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Abstract

We give a general definition of the conformal anomaly for theories that are not classically Weyl
invariant and show that this definition yields a quantity that is both finite and local. As an example
we study the conformal anomaly for a non-minimally coupled massless scalar and show that our
definition coincides with results obtained using the heat kernel method.

1 Introduction

Conformal anomalies have been the focus of much study since the 1970s [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16]. One aspect, however, that has not received so much attention concerns
the significance of conformal anomalies in theories that are not classically conformal (or Weyl)
invariant. One main reason for the interest in this question is the fact that the most interesting
cancellations of conformal anomalies occur in non-conformal supergravities for N ≥ 5 [17] (whereas
conformal supergravities stop at N = 4, and cancellations require very special matter couplings
[9]). The full significance of these cancellations has not been fully understood so far; moreover there
is a pending issue concerning the dependence of the a and c coefficients on the gauge choice for
the external gravitational field for fields of spin ≥ 3

2 that remains to be resolved. In this paper we
focus on the investigation of the conformal anomaly and its significance for the specific example of
the non-conformal scalar field. For this we follow a recent recalculation of the anomaly for spin- 1

2
fields [18], which is based on an evaluation of Feynman diagrams largely analogous to (though much
more involved than) the textbook derivation of the axial anomaly in gauge theories. The spin-0 field
coupled to a background gravitational field represents the simplest example in which to consider
non-conformal deformations, and has the added advantage that there is a tunable parameter ξ,
such that for one special value of ξ the theory becomes conformal.

For any theory, whether conformal or not, we adopt the following general definition of the
conformal anomaly

A(x) := lim
ε→0

[

g(4)µν
〈

Tµν(x)
〉

−
〈

gµνTµν(x)
〉

]

. (1)

where ε ≡ 1
2 (d−4) is the regularization parameter in dimensional regularization, and the superscript

on gµν indicates the dimension in which the trace is to be performed (we do not yet specify
this dimension in the second term, because there is a choice which does not affect the physically
significant part of the anomaly, as we will explain below). Here the second term removes the
classical violation of conformal invariance, reflected in a non-vanishing trace of the classical stress-
energy tensor – the difference between the quantum trace and the expectation value of the classical
trace is what produces the conformal anomaly. We show in section 2 that this definition yields a
result that is always finite and local for any theory, including theories that are not classically Weyl
invariant, and hence to which one would not normally associate a Weyl anomaly. Furthermore we
will see that in the non-conformal case the two terms on the r.h.s. of (1) by themselves do not
produce a meaningful answer because they separately exhibit divergences and non-local terms which
only cancel in the difference: this is the reason the difference must be taken before removing the
regulator. In section 2 below we present a general argument why this is always true. Furthermore,

∗lorenzo.casarin@aei.mpg.de
†hadi.godazgar@aei.mpg.de
‡hermann.nicolai@aei.mpg.de

1

http://arxiv.org/abs/1809.06681v1


in the case of a non-minimally coupled scalar we show that the coefficients of E4 (Euler number)
and C2 in the anomaly do not depend on the value of ξ, whereas the coefficient of �R does depend
on ξ (but the a and c coefficients may start to depend on various couplings in higher loop orders
in the presence of interactions, as there appears to be no analog of the Adler-Bardeen theorem for
the conformal anomaly).

For the non-minimally coupled scalar, our conformal anomaly agrees with the heat kernel coeffi-
cient a2 up to the coefficient of the scheme-dependent contribution �R [7], giving an interpretation
for the heat kernel coefficient in the non-conformal case. Although our calculation therefore mostly
recovers known results, our derivation differs from previous ones and exhibits several new features.
One of these is that, for non-conformal theories, the anomaly as defined in (1) need not satisfy the
Wess-Zumino (WZ) consistency condition

δ
(√−gA(x)

)

δσ(y)
=

δ
(√−gA(y)

)

δσ(x)
(2)

where σ ≡ log(−g) is the conformal factor. As a result on the r.h.s. of (1) for non-conformal
theories there will appear in addition to the usual E4 , C2 and �R anomalies (which do satisfy
the WZ condition) extra terms proportional to R2 (which does not satisfy the WZ condition). A
further new result of this paper is the explicit structure of the pole terms which has not been given
in the literature to the best of our knowledge, but which can alternatively be derived from heat
kernel methods as we will show.

While the properties of a quantum field theory at criticality are well-understood because of Weyl
symmetry, or conformal symmetry in the flat space limit, it is less understood how these properties
are modified away from criticality. For example, it is known that there is a monotonically decreasing
function that interpolates between a UV fixed point and an IR fixed point [19]. By studying the
trace of the stress tensor away from criticality we hope to identify properties of the trace that may
be preserved even away from the point, albeit, in this case, with a deformation that requires a
non-trivial metric background.

2 Conformal anomaly for non-Weyl invariant theories

Before entering into the details of the spin zero case, we would like to present a general argument
why (1) always produces a finite and local result, provided all divergences are local. As we said
above, we wish to define the analogue of the conformal anomaly for theories that are not necessarily
classically Weyl invariant. In the general case, the trace of the expectation value of the stress tensor
(first term on the r.h.s. of (1)) will be both divergent and non-local. Even if we renormalise the
theory in order to remove the divergence we will only be guaranteed a local expression when the
theory is classically Weyl invariant, the expression thus being the anomaly. If we however take
definition (1), which reduces to the standard anomaly for theories that are Weyl invariant, we can
show that the expression will be both finite and local.

The expectation value of the operator Tµν(x), in a theory regularised with dimensional regular-
isation, reads

〈Tµν(x)〉 =
Pµν(x)

ε
+ Fµν(x) (3)

where Pµν and Fµν are the pole and the finite part of the expansion of the expectation value. In
general such expectation value is divergent (and requires renormalisation to yield a finite result).
Here we show that, provided the pole Pµν is local, the quantity (1) is finite and local. We stress
that this is the case in any local quantum field theory where the calculation is performed to n-loops
provided all the divergences from (n − 1) loops have been subtracted; in particular this is true for
n = 1, that is the case of interest here. For the conformal anomaly, as defined in equation (1),
to be local at higher loop order we must therefore use the action renormalised up to the previous
loop order. The first term on the r.h.s. of (1) is to be computed considering the four-dimensional
trace (i.e. gµνgµν = 4) of (3) after computing the regularised expectation value of Tµν . For the
second we take the classical trace before computing the expectation value. Here we have the choice
of taking the trace in d or in four dimensions. For the d-dimensional trace we note the identity

g(d)µν
〈

Tµν

〉

=
〈

g(d)µνTµν

〉

(4)

whence the two operations of taking the trace and taking the expectation value commute with this
choice. This is no longer the case if the trace is taken in four dimensions. If the trace inside the
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bracket is taken in d dimensions we thus arrive at the alternative formula

A(x) := lim
ε→0

[

(

g(4)µν − g(d)µν
)〈

Tµν(x)
〉

]

. (5)

For the special example of the scalar field studied in this paper we will find that the difference
〈

(g(d)µν −g(4)µν)Tµν(x)
〉

is proportional to �R, and can thus be absorbed into a local counterterm.
Hence the choice of dimension in the second term on the r.h.s. of (1) has no intrinsic physical
significance, at least for the case at hand. The above formula also shows why the WZ consistency
condition fails if the second term on the r.h.s. of (5) does not vanish: there is then no func-
tional differential operator δ/δσ̃(x) to reproduce the r.h.s. by acting on some regularized effective
functional.

From these observations it follows that

g(4) µν 〈Tµν(x)〉 =
g(4) µνPµν(x)

ε
+ g(4) µνFµν(x) =

P (x, 4)

ε
+ F (x, 4) (6)

〈g(4−2ε) µν Tµν(x)〉 =
g(4−2ε) µνPµν(x)

ε
+ g(4−2ε) µνFµν(x) =

P (x, 4 − 2ε)

ε
+ F (x, 4 − 2ε) (7)

making use of (4) and defining P (x, d) := g(d) µνPµν(x), namely the second argument of P is the
trace of g (similarly for F ) or the dimension of spacetime. Expanding (7) in powers of ε yields for
A(x) the expression

A(x) = 2P ′(x, 4) + O(ε) (8)

where the ′ indicate derivative with respect to second argument. This discussion also shows that
the terms contributing to (8) are only those with an explicit factor of gµν(x), and not other tensors
for which the difference between a contraction in different dimensions vanishes (e.g. gµνRµν = R
both for D = 4 and for D = 4 − 2ε). We will verify this explicitly in the case of the non-minimally
coupled scalar.

3 Scalar field

We start with the action for a real scalar in d dimensions1

S = −1

2

∫

ddx
√−g φ (−� + ξR) φ (9)

with the associated stress-energy tensor

Tµν =
2√−g

gµαgνβ

δS

δgαβ

(10)

= ∂µφ∂νφ − 1

2
gµν∂αφ∂αφ + ξφ2

(

Rµν − 1

2
gµνR

)

− ξ
(

∇µ∂νφ2 − gµν∇α∂αφ2
)

. (11)

By virtue of the equation of motion (�φ = ξRφ) this trace is covariantly conserved, ∇µTµν = 0,
for any ξ. In d dimensions, this action is furthermore conformally invariant if and only if ξ = ξd

with

ξd ≡ d − 2

4(d − 1)
. (12)

Accordingly, the trace of the stress-energy tensor vanishes on-shell for ξ = ξd, since

gµνTµν = 2(d − 1)(ξ − ξd)
(

∂αφ∂αφ + ξRφ2
)

= (d − 1)(ξ − ξd)�
(

φ2
)

. (13)

For the perturbative determination of the anomaly (1) we follow the same procedure as in [18]
and expand the metric in the usual way

gµν = ηµν + hµν . (14)

with ensuing expansions of the action and the stress-energy tensor in powers of hµν ,

S = S(0) + S(1) + S(2) + . . . (15)

Tµν = T (0)
µν + T (1)

µν + T (2)
µν + . . . (16)

1Throughout this paper we use the mostly plus signature ηµν = diag( − + + + ).
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where the superscript (n) corresponds to the collection of all term of O(hn). The quantity to be
computed is then

〈

Tµν(x)
〉

=
〈

(

T (0)
µν (x) + T (1)

µν (x) + · · ·
)

ei(S(1)+S(2)+··· )
〉

0
(17)

where 〈· · · 〉0 refers to the free scalar expectation value (below we will often drop the subscript 0
when it is obvious what is meant). The evaluation of the Feynman diagrams resulting from this
expansion is completely analogous to the calculation performed in [18] to which we refer for further
technical details.

4 Computations at O(h)

The computations at O(h) are straightforward, and are only included here for completeness. At
first order in the metric perturbation the expectation value of the stress tensor is

〈Tµν(x)〉 = i
〈

T (0)
µν (x)S(1)

〉

0
+ O(h2). (18)

We write

i
〈

T (0)
µν (x)S(1)

〉

0
= −i

∫

ddy

∫

ddp

(2π)d
e−ip(x−y)Tµναβ(p)hαβ(y), (19)

where Tµναβ(p) is the two-point function of stress tensor,

µν αβ

k − p

k

p

= Tµναβ(p) =

∫

ddk

(2π)d

1

k2(k − p)2
Vµν(k − p, −k) Vαβ(k, p − k) (20)

with

τσ

−k − ℓ
k

ℓ
= τσ

k

ℓ
= Vτσ(k, ℓ) ≡ 1

2
(k·ℓ)ητσ−k(τ ℓσ)+ξ

(

(k+ℓ)τ (k+ℓ)σ−ητσ(k+ℓ)2
)

(21)
Conservation of the stress tensor at O(h) follows directly from

pµTµναβ(p) = 0, (22)

which itself is a consequence of the vanishing of tadpole integrals.
It is now straightforward to take the trace of the expectation value of the stress-energy tensor

gµν
〈

Tµν(x)
〉

= −iηµν

∫

d4y

∫

ddp

(2π)d
e−ip(x−y)Tµναβ(p)hαβ(y) + O(h2). (23)

We are interested in the result for arbitrary ξ. After some calculation, and taking the four-
dimensional trace of the regularised integral we obtain, up to higher powers of ε

η(4)µνTµναβ(p) = − ip2
(

pαpβ − ηαβp2
)

(4π)2

[

(6ξ − 1)
2

12

(

1

ε
+ 2 − γE − log

p2

4πµ2

)

− 1

15

(

11

12
− 5ξ

)

]

.

(24)

For non-conformal values of ξ 6= 1
6 , this trace exhibits a pole as well as a non-local contribution

∝ log(p2/µ2) (µ2 is the usual regularisation scale). To remove these terms we next evaluate the
expectation value of the regularised on-shell trace of the energy-momentum tensor at order O(h),
i.e.

〈

g(d)µνTµν(x)
〉
∣

∣

O(h)
= i

〈

(d − 1)(ξ − ξd)�(φ2) S(1)
〉

= −i

∫

ddy

∫

ddp

(2π)d
e−ip(x−y)ταβ(p)hαβ(y);

(25)
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where we kept the factor (d − 1)(ξ − ξd) inside the expectation value to indicate that it has to be
expanded as d = 4 − 2ε; ταβ(p) is given by the expression

ταβ(p) ≡ (d − 1)(ξ − ξd)p2

∫

ddk

(2π)d

1

k2(k − p)2
Vαβ(p − k, k). (26)

The evaluation of (26) is straightforward, and leads to

ταβ(p) = − ip2
(

pαpβ − p2ηαβ

)

(4π)2

[

(6ξ − 1)2

12

(

1

ε
+ 2 − γE − log

p2

4πµ2

)

− (6ξ − 1) (3ξ − 1)

9

]

. (27)

We see that both the pole and the non-local term match precisely with (24) to produce a finite and
local result. We also notice that the subtraction alters the coefficient of �R, so in the limit ε → 0
we end up with

Aξ = lim
ε→0

[

gµν
〈

Tµν(x)
〉

ξ
− 〈g(4−2ε)µνTµν(x)〉ξ

]

=
1

180(4π)2
(1 − 10(1 − 6ξ)2)�R. (28)

In removing the classical trace, we could also use dimensional regularisation by dimensional
reduction whereby we treat the contractions over momenta (or derivatives in position space) as
d-dimensional but traces as 4-dimensional. The result in this case reads

A(BD)
ξ = gµν

〈

Tµν(x)
〉

− 〈g(4) µνTµν(x)〉 =
1

30(4π)2
(1 − 5ξ)�R. (29)

The new coefficient matches with that given by Birrell and Davies [7, p. 179]. We see that the
different prescription affects the coefficient of the �R contribution, which is a scheme-dependent
contribution and can in any case be tuned to any desired value by choice of a suitable R2 coun-
terterm, whence this coefficient has no intrinsic significance. This is in marked contrast to the
coefficients of the E4 and C2 anomalies at O(h2) which exhibit no such prescription dependence.
This is the reason why the nice trick that allows the c-coefficient to be determined from the O(h)
computation [2] (see also [18]) no longer works for non-conformal theories. Consequently for ξ 6= 1

6
the determination of the a and c coefficients requires a calculation at O(h2).

Let us also consider the tensor structure of the pole of 〈Tµν〉 at first order in h of the expectation
value of the stress energy tensor as computed through (19). Given that the expression must be
local, generally covariant and must have dimension +4, this restricts it to the form

〈Tµν〉 =
1

(4π)2ε

[

a1 gµν�R + a2 ∇µ∇νR + a3 �Rµν

]

+ O(h2). (30)

Using the first order expansions for the Ricci tensor and Ricci scalar, we can match the expansion
term by term and we get

a1 =
−3 + 40ξ − 120ξ2

120
, a2 =

1 − 10ξ + 30ξ2

30
, a3 = − 1

60
. (31)

As a check, we can trace over µν indices, and indeed we obtain, to first order in h

gµν 〈Tµν〉 =
1

(4π)2

4a1 + a2 + a3

ε
�R = − (1 − 6ξ)2

12(4π)2ε
�R (32)

which matches with the pole of (24).
Furthermore, using the arguments of section 2, we can see that the anomaly, Aξ, should only

depend on the coefficient a1 in (30), namely

Aξ =
1

(4π)2
2a1, (33)

which indeed agrees with equation (28).

5 Computations at O(h2)

The computation is considerably more involved at second order in h, but works along similar lines
to those in [18]; for this reason we here display only the salient results. 2 At second order we have

〈Tµν(x)〉
∣

∣

∣

O(h2)
= i

〈

T (0)
µν (x)S(2)

〉

0
− 1

2

〈

T (0)
µν (x)S(1)S(1)

〉

0
+ i

〈

T (1)
µν (x)S(1)

〉

0
. (34)

2Full details of the computation will be provided in the forthcoming thesis by one of the authors (L. Casarin).
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We write

i
〈

T (0)
µν (x)S(2)

〉

0
= −i

∫

ddy ddz

∫

ddp

(2π)d

ddq

(2π)d
eip(x−y)eiq(z−y)hαβ(y)hρσ(z) T

[2]
µναβρσ(p, q),

(35)

−1

2

〈

T (0)
µν (x)S(1)S(1)

〉

0
= −i

∫

ddy ddz

∫

ddp

(2π)d

ddq

(2π)d
eip(x−y)eiq(z−y)hαβ(y)hρσ(z) T

[3]
µναβρσ(p, q),

(36)

i
〈

T (1)
µν (x)S(1)

〉

0
= −i

∫

ddy ddz

∫

ddp

(2π)d

ddq

(2π)d
eip(x−y)eiq(z−y)hαβ(y)hρσ(z) T

[4]
µναβρσ(p + q, −q).

(37)

In the last integral, we have rewritten h(x) as the inverse Fourier transform of its Fourier transform
and shifted the integration variables as (p, q) → (p+q, −q) to make the exponential factors uniform.
The functions above read

T
[2]
µναβρσ(p, q) = µν

αβ

ρσ

k − p

k −q

p + q

=

∫

ddk

(2π)d

1

k2(k − p)2
Vµν(k − p, −k) Wαβρσ(k − p, −k, p + q, −q), (38)

T
[3]
µναβρσ(p, q) = µν

αβ

ρσ

k − p

k

k − q

−q

p + q

=

∫

ddk

(2π)d

1

k2(k − p)2(k + q)2
Vµν(k − p, −k) Vαβ(k + q, p − k) Vρσ(k + q, −k), (39)

T
[4]
µναβρσ(p, q) =

µν

q

ρσ αβ

k − p

k

p

=

∫

ddk

(2π)d

1

k2(k − p)2
V (1)

µν;ρσ(k, p − k, q) Vαβ(k, p − k). (40)

The vertex function Vµν(k, ℓ) was already defined in (21); the remaining ones are

αβ

ρσ

p

q

k

ℓ
= Wαβρσ(k, ℓ, p, q)|

p+q+k+ℓ=0 = W
(1)
αβρσ(k, ℓ) + ξW

(2)
αβρσ(p, q) (41)

where

W
(1)
αβρσ(k, ℓ) = −1

4
ηρ(αηβ)σkℓ +

1

8
ηαβηρσkℓ − 1

4
ηαβk(ρℓσ) − 1

4
ηρσk(αℓβ) +

1

2
k(αηβ)(ρℓσ) +

1

2
ℓ(αηβ)(ρkσ)

(42)

W
(2)
αβρσ(p, q) =

1

4
ηαβqρqσ +

1

4
ηρσpαpβ − 1

4
ηαβηρσq2 − 1

4
ηαβηρσp2 +

3

4
ηρ(αηβ)σpq − 1

2
q(αηβ)(ρpσ)

(43)
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+
1

2
ηρ(αηβ)σq2 +

1

2
ηρ(αηβ)σp2 +

1

2
ηρσqαqβ +

1

2
ηαβpρpσ − q(αηβ)(ρqσ) − p(αηβ)(ρpσ)

+
1

2
ηαβp(ρqσ) +

1

2
ηρσp(αqβ) − 1

4
ηαβηρσpq − p(αηβ)(ρqσ)

and

µν

ρσ

k

ℓ

q

= V (1)
µν;ρσ(k, ℓ, q) = V (1);0

µν;ρσ(k, ℓ) + V (1);1
µν;ρσ(k + ℓ, q) + V (1);2

µν;ρσ(q) (44)

where

V (1);0
µν;ρσ(k, ℓ) =

1

2
ηµ(ρησ)νk · ℓ − 1

2
ηµνk(ρℓσ) − ξ

(

ηµ(ρησ)ν(k + ℓ)2 − ηµν(k + ℓ)(ρ(k + ℓ)σ)

)

(45)

V (1);1
µν;ρσ(ℓ, q) = −ξ

[

q(µην)(ρℓσ) − ηµνq(ρℓσ) − 1

2
ηµ(ρησ)νq · ℓ +

1

2
ηµνηρσq · ℓ

]

(46)

V (1);2
µν;ρσ(q) = −ξ

[

q(ρησ)(µqν) − 1

2
q2ηµ(ρησ)ν − 1

2
ηρσqµqν − 1

2
ηµνqρqσ +

1

2
ηµνηρσq2

]

(47)

At second order in h covariant conservation of the stress tensor requires

∇µ 〈Tµν(x)〉 = ∂µ 〈Tµν(x)〉
O(h2)

− hµρ∂ρ 〈Tµν(x)〉
O(h) − 1

2
(2∂µhµρ − ∂ρh) 〈Tρν(x)〉

O(h) − 1

2
∂νhµρ 〈Tµρ(x)〉

O(h)

(48)

as can be confirmed by a somewhat tedious calculation which is, however, completely analogous to
the one performed in [18].

To determine the anomaly we recall the known result for the Weyl invariant case (ξ = 1
6 ), which

reads [4, 5]

A = g(4)µν(x) 〈Tµν(x)〉
∣

∣

∣

ξ= 1
6

=
1

180(4π)2

[

Riem2 − Ric2 + �R
]

(49)

=
1

180(4π)2

[

−1

2
E4 +

3

2
C2 + �R

]

. (50)

We now perform the calculation for arbitrary ξ. In this case the computation is substantially
more involved, and for this reason we had to make use of a Mathematica code, in particular we
exploited the HEPMath package [22]. Schematically for the two contributions to (1) we find

g(4)µν(x)
〈

Tµν(x)
〉

ξ
= − (6ξ − 1)2

12(4π)2 ε
�R + A + O(ε)

〈gµν(x)Tµν(x)〉
ξ

= − (6ξ − 1)2

12(4π)2 ε
�R + B + O(ε) (51)

for the regularized expressions. The poles correctly cancel with each other and vanish, as does B,
when ξ = 1/6. However, for generic ξ the functions A and B are very complicated with about
15 000 terms each; most of these are non-local, involving expressions like 1/((pq)2 − p2q2)4, log p2,
log (p + q)2 in the momentum space integrals. All these terms come from the diagrams with three
external legs, as well as the finite scalar loop integral J111 (see [18]). Remarkably in the difference
A−B, all these unwanted terms cancel, leaving a much simpler expression that in momentum space
contains less than 200 terms and combines correctly into the second order expressions required for
the covariant expressions in the curvature tensor. The final result is

Aξ = g(4)µν(x) 〈Tµν(x)〉
ξ

− 〈gµν(x)Tµν(x)〉
ξ

=
1

180(4π)2

[

Riem2 − Ric2 +
(

1 − 10(1 − 6ξ)2
)

�R +
5

2
(1 − 6ξ)2R2

]

(52)

notice that the coefficient in front of �R matches the result from O(h) in (28). This result matches
with the one reported in [7] up to the coefficient of �R, which matches the one we found in
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(29). Following the discussion around equations (28) and (29), we can trace the difference to the
subtraction of a different classical contribution, which is not made explicit in [7]. Observe also
that, as we already anticipated, for ξ 6= 1

6 there appears on the r.h.s. a contribution ∝ R2 which
does not satisfy the WZ condition. The result shows that the anomaly proper – that is, the terms
that cannot be removed by local counterterms and that satisfy the WZ condition – are indeed
independent of ξ and thus universal. However it remains to be seen whether this conclusion also
holds in a more general context.

As for O(h) we can now explicitly exhibit the structure of the pole of 〈Tµν〉 at order O(h2). The
pole of the expectation value of the stress-energy tensor is a local generally covariant expression
with four derivatives acting on the metric. This constrains the expression to be of the form

〈Tµν〉 =
1

(4π)2ε

[

a1 gµνR2 + a2 RRµν + a3 gµνRαβRαβ + a4 Rα
µRαν + a5 RαβRµαβν

+ a6 R αβγ
µ Rναβγ + a7 gµνRαβγδRαβγδ + a8 ∇µ∇νR + a9 gµν�R + a10 �Rµν

]

,

(53)
Any other term can be related to those written above via Bianchi identities and symmetry argu-
ments. Writing out the O(h2) expansions for all these contributions, and matching with the second
order results of our computations we get

a1 =
(1 − 6ξ)2

144
, a2 = − (1 − 6ξ)2

36
, a3 = − 1

360
,

a4 =
1

45
, a5 =

1

90
, a6 = − 1

90
, a7 =

1

360
,

a8 =
1 − 10ξ + 30ξ2

30
, a9 = −3 − 40ξ + 120ξ2

120
, a10 = − 1

60
. (54)

The coefficients a8, a9, a10 match those computed at order O(h) (as they should), and therefore
considering the trace we recover also (51). It is also noteworthy that, since g(4) µν 〈Tµν〉 ∼ �R/ε,
it follows that

4a1 + a2 = 0 4a3 + a4 − a5 = 0 4a7 + a6 = 0 (55)

as they correspond to the coefficients of R2, Ric2 and Riem2. We can see that the coefficients in (54)
indeed respect this constraint, and this is a nontrivial consistency check of the result. Furthermore,
from the general arguments of section 2, and more specifically exploiting formula (5), the anomaly
is

Aξ =
2

(4π)2

[

a1 R2 + a3 Ric2 + a7 Riem2 + a9 �R
]

, (56)

which indeed agrees with expression (52) upon substituting (54).
Following the derivation of the conformal anomaly often done in the literature (see e.g. [7] for a

complete exposition), we have independently confirmed the coefficients (54) by computing the pole
of 〈Tµν〉 = −(2/

√−g)δΓ/δgµν from the regularised effective action Γ computed with a heat kernel
expansion. The heat kernel method yields the following explicit expression for the (regularised)
effective action:

Γ[g] = −1

2
log det(−� + ξR) =

1

(4π)22ε

∫ √−g a2 + O(ε0) (57)

where a2(x) reads (we are neglecting here a �R contribution, as it is a boundary term)

a2(x) =
1

180
Riem2 − 1

180
Ric2 +

1

72
(1 − 6ξ)2R2. (58)

Explicit expressions for the variations δ(
√−g Riem2), δ(

√−g Ric2), δ(
√−g R2) that can be usefully

employed for this calculation can be found in [20].
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