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Abstract. Accurate assessment of anthropogenic carbon dioxide (CO;) emissions and their redistribution
among the atmosphere, ocean, and terrestrial biosphere — the “global carbon budget” — is important to better
understand the global carbon cycle, support the development of climate policies, and project future climate
change. Here we describe data sets and methodology to quantify the five major components of the global carbon
budget and their uncertainties. Fossil CO; emissions (Efp) are based on energy statistics and cement production
data, while emissions from land use and land-use change (Eryc), mainly deforestation, are based on land use
and land-use change data and bookkeeping models. Atmospheric CO, concentration is measured directly and
its growth rate (G arm) is computed from the annual changes in concentration. The ocean CO; sink (SocgaN)
and terrestrial CO» sink (SpanD) are estimated with global process models constrained by observations. The
resulting carbon budget imbalance (Bpv), the difference between the estimated total emissions and the estimated
changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of
the contemporary carbon cycle. All uncertainties are reported as £ 1o . For the last decade available (2008-2017),
Erp was 9.440.5GtCyr !, Eryc 1.5+ 0.7GtCyr~!, Garm 4.7 +0.02GtCyr~!, Socran 2.4 +£0.5GtCyr!,
and Spanp 3.2 £0.8GtC yr_l, with a budget imbalance By of 0.5 GtC ylr_l indicating overestimated emis-
sions and/or underestimated sinks. For the year 2017 alone, the growth in Epg was about 1.6 % and emissions
increased to 9.9 4 0.5 GtC yr~!. Also for 2017, Epyc was 1.4+0.7GtCyr~!, Garm was 4.6 +0.2GtCyr~!,
SocEAN Was 2.5£0.5GtCyr~!, and Spanp was 3.8+ 0.8 GtCyr~!, with a Bpy of 0.3 GtC. The global atmo-
spheric CO; concentration reached 405.0 & 0.1 ppm averaged over 2017. For 2018, preliminary data for the first
6-9 months indicate a renewed growth in Erg of 42.7 % (range of 1.8 % to 3.7 %) based on national emission
projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent
changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows
that the mean and trend in the five components of the global carbon budget are consistently estimated over the
period of 19592017, but discrepancies of up to 1 GtCyr~! persist for the representation of semi-decadal vari-
ability in CO; fluxes. A detailed comparison among individual estimates and the introduction of a broad range
of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low
agreement among the different methods on the magnitude of the land CO; flux in the northern extra-tropics,
and (3) an apparent underestimation of the CO; variability by ocean models, originating outside the tropics.
This living data update documents changes in the methods and data sets used in this new global carbon bud-
get and the progress in understanding the global carbon cycle compared with previous publications of this data
set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from
https://doi.org/10.18160/GCP-2018.

at longer timescales (Archer et al., 2009).
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to millennial, while exchanges with geologic reservoirs occur

The global carbon budget presented here refers to the

The concentration of carbon dioxide (CO;) in the atmo-
sphere has increased from approximately 277 parts per mil-
lion (ppm) in 1750 (Joos and Spahni, 2008), the beginning of
the industrial era, to 405.0 £ 0.1 ppm in 2017 (Dlugokencky
and Tans, 2018; Fig. 1). The atmospheric CO; increase above
pre-industrial levels was, initially, primarily caused by the
release of carbon to the atmosphere from deforestation and
other land-use change activities (Ciais et al., 2013). While
emissions from fossil fuels started before the industrial era,
they only became the dominant source of anthropogenic
emissions to the atmosphere around 1950 and their relative
share has continued to increase until present. Anthropogenic
emissions occur on top of an active natural carbon cycle that
circulates carbon among the reservoirs of the atmosphere,
ocean, and terrestrial biosphere on timescales from sub-daily

www.earth-syst-sci-data.net/10/2141/2018/

mean, variations, and trends in the perturbation of CO; in
the environment, referenced to the beginning of the industrial
era. It quantifies the input of CO; to the atmosphere by emis-
sions from human activities, the growth rate of atmospheric
CO; concentration, and the resulting changes in the storage
of carbon in the land and ocean reservoirs in response to in-
creasing atmospheric CO; levels, climate change, and vari-
ability and other anthropogenic and natural changes (Fig. 2).
An understanding of this perturbation budget over time and
the underlying variability and trends in the natural carbon cy-
cle is necessary to understand the response of natural sinks to
changes in climate, CO; and land-use change drivers, and the
permissible emissions for a given climate stabilisation target.

Earth Syst. Sci. Data, 10, 2141-2194, 2018
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Figure 1. Surface average atmospheric CO; concentration (ppm).
The 1980-2018 monthly data are from NOAA/ESRL (Dlugokencky
and Tans, 2018) and are based on an average of direct atmospheric
CO; measurements from multiple stations in the marine boundary
layer (Masarie and Tans, 1995). The 1958-1979 monthly data are
from the Scripps Institution of Oceanography, based on an average
of direct atmospheric CO, measurements from the Mauna Loa and
South Pole stations (Keeling et al., 1976). To take into account the
difference of mean CO, and seasonality between the NOAA/ESRL
and the Scripps station networks used here, the Scripps surface av-
erage (from two stations) was deseasonalised and harmonised to
match the NOAA/ESRL surface average (from multiple stations)
by adding the mean difference of 0.542 ppm, calculated here from
overlapping data during 1980-2012.

The components of the CO; budget that are reported annu-
ally in this paper include separate estimates for (1) the CO,
emissions from fossil fuel combustion and oxidation from
all energy and industrial processes and cement production
(EFr; GtC yr_l); (2) the emissions resulting from deliberate
human activities on land, including those leading to land-use
change (Eryc; GtCyr~'); and (3) their partitioning among
the growth rate of atmospheric CO, concentration (G aTm;
GtC yr‘l), the uptake of CO; (the “CO; sinks™) in (4) the
ocean (Socean; GtC yr™ 1), and (5) the uptake of CO; on land
(SLanD; GtC yr_l). The CO, sinks as defined here concep-
tually include the response of the land (including inland wa-
ters and estuaries) and ocean (including coasts and territorial
sea) to elevated CO; and changes in climate, rivers, and other
environmental conditions, although in practice not all pro-
cesses are accounted for (see Sect. 2.8). The global emissions
and their partitioning among the atmosphere, ocean, and land
are in reality in balance; however due to imperfect spatial
and/or temporal data coverage, errors in each estimate, and
smaller terms not included in our budget estimate (discussed
in Sect. 2.8), their sum does not necessarily add up to zero.
We estimate a budget imbalance (Bpy), which is a measure
of the mismatch between the estimated emissions and the es-
timated changes in the atmosphere, land, and ocean, with the
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full global carbon budget as follows:

Err+ ErLuc = Gat™ + SoceaN + SLaND + Biv. (D

G atM is usually reported in ppm yr~!, which we convert to

units of carbon mass per year, GtCyr~!, using 1ppm =
2.124 GtC (Table 1). We also include a quantification of Erg
by country, computed with both territorial and consumption-
based accounting (see Sect. 2), and discuss missing terms
from sources other than the combustion of fossil fuels (see
Sect. 2.8).

The CO, budget has been assessed by the Intergovernmen-
tal Panel on Climate Change (IPCC) in all assessment re-
ports (Ciais et al., 2013; Denman et al., 2007; Prentice et al.,
2001; Schimel et al., 1995; Watson et al., 1990), and by oth-
ers (e.g. Ballantyne et al., 2012). The IPCC methodology has
been adapted and used by the Global Carbon Project (GCP,
http://www.globalcarbonproject.org/, last access: 30 Novem-
ber 2018), which has coordinated a cooperative community
effort for the annual publication of global carbon budgets up
to the year 2005 (Raupach et al., 2007; including fossil emis-
sions only), the year 2006 (Canadell et al., 2007), the year
2007 (published online; GCP, 2007), the year 2008 (Le Quéré
et al., 2009), the year 2009 (Friedlingstein et al., 2010), the
year 2010 (Peters et al., 2012b), the year 2012 (Le Quéré et
al., 2013; Peters et al., 2013), the year 2013 (Le Quéré et al.,
2014), the year 2014 (Friedlingstein et al., 2014; Le Quéré et
al., 2015b), the year 2015 (Jackson et al., 2016; Le Quéré et
al., 2015a), the year 2016 (Le Quéré et al., 2016), and most
recently the year 2017 (Le Quéré et al., 2018; Peters et al.,
2017). Each of these papers updated previous estimates with
the latest available information for the entire time series.

We adopt a range of +1 standard deviation (o) to report
the uncertainties in our estimates, representing a likelihood
of 68 % that the true value will be within the provided range
if the errors have a Gaussian distribution and no bias is as-
sumed. This choice reflects the difficulty of characterising
the uncertainty in the CO, fluxes between the atmosphere
and the ocean and land reservoirs individually, particularly
on an annual basis, as well as the difficulty of updating the
CO; emissions from land use and land-use change. A likeli-
hood of 68 % provides an indication of our current capability
to quantify each term and its uncertainty given the available
information. For comparison, the Fifth Assessment Report
of the IPCC (ARS) generally reported a likelihood of 90 %
for large data sets whose uncertainty is well characterised or
for long time intervals less affected by year-to-year variabil-
ity. Our 68 % uncertainty value is near the 66 % which the
IPCC characterises as “likely” for values falling into the +1o
interval. The uncertainties reported here combine statistical
analysis of the underlying data and expert judgement of the
likelihood of results lying outside this range. The limitations
of current information are discussed in the paper and have
been examined in detail elsewhere (Ballantyne et al., 2015;
Zscheischler et al., 2017). We also use a qualitative assess-
ment of confidence level to characterise the annual estimates
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Table 1. Factors used to convert carbon in various units (by convention, Unit 1 = Unit 2 conversion).

Unit 1 Unit 2 Conversion  Source
GtC (gigatonnes of carbon) ppm (parts per million)? 21240 Ballantyne et al. (2012)
GtC (gigatonnes of carbon) PgC (petagrams of carbon) 1 SI unit conversion
GtCO, (gigatonnes of carbon dioxide)  GtC (gigatonnes of carbon) 3.664 44.01/12.011 in mass equivalent
GtC (gigatonnes of carbon) MtC (megatonnes of carbon) 1000  SI unit conversion
2 Measurements of atmospheric CO, concentration have units of dry-air mole fraction. “ppm” is an abbreviation for micromole mol™ 1 dry air. b The use of a

factor of 2.124 assumes that all the atmosphere is well mixed within 1 year. In reality, only the troposphere is well mixed and the growth rate of CO,
concentration in the less well-mixed stratosphere is not measured by sites from the NOAA network. Using a factor of 2.124 makes the approximation that the
growth rate of CO; concentration in the stratosphere equals that of the troposphere on a yearly basis.

from each term based on the type, amount, quality, and con-
sistency of the evidence as defined by the IPCC (Stocker et
al., 2013).

All quantities are presented in units of gigatonnes of car-
bon (GtC, 10" gC), which is the same as petagrams of car-
bon (PgC; Table 1). Units of gigatonnes of CO; (or billion
tonnes of COy) used in policy are equal to 3.664 multiplied
by the value in units of GtC.

This paper provides a detailed description of the data sets
and methodology used to compute the global carbon bud-
get estimates for the pre-industrial period (1750) to 2017 and
in more detail for the period since 1959. It also provides
decadal averages starting in 1960 including the last decade
(2008-2017), results for the year 2017, and a projection for
the year 2018. Finally it provides cumulative emissions from
fossil fuels and land-use change since the year 1750, the
pre-industrial period, and since the year 1870, the reference
year for the cumulative carbon estimate used by the IPCC
(ARS5) based on the availability of global temperature data
(Stocker et al., 2013). This paper is updated every year us-
ing the format of “living data” to keep a record of budget
versions and the changes in new data, revision of data, and
changes in methodology that lead to changes in estimates of
the carbon budget. Additional materials associated with the
release of each new version will be posted at the Global Car-
bon Project (GCP) website (http://www.globalcarbonproject.
org/carbonbudget, last access: 30 November 2018), with fos-
sil fuel emissions also available through the Global Car-
bon Atlas (http://www.globalcarbonatlas.org, last access:
30 November 2018). With this approach, we aim to provide
the highest transparency and traceability in the reporting of
COa,, the key driver of climate change.

2 Methods

Multiple organisations and research groups around the world
generated the original measurements and data used to com-
plete the global carbon budget. The effort presented here is
thus mainly one of synthesis, in which results from individual
groups are collated, analysed, and evaluated for consistency.
We facilitate access to original data with the understanding
that primary data sets will be referenced in future work (see

www.earth-syst-sci-data.net/10/2141/2018/

Table 2 for how to cite the data sets). Descriptions of the
measurements, models, and methodologies follow below and
in depth descriptions of each component are described else-
where.

This is the 13th version of the global carbon budget and the
seventh revised version in the format of a living data update.
It builds on the latest published global carbon budget of Le
Quéré et al. (2018). The main changes are (1) the inclusion
of data to the year 2017 (inclusive) and a projection for the
global carbon budget for the year 2018; (2) the introduction
of metrics that evaluate components of the individual mod-
els used to estimate Socgan and S_AND using observations,
as an effort to document, encourage, and support model im-
provements through time; (3) the revisions of the CO; emis-
sions associated with cement production based on revised
clinker ratios; (4) a projection for fossil fuel emissions for
the 28 European Union member states based on compiled
energy statistics; and (5) the addition of Sect. 2.8.2 on addi-
tional emissions from calcination not included in the budget.
The main methodological differences among annual carbon
budgets are summarised in Table 3.

2.1 Fossil CO2 emissions (Egf)
2.1.1 Emission estimates

The estimates of global and national fossil CO, emissions
(EFp) include the combustion of fossil fuels through a wide
range of activities (e.g. transport, heating, and cooling, indus-
try, fossil industry’s own use, and gas flaring), the production
of cement, and other process emissions (e.g. the production
of chemicals and fertilisers). The estimates of Efr rely pri-
marily on energy consumption data, specifically data on hy-
drocarbon fuels, collated and archived by several organisa-
tions (Andres et al., 2012). We use four main data sets for
historical emissions (1751-2017).

1. We use global and national emission estimates for coal,
oil, and gas from CDIAC for the time period of 1751-
2014 (Boden et al., 2017), as it is the only data set that
extends back to 1751 by country.

2. We use official UNFCCC national inventory reports for
1990-2016 for the 42 Annex I countries in the UN-

Earth Syst. Sci. Data, 10, 2141-2194, 2018
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Table 2. How to cite the individual components of the global carbon budget presented here.

Component Primary reference

Global fossil CO; emissions (EFp), total and by fuel type Boden et al. (2017)

National territorial fossil CO, emissions ( EFp) CDIAC source: Boden et al. (2017)

UNFCCC (2018)

National consumption-based fossil CO, emissions (Efp) by  Peters et al. (2011b) updated as described in this paper
country (consumption)

Land-use change emissions (Ep yc) Average from Houghton and Nassikas (2017) and Hansis et

al. (2015), both updated as described in this paper

Growth rate in atmospheric CO; concentration (G ATm) Dlugokencky and Tans (2018)

Ocean and land CO» sinks (SocgaN and S AND) This paper for Socgan and S anp and references in Table 4

for individual models

FCCC (UNFCCC, 2018). We assess these to be the most
accurate estimates because they are compiled by ex-
perts within countries that have access to detailed en-
ergy data, and they are periodically reviewed.

. We use the BP Statistical Review of World Energy (BP,
2018), as these are the most up-to-date estimates of na-
tional energy statistics.

. We use global and national cement emissions updated
from Andrew (2018), which include revised emission
factors.

Statistical Review of World Energy (Andres et al., 2014;
Myhre et al., 2009; BP, 2018). We apply the BP growth
rates by fuel type (coal, oil, gas) to estimate 2017 emis-
sions based on 2016 estimates (UNFCCC) and to es-
timate 2015-2017 emissions based on 2014 estimates
(CDIAC). BP’s data set explicitly covers about 70 coun-
tries (96 % of global emissions), and for the remaining
countries we use growth rates from the subregion the
country belongs to. For the most recent years, flaring is
assumed constant from the most recent available year
of data (2016 for countries that report to the UNFCCC,
2014 for the remainder).

In the following section we provide more details for each
data set and describe the additional modifications that are re-
quired to make the data set consistent and usable.

— Cement. Estimates of emissions from cement produc-
tion are taken directly from Andrew (2018). Additional

calcination and carbonation processes are not included
— CDIAC. The CDIAC estimates have been updated an-

nually to the year 2014, derived primarily from energy
statistics published by the United Nations (UN, 2017b).
Fuel masses and volumes are converted to fuel energy
content using country-level coefficients provided by the
UN and then converted to CO;, emissions using conver-
sion factors that take into account the relationship be-
tween carbon content and energy (heat) content of the
different fuel types (coal, oil, gas, gas flaring) and the
combustion efficiency (Marland and Rotty, 1984).

UNFCCC. Estimates from the UNFCCC national inven-
tory reports follow the IPCC guidelines (IPCC, 2006)
but have a slightly larger system boundary than CDIAC
by including emissions coming from carbonates other
than in cement manufacturing. We reallocate the de-
tailed UNFCCC estimates to the CDIAC definitions of
coal, oil, gas, cement, and other to allow consistent com-
parisons over time and among countries.

explicitly here, except in national inventories provided
by UNFCCC, but are discussed in Sect. 2.8.2.

Country mappings. The published CDIAC data set in-
cludes 256 countries and regions. This list includes
countries that no longer exist, such as the USSR and
Yugoslavia. We reduce the list to 213 countries by re-
allocating emissions to the currently defined territo-
ries, using mass-preserving aggregation or disaggrega-
tion. Examples of aggregation include merging East and
West Germany to the currently defined Germany. Ex-
amples of disaggregation include reallocating the emis-
sions from the former USSR to the resulting indepen-
dent countries. For disaggregation, we use the emis-
sion shares when the current territories first appeared,
and thus historical estimates of disaggregated countries
should be treated with extreme care. In addition, we ag-
gregate some overseas territories (e.g. Réunion, Guade-
loupe) into their governing nations (e.g. France) to align
with UNFCCC reporting.

— BP. For the most recent period when the UNFCCC
(2018) and CDIAC (2015-2017) estimates are not avail-
able, we generate preliminary estimates using the BP

— Global total. Our global estimate is based on CDIAC
for fossil fuel combustion plus Andrew (2018) for ce-
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ment emissions. This is greater than the sum of emis-
sions from all countries. This is largely attributable to
emissions that occur in international territory, in partic-
ular, the combustion of fuels used in international ship-
ping and aviation (bunker fuels). The emissions from in-
ternational bunker fuels are calculated based on where
the fuels were loaded, but we do not include them in
the national emission estimates. Other differences oc-
cur (1) because the sum of imports in all countries is not
equal to the sum of exports, and (2) because of inconsis-
tent national reporting, differing treatment of oxidation
of non-fuel uses of hydrocarbons (e.g. as solvents, lu-
bricants, feedstocks), and (3) because of changes in fuel
stored (Andres et al., 2012).

2.2 Uncertainty assessment for Epg

We estimate the uncertainty of the global fossil CO; emis-
sions at £5 % (scaled down from the published +10 % at
420 to the use of =10 bounds reported here; Andres et al.,
2012). This is consistent with a more detailed recent analysis
of uncertainty of +8.4 % at +20 (Andres et al., 2014) and
at the high end of the range of +5-10 % at +20 reported by
Ballantyne et al. (2015). This includes an assessment of un-
certainties in the amounts of fuel consumed, the carbon and
heat contents of fuels, and the combustion efficiency. While
we consider a fixed uncertainty of £5 % for all years, the un-
certainty as a percentage of the emissions is growing with
time because of the larger share of global emissions from
emerging economies and developing countries (Marland et
al., 2009). Generally, emissions from mature economies with
good statistical processes have an uncertainty of only a few
per cent (Marland, 2008), while emissions from developing
countries such as China have uncertainties of around +10 %
(for £10; Gregg et al., 2008). Uncertainties of emissions are
likely to be mainly systematic errors related to underlying bi-
ases of energy statistics and to the accounting method used
by each country.

We assign a medium confidence to the results presented
here because they are based on indirect estimates of emis-
sions using energy data (Durant et al., 2011). There is only
limited and indirect evidence for emissions, although there
is high agreement among the available estimates within the
given uncertainty (Andres et al., 2012, 2014), and emission
estimates are consistent with a range of other observations
(Ciais et al., 2013), even though their regional and national
partitioning is more uncertain (Francey et al., 2013).

www.earth-syst-sci-data.net/10/2141/2018/
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2.2.1 Emissions embodied in goods and services

CDIAC, UNFCCC, and BP national emission statistics “in-
clude greenhouse gas emissions and removals taking place
within national territory and offshore areas over which the
country has jurisdiction” (Rypdal et al., 2006) and are called
territorial emission inventories. Consumption-based emis-
sion inventories allocate emissions to products that are con-
sumed within a country and are conceptually calculated as
the territorial emissions minus the “embodied” territorial
emissions to produce exported products plus the emissions
in other countries to produce imported products (consump-
tion = territorial — exports + imports). Consumption-based
emission attribution results (e.g. Davis and Caldeira, 2010)
provide additional information to territorial-based emissions
that can be used to understand emission drivers (Hertwich
and Peters, 2009) and quantify emission transfers by the
trade of products between countries (Peters et al., 2011b).
The consumption-based emissions have the same global to-
tal but reflect the trade-driven movement of emissions across
the Earth’s surface in response to human activities.

We estimate consumption-based emissions from 1990 to
2016 by enumerating the global supply chain using a global
model of the economic relationships between economic sec-
tors within and among every country (Andrew and Peters,
2013; Peters et al., 2011a). Our analysis is based on the eco-
nomic and trade data from the Global Trade and Analysis
Project (GTAP; Narayanan et al., 2015), and we make de-
tailed estimates for the years 1997 (GTAP version 5), 2001
(GTAP6), and 2004, 2007, and 2011 (GTAP9.2), covering 57
sectors and 141 countries and regions. The detailed results
are then extended into an annual time series from 1990 to the
latest year of the gross domestic product (GDP) data (2016
in this budget), using GDP data by expenditure in the current
exchange rate of US dollars (USD; from the UN National
Accounts Main Aggregrates Database; UN, 2017a) and time
series of trade data from GTAP (based on the methodology in
Peters et al., 2011b). We estimate the sector-level CO, emis-
sions using the GTAP data and methodology, include flaring
and cement emissions from CDIAC, and then scale the na-
tional totals (excluding bunker fuels) to match the emission
estimates from the carbon budget. We do not provide a sep-
arate uncertainty estimate for the consumption-based emis-
sions, but based on model comparisons and sensitivity anal-
ysis, they are unlikely to be significantly different than for
the territorial emission estimates (Peters et al., 2012a).

2.2.2 Growth rate in emissions

We report the annual growth rate in emissions for adjacent
years (in per cent per year) by calculating the difference be-
tween the two years and then normalising to the emissions
in the first year: (Erp(to+1) — E¥r(t0))/ Err(ty) x 100% x
100/(1 year). x100/(1 year). We apply a leap-year adjust-
ment when relevant to ensure valid interpretations of annual

www.earth-syst-sci-data.net/10/2141/2018/
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growth rates. This affects the growth rate by about 0.3 % yr—!

(1/365) and causes growth rates to go up approximately
0.3 % if the first year is a leap year and down 0.3 % if the
second year is a leap year.

The relative growth rate of Epg over time periods of
greater than 1 year can be rewritten using its logarithm equiv-
alent as follows:

1 dEFF _ d(ll‘l EFF)

2
FEgp dt dt @)

Here we calculate relative growth rates in emissions for
multi-year periods (e.g. a decade) by fitting a linear trend to
In(EFr) in Eq. (2), reported in per cent per year.

2.2.3 Emission projections

To gain insight into emission trends for the current year
(2018), we provide an assessment of global fossil CO, emis-
sions, Efp, by combining individual assessments of emis-
sions for China, the US, the EU, and India (the four coun-
tries/regions with the largest emissions), and the rest of the
world.

Our 2018 estimate for China uses (1) the sum of domes-
tic production (NBS, 2018b) and net imports (General Ad-
ministration of Customs of the People’s Republic of China,
2018) for coal, oil and natural gas, and production of cement
(NBS, 2018b) from preliminary statistics for January through
September of 2018 and (2) historical relationships between
January—September statistics for both production and im-
ports and full-year statistics for consumption using final data
for 2000-2016 (NBS, 2015, 2017) and preliminary data for
2017 (NBS, 2018a). See also Liu et al. (2018) and Jackson
et al. (2018) for details. The uncertainty is based on the vari-
ance of the difference between the January—September and
full-year data from historical data, as well as typical variance
in the preliminary full-year data used for 2017 and typical
changes in the energy content of coal for the period of 2013—
2016 (NBS, 2017, 2015). We note that developments for the
final 3 months this year may be atypical due to the ongoing
trade disputes between China and the US, and this additional
uncertainty has not been quantified. Results and uncertainties
are discussed further in Sect. 3.4.1.

For the US, we use the forecast of the U.S. Energy In-
formation Administration (EIA) for emissions from fossil
fuels (EIA, 2018). This is based on an energy forecasting
model which is updated monthly (last update to October)
and takes into account heating-degree days, household ex-
penditures by fuel type, energy markets, policies, and other
effects. We combine this with our estimate of emissions from
cement production using the monthly US cement data from
the U.S. Geological Survey (USGS) for January—August, as-
suming changes in cement production over the first part of
the year apply throughout the year. While the EIA’s forecasts
for current full-year emissions have on average been revised
downwards, only 10 such forecasts are available, so we con-

Earth Syst. Sci. Data, 10, 2141-2194, 2018
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servatively use the full range of adjustments following revi-
sion and additionally assume symmetrical uncertainty to give
£2.5 % around the central forecast.

For India, we use (1) monthly coal production and sales
data from the Ministry of Mines (2018), Coal India Lim-
ited (CIL, 2018), and Singareni Collieries Company Limited
(SCCL, 2018), combined with import data from the Min-
istry of Commerce and Industry (MCI, 2018) and power
station stocks data from the Central Electricity Authority
(CEA, 2018); (2) monthly oil production and consumption
data from the Ministry of Petroleum and Natural Gas (PPAC,
2018a); (3) monthly natural gas production and import data
from the Ministry of Petroleum and Natural Gas (PPAC,
2018b); and (4) monthly cement production data from the
Office of the Economic Advisor (OEA, 2018). All data were
available for January to September or October. We use Holt—
Winters exponential smoothing with multiplicative seasonal-
ity (Chatfield, 1978) on each of these four emission series to
project to the end of the current year. This iterative method
produces estimates of both trend and seasonality at the end of
the observation period that are a function of all prior obser-
vations, weighted most strongly to more recent data, while
maintaining some smoothing effect. The main source of un-
certainty in the projection of India’s emissions is the assump-
tion of continued trends and typical seasonality.

For the EU, we use (1) monthly coal supply data from
Eurostat for the first 6-9 months of the year (Eurostat,
2018) cross-checked with more recent data on coal-generated
electricity from ENTSO-E for January through October
(ENTSO-E, 2018); (2) monthly oil and gas demand data for
January through August from the Joint Organisations Data
Initiative (JODI, 2018); and (3) cement production assumed
to be stable. For oil and gas emissions we apply the Holt—
Winters method separately to each country and energy car-
rier to project to the end of the current year, while for coal
— which is much less strongly seasonal because of strong
weather variations — we assume the remaining months of the
year are the same as the previous year in each country.

For the rest of the world, we use the close relation-
ship between the growth in GDP and the growth in emis-
sions (Raupach et al., 2007) to project emissions for the
current year. This is based on a simplified Kaya identity,
whereby Epp (GtCyr~!) is decomposed by the product of
GDP (USDyr~!) and the fossil fuel carbon intensity of the
economy (Igg; GtC USD™!) as follows:

Erp = GDP x Igg. 3)
Taking a time derivative of Eq. (3) and rearranging gives

1 dEpp 1 dGDP 1 dIgp @
Eprp dt  GDP dt Ipp dt

where the left-hand term is the relative growth rate of EFp,
and the right-hand terms are the relative growth rates of GDP
and [gF, respectively, which can simply be added linearly to
give the overall growth rate.
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The growth rates are reported in per cent by multiplying
each term by 100. As preliminary estimates of annual change
in GDP are made well before the end of a calendar year, mak-
ing assumptions on the growth rate of Irp allows us to make
projections of the annual change in CO; emissions well be-
fore the end of a calendar year. The Ipp is based on GDP
in constant PPP (purchasing power parity) from the Inter-
national Energy Agency (IEA) up until 2016 (IEA/OECD,
2017) and extended using the International Monetary Fund
(IMF) growth rates for 2016 and 2017 (IMF, 2018). Interan-
nual variability in [rp is the largest source of uncertainty in
the GDP-based emission projections. We thus use the stan-
dard deviation of the annual Iy for the period of 2007-2017
as a measure of uncertainty, reflecting a £10 as in the rest
of the carbon budget. This is 1.0 % yr~! for the rest of the
world (global emissions minus China, the US, the EU, and
India).

The 2018 projection for the world is made of the sum of
the projections for China, the US, the EU, India, and the rest
of the world. The uncertainty is added in quadrature among
the five regions. The uncertainty here reflects the best of our
expert opinion.

2.3 CO. emissions from land use, land-use change,
and forestry (E|yc)

The net CO; flux from land use, land-use change, and
forestry (ELuc, called land-use change emissions in the rest
of the text) include CO, fluxes from deforestation, afforesta-
tion, logging and forest degradation (including harvest ac-
tivity), shifting cultivation (cycle of cutting forest for agri-
culture, then abandoning), and regrowth of forests following
wood harvest or abandonment of agriculture. Only some land
management activities are included in our land-use change
emission estimates (Table Al in the Appendix). Some of
these activities lead to emissions of CO» to the atmosphere,
while others lead to CO, sinks. Eypyc is the net sum of
emissions and removals due to all anthropogenic activities
considered. Our annual estimate for 1959-2017 is provided
as the average of results from two bookkeeping models
(Sect. 2.3.1): the estimate published by Houghton and Nas-
sikas (2017; hereafter H&N2017) extended here to 2017 and
an estimate using the BLUE model (Bookkeeping of Land
Use Emissions; Hansis et al., 2015). In addition, we use re-
sults from dynamic global vegetation models (DGVMs; see
Sect. 2.3.3 and Table 4) to help quantify the uncertainty in
Epyc and thus better characterise our understanding. The
three methods are described below, and differences are dis-
cussed in Sect. 3.2.

2.3.1 Bookkeeping models

Land-use change CO, emissions and uptake fluxes are cal-
culated by two bookkeeping models. Both are based on
the original bookkeeping approach of Houghton (2003) that

www.earth-syst-sci-data.net/10/2141/2018/
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Table 4. References for the process models, pCO;-based ocean flux products, and atmospheric inversions included in Figs. 6-8. All models
and products are updated with new data to the end of the year 2017, and the atmospheric forcing for the DGVMs has been updated as
described in Sect. 2.3.2.

Model/data name

Reference

Change from Le Quéré et al. (2018)

Bookkeeping models for land-use change emissions

BLUE

H&N2017

Hansis et al. (2015)

Houghton and Nassikas (2017)

LUH?2 rangelands were treated differently, using the static LUH2 informa-
tion on forest—non-forest grid cells to determine clearing for rangelands. Ad-
ditionally effects on degradation of primary to secondary lands due to range-
lands on natural (uncleared) vegetation were added to BLUE.

No change.

Dynamic global vegetation models?

CABLE-POP

CLASS-CTEM
CLMS5.0
DLEM

ISAM

JSBACH

JULES
LPJ-GUESS
LPJ

LPX-Bern

OCN
ORCHIDEE-Trunk

ORCHIDEE-CNP
SDGVM

SURFEXv8
VISIT

Haverd et al. (2018)

Melton and Arora (2016)
Oleson et al. (2013)

Tian et al. (2015)
Meiyappan et al. (2015)
Mauritsen et al. (2018)

Clark et al. (2011)
Smith et al. (2014)°
Poulter et al. (2011)°¢

Lienert and Joos (2018)

Zaehle and Friend (2010)
Krinner et al. (2005)d

Goll et al. (2017)
Walker et al. (2017)

Joetzjer et al. (2015)
Kato et al. (2013)

Simple crop harvest and grazing implemented. Small adjustments to photo-
synthesis parameters to compensate for the effect of new climate forcing on
GPP.

20 soil layers used. Soil depth is prescribed following Pelletier et al. (2016).
No change.

Using observed irrigation data instead of a potential irrigation map.

Crop harvest and N fertiliser application as described in Song et al. (2016).
New version of JSBACH (JSBACH 3.2), as used for CMIP6 simulations.
Changes include a new fire algorithm, as well as new processes (land nitro-
gen cycle, carbon storage of wood products). Furthermore, LUH2 rangelands
were treated differently, using the static LUH2 information on forest-non-
forest grid cells to determine clearing for rangelands.

No change.

No change.

Uses monthly litter update (previously annual), three product pools for de-
forestation flux, shifting cultivation, wood harvest, and inclusion of boreal
needleleaf deciduous plant functional type.

Minor refinement of parameterization. Changed from 1° x 1° to 0.5° x 0.5°
resolution. Nitrogen deposition and fertilisation from NMIP.

No change (uses 1294).

Updated soil water stress and albedo scheme; overall C-cycle optimisation
(gross fluxes).

First time contribution (ORCHIDEE with nitrogen and phosphorus dynam-
ics).

No change.

Not applicable (not used in 2017).

Updated spin-up protocol.

Global ocean biogeochemistry models

CCSM-BEC

MICOM-HAMOCC (NorESM-OC)

MITgem-REcoM2
MPIOM-HAMOCC

NEMO-PISCES (CNRM)

Doney et al. (2009)
Schwinger et al. (2016)
Hauck et al. (2016)
Mauritsen et al. (2018)

Berthet et al. (2018)

No change.

No drift correction.

No change.

Change of atmospheric forcing; CMIP6 model version including modifica-
tions and bug fixes in HAMOCC and MPIOM.

New model version with update to NEMOv3.6 and improved gas exchange.

NEMO-PISCES (IPSL) Aumont and Bopp (2006) No change.

NEMO-PlankTOMS5 Buitenhuis et al. (2010)¢ No change.

pCO;-based flux ocean products

Landschiitzer Landschiitzer et al. (2016) No change.

Jena CarboScope Rodenbeck et al. (2014) No change.

Atmospheric inversions

CAMS Chevallier et al. (2005) No change.

CarbonTracker Europe (CTE) van der Laan-Luijkx et al. (2017)  Minor changes in the inversion set-up.
Jena CarboScope Rodenbeck et al. (2003) No change.

MIROC

Saeki and Patra (2017)

Not applicable (not used in 2017).

2 The forcing for all DGVMs has been updated from CRUNCEP to CRU-JRA. b To account for the differences between the derivation of shortwave radiation (SWRAD) from CRU cloudiness and
SWRAD from CRU-JRA-55, the photosynthesis scaling parameter ; was modified (—15 %) to yield similar results. © Compared to the published version, LPJ wood harvest efficiency was decreased
so that 50 % of biomass was removed off-site compared to 85 % used in the 2012 budget. Residue management of managed grasslands increased so that 100 % of harvested grass enters the litter pool.
d Compared to the published version, new hydrology and snow scheme; revised parameter values for photosynthetic capacity for all ecosystem (following assimilation of FLUXNET data), updated
parameters values for stem allocation, maintenance respiration, and biomass export for tropical forests (based on literature), and CO, down-regulation process added to photosynthesis. Version used
for CMIP6. ¢ No nutrient restoring below the mixed-layer depth.

www.earth-syst-sci-data.net/10/2141/2018/ Earth Syst. Sci. Data, 10, 2141-2194, 2018



2152

keeps track of the carbon stored in vegetation and soils be-
fore and after a land-use change (transitions between various
natural vegetation types, croplands, and pastures). Literature-
based response curves describe decay of vegetation and soil
carbon, including transfer to product pools of different life-
times, as well as carbon uptake due to regrowth. In addition,
the bookkeeping models represent long-term degradation of
primary forest as lowered standing vegetation and soil carbon
stocks in secondary forests and also include forest manage-
ment practices such as wood harvests.

The bookkeeping models do not include land ecosystems’
transient response to changes in climate, atmospheric CO;,
and other environmental factors, and the carbon densities are
based on contemporary data reflecting environmental condi-
tions at (and up to) that time. Since carbon densities remain
fixed over time in bookkeeping models, the additional sink
capacity that ecosystems provide in response to CO, fertili-
sation and some other environmental changes is not captured
by these models (Pongratz et al., 2014; see Sect. 2.8.4).

The H&N2017 and BLUE models differ in (1) computa-
tional units (country level vs. spatially explicit treatment of
land-use change), (2) processes represented (see Table Al),
and (3) carbon densities assigned to vegetation and soil of
each vegetation type. A notable change of H&N2017 over
the original approach by Houghton et al. (2003) used in ear-
lier budget estimates is that no shifting cultivation or other
back-and-forth transitions below the country level are in-
cluded. Only a decline in forest area in a country as indi-
cated by the Forest Resource Assessment of the FAO that
exceeds the expansion of agricultural area as indicated by
the FAO is assumed to represent a concurrent expansion
and abandonment of cropland. In contrast, the BLUE model
includes sub-grid-scale transitions at the grid level among
all vegetation types as indicated by the harmonised land-
use change data (LUH2) data set (https://doi.org/10.22033/
ESGF/input4MIPs.1127; Hurtt et al., 2011, 2018). Further-
more, H&N2017 assume conversion of natural grasslands to
pasture, while BLUE allocates pasture proportionally on all
natural vegetation that exists in a grid cell. This is one rea-
son for generally higher emissions in BLUE. H&N2017 add
carbon emissions from peat burning based on the Global Fire
Emission Database (GFED4s; van der Werf et al., 2017) and
peat drainage based on estimates by Hooijer et al. (2010) to
the output of their bookkeeping model for the countries of In-
donesia and Malaysia. Peat burning and emissions from the
organic layers of drained peat soils, which are not captured
by bookkeeping methods directly, need to be included to rep-
resent the substantially larger emissions and interannual vari-
ability due to synergies of land use and climate variability in
Southeast Asia, in particular during EI Nifio events. Similarly
to H&N2017, peat burning and drainage-related emissions
are also added to the BLUE estimate.

The two bookkeeping estimates used in this study also dif-
fer with respect to the land-use change data used to drive
the models. H&N2017 base their estimates directly on the
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Forest Resource Assessment of the FAO, which provides
statistics on forest area change and management at inter-
vals of 5 years currently updated until 2015 (FAO, 2015).
The data are based on country reporting to the FAO and
may include remote-sensing information in more recent as-
sessments. Changes in land use other than forests are based
on annual national changes in cropland and pasture areas
reported by the FAO (FAOSTAT, 2015). BLUE uses the
harmonised land-use change data LUH2 (https://doi.org/10.
22033/ESGF/input4MIPs.1127, Hurtt et al., 2011, 2018),
which describe land-use change, also based on the FAO data,
but downscaled at a quarter-degree spatial resolution, consid-
ering sub-grid-scale transitions among primary forest, sec-
ondary forest, cropland, pasture, and rangeland. The LUH2
data provide a new distinction between rangelands and pas-
ture. To constrain the models’ interpretation on whether
rangeland implies the original natural vegetation to be trans-
formed to grassland or not (e.g. browsing on shrubland), a
new forest mask was provided with LUH2; forest is assumed
to be transformed, while all other natural vegetation remains.
This is implemented in BLUE.

The estimate of H&N2017 was extended here by 2 years
(to 2017) by adding the anomaly of total tropical emissions
(peat drainage from Hooijer et al. (2010), peat burning, and
tropical deforestation and degradation fires (from GFED4s)
over the previous decade (2006-2015) to the decadal average
of the bookkeeping result.

2.3.2 Dynamic global vegetation models (DGVMs)

Land-use change CO, emissions have also been estimated
using an ensemble of 16 DGVM simulations. The DGVMs
account for deforestation and regrowth, the most important
components of E7yc, but they do not represent all processes
resulting directly from human activities on land (Table Al).
All DGVMs represent processes of vegetation growth and
mortality, as well as decomposition of dead organic matter
associated with natural cycles, and include the vegetation
and soil carbon response to increasing atmospheric CO; lev-
els and to climate variability and change. Some models ex-
plicitly simulate the coupling of carbon and nitrogen cycles
and account for atmospheric N deposition (Table Al). The
DGVMs are independent from the other budget terms except
for their use of atmospheric CO, concentration to calculate
the fertilisation effect of CO, on plant photosynthesis.

The DGVMs used the HYDE land-use change data set
(Klein Goldewijk et al., 2017a, b), which provides annual
half-degree fractional data on cropland and pasture. These
data are based on annual FAO statistics of change in agricul-
tural land area available until 2012. The FAOSTAT land use
database is updated annually, currently covering the period
of 1961-2016 (but used here until 2015 because of the tim-
ing of data availability). HYDE-applied annual changes in
FAO data to the year 2012 from the previous release are used
to derive new 2013-2015 data. After the year 2015 HYDE
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extrapolates cropland, pasture, and urban land use data until
the year 2018. Some models also use an update of the more
comprehensive harmonised land-use data set (Hurtt et al.,
2011), which further includes fractional data on primary and
secondary forest vegetation, as well as all underlying transi-
tions between land-use states (Hurtt et al., 2018; Table Al).
This new data set is of quarter-degree fractional areas of land
use states and all transitions between those states, includ-
ing a new wood harvest reconstruction, new representation
of shifting cultivation, crop rotations, and management in-
formation including irrigation and fertiliser application. The
land-use states now include five different crop types in ad-
dition to the pasture-rangeland split discussed before. Wood
harvest patterns are constrained with Landsat tree cover loss
data.

DGVMs implement land-use change differently (e.g.
an increased cropland fraction in a grid cell can be at
the expense of either grassland or shrubs, or forest, the
latter resulting in deforestation; land cover fractions of
the non-agricultural land differ among models). Similarly,
model-specific assumptions are applied to convert deforested
biomass or deforested area and other forest product pools
into carbon, and different choices are made regarding the al-
location of rangelands as natural vegetation or pastures.

The DGVM model runs were forced by either the merged
monthly CRU and 6-hourly JRA-55 data set or by the
monthly CRU data set, both providing observation-based
temperature, precipitation, and incoming surface radiation on
a 0.5° x 0.5° grid and updated to 2017 (Harris et al., 2014).
The combination of CRU monthly data with 6-hourly forc-
ing is updated this year from NCEP to JRA-55 (Kobayashi et
al., 2015), adapting the methodology used in previous years
(Viovy, 2016) to the specifics of the JRA-55 data. The forc-
ing data also include global atmospheric CO;, which changes
over time (Dlugokencky and Tans, 2018) and gridded time-
dependent N deposition (as used in some models; Table A1).

Two sets of simulations were performed with the DGVMs.
Both applied historical changes in climate, atmospheric CO»
concentration, and N deposition. The two sets of simula-
tions differ, however, with respect to land use: one set ap-
plies historical changes in land use, the other a time-invariant
pre-industrial land cover distribution and pre-industrial wood
harvest rates. By difference of the two simulations, the dy-
namic evolution of vegetation biomass and soil carbon pools
in response to land use change can be quantified in each
model (ELyc). We only retain model outputs with positive
Eluc, i.e. a positive flux to the atmosphere, during the 1990s
(Table A1). Using the difference between these two DGVM
simulations to diagnose Epyc means the DGVMs account
for the loss of additional sink capacity (around 0.3 GtC yr~!;
see Sect. 2.8.4), while the bookkeeping models do not.
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2.3.3 Uncertainty assessment for £ ¢

Differences between the bookkeeping models and DGVM
models originate from three main sources: the different
methodologies, the underlying land use/land cover data set,
and the different processes represented (Table A1). We exam-
ine the results from the DGVM models and from the book-
keeping method and use the resulting variations as a way to
characterise the uncertainty in Epyc.

The Epyc estimate from the DGVMs multi-model mean
is consistent with the average of the emissions from the
bookkeeping models (Table 5). However there are large dif-
ferences among individual DGVMs (standard deviation at
around 0.6-0.7 GtC yr’l; Table 5), between the two book-
keeping models (average of 0.7 GtCyr~!), and between the
current estimate of H&N2017 and its previous model ver-
sion (Houghton et al., 2012). The uncertainty in Epyc of
0.7 GtC yr~! reflects our best value judgment that there is
at least a 68 % chance (+10) that the true land-use change
emission lies within the given range, for the range of pro-
cesses considered here. Prior to the year 1959, the uncer-
tainty in Epyc was taken from the standard deviation of
the DGVMs. We assign low confidence to the annual esti-
mates of Epyc because of the inconsistencies among esti-
mates and of the difficulties to quantify some of the processes
in DGVMs.

2.3.4 Emission projections

We project emissions for both H&N2017 and BLUE for
2018 using the same approach as for the extrapolation of
H&N2017 for 2016-2017. Peat burning as well as tropical
deforestation and degradation are estimated using active fire
data (MCD14ML; Giglio et al., 2016), which scales almost
linearly with GFED (van der Werf et al., 2017) and thus al-
lows for tracking fire emissions in deforestation and tropical
peat zones in near-real time. During most years, emissions
during January—October cover most of the fire season in the
Amazon and Southeast Asia, where a large part of the global
deforestation takes place.

2.4 Growth rate in atmospheric CO» concentration
(Gatm)

2.4.1 Global growth rate in atmospheric CO»
concentration

The rate of growth of the atmospheric CO; concentra-
tion is provided by the US National Oceanic and Atmo-
spheric Administration Earth System Research Laboratory
(NOAA/ESRL, 2018; Dlugokencky and Tans, 2018), which
is updated from Ballantyne et al. (2012). For the 1959-1979
period, the global growth rate is based on measurements of
atmospheric CO, concentration averaged from the Mauna
Loa and South Pole stations, as observed by the CO, Pro-
gram at the Scripps Institution of Oceanography (Keeling et
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Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the DGVMs and inverse estimates for
different periods, the last decade, and the last year available. All values are in GtC yr_l. The DGVM uncertainties represent 1o of the
decadal or annual (for 2017 only) estimates from the individual DGVMs: for the inverse models the range of available results is given.

Mean (GtC yr_l) +lo

1960-1969  1970-1979  1980-1989  1990-1999  2000-2009  2008-2017 ‘ 2017
Land-use change emissions (Epyc) ‘
Bookkeeping methods 1.5+£0.7 1.2+£0.7 1.2+0.7 1.44+0.7 1.3+0.7 1.5+0.7 | 1.4+0.7
DGVMs 1.5+£0.7 1.44+0.7 1.5+0.7 1.3+0.6 1.4+0.6 1.9+0.6 | 2.0£0.7
Terrestrial sink (S AND) ‘
Residual sink from global budget 1.8+£0.9 1.8+£0.9 1.5+£09 2.6+09 29+09 35£1.0 | 41£1.0
(EFr + ELuc — GATM — SOCEAN)
DGVMs 1.2+0.5 2.1+04 1.8+0.6 24405 2.74+0.7 32+£0.7 | 3.84+0.8
Total land fluxes (S AND — ELUC) ‘
Budget constraint 0.3+0.5 0.6+0.6 04+0.6 1.24+0.6 1.6+0.6 2.14+£0.7 | 2.7+0.7
(EFF — GATM — SOCEAN)
DGVMs —-0.3+0.6 0.7+0.5 0.3+0.6 1.1+0.5 1.3+0.5 1.3+0.5 | 1.8+£0.5
Inversions* e —/—I- —0.2-0.1 0.5-1.1 0.8-1.5 1424 1.2-3.1

* Estimates are corrected for the pre-industrial influence of river fluxes and adjusted to common Egp (Sect. 2.8.2). Two inversions are available for the 1980s and 1990s.
Two additional inversions are available from 2001 and used from the decade of the 2000s (Table A3).

al., 1976). For the 1980-2017 time period, the global growth
rate is based on the average of multiple stations selected from
the marine boundary layer sites with well-mixed background
air (Ballantyne et al., 2012), after fitting each station with a
smoothed curve as a function of time and averaging by lati-
tude band (Masarie and Tans, 1995). The annual growth rate
is estimated by Dlugokencky and Tans (2018) from the atmo-
spheric CO; concentration by taking the average of the most
recent December—January months corrected for the average
seasonal cycle and subtracting this same average 1 year ear-
lier. The growth rate in units of ppm yr~! is converted to units
of GtC yr~! by multiplying by a factor of 2.124 GtC per ppm
(Ballantyne et al., 2012).

The uncertainty around the atmospheric growth rate is due
to four main factors. The first factor is the long-term repro-
ducibility of reference gas standards (around 0.03 ppm for
lo from the 1980s). The second factor is that small unex-
plained systematic analytical errors that may have a duration
of several months to 2 years come and go. They have been
simulated by randomising both the duration and the mag-
nitude (determined from the existing evidence) in a Monte
Carlo procedure. The third factor is the network composi-
tion of the marine boundary layer with some sites coming
or going, gaps in the time series at each site, etc. (Dlu-
gokencky and Tans, 2018). The latter uncertainty was esti-
mated by NOAA/ESRL with a Monte Carlo method by con-
structing 100 “alternative” networks (NOAA/ESRL, 2018;
Masarie and Tans, 1995). The second and third uncertain-
ties, summed in quadrature, add up to 0.085 ppm on aver-
age (Dlugokencky and Tans, 2018). Fourth, the uncertainty
associated with using the average CO; concentration from
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a surface network to approximate the true atmospheric av-
erage CO;, concentration (mass weighted, in three dimen-
sions) as needed to assess the total atmospheric CO, bur-
den. In reality, CO, variations measured at the stations will
not exactly track changes in total atmospheric burden, with
offsets in magnitude and phasing due to vertical and hori-
zontal mixing. This effect must be very small on decadal and
longer timescales, when the atmosphere can be considered
well mixed. Preliminary estimates suggest this effect would
increase the annual uncertainty, but a full analysis is not
yet available. We therefore maintain an uncertainty around
the annual growth rate based on the multiple stations’ data
set ranges between 0.11 and 0.72 GtC yr~!, with a mean of
0.61 GtCyr~! for 1959-1979 and 0.18 GtCyr~! for 1980—
2017, when a larger set of stations were available as provided
by Dlugokencky and Tans (2018), but recognise further ex-
ploration of this uncertainty is required. At this time, we es-
timate the uncertainty of the decadal averaged growth rate
after 1980 at 0.02 GtC yr~! based on the calibration and the
annual growth rate uncertainty, but stretched over a 10-year
interval. For years prior to 1980, we estimate the decadal av-
eraged uncertainty to be 0.07 GtC yr~! based on a factor pro-
portional to the annual uncertainty prior to and after 1980
(0.61/0.18 x 0.02 GtC yr™1).

We assign a high confidence to the annual estimates of
G atM because they are based on direct measurements from
multiple and consistent instruments and stations distributed
around the world (Ballantyne et al., 2012).

In order to estimate the total carbon accumulated in the
atmosphere since 1750 or 1870, we use an atmospheric
CO; concentration of 277 &3 ppm or 288 & 3 ppm, respec-
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tively, based on a cubic spline fit to ice core data (Joos
and Spahni, 2008). The uncertainty of £3 ppm (converted to
+10) is taken directly from the IPCC’s assessment (Ciais et
al., 2013). Typical uncertainties in the growth rate in atmo-
spheric CO; concentration from ice core data are equivalent
to £0.1-0.15 GtC yr~! as evaluated from the Law Dome data
(Etheridge et al., 1996) for individual 20-year intervals over
the period from 1870 to 1960 (Bruno and Joos, 1997).

2.4.2 Atmospheric growth rate projection

We provide an assessment of Garym for 2018 based on the
observed increase in atmospheric CO; concentration at the
Mauna Loa station for January to October and a mean growth
rate over the past 5 years for the months November to De-
cember. Growth at Mauna Loa is closely correlated with the
global growth (r =0.95) and is used here as a proxy for
global growth, but the regression is not 1 to 1. We also ad-
just the projected global growth rate to take this into account.
The assessment method used this year differs from the fore-
cast method used in Le Quéré et al. (2018) based on the
relationship between annual CO; growth rate and sea sur-
face temperatures (SSTs) in the Nifio3.4 region of Betts et
al. (2016). A change was introduced because although the
observed growth rate for 2017 of 2.2 ppm was within the pro-
jection range of 2.5 £ 0.5 ppm of last year ( Le Quéré et al.,
2018), the forecast values for 2018 for January to October
are too high by approximately 0.4 ppm above observed val-
ues on average. The reasons for the difference are being in-
vestigated. The use of observed growth at Mauna Loa Obser-
vatory, Hawaii, for the first half of the year is thought to be
more robust because of its high correlation with the global
growth rate. Furthermore, additional analysis suggests that
the first half of the year shows more interannual variability
than the second half of the year, so that the exact projection
method applied to November—December has only a small im-
pact (< 0.1 ppm) on the projection of the full year. Uncer-
tainty is estimated from past variability using the standard
deviation of the last 5 years’ monthly growth rates.

2.5 Ocean CO» sink

Estimates of the global ocean CO; sink Socpan are
from an ensemble of global ocean biogeochemistry models
(GOBMs) that meet observational constraints over the 1990s
(see below). We use observation-based estimates of Socgan
to provide a qualitative assessment of confidence in the re-
ported results and to estimate the cumulative accumulation
of Socean over the pre-industrial period.

2.5.1 Observation-based estimates

We use the observational constraints assessed by IPCC of a
mean ocean CO, sink of 2.2+ 0.4 GtC yr~! for the 1990s
(Denman et al., 2007) to verify that the GOBMs provide a
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realistic assessment of Socean. This is based on indirect ob-
servations with seven different methodologies and their un-
certainties, using the methods that are deemed most reliable
for the assessment of this quantity (Denman et al., 2007). The
IPCC confirmed this assessment in 2013 (Ciais et al., 2013).
The observational-based estimates use the ocean—land CO;
sink partitioning from observed atmospheric O, /N> concen-
tration trends (Manning and Keeling, 2006; updated in Keel-
ing and Manning 2014), an oceanic inversion method con-
strained by ocean biogeochemistry data (Mikaloff Fletcher
et al., 2006), and a method based on a penetration timescale
for chlorofluorocarbons (McNeil et al., 2003). The IPCC esti-
mate of 2.2 GtC yr~! for the 1990s is consistent with a range
of methods (Wanninkhof et al., 2013).

We also use two estimates of the ocean CO; sink and its
variability based on interpolations of measurements of sur-
face ocean fugacity of CO;, (pCO; corrected for the non-
ideal behaviour of the gas; Pfeil et al., 2013). We refer to
these as pCO»-based flux estimates. The measurements are
from the Surface Ocean CO, Atlas version 6, which is an up-
date of version 3 (Bakker et al., 2016) and contains quality-
controlled data until 2017 (see data attribution Table A4).
The SOCAT v6 data were mapped using a data-driven di-
agnostic method (Rodenbeck et al., 2013) and a combined
self-organising map and feed-forward neural network (Land-
schiitzer et al., 2014). The global pCO;-based flux estimates
were adjusted to remove the pre-industrial ocean source of
CO, to the atmosphere of 0.78 GtCyr~! from river input
to the ocean (Resplandy et al., 2018), per our definition of
SoceaN. Several other ocean sink products based on obser-
vations are also available but they continue to show large
unresolved discrepancies with observed variability. Here we
used the two pCO;-based flux products that had the best fit
to observations for their representation of tropical and global
variability (Rodenbeck et al., 2015).

We further use results from two diagnostic ocean models
of Khatiwala et al. (2013) and DeVries (2014) to estimate
the anthropogenic carbon accumulated in the ocean prior to
1959. The two approaches assume constant ocean circula-
tion and biological fluxes, with Socgan estimated as a re-
sponse in the change in atmospheric CO, concentration cali-
brated to observations. The uncertainty in cumulative uptake
of £20GtC (converted to +10) is taken directly from the
IPCC’s review of the literature (Rhein et al., 2013), or about
430 % for the annual values (Khatiwala et al., 2009).

2.5.2 Global ocean biogeochemistry models (GOBMs)

The ocean CO; sink for 1959-2017 is estimated using seven
GOBMs (Table A2). The GOBMs represent the physical,
chemical, and biological processes that influence the sur-
face ocean concentration of CO, and thus the air—sea CO,
flux. The GOBMs are forced by meteorological reanalysis
and atmospheric CO; concentration data available for the en-
tire time period. They mostly differ in the source of the at-
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mospheric forcing data (meteorological reanalysis), spin-up
strategies, and their horizontal and vertical resolutions (Ta-
ble A2). GOBM:s do not include the effects of anthropogenic
changes in nutrient supply, which could lead to an increase in
the ocean sink of up to about 0.3 GtC yr~! over the industrial
period (Duce et al., 2008). They also do not include the per-
turbation associated with changes in riverine organic carbon
(see Sect. 2.8.3).

2.5.3 GOBM evaluation and uncertainty assessment for
Socean

The mean ocean CO; sink for all GOBMs falls within 90 %
confidence of the observed range, or 1.6 to 2.8 GtC ylr_1 for
the 1990s. Here we have adjusted the confidence interval to
the [PCC confidence interval of 90 % to avoid rejecting mod-
els that may be outliers but are still plausible.

The GOBMs and flux products have been further evaluated
using fCO;, from the SOCAT v6 database. We focused this
initial evaluation on the interannual mismatch metric pro-
posed by Rodenbeck et al. (2015) for the comparison of flux
products. The metric provides a measure of the mismatch be-
tween observations and models or flux products on the x axis
as well as a measure of the amplitude of the interannual vari-
ability on the y axis. A smaller number on the x axis in-
dicates a better fit with observations. The amplitude of the
interannual variability in Socgan (v axis) is calculated as the
temporal standard deviation of the CO, flux time series.

The calculation for the x axis is carried out as follows:
(1) the mismatch between the observed and the modelled
fCOz is calculated for the period 1985 to 2017 (except for
the IPSL model, which uses 1985 to 2015 due to data avail-
ability), but only for grid points for which actual observa-
tions exist. (2) The interannual variability in this mismatch
is calculated as the temporal standard deviation of the mis-
match. (3) To put numbers into perspective, the interannual
variability in the mismatch is reported relative to the interan-
nual variability in the mismatch between a benchmark fCO;
field and the observations. The benchmark fCO, field is de-
signed to have no interannual variability, i.e. it is calculated
as the mean seasonal cycle at each grid point over the full
period plus the deseasonalised atmospheric fCO; increase
over time. By definition, the interannual variability in the
misfit between benchmark and observations is large as the
benchmark field does not contain any interannual variabil-
ity from the ocean. A smaller relative interannual variability
mismatch indicates a better fit between observed and mod-
elled fCO,. This metric is chosen because it is the most
direct measure of the year-to-year variability in Socgan in
ocean biogeochemistry models. We apply the metric glob-
ally and by latitude bands. Results are shown in Fig. B1 and
discussed in Sect. 3.1.3.

The uncertainty around the mean ocean sink of anthro-
pogenic CO, was quantified by Denman et al. (2007) for
the 1990s (see Sect. 2.5.1). To quantify the uncertainty
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around annual values, we examine the standard deviation
of the GOBM ensemble, which averages between 0.2 and
0.3 GtCyr~! during 1959-2017. We estimate that the uncer-
tainty in the annual ocean CO, sink is about 0.5 GtC yr~!
from the combined uncertainty of the mean flux based on
observations of 0.4 GtCyr~! and the standard deviation
across GOBMs of up to 0.3 GtC yr~!, reflecting the un-
certainty in both the mean sink from observations during the
1990s (Denman et al., 2007; Sect. 2.5.1) and the interannual
variability as assessed by GOBMs.

We examine the consistency between the variability in
the model-based and the pCO;-based flux products to as-
sess confidence in Socgan. The interannual variability in
the ocean fluxes (quantified as the standard deviation) of
the two pCOs-based flux products for 1985-2017 (where
they overlap) is 0.36 GtCyr~! (Rodenbeck et al., 2014)
and +0.38 GtC yr’1 (Landschiitzer et al., 2015), compared
to +£0.29 GtCyr~! for the GOBM ensemble. The standard
deviation includes a component of trend and decadal vari-
ability in addition to interannual variability, and their rela-
tive influence differs across estimates. Individual estimates
(both GOBM and flux products) generally produce a higher
ocean CO; sink during strong El Nifio events. The annual
pCO;-based flux products correlate with the ocean CO; sink
estimated here with a correlation of » =0.75 (0.59 to 0.79
for individual GOBMs) and r = 0.80 (0.71 to 0.81) for the
pCO;s-based flux products of Rodenbeck et al. (2014) and
Landschiitzer et al. (2015), respectively (simple linear regres-
sion), with their mutual correlation at 0.73. The agreement
between models and the flux products reflects some consis-
tency in their representation of underlying variability since
there is little overlap in their methodology or use of obser-
vations. The use of annual data for the correlation may re-
duce the strength of the relationship becau