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QED-BSE Computational Details

All of the ab-initio calculations for the electronic problem in this work are performed with

the GPAW code.1,2 The single particle energies and wavefunctions, together with the mo-

mentum matrix elements 〈φik|ê · p̂|φjk〉 are calculated within density functional theory with

the LDA exchange correlation functional on a plane-wave basis. The LDA calculations for

the monolayers TMDs were performed using a plane wave basis set with a cut off energy of

500 eV and 60× 60 k-point grids.
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We calculate the excitonic wavefunctions used in the QED Hamiltonian by solving the

BSE considering only electron-hole pairs formed between the top valence and bottom conduc-

tion band. We take a cut-off energy of 150 eV for the evaluation of the screened interaction,

which is calculated within the RPA on LDA energies and wavefunctions. A scissor operator

based on the G0W0 calculations is applied for a better description of the electronic gap, see

Tab. S1 for specific values. Spin-orbit effects are included post BSE solution by including

two equivalent spin-orthogonal (A and B) excitonic series. Spin-orbit splitting values are

reported in Tab. S1. The Brillouin zone sampling for BSE and G0W0 calculations is done

on a 60× 60 k-point-mesh.

Table S1: GW band gap and SOC splittings for different TMDs. All values are extracted
from the C2DB two-dimensional materials database3

TMD GW gap (eV) SOC split (eV)
MoS2 2.53 0.15
MoSe2 2.14 0.17
WS2 2.60 0.37
WSe2 2.21 0.40

Finally, in the QED Hamiltonian 18 excitonic states (up to the 3s), a single photon mode

with photon number states up to γ = 3 are included. These values have been chosen as

result of convergence tests on the matter polarizability spectra in the energy region and Ã0

values investigated here. Convergence with respect to the number of modes is discussed in

more details in the following section. Exciton-polariton dispersions for MoS2, WS2, MoSe2

and WSe2 are shown in Fig. S1

QED-BSE Multi-mode Calculations

To avoid unnecessary complications, in the main text we only treated a single cavity mode.

Eq. (1) of the main text can be directly generalized to the case of multiple modes, in formulas:
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Figure S1: Exciton polariton dispersion of different TMDs with a coupling constant of
Ã0=0.08 a.u..
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)
,

(1)

3



where q is the photon momentum, σ the x, y, z index and uqσ the photon polarization vectors.

In a quasi-2D cavity the latter are given by:

uqx =uqy = eiq‖·r‖i sin (q⊥z),

uqz = eiq‖·r‖ cos (q⊥z).

(2)

In our work the relevant quantization dimension is the out-of-plane one and we only con-

sider photon modes for which q‖ = 0. We then assume that the active 2D crystal has an

infinitesimal thickness and it is placed at the center of the cavity, namely z = L⊥/2. Given

the isotropy of TMDs monolayers, we can choose the in plane polarization to be in the y-

direction, without any loss of generality. In such a setting and because 2D excitons can only

couple to in-plane electric fields we consider only polarization of the kind uqy = i sin (q⊥L⊥/2)

and of these only the odd modes are non-zero, i.e. q⊥ = πα
L⊥

with α = 1, 3, 5, .... With the re-

striction of the modes just described, the long wavelenght approximation can be still applied

and we can simplify the Hamiltonian in Eq. 1 as:

ĤQED =Ĥel +
∑
α

Ωαâ
†
αâα +

Nel

2
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0α

∣∣(â†α + âα)
∣∣2 +

∑
α

A0α

∑
ijk

(
〈φik|ê · p̂|φjk〉d̂†ikd̂jkâ

†
α + h.c.

)
,

(3)

with Ωα = απc/L⊥ and A0α = 1/
√

2πcS
√
α.

Following the procedure we used for the single mode case, we project the Hamiltonian

above onto the product state basis |Ψexc
n 〉 ⊗ |γα=1〉 ⊗ |γα=3〉 ⊗ · · · , where |γα〉 are the eigen-

functions of the photonic harmonic oscillator associated with the different modes. The

Hamiltonian can be then diagonalized and the resulting polaritonic states and energy can

be used for calculating the optical response as in Eq. (5) of the main text. Calculations

for MoS2 with up to α = 9 are reported in Fig. S2. Within the Ω range considered in the

main text the multi-mode calculation is in quantitative agreement with the single-mode one.

However including more modes allows us to explore smaller values of Ω, where polaritonic
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effects due to the higher modes take place.
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Figure S2: Exciton-polariton spectra of MoS2 in a cavity as a function of cavity mode
frequency Ω obtained with a multi-mode model with α = 9 modes and a coupling strength
of Ã0 = 0.08 a.u..

Photon response

Equivalently to eq. 5 in the main text, a response function for photons can be also formulated:

χphot(ω,Ω) =
∑
I

(M̃pol
I0 )∗M̃pol

I0

ω − Epol
I (Ω) + Epol

0 (Ω) + iη
. (4)

In this case, the matrix elements are defined as M̃pol
IJ = 〈Ψpol

I |â†|Ψ
pol
J 〉 =

∑
nγθ C

I∗
nγC

J
mθM

phot
γθ

where Mphot
γθ = 〈γ|â†|θ〉. Such a quantity represents the photonic counterpart of the matter

polarizability and it is of relevance for experiments where the photons are probed. The com-

parison between the matter and photon polarizabilities of MoS2 for the stronger coupling

values is presented in Fig. S3. The two response functions provide complementary informa-
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Figure S3: Comparison between (a) matter and (b) photon polarizabilitues for MoS2 for a
coupling value Ã0 = 0.08 a.u..

tion on the polaritonic response, with the photonic response function showing a feature-rich

matter-dressing of the bare photon line.

MW Method and Computational Details

In the MW model, the exciton is treated as a hydrogen atom, where the electron and the

hole interact via a screened Coulomb interaction, described by the Schrödinger equation4

[
−∇

2

2µ
−W (r)

]
F n(r) = En

b,excF
n(r). (5)

with µ the exciton effective mass and the screened Coulomb interaction

W (r) =
1

4α
[H0(x)−N0(x)]x=r/2πα , (6)
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where H0 and N0 are the Struve and Neumann functions and α is the crystal polarizability.

By solving Eq. (5), we obtain exciton binding energies (En
b,exc = Egap −En

exc) and real space

excitonic functions F n(r). Within the MW model, the latter represent the Fourier transforms

of the envelope functions Ank, i.e.

F n(r) =
1

Nk

∑
k

Anke
ik·r. (7)

We stress that the coefficients Ank used in this section are the MW approximation to those

defined above for BSE. An extensive discussion on the MW approach, the related computa-

tional advantages and how it can be derived as an approximation of the BSE can be found

in Ref.4

Borrowing the assumptions of the MW model, in particular that the excitons are ex-

tremely localized at certain points in the Brillouin zone, the K-points for TMDs, we assume

that the valence-conduction momentum matrix element is constant, and simplify Eq. (3) of

the main text to:

Mexc
0n = 〈φvK|ê · p̂|φcK〉F n(r = 0). (8)

This shows that whether an exciton is bright or dark, is determined by the value of its

real space wavefunction at the origin. This explains why only s-like excitons are bright.

Simplifications can also be done for Eq. (4) of the main text by noting that, for parabolic

conduction and valence bands, 〈φc/vk|ê · p̂|φc/vk〉 = ±k/me/h giving

Mexc
mn =

[
1

mh

+
1

me

]∑
k

Am∗k Ank ê · k. (9)

The sum in the RHS can be expressed as the expectation value of the dipole operator,∑
kA

m∗
k Ank ê · k ∝ (Em

b,exc − En
b,exc)

´
drFm∗(r)ê · rF n(r), which yields the typical hydrogen

like selection rules ∆l = ±1, with l the angular momentum quantum number.

For the calculations on the MoS2 polaritons we used an excitonic effective mass of 0.27
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a.u. which is calculated from the G0W0 band structure. The Keldysh screened electron-

hole interaction is calculated with a polarizability α = 13.5a.u.. A comparison of exciton

binding energies obtained with the MW model and from the solution of the BSE is shown in

Fig. S4. With the MW we are then able to calculate all the excitonic quantities required in
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Figure S4: Comparison of excitons energies calculated using BSE and the Mott-Wannier
(MW) model.

Eq. (2) of the main text and the same diagonalization procedure adopted in the QED-BSE

can be performed to get the polaritonic states. Fig. S5 shows a side-by-side comparison of

the polariton dispersion of MoS2 obtained with the full QED-BSE approach and the QED-

MW model. Small differences are apparent, that can be traced back to minor shifts in the

exciton eigenvalues within the MW model, cf. Fig. S4 and differences in the momentum

matrix elements. For a more detailed comparison, in Tab. S2 we reported values of the Rabi

splittings and intensities of the response function for the ”1s” A and ”2s” A excitons within

the QED-MW and QED-BSE methods.

We stress again that in the QED-MW, the exciton-polariton dispersion is now obtained at

a much lower computational cost than for the QED-BSE case and at the same time a better
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Figure S5: Comparison of QED-BSE and QED-MW for MoS2 and with a coupling strength
of Ã0 = 0.05 a.u.

Table S2: QED-MW and QED-BSE comparison of Rabi splittings and response intensities for
the 1s and 2s A excitons in MoS2. The Rabi splitting are evaluated at the listed frequency Ω
and the intensities are reported for the lower (LP) and upper (UP) polaritons with compatible
arb.units.

Excitation Ω (eV) Rabi Splitting (eV) χLP (arb.units) χUP (arb.units)
BSE

1s A 2.00 0.084 21.33 1.19
2s A 2.16 0.041 0.75 7.45

MW
1s A 1.95 0.106 31.39 2.94
2s A 2.17 0.043 0.55 9.58

intuition on the photon mediated mixing of excitons can be built in terms of hydrogenic-like

selection rules, according to Eqs. (5)-(9).

In the main text we used the MW model to access excitons in more complex materi-

als, without increase in computational cost. In particular we studied the exciton-polariton

dispersion in an MoS2 monolayer encapsulated in semi-infinite dielectric with a dielectric

constant κ . For this particular stacking of materials, one can readily extend the QED-MW
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for monolayers by including the effect of dielectric screening of the encapsulating material

at three different levels: (i) the screened electron-hole Coulomb interaction is modified to5

W (r, κ) =
1

4α
[H0(κx)−N0(κx)]x=r/2πα (10)

(ii) the bare photon dispersion in the dielectric medium changes to ω = ωc/
√

(κ) and (iii) the

effective vector potential amplitude becomes A0 → A0/κ.6 The extra electronic screening due

to the dielectric not only modifies the exciton binding energies but it also renormalizes the

electronic gap. To estimate the electronic band gap variation as a function of κ, we take the

standard assumption7 that the change in the binding energy of the 1s exciton compensates

the renormalization of the band gap, hence the condition E1s
exc(κ) = E1s

exc(κ = 0) must hold.

The results are shown in the main text in Fig. 4.

Interlayer Excitons: Computational Details

In order to achieve an accurate first-principles description of the excitonic resonances in the

MoS2-WS2 vdWH, we used the MW exciton model combined with the quantum electro-

static heterostructure (QEH) method in ref.8 This method allows to account for dielectric

screening effects on exciton binding energies and electronic band edges from ab-initio without

restriction on lattice parameter matching between the two layers. We followed exactly the

procedure used in ref.,9 which for the sake of simplicity is summarized in the following. We

first calculate GW band edges for each isolated monolayer and we then use the QEH-GW

to include the effect of the dielectric screening induced by the adjacent layer and correct

the electronic band edges position and band gap. In order to get the correct type II band

alignment when compared to experiments,10 norm-conserving PAW-setups are required.11

We find a gap renormalization of ∼ 0.132 eV for MoS2 and ∼ 0.137 eV for WS2. Within the

QEH we are then also able to calculate the screened interaction appearing in the MW model

and calculate both interlayer and intralayer exciton binding energies. We find an interlayer
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exciton binding energy of 0.28 eV and intralayer binding energy of 0.42 eV and 0.38 eV for

MoS2 and WS2 respectively.
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