1

∣∣∣∣A3 m2

B3 n2

∣∣∣∣A5

B5

]
− C

[
A1

B1

∣∣∣∣A3

B3

∣∣∣∣A5 m1 +m2

B5 n1 + n2

]
(4.25)

as well as

C
[ ∣∣∣∣m1

n1

∣∣∣∣m2

n2

]
≡ (−1)m2+n2 C

[
A1

B1

∣∣∣∣A3 m2

B3 n2

∣∣∣∣A5 m1

B5 n1

]
− (−1)m1+n1 C

[
A1 m1 +m2

B1 n1 + n2

∣∣∣∣A3

B3

∣∣∣∣A5

B5

]
(4.26)
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Using the partial-fraction identity (4.12) one final time to decompose the (p − q)` term in
(4.19), we find the final result

(−1)a2+a4L5 =

a6∑
k=1

(
a2 + a6 − k − 1

a6 − k

)
Xk(0) +

a2∑
k=1

(
a2 + a6 − k − 1

a2 − k

)
(−1)k X̃k(1) (4.27)

where we have defined

Xk(ε) ≡−
(
a4 + k

a4

)
C
[
a2 + a6 − k

0

∣∣∣a4 + k
0

∣∣∣ ]
−

k∑
`=1

(
a4 + k − `− 1

k − `

)
(−1)ε` C

[
a2 + a6 − k + `

0

∣∣∣a4 + k − `
0

∣∣∣ ]

+
k∑
`=4

(
a4 + k − `− 1

k − `

)
τ

1
2
`

2 G` C
[
a2 + a6 − k

0

∣∣∣a4 + k − `
0

∣∣∣ ]
+

a4∑
`=4

(
a4 + k − `− 1

a4 − `

)
τ

1
2
`

2 G` C
[
a2 + a6 − k

0

∣∣∣a4 + k − `
0

∣∣∣ ]
+

(
a4 + k − 2

k − 1

){
τ2Ĝ2 C

[
a2 + a6 − k

0

∣∣∣a4 + k − 2
0

∣∣∣ ]+ C
[
a2 + a6 − k

0

∣∣∣a4 + k − 1
−1

∣∣∣ ]}
−

a4∑
`=1

(
a4 + k − `− 1

a4 − `

)
(−1)`

{
a4+k−`∑
m=1

(
a4 + k −m− 1

a4 + k − `−m

)
(−1)ε(a4+k−m) C

[
a0 −m

0

∣∣∣m0 ∣∣∣
]

+
∑̀
m=1

(
a4 + k −m− 1

`−m

)
(−1)m(−1)ε(a4+k−m) C

[ ∣∣∣a0 −m
0

∣∣∣m0
]}

(4.28)

and X̃k(ε) is obtained from Xk(ε) by replacing all C
[
m1

n1

∣∣∣m2

n2

∣∣∣ ] with C
[ ∣∣∣m1

n1

∣∣∣m2

n2

]
and vice

versa.

This completes the derivation of the three-point holomorphic subgraph reduction formula,
which is given by

C
[
A1 a2

B1 0

∣∣∣∣A3 a4

B3 0

∣∣∣∣A5 a6

B5 0

]
=

5∑
i=1

Li (4.29)

with the Li defined in equations (4.21)-(4.24) and (4.27). Although this final result is rather
lengthy, it is straightforward to implement it on a computer and provides simplifications for
all trihedral graphs with three-point holomorphic subgraphs.
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4.2.4 Divergent modular graph forms in the reduced expression

When applying this formula one must be careful with the order in which the three blocks
of the trihedral function are plugged into the formula, since an incorrect choice leads to
divergent modular graph forms in the result. These divergences manifest themselves in[

1 1
−1 1

]
(4.30)

subblocks appearing in the resulting modular graph forms. Naively using momentum con-
servation identities to simplify these leads to subblocks of the form[

1 1
0 0

]
(4.31)

The sums corresponding to such modular graph forms are then divergent. Looking at the
explicit expressions for the Li above (and recalling that a0 ≥ 3) shows that such (1,−1)
columns can only appear in the last term in the fifth line of (4.28) if a4 = 1. In this case a
(1,−1) column is introduced in the second (middle) block of the modular graph form from
both X1 and X̃1. This means that if a4 = 1 and the (A3, B3) block of the original modular
graph form contains a (1, 1) column, divergent graphs will be produced by (4.29). Just like
the divergence appearing upon partial-fraction decomposition, this divergence is man-made -
it results from an inappropriate application of the holomorphic subgraph reduction formula.

There is an easy way to avoid this potential issue. From the original definition of trihedral
modular graph forms, it is irrelevant in which order the three blocks of exponents are written.
We may then rearrange the three blocks in such a way that the middle block does not contain
a [ 1 1

1 0 ]-subblock.5 This then avoids the problem altogether. We will see an explicit example
of this below.

4.3 Examples

We now offer a few examples to illustrate the utility of the three-point holomorphic subgraph
reduction formula. First, consider the following trihedral modular graph form,

C
[
1 2
1 0

∣∣∣∣1 1
1 0

∣∣∣∣10
]

=
′∑

pi∈Λ

(τ2

π

)4 1

p1p̄1p3p̄3

1

p2
2p4p6

δp1+p2,p6δp3+p4,p6 (4.32)

which appears in the calculation of four-gluon scattering in heterotic string theory at second
order in α′ [13]. This modular graph form has a three-point holomorphic subgraph which

5The case in which all three blocks contain subblocks of the form [ 1 1
1 0 ] cannot be reduced using (4.29).
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may be reduced. However, in the current form the middle block is [ 1 1
1 0 ], so naive application

of the formulas above would produce divergent terms if applied directly. To avoid this, we
instead consider the equivalent expression

C
[
1 1
1 0

∣∣∣∣1 2
1 0

∣∣∣∣10
]

=
′∑

pi∈Λ

(τ2

π

)4 1

p1p̄1p3p̄3

1

p2p2
4p6

δp1+p2,p3+p4δp1+p2,p6 (4.33)

Applying the results of section 4.2 to this yields for the Li

L1 = L3 = L4 = 0 (4.34)

L2 = 4 C
[
6 0
2 0

]
− C

[
5 0
1 0

]
− τ2Ĝ2 C

[
4 0
2 0

]
(4.35)

L5 = −X1 + X̃1 (4.36)

where

X1 = 3 C
[
6 0
2 0

]
− C

[
5 0
1 0

]
− τ2Ĝ2 C

[
4 0
2 0

]
− C

[
1 2 3
1 0 1

]
(4.37)

X̃1 = −C
[
6 0
2 0

]
+ C

[
3 0
1 0

]2

+ τ2Ĝ2 C
[
1 1 2
0 1 1

]
+ C

[
1 2 2
1 −1 1

]
− 3 C

[
1 2 3
1 1 0

]
(4.38)

Using momentum conservation and further straightforward identities between dihedral mod-
ular graph forms, one finds

C
[
1 1
1 0

∣∣∣∣1 2
1 0

∣∣∣∣10
]

=− 1

2
C
[
6 0
2 0

]
+ 3 C

[
5 0
1 0

]
+

3

2
C
[
3 0
1 0

]2

− τ2Ĝ2 C
[
3 0
1 0

]
− 1

2
τ2Ĝ2 C

[
4 0
2 0

]
−G4τ

2
2

(4.39)

Another modular graph form which appears at second order in α′ in the heterotic four-
gluon scattering calculation is

C
[
2
0

∣∣∣∣1 1
1 0

∣∣∣∣1 1
1 0

]
=

′∑
pi∈Λ

δp1,p2+p3δp1,p4+p5

(τ2

π

)4 1

p2p̄2p4p̄4

1

p2
1p3p5

(4.40)

Using the three-point holomorphic subgraph reduction formula, this simplifies to

C
[
2
0

∣∣∣∣1 1
1 0

∣∣∣∣1 1
1 0

]
= 2τ2Ĝ2 C

[
3 0
1 0

]
+ τ2Ĝ2 C

[
4 0
2 0

]
− 2 C

[
3 0
1 0

]2

− 6 C
[
5 0
1 0

]
+ 2 C

[
6 0
2 0

]
+ 2τ 2

2 G4

(4.41)
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Note that the decompositions (4.39) and (4.41) can be used to check our regularization
scheme (4.17) with x = 1/3. This is because these can be reduced to dihedral holomorphic
subgraph reduction without introducing new divergent sums by doing a more careful partial
fraction decomposition hand-tailored to these specific examples. A calculation along those
lines is outlined in Appendix A.

Finally, at third order in α′ in the heterotic calculation, a more complex example arises
which decomposes into dihedral graphs and lower-loop trihedral graphs,

C
[
2 1
1 0

∣∣∣∣1 1
1 0

∣∣∣∣1 1
1 0

]
= 4 C

[
1
1

∣∣∣∣1 1
0 1

∣∣∣∣2 2
0 1

]
+ 2 C

[
1
1

∣∣∣∣1 2
0 1

∣∣∣∣1 2
1 0

]
− 6τ2Ĝ2 C

[
3 0
1 0

]
− 3τ2Ĝ2 C

[
4 0
2 0

]
− 2τ2Ĝ2 C

[
1 1 3
0 1 2

]
+ τ2Ĝ2 C

[
1 2 2
0 1 2

]
+ 6 C

[
3 0
1 0

]2

+ 18 C
[
5 0
1 0

]
− 4 C

[
6 0
2 0

]
− 3 C

[
2 2 3
1 2 0

]
− 6τ 2

2 G4 (4.42)

Note that to obtain this result, in addition to (4.29) some other, more straightforward
identities between modular graph forms were utilized.

5 Definition of Q1(p1, . . . , pn)

As we have seen in the previous section, our derivation of holomorphic subgraph reduction
formulae relies on the regularization of sums of the form

′∑
p 6=p1,...,pn

1

p
(5.1)

We have already noted that the appropriate regularization scheme for the case of n = 2 is
(4.17) with x = 1/3. In this section, we analyze the case of general n. In particular, we
prove that the replacement

′∑
p 6=p1,...,pn

1

p
−→ Q1(p1, . . . , pn) = −

n∑
i=1

1

pi
− π

(n+ 1)τ2

n∑
i=1

(pi − p̄i) (5.2)

yields an expression which is modular covariant, and which matches with the result obtained
using a different regularization procedure. Once we have proven this, it is straightforward
(though tedious) to obtain (n+1)-point holomorphic subgraph reduction formulae for graphs
of any valence n+ 1.
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5.1 Definition of Q1(p1, p2)

We begin by recalling the context in which Q1(p1, p2) appears in the three-point case. The
reason these divergent sums arise in an otherwise finite calculation is that we have decom-
posed the original, absolutely convergent sum (4.9) into a number of divergent or condition-
ally convergent sums. This led us to define Q1(p1, p2) and Q2(p1, p2), which were taken to
be given by (4.17) with one free parameter x.

If we were only interested in regularizing (5.1), there would be no preferred value of x.
However, the fact that the terms Q1(p1, p2) and Q2(p1, p2) arise from the decomposition of
(4.9) allows us to put physical constraints on x. In particular, we note that (4.9) is modular
covariant, and that this is a property that we would like our regularization procedure to
preserve. We now note that the π

τ2
pi terms in Q1(p1, p2), as well as the π

τ2
term in Q2(p1, p2),

are of a different modular weight than the other terms – in particular, if the original modular
graph form carried modular weight (w, w̄), these abnormal terms are of modular weight
(w − 1, w̄ + 1). Thus the correct choice of x for the current purposes is the one for which the
terms of abnormal modular weight (w − 1, w̄ + 1) cancel when combined in (4.9). Imposing
this constraint fixes x = 1/3.

5.2 Definition of Q1(p1, p2, p3)

Before examining the general case, we offer one more explicit example. In particular, we
use the same analysis as above to determine Q1(p1, p2, p3). The natural starting point is the
consideration of 4-point holomorphic subgraphs which arise in tetrahedral modular graph
forms. Such a 4-point holomorphic subgraph is shown below, together with our momentum
orientation conventions,

•

•

•

•

•

•

p2p3

p1

p5

p6 p4

Fig 2: Four-point holomorphic subgraph

Instead of considering the general form of tetrahedral graphs with four-point holomorphic
subgraphs, we will consider only a particular weight 1

2
(5,−5) example,

C
[
2
0

∣∣∣∣10
∣∣∣∣11
∣∣∣∣11
∣∣∣∣10
∣∣∣∣10
]

=
′∑

pi∈Λ

δp1,p2+p4δp2,p3+p5δp3,p1+p6

(τ2

π

)9/2 1

p3p̄3p4p̄4

1

p2
1p2p5p6

(5.3)
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Similar to the technique used in the trihedral case, we begin by expressing all of the momenta
in terms of p1 and the external momenta p3, p4 as follows

p2 = p1 − p4 p1 6= p4

p6 = p3 − p1 p1 6= p3

p5 = p1 − p3 − p4 p1 6= p3 + p4 (5.4)

The sums of the form Q1(p1, p2, p3) then arise when we decompose

′∑
p1 6=p3,p4
p1 6=p3+p4

1

p2
1(p1 − p3)(p1 − p4)(p1 − p3 − p4)

=
′∑

p1 6=p3,p4
p1 6=p3+p4

[(
1

p3p2
4(p3 − p4)

)
1

p1 − p4

−
(

1

p4p2
3(p3 − p4)

)
1

p1 − p3

+

(
1

p3p4(p3 + p4)2

)
1

p1 − p3 − p4

−
(
p2

3 + 3p3p4 + p2
4

p2
3p

2
4(p3 + p4)2

)
1

p1

−
(

1

p3p4(p3 + p4)

)
1

p2
1

]
(5.5)

As before, we evaluate the sums over p1 in terms of Q1 and Q2, with the natural ansätze

Q1(p1, p2, p3) = − 1

p1

− 1

p2

− 1

p3

− x π
τ2

(p1 − p̄1 + p2 − p̄2 + p3 − p̄3)

Q2(p1, p2, p3) = − 1

p2
1

− 1

p2
2

− 1

p2
3

+ Ĝ2 +
π

τ2

(5.6)

From now on, we will keep only the x π
τ2
pi terms from Q1 and the π

τ2
term from Q2, which

carry incorrect modular weight 1
2
(3,−3). The appropriate regularization is again the one

such that these terms cancel.
In total, one finds the following contributions to (5.5) from such terms,

π

τ2

[
4x

p3p4(p3 + p4)
− 1

p3p4(p3 + p4)

]
(5.7)

from which we conclude that x = 1/4 gives the appropriate regularization.
Importantly, the same conclusion holds no matter which tetrahedral modular graph form

we are performing the four-point holomorphic subgraph reduction on. For example, we could
instead have begun with

C
[
2
0

∣∣∣∣20
∣∣∣∣11
∣∣∣∣11
∣∣∣∣20
∣∣∣∣20
]

=
′∑

pi∈Λ

δp1,p2+p4δp2,p3+p5δp3,p1+p6

(τ2

π

)6 1

p3p̄3p4p̄4

1

p2
1p

2
2p

2
5p

2
6

(5.8)
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in which case the sum of interest is

′∑
p1 6=p3,p4,
p3+p4

1

p2
1(p1 − p3)2(p1 − p4)2(p1 − p3 − p4)2

(5.9)

Exactly analogous steps confirm that in this case as well, x = 1/4 is the correct choice.
Proving that this is a general feature is the goal of the next subsection.

5.3 Definition of general Q1(p1, . . . , pn)

The general strategy is now clear. The appearance of Q1(p1, . . . , pn) in holomorphic subgraph
reduction of modular graph forms always comes from the decomposition of sums of the form

′∑
p 6=p1,...,pn

1

pa0(p− p1)a1 . . . (p− pn)an
(5.10)

for some external momenta pi and corresponding exponents ai, i = 1, . . . , n. We will assume
that all of the pi are distinct; if this is not the case, we can just increase the corresponding
exponents. We will also exclude the case of n = 1, a0 = a1 = 1, since in that case the sum
(5.10) is not absolutely convergent, and does not appear in any physical calculations.

It suffices to specialize to the case6

′∑
p 6=p1,...,pn

1

pa0(p− p1) . . . (p− pn)
(5.11)

6We may get a sum (5.10) with arbitrary ai, i = 1, . . . , n from (5.11) by differentiating with respect
to the external momenta pi. The validity of this interchange of derivatives and sums follows by uniform
convergence.
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For any a0, n ≥ 1 we may now use a partial-fraction decomposition to re-express7

′∑
p 6=p1,...,pn

[
1

pa0

n∏
i=1

1

p− pi

]
=

′∑
p 6=p1,...,pn

 n∑
i=1

 1

pa0i (p− pi)

n∏
j=1
j 6=i

1

pi − pj

+ (−1)n
a0∑
`=1

h`−1(p1, . . . , pn)

pa0−`+1
∏n

i=1 p
`
i


(5.14)

The hk(p1, . . . , pn) are symmetric polynomials in p1, . . . , pn of homogeneous order (n− 1)k,
defined by the following expression,

hk(p1, . . . , pn) =
k∑

a1,...,an=0
a=(n−1)k

n∏
i=1

paii (5.15)

with a = a1 + · · ·+ an.8

One way to carry out the summation over p in (5.14) is to choose a summation prescription
for which the sum over each individual term in the summand converges, and then to distribute
the sum over the individual terms. In particular, we may work with the Eisenstein summation
prescription, denoted by

∑
E

and defined in (B.1) of Appendix B.1, and then distribute the
sums in (5.14), yielding

n∑
i=1

 ′∑
E

p 6=p1,...,pn

1

p− pi
1

pa0i

n∏
j=1
j 6=i

1

pi − pj

+ (−1)n
a0∑
`=1

′∑
E

p 6=p1,...,pn

1

pa0−`+1

h`−1(p1, . . . , pn)∏n
i=1 p

`
i

(5.16)

7This can be proven by induction over n either directly, or alternatively by using the relations

n∏
i=1

1

p− pi
=

n∑
i=1

1

p− pi

n∏
j=1
j 6=i

1

pi − pj
(5.12)

and

n∑
i=1

1

pa0
i

n∏
j=1
j 6=i

1

pi − pj
= (−1)n+1ha0−1(p1, . . . , pn)

n∏
i=1

1

pa0
i

(5.13)

which may themselves be verified by inductive arguments.

8Note that unlike in the previous sections, a0 is now being used to refer to a single exponent, as opposed
to a sum over them.
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The contributions to this with one power of p in the denominator may be evaluted using the
identities (B.3),(B.6), and (5.13) to give

n∑
i=1


 2

pi
+

n∑
j=1
i 6=j

(
1

pi − pj
+

1

pj

)
+
π

τ2

(pi − p̄i)

 1

pa0i

n∏
j=1
i 6=j

1

pi − pj

 (5.17)

A second method to carry out the summation over p in (5.14) is to just distribute the sum
over each individual term in the summand regardless of convergence, and then to regularize
each of the individual sums in an appropriate way. This is the situation in which the
Q1(p1, . . . , pn) arise. We would now like to choose a definition for Q1(p1, . . . , pn) such that
we reproduce the result (5.17). The correct replacements for this matching are

′∑
p6=p1,...,pn

1

p
−→ Q1(p1, . . . , pn) (5.18)

′∑
p 6=p1,...,pn

1

pi − p
−→ Q1(pi, pi − p1, . . . , pi − pn︸ ︷︷ ︸

omit pi − pi

) (5.19)

with Q1(p1, . . . , pn) given by

Q1(p1, . . . , pn) = −
n∑
`=1

1

p`
− π

(n+ 1)τ2

n∑
`=1

(p` − p̄`) (5.20)

That this leads indeed to (5.17) can be straightforwardly verified. This form of Q1(p1, . . . , pn)
can also be obtained via Eisenstein summation of a certain linear combination of shifted sums,
as outlined in Appendix B.2.

Note that although the sum

′∑
p 6=p1,...,pn

1

p2
(5.21)

is only conditionally convergent, it does not have the same shift-dependence under Eisenstein
summation as

∑
1/p, and hence the definition of Q2(p1, . . . , pn) does not suffer from the same

ambiguities as Q1(p1, . . . , pn). For details see Appendix B.1.
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We now show that the regularization identified above,

Q1(p1, . . . , pn) = −
n∑
`=1

1

p`
− π

(n+ 1)τ2

n∑
`=1

(p` − p̄`)

Q2(p1, . . . , pn) = −
n∑
`=1

1

p2
`

+ Ĝ2 +
π

τ2

Qk(p1, . . . , pn) = Gk −
n∑
`=1

1

pk`
k ≥ 3 (5.22)

leads to a modular covariant final result for (5.11). Since we are interested only in the terms of
abnormal modular weight, we may discard all terms in the sum over ` for which a0−`+1 > 2.
For a0 ≥ 2, we insert (5.22) into (5.14) and keep only the terms − π

(n+1)τ2

∑n
`=1 p` in Q1 and

π
τ2

in Q2, to obtain9

τ2

π

′∑
p 6=p1,...,pn

1

pa0(p− p1) . . . (p− pn)

∣∣∣
abnorm

=
1

n+ 1
F (p1, . . . , pn; a0) + (−1)nha0−2(p1, . . . , pn)

n∏
i=1

1

pa0−1
i

(5.23)

where we have defined

F (p1, . . . , pn; a0) =
n∑
i=1

1

pa0i
∏n

j=1
j 6=i

(pi − pj)

[
pi −

n∑
k=1

(pk − pi)

]

+ (−1)n+1ha0−1(p1, . . . , pn)

(
n∏
i=1

1

pa0i

)
n∑
j=1

pj (5.24)

The first line of (5.24) can be rewritten as

n∑
i=1

1

pa0i
∏n

j=1
j 6=i

(pi − pj)

[
pi −

n∑
k=1

(pk − pi)

]

= (n+ 1)
n∑
i=1

1

pa0−1
i

n∏
j=1
j 6=i

1

pi − pj
−

n∑
i=1

1

pa0i

n∏
j=1
j 6=i

1

pi − pj

n∑
k=1

pk (5.25)

Applying (5.13) to both terms of (5.25) and plugging this back into (5.24) yields

F (p1, . . . , pn; a0) = (−1)n+1(n+ 1)ha0−2(p1, . . . , pn)
n∏
i=1

1

pa0−1
i

(5.26)

9For a0 = 1, n ≥ 2, one finds F (p1, . . . , pn; 1) = 0 and the second term in (5.23) is absent.
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Using this in (5.23) then gives

τ2

π

′∑
p 6=p1,...,pn

1

pa0(p− p1) . . . (p− pn)

∣∣∣
abnorm

= 0 (5.27)

which confirms that for the Qk defined in (5.22) the terms of abnormal modular weight do
indeed cancel out, and the final result of the holomorphic subgraph reduction procedure is
modular covariant.

6 Summary

In this work, we have extended the results of [1] to obtain holomorphic subgraph reduction
formulae for trihedral modular graph forms. The two-point holomorphic subgraph reduc-
tion formula was given in (4.5), and is a simple generalization of the two-point formula for
dihedral modular graph forms. The three-point holomorphic subgraph reduction formula
is considerably more involved, and was given in (4.29). It involves a sum over five pieces,
which were given in (4.21)-(4.24) and (4.27). While this result seems rather involved, it is
easy to implement digitally, and has already yielded physically useful results in the context
of heterotic string amplitudes [13].

The method by which we obtained these results involved the decomposition of absolutely
convergent sums into a number of divergent or conditionally convergent sums, for which
the appropriate, modular covariant regularization scheme (5.22) was identified. With this
in hand, it is straightforward to perform holomorphic subgraph reduction on higher-valence
modular graph forms with arbitrary holomorphic subgraphs. The extension of the explicit
formulae to the general case is left to the ambitious reader.

Acknowledgments

We thank Axel Kleinschmidt, Oliver Schlotterer, Eric D’Hoker, and Bill Duke for enlighten-
ing discussions. J.G. also thanks Axel Kleinschmidt and Oliver Schlotterer for collaboration
on related topics that initiated the present work. J.G. is supported by the International Max
Planck Research School for Mathematical and Physical Aspects of Gravitation, Cosmology
and Quantum Field Theory. J.K. would like to thank the Yukawa Institute for Theoretical
Physics and the Simons Center for Geometry and Physics for their hospitality during the
completion of this work, and the Mani L. Bhaumik Institute for Theoretical Physics for
generous support.

30



A Trihedral holomorphic subgraph reduction without

Qi(p1,..., pn)

In this section we outline derivations of the decompositions (4.39) and (4.41) which do
not involve divergent sums which must be regularized. This will serve as a check for the
consistency of our regularization procedure. Note that derivations of this sort must be found
on a case-by-case basis, and do not admit a nice systematization like that studied in the
main text.

First, consider the sum(
π

τ2

)4

C
[
1 1
1 0

∣∣∣∣1 2
1 0

∣∣∣∣10
]

=
′∑

p1,p2,p3
p1+p2 6=0
p1+p3 6=0

1

|p2|2|p3|2
1

p1(p1 + p2)(p1 + p3)2
(A.1)

Using the decomposition

1

p1(p1 + p2)(p1 + p3)2
=

(
1

p1p2

− 1

p2(p1 + p2)

)
1

(p1 + p3)2
(A.2)

and including and subtracting the terms with p1 + p2 = 0 in the first sum and the terms
with p1 = 0 in the second sum, this can be rewritten as(

π

τ2

)4

C
[
1 1
1 0

∣∣∣∣1 2
1 0

∣∣∣∣10
]

=
′∑

p1,p2,p3
p1+p3 6=0

1

|p2|2|p3|3
1

p1p2(p1 + p3)2
+

′∑
p2,p3
p2 6=p3

1

|p2|2|p3|2
1

p2
2(p2 − p3)2

−
∑

p1,p2,p3
p2,p3 6=0
p1+p2 6=0
p1+p3 6=0

1

|p2|2|p3|2
1

p2(p1 + p2)(p1 + p3)2
+

′∑
p2,p3 6=0

1

|p2|2|p3|2
1

p2
2p

2
3

(A.3)

In the first term, the sum over p2 factorizes and vanishes by antisymmetry. The second term
is dihedral and the last term factorizes completely. The third term can be shown to be a
dihedral modular graph form by relabeling p1 → p1 − p3 and then p3 → −p3,∑

p1,p2,p3
p2,p3 6=0
p1+p2 6=0
p1+p3 6=0

1

|p2|2|p3|2
1

p2(p1 + p2)(p1 + p3)2
=

′∑
p1,p2,p3

p1+p2+p3 6=0

1

|p2|2|p3|2
1

p2
1p2(p1 + p2 + p3)

= −
(
π

τ2

)4

C
[
1 2 1 2
0 0 1 1

]
(A.4)
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Collecting all terms, we obtain the decomposition

C
[
1 1
1 0

∣∣∣∣1 2
1 0

∣∣∣∣10
]

= C
[
3 0
1 0

]2

+ C
[
3 1 2
1 1 0

]
+ C

[
1 2 1 2
0 0 1 1

]
(A.5)

Using dihedral holomorphic subgraph reduction on the last term confirms the earlier result
(4.39). Note that in this derivation, all the sums appearing in every step were absolutely
convergent and no regularization was needed.

As a second example, consider(
π

τ2

)4

C
[
2
0

∣∣∣∣1 1
0 1

∣∣∣∣1 1
0 1

]
=

′∑
p1,p2,p3
p1+p2 6=0
p1+p3 6=0

1

|p2|2|p3|2
1

p2
1(p1 + p2)(p1 + p3)

(A.6)

We begin by reorganizing p1 as p4 ≡ p1 + p2, resulting in

′∑
p2,p3,p4
p4−p2 6=0

p4−p2+p3 6=0

1

|p2|2|p3|2
1

p4(p4 − p2)2(p4 − p2 + p3)
(A.7)

Using partial fraction decomposition, this can be transformed into

′∑
p2,p3,p4
p4−p2 6=0

p4−p2+p3 6=0

1

|p2|2|p3|2

(
1

p2(p4 − p2)2(p4 − p2 + p3)
− 1

p2p4(p4 − p2)(p4 − p2 + p3)

)
(A.8)

We now return to p1 = p4 − p2 in the first term and decompose the second term once more,
leading to

′∑
p1,p2,p3
p1+p2 6=0
p1+p3 6=0

1

|p2|2|p3|2
1

p2
1p2(p1 + p3)

−
′∑

p2,p3,p4
p4−p2 6=0

p4−p2+p3 6=0

1

|p2|3|p3|2

(
1

p2p2
4(p4 − p2 + p3)

+
1

p3p2
4(p4 − p2)

− 1

p3p2
4(p4 − p2 + p3)

)

(A.9)

Evaluating the first term leads to

′∑
p1,p2,p3
p1+p2 6=0
p1+p3 6=0

1

|p2|2|p3|2
1

p2
1p2(p1 + p3)

=
′∑

p1,p2,p3
p1+p3 6=0

1

|p2|2|p3|2
1

p2
1p2(p1 + p3)

+
′∑

p1,p3
p1+p3 6=0

1

|p1|2|p3|2
1

p3
1(p1 + p3)

(A.10)
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The first term in the above vanishes due to antisymmetry in p2, while the second one is
dihedral, and hence

′∑
p1,p2,p3
p1+p2 6=0
p1+p3 6=0

1

|p2|2|p3|2
1

p2
1p2(p1 + p3)

= −
(
π

τ2

)4

C
[
4 1 1
1 1 0

]
(A.11)

Similarly, we evaluate the second term in (A.9), yielding

′∑
p2,p3,p4
p4−p2 6=0

p4−p2+p3 6=0

1

|p2|3|p3|2

(
1

p2p2
4(p4 − p2 + p3)

+
1

p3p2
4(p4 − p2)

− 1

p3p2
4(p4 − p2 + p3)

)

=

(
π

τ2

)4
{

2 C
[
2 1 2 1
1 1 0 0

]
+ C

[
1 3 2
1 1 0

]
+ C

[
3 0
1 0

]2
}

(A.12)

Putting everything together yields the final expression

C
[
2
0

∣∣∣∣1 1
0 1

∣∣∣∣1 1
0 1

]
= −2 C

[
2 1 2 1
1 1 0 0

]
− C

[
4 1 1
1 1 0

]
− C

[
1 3 2
1 1 0

]
− C

[
3 0
1 0

]2

(A.13)

which, upon dihedral holomorphic subgraph reduction of the first term and usage of some
further dihedral identities, yields (4.41).
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B Eisenstein summation

B.1 Eisenstein summation of simple sums

In this Appendix, we apply the Eisenstein summation prescription to sums which are needed
to evaluate the expression (5.14). The Eisenstein summation prescription is defined as fol-
lows,

′∑
E

p/∈P

f(p) ≡ lim
N→∞

N∑
n=−N
n6=0
n/∈NP

(
lim
M→∞

M∑
m=−M

f(m+ nτ)

)
+ lim

M→∞

M∑
m=−M
m6=0

f(m) +

|P |∑
i=1

lim
M→∞

M∑
m=−M
m6=mi

f(m+ niτ)

= lim
N→∞

N∑
n=−N
n 6=0

(
lim
M→∞

M∑
m=−M

f(m+ nτ)

)
+ lim

M→∞

M∑
m=−M
m6=0

f(m)−
∑
p∈P

f(p) (B.1)

where P ≡
{
pi = mi + niτ

∣∣ i = 1, . . . , n
}

is the set of excluded momenta andNP ≡
{
ni
∣∣ i = 1, . . . , n

}
.

We first consider the case f(p) = 1/p. Then the sum over 1/m vanishes by antisymmetry.
For the sum over 1

m+nτ
, we use the trigonometric identity

lim
M→∞

M∑
m=−M

1

m+ nτ
= −iπ1 + qn

1− qn
(B.2)

The sum of this over n also vanishes by antisymmetry. Hence, the only remaining term is
the last one in (B.1), and we obtain

′∑
E

p/∈P

1

p
= −

∑
p∈P

1

p
(B.3)

In a similar fashion, we may now consider the case in which f(p) = 1/(pi − p). Again using
vanishing of the sum over 1/m, as well as (B.2), we have

′∑
E

p/∈P

1

pi − p
=

1

pi
−
∑
p∈P
p 6=pi

1

pi − p
− iπ lim

N→∞

N+ni∑
n=−N+ni

n6=0

1 + qn

1− qn
(B.4)

Now the final sum does not vanish due to the asymmetric summation range. Indeed, noting
that

1 + qn

1− qn
−→ ±1 (n→ ±∞) (B.5)
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we obtain the result

′∑
E

p/∈P

1

pi − p
= − 1

pi
−
∑
p∈P
p 6=pi

1

pi − p
− π

τ2

(pi − p̄i) (B.6)

Note that this illustrates an important point: upon Eisenstein summation the sum
∑′

p
1
p

is not invariant under shifts of the summation variable p→ p−pi. This effect does not occur
for sums of the form

∑′
p

1
pk

with k ≥ 3 since they are absolutely convergent. For the case
k = 2, the sum is conditionally convergent. But because

lim
M→∞

M∑
m=−M

1

(m+ nτ)2
= −4π2 qn

(1− qn)2
−→ 0 (n→ ±∞) (B.7)

the regularization in this case is found to not be shift dependent, leaving us with the result

Q2(p1, . . . , pn) ≡
′∑

E
p 6=p1,...,pn

1

p2
= −

n∑
i=1

1

p2
i

+ Ĝ2 +
π

τ2

(B.8)

B.2 Q1(p1, . . . , pn) from shifted sums

We now obtain the expression for Q1(p1, . . . , pn) given in (5.22) of the main text by Eisenstein
summing a certain linear combination of shifted sums. We start by defining

Q1(p1, . . . , pn) ≡ 1

2

 ′∑
E

p 6=p1,...,pn

1

p
+

1

n+ 1

n∑
i=1

∑
E

p 6=pi
p/∈Pi

1

pi − p
+

1

n+ 1

∑
E

p 6=p0
p/∈P0

1

p0 − p

 (B.9)

where we have defined p0 ≡
∑n

i=1 pi, as well as the set Pk ≡ {pk − pj|j = 1, . . . , n}. Using
the identities (B.3) and (B.6) from the previous section, we can evaluate (B.9), yielding

Q1(p1, . . . , pn) = −1

2

[
n∑
i=1

1

pi
+

1

n+ 1

n∑
i=1

n∑
j=1

1

pj
+

1

n+ 1

n∑
j=1

1

pj

+
π

(n+ 1)τ2

(
n∑
i=1

(pi − p̄i) + p0 − p̄0

)]

= −
n∑
i=1

1

pi
− π

(n+ 1)τ2

n∑
i=1

(pi − p̄i) (B.10)
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