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We give a general definition of the conformal anomaly for theories that are not classically Weyl invariant 
and show that this definition yields a quantity that is both finite and local. As an example we study the 
conformal anomaly for a non-minimally coupled massless scalar and show that our definition coincides 
with results obtained using the heat kernel method.
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1. Introduction

Conformal anomalies have been the focus of much study since 
the 1970s [1–16]. One aspect, however, that has not received so 
much attention concerns the significance of conformal anomalies 
in theories that are not classically conformal (or Weyl) invariant. 
One main reason for the interest in this question is the fact that 
the most interesting cancellations of conformal anomalies occur 
in non-conformal supergravities for N ≥ 5 [17] (whereas confor-
mal supergravities stop at N = 4, and cancellations require very 
special matter couplings [9]). The full significance of these can-
cellations has not been fully understood so far; moreover there is 
a pending issue concerning the dependence of the a and c co-
efficients on the gauge choice for the external gravitational field 
for fields of spin ≥ 3

2 that remains to be resolved. In this paper 
we focus on the investigation of the conformal anomaly and its 
significance for the specific example of the non-conformal scalar 
field. For this we follow a recent recalculation of the anomaly for 
spin- 1

2 fields [18], which is based on an evaluation of Feynman di-
agrams largely analogous to (though much more involved than) 
the textbook derivation of the axial anomaly in gauge theories. 
The spin-0 field coupled to a background gravitational field rep-
resents the simplest example in which to consider non-conformal 
deformations, and has the added advantage that there is a tun-
able parameter ξ , such that for one special value of ξ the theory 
becomes conformal.

For any theory, whether conformal or not, we adopt the follow-
ing general definition of the conformal anomaly
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A(x) := lim
ε→0

[
g(4)μν

〈
Tμν(x)

〉 − 〈
gμν Tμν(x)

〉]
, (1)

where ε ≡ 1
2 (d − 4) is the regularization parameter in dimensional 

regularization, and the superscript on gμν indicates the dimension 
in which the trace is to be performed (we do not yet specify this 
dimension in the second term, because there is a choice which 
does not affect the physically significant part of the anomaly, as 
we will explain below). Here the second term removes the classi-
cal violation of conformal invariance, reflected in a non-vanishing 
trace of the classical stress–energy tensor – the difference between 
the quantum trace and the expectation value of the classical trace 
is what produces the conformal anomaly. We show in section 2
that this definition yields a result that is always finite and local for 
any theory, including theories that are not classically Weyl invari-
ant, and hence to which one would not normally associate a Weyl 
anomaly. Furthermore we will see that in the non-conformal case 
the two terms on the r.h.s. of (1) by themselves do not produce 
a meaningful answer because they separately exhibit divergences 
and non-local terms which only cancel in the difference: this is 
the reason the difference must be taken before removing the regu-
lator. In section 2 below we present a general argument why this 
is always true. Furthermore, in the case of a non-minimally cou-
pled scalar we show that the coefficients of E4 (Euler number) and 
C2 in the anomaly do not depend on the value of ξ , whereas the 
coefficient of �R does depend on ξ (but the a and c coefficients 
may start to depend on various couplings in higher loop orders in 
the presence of interactions, as there appears to be no analog of 
the Adler–Bardeen theorem for the conformal anomaly).

For the non-minimally coupled scalar, our conformal anomaly 
agrees with the heat kernel coefficient a2 up to the coefficient 
of the scheme-dependent contribution �R [7], giving an interpre-
tation for the heat kernel coefficient in the non-conformal case. 
Although our calculation therefore mostly recovers known results, 
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our derivation differs from previous ones and exhibits several new 
features. One of these is that, for non-conformal theories, the 
anomaly as defined in (1) need not satisfy the Wess–Zumino (WZ) 
consistency condition

δ
(√−gA(x)

)
δσ (y)

= δ
(√−gA(y)

)
δσ (x)

(2)

where σ ≡ log(−g) is the conformal factor. As a result on the r.h.s. 
of (1) for non-conformal theories there will appear in addition to 
the usual E4, C2 and �R anomalies (which do satisfy the WZ con-
dition [19]) extra terms proportional to R2 (which does not satisfy 
the WZ condition). A further new result of this paper is the ex-
plicit structure of the pole terms which has not been given in the 
literature to the best of our knowledge, but which can alternatively 
be derived from heat kernel methods as we will show.

While the properties of a quantum field theory at criticality are 
well-understood because of Weyl symmetry, or conformal symme-
try in the flat space limit, it is less understood how these proper-
ties are modified away from criticality (see e.g. [20]). For example, 
it is known that there is a monotonically decreasing function that 
interpolates between a UV fixed point and an IR fixed point [21]. 
By studying the trace of the stress tensor away from criticality we 
hope to identify properties of the trace that may be preserved even 
away from the point, albeit, in this case, with a deformation that 
requires a non-trivial metric background.

2. Conformal anomaly for non-Weyl invariant theories

Before entering into the details of the spin zero case, we would 
like to present a general argument why (1) always produces a fi-
nite and local result, provided all divergences are local. As we said 
above, we wish to define the analogue of the conformal anomaly 
for theories that are not necessarily classically Weyl invariant. In 
the general case, the trace of the expectation value of the stress 
tensor (first term on the r.h.s. of (1)) will be both divergent and 
non-local. Even if we renormalise the theory in order to remove 
the divergence we will only be guaranteed a local expression when 
the theory is classically Weyl invariant, the expression thus being 
the anomaly. If we however take definition (1), which reduces to 
the standard anomaly for theories that are Weyl invariant, we can 
show that the expression will be both finite and local.

The expectation value of the operator Tμν(x), in a theory regu-
larised with dimensional regularisation, reads

〈Tμν(x)〉 = Pμν(x)

ε
+ Fμν(x) (3)

where Pμν and Fμν are the pole and the finite part of the expan-
sion of the expectation value. In general such expectation value 
is divergent (and requires renormalisation to yield a finite result). 
Here we show that, provided the pole Pμν is local, the quantity 
(1) is finite and local. We stress that this is the case in any lo-
cal quantum field theory where the calculation is performed to 
n-loops provided all the divergences from (n − 1) loops have been 
subtracted; in particular this is true for n = 1, that is the case 
of interest here. For the conformal anomaly, as defined in equa-
tion (1), to be local at higher loop order we must therefore use 
the action renormalised up to the previous loop order. The first 
term on the r.h.s. of (1) is to be computed considering the four-
dimensional trace (i.e. gμν gμν = 4) of (3) after computing the 
regularised expectation value of Tμν . For the second we take the 
classical trace before computing the expectation value. Here we 
have the choice of taking the trace in d or in four dimensions. 
For the d-dimensional trace we note the identity
g(d)μν
〈
Tμν

〉 = 〈
g(d)μν Tμν

〉
(4)

whence the two operations of taking the trace and taking the ex-
pectation value commute with this choice. This is no longer the 
case if the trace is taken in four dimensions. If the trace inside the 
bracket is taken in d dimensions we thus arrive at the alternative 
formula

A(x) := lim
ε→0

[(
g(4)μν − g(d)μν

)〈
Tμν(x)

〉]
. (5)

For the special example of the scalar field studied in this paper we 
will find that the difference 

〈
(g(d)μν − g(4)μν)Tμν(x)

〉
is propor-

tional to �R , and can thus be absorbed into a local counterterm. 
Hence the choice of dimension in the second term on the r.h.s. of 
(1) has no intrinsic physical significance, at least for the case at 
hand. The above formula also shows why the WZ consistency con-
dition fails if the second term on the r.h.s. of (5) does not vanish: 
there is then no functional differential operator δ/δσ̃ (x) to repro-
duce the r.h.s. by acting on some regularized effective functional.

From these observations it follows that

g(4) μν 〈Tμν(x)〉 = g(4) μν Pμν(x)

ε
+ g(4) μν Fμν(x)

= P (x,4)

ε
+ F (x,4) (6)

〈g(4−2ε) μν Tμν(x)〉 = g(4−2ε) μν Pμν(x)

ε
+ g(4−2ε) μν Fμν(x)

= P (x,4 − 2ε)

ε
+ F (x,4 − 2ε) (7)

making use of (4) and defining P (x, d) := g(d) μν Pμν(x), namely 
the second argument of P is the trace of g (similarly for F ) or the 
dimension of spacetime. Expanding (7) in powers of ε yields for 
A(x) the expression

A(x) = 2P ′(x,4) + O (ε) (8)

where the ′ indicates derivative with respect to second argument. 
This discussion also shows that the terms contributing to (8) are 
only those with an explicit factor of gμν(x), and not other ten-
sors for which the difference between a contraction in different 
dimensions vanishes (e.g. gμν Rμν = R both for D = 4 and for 
D = 4 − 2ε). We will verify this explicitly in the case of the non-
minimally coupled scalar.

3. Scalar field

We start with the action for a real scalar in d dimensions1

S = −1

2

∫
ddx

√−g φ (−� + ξ R)φ (9)

with the associated stress–energy tensor

Tμν = 2√−g
gμα gνβ

δS

δgαβ

(10)

= ∂μφ∂νφ − 1

2
gμν∂αφ∂αφ + ξφ2

(
Rμν − 1

2
gμν R

)

− ξ
(
∇μ∂νφ2 − gμν∇α∂αφ2

)
. (11)

By virtue of the equation of motion (�φ = ξ Rφ) this trace is co-
variantly conserved, ∇μTμν = 0, for any ξ . In d dimensions, this 

1 Throughout this paper we use the mostly plus signature ημν = diag(− + + + ).
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action is furthermore conformally invariant if and only if ξ = ξd

with

ξd ≡ d − 2

4(d − 1)
. (12)

Accordingly, the trace of the stress–energy tensor vanishes on-shell 
for ξ = ξd , since

gμν Tμν = 2(d − 1)(ξ − ξd)
(
∂αφ∂αφ + ξ Rφ2

)
= (d − 1)(ξ − ξd)�

(
φ2). (13)

For the perturbative determination of the anomaly (1) we fol-
low the same procedure as in [18] and expand the metric in the 
usual way

gμν = ημν + hμν, (14)

with ensuing expansions of the action and the stress–energy tensor 
in powers of hμν ,

S = S(0) + S(1) + S(2) + . . . (15)

Tμν = T (0)
μν + T (1)

μν + T (2)
μν + . . . (16)

where the superscript (n) corresponds to the collection of all term 
of O(hn). The quantity to be computed is then

〈
Tμν(x)

〉 = 〈(
T (0)
μν(x) + T (1)

μν(x) + · · · )ei(S(1)+S(2)+··· )〉
0

(17)

where 〈· · · 〉0 refers to the free scalar expectation value (below we 
will often drop the subscript 0 when it is obvious what is meant). 
The evaluation of the Feynman diagrams resulting from this expan-
sion is completely analogous to the calculation performed in [18]
to which we refer for further technical details.

4. Computations at O(h)

The computations at O(h) are straightforward, and are only 
included here for completeness. At first order in the metric per-
turbation the expectation value of the stress tensor is

〈
Tμν(x)

〉 = i
〈
T (0)
μν(x)S(1)

〉
0

+ O(h2). (18)

We write

i
〈
T (0)
μν(x)S(1)

〉
0
= −i

∫
dd y

∫
dd p

(2π)d
e−ip(x−y)Tμναβ(p)hαβ(y),

(19)

where Tμναβ(p) is the two-point function of stress tensor,

μν αβ

k − p

k

p

= Tμναβ(p)

=
∫

ddk

(2π)d

1

k2(k − p)2
Vμν(k − p,−k) Vαβ(k, p − k) (20)

with
τσ

−k − �
k

�
= τσ

k

�
= Vτσ (k, �)

≡ 1

2
(k · �)ητσ − k(τ �σ ) + ξ

(
(k + �)τ (k + �)σ − ητσ (k + �)2

)
(21)

Conservation of the stress tensor at O(h) follows directly from

pμTμναβ(p) = 0, (22)

which itself is a consequence of the vanishing of tadpole integrals.
It is now straightforward to take the trace of the expectation 

value of the stress–energy tensor

gμν
〈
Tμν(x)

〉 = −iημν

∫
d4 y

∫
dd p

(2π)d
e−ip(x−y)

×Tμναβ(p)hαβ(y) +O(h2). (23)

We are interested in the result for arbitrary ξ . After some calcu-
lation, and taking the four-dimensional trace of the regularised 
integral we obtain, up to higher powers of ε

η(4)μν Tμναβ(p) = − ip2
(

pα pβ − ηαβ p2
)

(4π)2

×
[

(6ξ − 1)2

12

(
1

ε
+ 2 − γE − log

p2

4πμ2

)
− 1

15

(
11

12
− 5ξ

)]
.

(24)

For non-conformal values of ξ �= 1
6 , this trace exhibits a pole as 

well as a non-local contribution ∝ log(p2/μ2) (μ2 is the usual 
regularisation scale). To remove these terms we next evaluate the 
expectation value of the regularised on-shell trace of the energy–
momentum tensor at order O(h), i.e.〈
g(d)μν Tμν(x)

〉∣∣
O(h)

= i
〈
(d − 1)(ξ − ξd)�(φ2) S(1)

〉

= −i

∫
dd y

∫
dd p

(2π)d
e−ip(x−y)ταβ(p)hαβ(y); (25)

where we kept the factor (d − 1)(ξ − ξd) inside the expectation 
value to indicate that it has to be expanded as d = 4 − 2ε; ταβ(p)

is given by the expression

ταβ(p) ≡ (d − 1)(ξ − ξd)p2
∫

ddk

(2π)d

1

k2(k − p)2
Vαβ(p − k,k).

(26)

The evaluation of (26) is straightforward, and leads to

ταβ(p) = − ip2
(

pα pβ − p2ηαβ

)
(4π)2

×
[

(6ξ − 1)2

12

(
1

ε
+ 2 − γE − log

p2

4πμ2

)

− (6ξ − 1) (3ξ − 1)

9

]
. (27)

We see that both the pole and the non-local term match precisely 
with (24) to produce a finite and local result. We also notice that 
the subtraction alters the coefficient of �R , so in the limit ε → 0
we end up with



L. Casarin et al. / Physics Letters B 787 (2018) 94–99 97
Aξ = lim
ε→0

[
gμν

〈
Tμν(x)

〉
ξ
− 〈g(4−2ε)μν Tμν(x)〉ξ

]
= 1

180(4π)2
(1 − 10(1 − 6ξ)2)�R. (28)

In removing the classical trace, we could also use dimensional 
regularisation by dimensional reduction whereby we treat the 
contractions over momenta (or derivatives in position space) as 
d-dimensional but traces as 4-dimensional. The result in this case 
reads

A(B D)
ξ = gμν

〈
Tμν(x)

〉 − 〈g(4) μν Tμν(x)〉 = 1

30(4π)2
(1 − 5ξ)�R.

(29)

The new coefficient matches with that given by Birrell and Davies 
[7, p. 179]. We see that the different prescription affects the co-
efficient of the �R contribution, which is a scheme-dependent 
contribution and can in any case be tuned to any desired value by 
choice of a suitable R2 counterterm, whence this coefficient has 
no intrinsic significance. This is in marked contrast to the coeffi-
cients of the E4 and C2 anomalies at O(h2) which exhibit no such 
prescription dependence. This is the reason why the nice trick that 
allows the c-coefficient to be determined from the O(h) computa-
tion [2] (see also [18]) no longer works for non-conformal theories. 
Consequently for ξ �= 1

6 the determination of the a and c coeffi-
cients requires a calculation at O(h2).

Let us also consider the tensor structure of the pole of 〈Tμν 〉 at 
first order in h of the expectation value of the stress energy tensor 
as computed through (19). Given that the expression must be local, 
generally covariant and must have dimension +4, this restricts it 
to the form

〈Tμν〉 = 1

(4π)2ε

[
a1 gμν�R + a2 ∇μ∇ν R + a3 �Rμν

]
+O(h2).

(30)

Using the first order expansions for the Ricci tensor and Ricci 
scalar, we can match the expansion term by term and we get

a1 = −3 + 40ξ − 120ξ2

120
, a2 = 1 − 10ξ + 30ξ2

30
, a3 = − 1

60
.

(31)

As a check, we can trace over μν indices, and indeed we obtain, 
to first order in h

gμν 〈Tμν〉 = 1

(4π)2

4a1 + a2 + a3

ε
�R = − (1 − 6ξ)2

12(4π)2ε
�R (32)

which matches with the pole of (24).
Furthermore, using the arguments of section 2, we can see that 

the anomaly, Aξ , should only depend on the coefficient a1 in (30), 
namely

Aξ = 1

(4π)2
2a1, (33)

which indeed agrees with equation (28).

5. Computations at O(h2)

The computation is considerably more involved at second order 
in h, but works along similar lines to those in [18]; for this reason 
we here display only the salient results.2 At second order we have

2 Full details of the computation will be provided in the forthcoming thesis by 
one of the authors (L. Casarin).
〈
Tμν(x)

〉 ∣∣∣
O(h2)

= i
〈
T (0)
μν(x)S(2)

〉
0
− 1

2

〈
T (0)
μν(x)S(1) S(1)

〉
0

+ i
〈
T (1)
μν(x)S(1)

〉
0
. (34)

We write

i
〈
T (0)
μν(x)S(2)

〉
0
= −i

∫
dd y ddz

∫
dd p

(2π)d

ddq

(2π)d

× eip(x−y)eiq(z−y)hαβ(y)hρσ (z) T [2]
μναβρσ (p,q), (35)

− 1

2

〈
T (0)
μν(x)S(1) S(1)

〉
0
= −i

∫
dd y ddz

∫
dd p

(2π)d

ddq

(2π)d

× eip(x−y)eiq(z−y)hαβ(y)hρσ (z) T [3]
μναβρσ (p,q), (36)

i
〈
T (1)
μν(x)S(1)

〉
0
= −i

∫
dd y ddz

∫
dd p

(2π)d

ddq

(2π)d

× eip(x−y)eiq(z−y)hαβ(y)hρσ (z) T [4]
μναβρσ (p + q,−q). (37)

In the last integral, we have rewritten h(x) as the inverse Fourier 
transform of its Fourier transform and shifted the integration vari-
ables as (p, q) → (p + q, −q) to make the exponential factors uni-
form. The functions above read

T [2]
μναβρσ (p,q) = μν

αβ

ρσ

k − p

k −q

p + q

=
∫

ddk

(2π)d

1

k2(k − p)2
Vμν(k − p,−k)

× Wαβρσ (k − p,−k, p + q,−q), (38)

T [3]
μναβρσ (p,q) = μν

αβ

ρσ

k − p

k

k − q

−q

p + q

=
∫

ddk

(2π)d

1

k2(k − p)2(k + q)2
Vμν(k − p,−k)

× Vαβ(k + q, p − k)Vρσ (k + q,−k), (39)

T [4]
μναβρσ (p,q) =

μν

q
ρσ αβ

k − p

k

p

=
∫

ddk

(2π)d

1

k2(k − p)2
V (1)

μν;ρσ (k, p − k,q) Vαβ(k, p − k).

(40)
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The vertex function Vμν(k, �) was already defined in (21); the 
remaining ones are

αβ

ρσ

p

q

k

�
= Wαβρσ (k, �, p,q)

∣∣
p+q+k+�=0

= W (1)
αβρσ (k, �) + ξ W (2)

αβρσ (p,q) (41)

where

W (1)
αβρσ (k, �) = −1

4
ηρ(αηβ)σ k� + 1

8
ηαβηρσ k� − 1

4
ηαβk(ρ�σ )

− 1

4
ηρσ k(α�β) + 1

2
k(αηβ)(ρ�σ ) + 1

2
�(αηβ)(ρkσ )

(42)

W (2)
αβρσ (p,q) = 1

4
ηαβqρqσ + 1

4
ηρσ pα pβ − 1

4
ηαβηρσ q2

− 1

4
ηαβηρσ p2 + 3

4
ηρ(αηβ)σ pq − 1

2
q(αηβ)(ρ pσ )

+ 1

2
ηρ(αηβ)σ q2 + 1

2
ηρ(αηβ)σ p2

+ 1

2
ηρσ qαqβ + 1

2
ηαβ pρ pσ

− q(αηβ)(ρqσ ) − p(αηβ)(ρ pσ )

+ 1

2
ηαβ p(ρqσ ) + 1

2
ηρσ p(αqβ)

− 1

4
ηαβηρσ pq − p(αηβ)(ρqσ ) (43)

and

μν

ρσ

k

�

q

= V (1)
μν;ρσ (k, �,q)

= V (1);0
μν;ρσ (k, �) + V (1);1

μν;ρσ (k + �,q) + V (1);2
μν;ρσ (q) (44)

where

V (1);0
μν;ρσ (k, �) = 1

2
ημ(ρησ)νk · � − 1

2
ημνk(ρ�σ )

− ξ
(
ημ(ρησ)ν(k + �)2 − ημν(k + �)(ρ(k + �)σ )

)
(45)

V (1);1
μν;ρσ (�,q) = −ξ

[
q(μην)(ρ�σ ) − ημνq(ρ�σ )

− 1

2
ημ(ρησ)νq · � + 1

2
ημνηρσ q · �

]
(46)

V (1);2
μν;ρσ (q) = −ξ

[
q(ρησ)(μqν) − 1

2
q2ημ(ρησ)ν

− 1

2
ηρσ qμqν − 1

2
ημνqρqσ + 1

2
ημνηρσ q2

]
(47)

At second order in h covariant conservation of the stress tensor 
requires

∇

as
ho

W

A

co
ha
th
to

g(

fo
ea
ge
15
sio
tu
th
(se
te
tu
in
pr

A

no
O
to
(se
(2
cla
als
r.h
Th
ca
co
ev
m

μ 〈Tμν(x)〉 = ∂μ 〈Tμν(x)〉O(h2)

− hμρ∂ρ 〈Tμν(x)〉O(h)

− 1

2

(
2∂μhμρ − ∂ρh

) 〈Tρν(x)〉O(h)

− 1

2
∂νhμρ 〈Tμρ(x)〉O(h)

(48)

 can be confirmed by a somewhat tedious calculation which is, 
wever, completely analogous to the one performed in [18].
To determine the anomaly we recall the known result for the 

eyl invariant case (ξ = 1
6 ), which reads [4,5]

= g(4)μν(x)
〈
Tμν(x)

〉 ∣∣∣
ξ= 1

6

= 1

180(4π)2

[
Riem2 − Ric2 + �R

]
(49)

= 1

180(4π)2

[
−1

2
E4 + 3

2
C2 + �R

]
. (50)

We now perform the calculation for arbitrary ξ . In this case the 
mputation is substantially more involved, and for this reason we 
d to make use of a Mathematica code, in particular we exploited 
e HEPMath package [22]. Schematically for the two contributions 
 (1) we find

4)μν(x)
〈
Tμν(x)

〉
ξ

= − (6ξ − 1)2

12(4π)2 ε
�R + A + O(ε)

〈
gμν(x)Tμν(x)

〉
ξ

= − (6ξ − 1)2

12(4π)2 ε
�R + B + O(ε) (51)

r the regularized expressions. The poles correctly cancel with 
ch other and vanish, as does B , when ξ = 1/6. However, for 
neric ξ the functions A and B are very complicated with about 
000 terms each; most of these are non-local, involving expres-
ns like 1/((pq)2 − p2q2)4, log p2, log (p + q)2 in the momen-

m space integrals. All these terms come from the diagrams with 
ree external legs, as well as the finite scalar loop integral J111

e [18]). Remarkably in the difference A − B , all these unwanted 
rms cancel, leaving a much simpler expression that in momen-
m space contains less than 200 terms and combines correctly 
to the second order expressions required for the covariant ex-
essions in the curvature tensor. The final result is

ξ = g(4)μν(x)
〈
Tμν(x)

〉
ξ
− 〈

gμν(x)Tμν(x)
〉
ξ

= 1

180(4π)2

[
Riem2 − Ric2 +

(
1 − 10(1 − 6ξ)2

)
�R

+ 5

2
(1 − 6ξ)2 R2

]
(52)

tice that the coefficient in front of �R matches the result from 
(h) in (28). This result matches with the one reported in [7] up 
 the coefficient of �R , which matches the one we found in (29)
e also [23]). Following the discussion around equations (28) and 

9), we can trace the difference to the subtraction of a different 
ssical contribution, which is not made explicit in [7]. Observe 
o that, as we already anticipated, for ξ �= 1

6 there appears on the 
.s. a contribution ∝ R2 which does not satisfy the WZ condition. 
e result shows that the anomaly proper – that is, the terms that 
nnot be removed by local counterterms and that satisfy the WZ 
ndition – are indeed independent of ξ and thus universal. How-
er it remains to be seen whether this conclusion also holds in a 
ore general context.
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As for O(h) we can now explicitly exhibit the structure of the 
pole of 〈Tμν〉 at order O(h2). The pole of the expectation value 
of the stress–energy tensor is a local generally covariant expres-
sion with four derivatives acting on the metric. This constrains the 
expression to be of the form

〈Tμν〉 = 1

(4π)2ε

[
a1 gμν R2 + a2 R Rμν + a3 gμν Rαβ Rαβ

+ a4 Rα
μRαν + a5 Rαβ Rμαβν

+ a6 Rμ
αβγ Rναβγ + a7 gμν Rαβγ δ Rαβγ δ

+ a8 ∇μ∇ν R + a9 gμν�R + a10 �Rμν

]
. (53)

Any other term can be related to those written above via Bianchi 
identities and symmetry arguments. Writing out the O(h2) expan-
sions for all these contributions, and matching with the second 
order results of our computations we get

a1 = (1 − 6ξ)2

144
, a2 = − (1 − 6ξ)2

36
, a3 = − 1

360
,

a4 = 1

45
, a5 = 1

90
, a6 = − 1

90
, a7 = 1

360
,

a8 = 1 − 10ξ + 30ξ2

30
, a9 = −3 − 40ξ + 120ξ2

120
,

a10 = − 1

60
. (54)

The coefficients a8, a9, a10 match those computed at order O(h)

(as they should), and therefore considering the trace we recover 
also (51). It is also noteworthy that, since g(4) μν 〈Tμν〉 ∼ �R/ε, it 
follows that

4a1 + a2 = 0 4a3 + a4 − a5 = 0 4a7 + a6 = 0 (55)

as they correspond to the coefficients of R2, Ric2 and Riem2. We 
can see that the coefficients in (54) indeed respect this constraint, 
and this is a nontrivial consistency check of the result. Further-
more, from the general arguments of section 2, and more specifi-
cally exploiting formula (5), the anomaly is

Aξ = 2

(4π)2

[
a1 R2 + a3 Ric2 + a7 Riem2 + a9 �R

]
, (56)

which indeed agrees with expression (52) upon substituting (54).
Following the derivation of the conformal anomaly often done 

in the literature (see e.g. [7] for a complete exposition), we have 
independently confirmed the coefficients (54) by computing the 
pole of 〈Tμν〉 = −(2/

√−g)δ�/δgμν from the regularised effec-
tive action � computed with a heat kernel expansion. The heat 
kernel method yields the following explicit expression for the (reg-
ularised) effective action:
�[g] = −1

2
log det(−� + ξ R) = 1

(4π)22ε

∫ √−g a2 +O(ε0)

(57)

where a2(x) reads (we are neglecting here a �R contribution, as it 
is a boundary term)

a2(x) = 1

180
Riem2 − 1

180
Ric2 + 1

72
(1 − 6ξ)2 R2. (58)

Explicit expressions for the variations δ(
√−g Riem2), δ(

√−g Ric2), 
δ(

√−g R2) that can be usefully employed for this calculation can 
be found in [24].
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