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Abstract

Motivation: International consortia such as the Genotype-Tissue Expression (GTEx) project, The

Cancer Genome Atlas (TCGA) or the International Human Epigenetics Consortium (IHEC) have pro-

duced a wealth of genomic datasets with the goal of advancing our understanding of cell differenti-

ation and disease mechanisms. However, utilizing all of these data effectively through integrative

analysis is hampered by batch effects, large cell type heterogeneity and low replicate numbers. To

study if batch effects across datasets can be observed and adjusted for, we analyze RNA-seq data

of 215 samples from ENCODE, Roadmap, BLUEPRINT and DEEP as well as 1336 samples from

GTEx and TCGA. While batch effects are a considerable issue, it is non-trivial to determine if batch

adjustment leads to an improvement in data quality, especially in cases of low replicate numbers.

Results: We present a novel method for assessing the performance of batch effect adjustment

methods on heterogeneous data. Our method borrows information from the Cell Ontology to es-

tablish if batch adjustment leads to a better agreement between observed pairwise similarity and

similarity of cell types inferred from the ontology. A comparison of state-of-the art batch effect ad-

justment methods suggests that batch effects in heterogeneous datasets with low replicate num-

bers cannot be adequately adjusted. Better methods need to be developed, which can be assessed

objectively in the framework presented here.

Availability and implementation: Our method is available online at https://github.com/SchulzLab/

OntologyEval.

Contact: mschulz@mmci.uni-saarland.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A growing number of international consortia such as The Cancer

Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx)

project and the International Human Epigenome Consortium

(IHEC) have generated a wealth of epigenomic profiling data of cell

lines, sorted primary cells and tissue samples. These data will be of

tremendous help in unraveling mechanisms of cell differentiation

and in identifying patterns of epigenetic dysregulation in various dis-

eases. A number of studies have shown that joint analysis of data

from multiple projects enable novel applications of biological rele-

vance (Cao et al., 2017; Zang et al., 2016). However, these integra-

tive analyses are often hampered by batch effects, i.e. variation

between datasets that is of technical origin and does not reflect bio-

logical variation. A common example of a batch effect is that in
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principal component analysis (PCA), samples often cluster by la-

boratory, processing day or experimental protocol rather than by

their biological characteristics. Ignoring batch effects can lead to

false conclusions as it has been shown for many large-scale projects

in genomic research (Leek et al., 2010) and it is now commonly

accepted that batch effects should not be ignored in data analysis

(Goh et al., 2017).

Various approaches have been developed for batch effect adjust-

ment (BEA) (Jacob et al., 2016; Johnson et al., 2007; Leek and

Storey, 2007) and are routinely applied in genomics research [see

Lazar et al. (2013) for a comprehensive review of available meth-

ods]. Selecting the best method for a given dataset is not straightfor-

ward, in particular when the dataset shows large sample

heterogeneity and low replicate numbers. Within IHEC for example,

the individual contributing projects have a different biological focus.

Even in the absence of batch effects, we would thus expect samples

to cluster mostly by project in PCA. Unfortunately there are very

few instances where sample types, i.e. samples of the same cell line,

cell type or tissue, have been included in more than one project.

In this study, we are interested in learning how methods for BEA

can be compared best and to understand where methods fail in such

difficult application scenarios. A common approach for assessing

BEA performance is visual inspection in reduced dimensions (PCA,

t-SNE) before and after BEA. However, we and others find this vis-

ual inspection to be highly subjective and non-interpretable, espe-

cially if the batch is not associated to the highest variance present in

the data (Reese et al., 2013). In the following, we briefly discuss

quantitative alternatives and outline why they are not suitable for

assessing BEA on heterogeneous datasets with low replicate num-

bers, before we present and evaluate an alternative approach based

on leveraging information from an ontology.

A common way to assess batch adjustment performance quantita-

tively is to determine the overlap of samples from different studies be-

fore and after analysis using their distance in an n-dimensional space,

e.g. by computing the ratio of samples belonging to the same study

and those belonging to a different study for the k-nearest neighbors of

each sample [known as mixture score (Lazar et al., 2013)].

Pearson correlation of replicates can be informative of BEA per-

formance, i.e. if the correlation of replicates is expected to improve

through BEA. However, for many of the samples in IHEC few or no

replicates are available, making this type of analysis challenging.

Alternatively, a classifier can be trained to predict the group varia-

bles, like cell types or tissues. Successful BEA is then expected to

lead to better classification performance on test data not seen during

the training phase. However, this approach cannot be used as an in-

dicator of data quality since the low replicate number does not allow

for splitting the data into training and test data (Luo et al., 2010).

A different approach is to measure how skewed a gene’s distribu-

tion is across studies, e.g. by evaluating the skewness of the cumula-

tive density function (Lazar et al., 2013). However, considering that

gene expression profiles between vastly different sample types is

expected to show considerable variability for most genes, this ap-

proach is not always suitable. The same argumentation rules out the

use of differential gene expression analysis as suggested in some

studies (Gagnon-Bartsch and Speed, 2012; Leek and Storey, 2007)

or testing for the uniform P-value distribution of control genes

(Leek and Storey, 2007).

Another promising strategy is principal variance component ana-

lysis (Chen et al., 2011; Leek et al., 2010), which first extracts prin-

cipal components and uses these in variance component analysis to

understand the influence of known batch variables. After BEA, the

contribution of known batch variables is expected to be lower or

even non-existent. Unfortunately for many projects, only few poten-

tial sources of batch effects are documented in the meta data.

Moreover, potential batch variables such as laboratory or sample

preparation protocol correlate strongly with the sample type, mak-

ing principal variance component analysis unfeasible. A recently

published approach based on probabilistic principal component and

covariate analysis (PPCCA) attempts to circumvent some of these

issues by incorporating covariates into a PCA and performing statis-

tical tests for each principle component separately to check whether

it contains a batch effect (Nyamundanda et al., 2017). However,

this approach also requires that covariates are known beforehand

and thus does not allow quantifying whether the BEA improved the

data at hand or not.

The vast sample numbers available in single cell RNA-seq tech-

nology further motivated the development of a v2-based method spe-

cialized for this type of data (Buttner et al., 2017).

Overall, BEA carries the risk of removing biologically relevant

group differences, in particular when sample groups are not evenly

distributed between batches as is the case for many large-scale data-

sets including TCGA, GTEx and IHEC (Lazar et al., 2013; Nygaard

et al., 2016). This led us to the question how the performance of BEA

methods could be assessed and compared objectively in a heteroge-

neous scenario with few replicates and many diverse sample types.

2 Approach

The established methods for assessing BEA performance consider

only the similarity of samples belonging to the same sample type.

However, if we can quantitatively describe the expected similarity

between sample types, we gain the ability to compare one sample

against all others. For example, we can then consider that a liver cell

may be expected to be more similar in expression to a kidney cell

than to a brain cell.

This led us to the Cell Ontology (Bard et al., 2005), an estab-

lished hierarchical description of individual cell types. We used the

Cell Ontology to leverage previous knowledge to derive an estimate

of expected sample type similarity. Our method, which is depicted

in Figure 1, extracts three ordered vectors for each sample: (i) from

the ontology, we extract the expected similarity of the chosen sam-

ple to all other samples, (ii) we compute the similarity of this sample

to all other samples, (iii) we recompute the similarity in (ii) after

BEA. Finally, we correlate this to the observed distances before (ii)

and after (iii) BEA and refer to this as the ontology score.

Our null hypothesis is that BEA does not lead to significantly

higher correlation of expected and observed similarity, i.e. the ontol-

ogy score will not improve.

We systematically investigate the extent of batch effects between

ENCODE (Dunham et al., 2012), Roadmap (Kundaje et al., 2015),

BLUEPRINT (Adams et al., 2012) and DEEP (http://www.

deutsches-epigenom-programm.de/) gene expression (RNA-seq)

data. Additionally, we consider a less diverse set comprised of uni-

formly processed data from TCGA (Weinstein et al., 2013) and

GTEx (Consortium et al., 2015).

3 Materials and methods

3.1 Data
3.1.1 IHEC data

We downloaded FASTQ files for 36 ENCODE and 112 Roadmap

RNA-Seq experiments from the ENCODE web portal. Furthermore,

we obtained FASTQ files for 12 samples from the DEEP data portal
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and for 56 samples from the BLUEPRINT data portal. Gene expres-

sion is quantified in transcripts per million (TPM) with Salmon

(v. 0.8.2) using reference transcript sequences from Gencode Release

v26 (GRCh38.p10). ENCODE accession numbers, DEEP and

Blueprint sample IDs, tissue/cell-type assignments as well as sample

number per consortia are listed in Supplementary Tables S1 and S2,

respectively.

3.1.2 GTEx and TCGA data

FASTQ files for 6575 RNA-Seq samples were downloaded from the

GTEx project (Consortium et al., 2015). 741 RNA-Seq samples

were downloaded from the TCGA project (Weinstein et al., 2013).

Note that we only include TCGA control samples, i.e. tumor-

adjacent tissue samples, while tumor samples are neglected. For the

purpose of this study, we focus on the five tissues that are covered in

both GTEx and TCGA: colon, liver, kidney, prostate and thyroid

amounting to 1062 GTEx and 274 TCGA samples. Sample identi-

fiers and sample number per tissue are provided in Supplementary

Table S3.

RNA-Seq data is mapped against the human genome version

hg19 with TopHat2 (v.2.0.12) (Kim et al., 2013) using the Ensembl

v75 gene annotation. R-3.4.1 (Team, 2014) and Bioconductor 3.0

(Gentleman et al., 2004) are used for the RNA-Seq analysis.

Mapped reads are counted using the R package Genomic

Alignments (Lawrence et al., 2013) using the parameters

mode¼Union, inter.feature¼FALSE. Only primary read align-

ments are retained. Sample normalization values of the counts are

calculated using DESeq2 (Love et al., 2014).

3.2 Assessing the similarity of samples using an ontology

based distance matrix and gene expression data
Figure 1 provides an overview of the steps involved in computing

the ontology score. Details are provided in the following section.

3.2.1 Inferring expected sample similarities from the cell ontology

Between all terms included in the Cell Ontology (Bard et al., 2005),

we compute a pairwise similarity sim(ti, tj) between terms ti and tj
using both Jaccard coefficients (simjac) and cosine similarity (simcos)

(Pesquita et al., 2009). The function A(ti) returns the set of ancestors

for a given term in the cell ontology. Note that A(ti) contains ti as

well and that only subclass relationships are considered. For the co-

sine similarity we obtain a vector representation vt for a term t. The

vector has jCL j entries, where jCL j is the number of terms in the

Cell Ontology and each entry corresponds to one term. We set every

entry in vt to zero and every entry that corresponds to an entry in

A(t) to one. The Jaccard similarity and cosine similarity are then

defined as

simcos ti; tj

� � ¼ vti
� vtjffiffiffiffiffi

v2
ti

q
�
ffiffiffiffiffi
v2

tj

q ; simjac ti; tj

� �
¼

A tið Þ \ A tj

� �

A tið Þ [ A tj

� � : (1)

An example is provided in Supplementary Figure S13. We manu-

ally map all IHEC, GTEx and TCGA samples to Cell Ontology

terms. Using the entire set of similarities for all terms and the manu-

ally generated sample-term mappings, we can generate matrices

holding pairwise sample similarities sim(sk, sl) for any combination

of samples by considering the respective similarity measures

sim and sample types tsk
and tsl

in the ontology. We calculate

sim sk; slð Þ ¼ sim tsk
; tsl

� �
. Thereby we obtain symmetric similarity

matrices Ojac and Ocos. We point out that these similarity matrices

can be easily converted to distance matrices by dist sk; slð Þ ¼
1� sim tsk

; tsl

� �
.

3.2.2 Computing a sample similarity matrix with respect to gene

expression data using principal component analysis (PCA)

In order to generate a gene expression-based distance matrix for all

samples, we run a PCA on a full RNA-seq dataset of interest, there-

by reducing its dimensionality. The first Principal Components

(PCs) capture most of the variability between the samples, thus they

can be used to distinguish the samples from each other. Using the

first four PCs (explaining between 86–95% of variance) we compute

a sample similarity matrix D based on Spearman correlation.

3.2.3 Comparing expression-based distances with expected ontology

distances

We construct O such that it has the same dimensionality as D, i.e.

for each sample k the observed similarities D[, k] match the

expected similarities sk in O[, k]. This allows for assessing how well

the expected similarities O fit to the inferred similarities D through

a global score based on the similarity of the two matrices, e.g. via

the inner product. However, to avoid losing sample-specific infor-

mation, we instead chose to compute a vector u of ontology scores

with

uk ¼ cor D ; k½ �;O ;k½ �ð Þ (2)

for each sample k and cor as either Spearman Ssp or Pearson Sp cor-

relation. Note that all figures presented in this manuscript are based

on Ocos and Ssp. For results on alternative combinations we refer to

the Supplementary Material. Using per sample scores allows us to

investigate effects at different granularity, reaching from individual

samples to groups of samples pertaining to specific batches (e.g.

comparing consortia) or group variables (e.g. comparing tissues).

We test different combinations of similarity measures for com-

puting D, O and u and find that the differences between the scoring

gene expression(a)

(b)

(c)  ontology

(d)

(e)

cor(D[, A1], O[, t(A1)])

D O

t(A) t(B)

t(A1) t(A2)
t(A1)

t(A2)

t(B) t(C)

t(B)
t(C)

Fig. 1. Overview of the method. (a) Given a gene expression matrix as input,

we compute similarities for all pairs of samples, giving rise to (b) a matrix D

of observed similarities. (c) Using an ontology as input, we compute a matrix

O of (d) expected similarities based on the path lengths between the terms

corresponding to each sample in (c). Finally, we correlate for each sample

two vectors, namely the observed sample similarities from (b) to the expected

similarities in (d) that correspond to their sample type. This yields (e) ontol-

ogy scores for each sample in (a)
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schemes are marginal. Hence, the overall conclusions drawn from

the scores are invariant to the used scoring scheme.

3.3 Correcting for batch effects
We use three widely used BEA methods considered in this work,

namely Combat (Johnson et al., 2007), SVA (Leek and Storey, 2007)

and RUV (Jacob et al., 2016) which are briefly described here.

Please refer to the respective publications for a detailed description

of the methods. The most common strategy in BEA is to transform

data from different batches to have the same or similar mean and

variance for each gene. Combat is a widely used method that infers

gene-scaling parameters robustly by pooling information across

genes with similar expression profile using an empirical Bayes ap-

proach (Johnson et al., 2007).

Combat was originally designed to adjust batch effects in micro-

array datasets with small batch sizes in mind. It can be used with or

without adding group variables whereas the batch variables have to

be provided. Another strategy for BEA is matrix factorization. Here,

we assume that most of the variance in the raw data is due to batch

effects. Thus, batch variables are expected to correlate with one or

several of the first factors. These batch-associated factors are identi-

fied and removed from the data.

A popular example for this strategy is surrogate variable analysis

(SVA) (Leek and Storey, 2007). SVA estimates the number of latent

variables to be removed and can be run with or without adding

group variables to the model.

Remove unwanted variation (RUV) is an alternative approach

that uses a set of control genes to identify factors associated with

batch effects (Jacob et al., 2016). While RUV can infer suitable con-

trol genes from the data, a more common strategy is to use a set of

housekeeping genes that are expected to show little variance within

a batch. RUV removes the variation derived from the control genes

via linear regression. In contrast to Combat and SVA, neither group

nor batch variables are provided.

Combat and SVA were used through the sva R-package

(v 3.24.4). RUV is applied through the RUVNormalize R-package

(v 1.12.0). In this study, we provide Combat with information on

the present batches, i.e. the data source, as well as the tissue assign-

ment of the samples. In SVA, we define the probability for a gene g

to be a control gene pcg as

pcg ¼ 1�
rank r gð Þ

� �

max rank r gð Þ
� �� � ; (3)

with r(g) being the standard deviation of the expression of gene g

across all samples and rank returns the corresponding rank of r(g)

compared to all genes. The motivation for this is to preferably

use genes as controls that have stable expression across samples.

SVA is also provided with the tissue to sample assignment. For

RUV, we use a set of housekeeping genes suggested by NanoString

Technologies (2009) as control genes.

4 Results

We developed the ontology score to assess if BEA is beneficial on

heterogeneous datasets. To assess if the score fulfills this expect-

ation, we present several analyses. First, we use randomization

experiments to assess the benefit of using the Cell Ontology for com-

puting ontology scores. Second, we add artificial noise to GTEx

data to assess the robustness of the score. Third, we add an artificial

batch effect to GTEx data to investigate if the ontology score drops

as expected and to study to what extent the score can be recovered

through BEA. Finally, we apply the ontology score to TCGA, GTEx

and IHEC data to demonstrate what can be learned from this score

when applied to batch-adjusted heterogeneous data.

4.1 The ontology score leverages information captured

in the cell ontology
To learn about the robustness of the ontology score, we conduct

randomization experiments using GTEx data. To this end, we gener-

ate 100 sets in which each sample is assigned a random tissue-term

from the available ontology terms. For each set, we compute corre-

sponding expected distance matrices and subsequently recompute

the ontology scores.

As shown in Figure 2, the mean score computed based on the

randomized ontology is significantly lower than the mean score of

the original ontology matrix. In a more realistic scenario, we use an

ontology in which samples from the same tissue are assigned a simi-

larity of 1.0 and 0.25 otherwise. This version allows us to study if

leveraging information about the similarity between sample types

leads to a significantly higher score, which also holds true. Taken to-

gether, these results indicate that the ontology score indeed informs

about the sample similarities we can expect from gene expression

data. Moreover, it emphasizes that an accurate mapping of samples

to cell ontology terms strongly influences the quality of the ontology

scores, i.e. the better the ontology and the assigned sample labels re-

flect the underlying biology, the higher the ontology score will be.

In Supplementary Figure S1a, we show the results for the ran-

domization experiment using other scoring schemes. Supplementary

Figure S1b illustrates the score behavior individually for each tissue.

4.2 The ontology score is sensitive to noise in the data
Next, we conduct two simulation studies to learn about the effect of

artificial noise on the ontology score. Adding artificial noise system-

atically can be seen as introducing an artificial batch effect. In the
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*

−0.5

0.0

0.5

1.0

Original Randomized Fixed

O
nt

ol
og

y 
sc

or
e 

(S
pe

ar
m

an
)

Fig. 2. The ontology score computed on GTEx normal samples using the ori-

ginal ontology matrix, a fixed ontology matrix, i.e. identical tissues have a

similarity of 1.0 while different tissues have a similarity of 0.25, and using ran-

domly sampled ontology matrices (sampled 100 times from all available

ontology terms). According to a Wilcoxon–Mann–Whitney test, the original

ontology leads to a significantly higher score than both alternative versions

(***P-value <1e– 4, *P-value <0.05)
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first simulation, we add Gaussian noise N(l¼10, r¼1) to all genes

across all tissues for different fractions of GTEx samples reaching

from 0 to 50%. As shown in Figure 3a, the score decreases when the

fraction of samples exposed to noise increases. This can also be

observed using alternative score variants (Supplementary Fig. S2a

and b). In a second simulation, we added Gaussian noise to 50% of

all samples with constant variance but increasing mean reaching

from 0 to 30. As shown in Figure 3b the score is dropping rapidly

with increasing noise intensity but stays rather constant after l�10.

Similar observations can be made with alternative scores

(Supplementary Fig. S2c and d). Taken together, these results show

that the ontology score quantifies increasing levels of distortion in

data associated with the number of affected samples and the extent

of the noise involved.

4.3 The performance of batch effect adjustment is

captured by the ontology score
We extend the simulation study introduced in the previous section

by attempting to adjust for the artificial noise using Combat as one

example of a batch adjustment method. Combat is, by design, well

suited to adjust for the linear shift we imposed on the data. We use

PCA plots to visualize the variance present in the data. PCA analysis

shows that the original GTEx data clusters per tissue (Fig. 4a and d

and Supplementary Fig. S3a). As expected, adding Gaussian noise to

50% of the samples leads to the formation of two large clusters in

the PCA, breaking up the tissue-specific clustering of the original

data (Fig. 4b and e and Supplementary Fig. S3b). Performing a PCA

on data adjusted with Combat shows that samples do no longer

cluster by batches and instead cluster by tissue as in the original data

(Fig. 4c and f and Supplementary Fig. S3c). Encouragingly, the

ontology score reflects these observations as well. As shown in

Figure 5 (and Supplementary Fig. S4), the score decreases when

noise is added and is nearly restored to the original level after adjust-

ment via Combat with the notable exception of liver samples.
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Fig. 3. (a) Changes in the distribution of the ontology score depending on arti-

ficial Gaussian noise N(l¼10, r¼ 1) added to a subset of GTEx samples

across all tissues. The fraction of samples that was contaminated with noise

is shown on the x-axis. With increasing contamination, the score is dropping.

(b) Depicts how the score is influenced by varying the mean (l) of Gaussian

noise added to the samples. For this experiment, noise is added to 50% of all

samples across all tissues, with varying mean. With increasing noise inten-

sity, the score drops and remains constant after l>10
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Fig. 4. In (a–c), we show the 1st and 2nd PC, in (d–f) the 3rd and 4th PC of a PCA computed on the original GTEX data. In (b) and (e), a shift caused by the

Gaussian noise is clearly visible. One can see that there are two batches per tissue and the tissue specific clustering present in (d) is largely lost. (c) and (f) illus-

trate the PCA space after the noisy data was adjusted with Combat. The shift visible in (e) disappeared in (f), and overall the plot is similar to (d), i.e. the tissue spe-

cific clustering is mostly restored. However, as shown in (c), the liver samples were not adjusted properly. A new shift, which is different from the shift caused by

the Gaussian noise (b) has been introduced by Combat. This leads to a different clustering compared to the original data (a)
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For the latter, PC1 and PC2 show that the noise could not be

properly removed (Fig. 4a and c and Supplementary Fig. S3c).

Consequently, the ontology score does not improve either.

This example illustrates the applicability of our method in a con-

trolled environment with merely five tissues and two well-separated

batches. Yet it is already challenging to assess the performance and

limitations of the BEA method by visual inspection of the PCA,

whereas the ontology score provides a simple and effective way to

circumvent this subjective assessment (more PCA plots in

Supplementary Fig. S3).

4.4 Application to heterogeneous datasets
We use the ontology score in two use cases. (i) we combined data

from TCGA and GTEx as well as (ii) data from the IHEC members

Blueprint, DEEP, ENCODE and Roadmap.

Figure 6a shows the distribution of the ontology score in the first

use case. The RUV method does not perform well according to the

ontology score, while SVA seems to be able to successfully adjust

GTEx data, while exhibiting poor performance on TCGA data.

Combat shows only marginal improvement in the ontology scores.

Figure 6b as well as Supplementary Figure S5 highlight that a more

fine-grained view is useful to learn which samples and batches bene-

fit from BEA. Without separating ontology scores by tissues and

projects little differences are revealed (Supplementary Fig. S5a).

Splitting the ontology score distribution for individual tissues reveals

that SVA introduces negative scores for prostate samples

(Supplementary Fig. S5a and b). Further splitting by tissue and pro-

ject reveals additional details (Fig. 6b and Supplementary Fig. S5c),

e.g. that SVA could not improve the quality of liver data in TCGA,

while it did improve it in GTEx data. Splitting up ontology scores in

this fashion offers an explanation for the score difference observed

between TCGA and GTEx, which are not apparent in a visual in-

spection of PCA plots (Supplementary Fig. S6). Moreover, the ontol-

ogy score reveals potential issues not visible by PCA. For instance,

Figure 6c shows SVA leads to a visually perfect separation of sam-

ples according to tissues whereas the ontology score suggests that

the cluster with the prostate samples is not in the expected position

relative to other tissue types, suggesting that SVA may have
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Fig. 6. (a) Depicts the ontology scores computed for samples of five tissues extracted from GTEx and TCGA, before and after batch effect removal. While SVA

seems to perform well on GTEx data, it appears to be not beneficial to apply any adjustment method at all on the TCGA data. (b) We observe that both SVA and

RUV have issues with the Prostate data in this setting, as the ontology score is turning negative. Also, we note that the score for original liver samples from GTEx

is very low. (c) PCA analysis of the SVA adjusted data showing PC1 vs. PC2 and PC3 vs. PC4. While the clustering looks very well in PC3 and PC4, we note that the

prostate samples are overlapping with colon and thyroid samples, which is reflected by the negative ontology score for prostate using SVA
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introduced an artifact here. Indeed, a closer investigation of the cor-

relations of prostate samples with samples of other types confirmed

this (Supplementary Fig. S11). Overall, our results suggest that BEA

does not seem beneficial in this particular use case.

Additionally, we applied the ontology score in a more challeng-

ing scenario with many diverse tissues and cell types (65 in total)

originating from four consortia, namely DEEP, Blueprint, Roadmap

and ENCODE. Here, only few samples are available per tissue/

cell-type and the overlap of tissues/cell-types being present across

multiple consortia is small.

As shown in Figure 7a, the RUV method seems to perform favor-

ably for DEEP and Roadmap data, whereas it is the worst performing

method on Blueprint data. For the latter, Combat shows the highest

increase in the ontology score. Interestingly, according to the ontology

score, no method leads to an improvement on ENCODE data. Similar

observation can be made for the alternative score variations

(Supplementary Fig. S7). In a diverse and complicated scenario as the

one presented here, a PCA analysis as shown in Supplementary Figure

S8 cannot be easily interpreted, arguing for the necessity of an alterna-

tive way to assess BEA methods objectively.

Our ontology score allows a cell-type/tissue specific analysis of

the data. An example is shown in Figure 7b (and Supplementary

Fig. S9). While RUV performs well on hepatocyte data (see also

Supplementary Fig. S12), it does not work well on erythroblasts.

Here, the results suggest that none of the applied methods is general-

ly applicable. Moreover, it becomes apparent that many sample

types benefit from BEA with Combat or SVA while others are either

unaffected or show a decrease in ontology score.

5 Discussion

Heterogeneous datasets such as the one produced by IHEC do not

yet offer sufficient sample numbers to leverage existing BEA meth-

ods without careful considerations. A major concern is that the pro-

cedure may further reduce statistical power or, in the worst case,

introduce an additional confounding variable that obscures group

differences such as those between sample types. To our knowledge

there is no objective approach for assessing the quality improvement

of BEA on heterogeneous datasets with few sample numbers. This

motivated us to develop the ontology score, which offers two major

advantages in comparison to existing methodology. First, it over-

comes the problem that few samples of the same type are available

by comparing each sample to all other samples. This is achieved by

utilizing information captured in the Cell Ontology. The ontology

score can thus answer the question if BEA leads to a better separ-

ation of samples according to the relative similarity changes to other

sample types. Second, it allows for different BEA methods to be

compared against each other and to identify strengths and limita-

tions of each approach.

To characterize the ontology score we used GTEx gene expres-

sion data from five different tissues. Our results show that using the

Cell Ontology leads to significantly higher scores than a randomized

assignment of labels or an ontology in which we only recognize sam-

ple type identity but use a default for all other sample types. While

this is encouraging and demonstrates that the ontology score works

as expected, it should be noted that the ontology score is also limited

by the quality of the ontology. Indeed it is not likely that biological

reality can be fully captured in an ontology as previous studies have

already shown. For instance, cell differentiation during hematopoi-

esis is more complex than previously believed (Farlik et al., 2016).

This may also explain why only some sample types generally benefit

from BEA. While this could also be attributed to data quality, it is

plausible that the ontology does not capture the similarities of these

sample types adequately.

Moreover, we point out that it is not clear when a good ontology

score is reached. In fact, the ontology score can only be used for rela-

tive comparisons, e.g. between original and batch-adjusted data or

between datasets adjusted through different methods.

Finally, the quality of the results depends on the assignments be-

tween sample type labels and the ontology terms. We did this in a

manual, error-prone fashion and learned in the process that it is not

always straightforward to find the correct assignment. We thus en-

courage consortia to incorporate expert-curated mappings to ontol-

ogy terms in their meta data.

We further study how the ontology score is affected by adding

varying degrees of noise to the data. Here, the ontology score is
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Fig. 7. (a) Here we show the ontology score for adjusting batch effects in a heterogeneous dataset with 65 tissues from Blueprint, DEEP, ENCODE and Roadmap.

The batch adjustment methods do not perform uniformly well across data sources, e.g. RUV performs favorably for DEEP and Roadmap data, while Combat

seems to obtain good results on Blueprint samples. For ENCODE data, no adjustment method is able to improve the score. (b) Example for a tissue specific view

on the data. While RUV performs well in improving hepatocyte data, it is the worst method considering erythroblasts
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reduced as expected, highlighting that it may also be used for assess-

ing the performance of normalization methods (as illustrated in

Supplementary Fig. S10). On the GTEx analysis we could illustrate

that the ontology score can be used to isolate the effect of BEA to

different groups of samples and to reveal more nuanced issues.

Another possible concern is the influence of sample numbers. In

the GTEx data this did not seem to play a major role. For instance,

thyroid and colon are represented through large sample numbers,

yet thyroid samples achieved far higher scores than colon samples.

When applying SVA, Combat and RUV to a mixed dataset of

GTEx and TCGA data, the ontology score suggests that BEA was

generally not beneficial. The reason for this could be that TCGA

control samples, which are collected in the vicinity of a tumor, are

markedly different from non-cancerous tissue samples (Huang et al.,

2016). Nevertheless, a closer look at the ontology score yields im-

portant insights into limitations of the different BEA methods. For

example, visual inspection of PCA plots shows that all tissues cluster

seemingly perfect after SVA batch adjustment. However, the ontol-

ogy score reveals that prostate samples do now show a negative cor-

relation with the expected similarities, indicating that SVA may have

isolated the different sample types perfectly, while removing import-

ant information that characterize group differences. This is not sur-

prising, since SVA attempts to maximize the differences between the

sample types. This means that the ontology score, by leveraging the

additional information provided by the ontology, can be used to test

whether a BEA method removed important group characteristics. By

considering how relative similarities to other sample types are

affected, the ontology score gains an advantage over alternative

methods such as the mixture score, which only test if individual

sample types cluster well. Considering only the latter would not in-

dicate an issue in this case.

The IHEC data is the most heterogeneous example we consider

in this study with very few samples overlapping between different

projects. Blueprint, DEEP and ENCODE samples, which consist

mainly of primary cells, benefit little from BEA. Roadmap samples,

which are mostly obtained from tissues, show a more pronounced

improvement depending on the method used. Here, we speculate

that BEA may be more meaningful for tissue samples in which a het-

erogeneous mix of different cell types is distorting the results.

Removal of a latent variable representing, for instance, the contribu-

tion of immune cells to a tissue sample, could explain the increase in

the ontology score. Primary cells, on the other hand, are already

purified and do thus not benefit from this procedure.

SVA and Combat often outperformed RUV, likely because they

received the sample type labels as input. The poor performance of

the RUV method for GTEx and TCGA data, may be due to our

choice of housekeeping genes. On the other hand, we find examples

where RUV leads to considerably higher ontology scores than all

other methods, e.g. in DEEP and Roadmap samples, where it

improved the clustering of hepatocyte and kidney samples consider-

ably (Supplementary Fig. S12).

For the future, we see a demand for the development of novel

BEA methods that can accommodate the heterogeneity observed in

large international consortia like IHEC. We note that this task could

be tremendously simplified by including a set of reference samples

such as a panel of cell lines into each batch of a project and recom-

mend considering this for future studies. Already today, empirical

Bayes methods exist that can utilize such reference samples even

when batches are otherwise unbalanced with respect to their sample

types (Walker et al., 2008). In absence of this, we could imagine

that the expected similarity we utilize here for benchmarking could

also be utilized in a batch adjustment method. Obviously, following

this approach would then limit the applicability of the ontology

score and raise even stronger concerns about exaggerated confidence

in group differences.

Another major challenge in batch effect analysis is the lack of

meta data annotation, which forces data analysts to rely on surrogate

variables such as the processing date. This has been realized and

efforts for harmonizing such data in IHEC are currently under way.

Here, we use RNA-seq data as the most widespread data source

used in genomics studies. However, batch effects are a concern in all

types of genomic and epigenomic data (Akulenko et al., 2016). We

will thus investigate how BEA methods perform on other types of

epigenomic data in the future.

Finally, we envision that the availability of multi-omics data of

the same samples, as is the case for IHEC, offers the opportunity to

develop BEA methods that adjust for batch effects in a joint model

that borrows information from other data types (Zang et al., 2016).

6 Conclusion

In recent years, more and more emphasis has been put on collabora-

tive efforts for generating molecular profiling data. While many gen-

omics projects handle impressive sample numbers, this is not yet the

case for relatively new technologies allowing to study the epige-

nome. Moreover, many projects focus on a particular condition,

such as cancer, whereas the data available through the IHEC consor-

tium is very heterogeneous and includes cell lines, primary cells and

tissues for samples from healthy donors as well as samples from

patients carrying various diseases.

While it is always preferable to include batch variables directly

in statistical analysis, many downstream analysis tools do not offer

this possibility. This leads to the requirement of BEA as an essential

part of integrative analysis. However, it is currently unclear how

useful established methods are on epigenetic data, in particular con-

sidering that these methods have been developed with larger sample

numbers and balanced datasets in mind in which all sample types

are included in all batches.

The ontology score we propose here is, to our knowledge, the

first to robustly assess the performance of BEA, in particular when

biologically relevant group variables such as the sample type are

part of the adjustment procedure. Moreover, this approach is not

limited to batch adjustment but can also be used to show if data nor-

malization leads to improved results.
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