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Abstract

We define a class of A∞-algebras that are obtained by deformations of higher spin

symmetries. While higher spin symmetries of a free CFT form an associative algebra,

the slightly broken higher spin symmetries give rise to a minimal A∞-algebra extending

the associative one. These A∞-algebras are related to non-commutative deformation

quantization much as the unbroken higher spin symmetries result from the conventional

deformation quantization. In the case of three dimensions there is an additional pa-

rameter that the A∞-structure depends on, which is to be related to the Chern-Simons

level. The deformations corresponding to the bosonic and fermionic matter lead to the

same A∞-algebra, thus manifesting the three-dimensional bosonization conjecture. In

all other cases we consider, the A∞-deformation is determined by a generalized free

field in one dimension lower.
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1 Introduction

Strong homotopy algebras (SHA), which are also dubbed A∞ and L∞ for the cases general-

izing associative and Lie algebras, are general enough structures that abstract and formalize

what it means to be algebraically consistent in a broad sense. No wonder that many of

physical problems can be cast into the framework of SHA, like string field theory [1–5] and

the BV-BRST theory of gauge systems [6–9]. Even some of the problems that are seemingly

unrelated to any SHA admit natural solutions by translating them to the SHA setup, e.g.

the deformation quantization of Poisson manifolds [10]. In the present paper, we use the

language of SHA in order to describe the slightly broken higher spin symmetries [11–18] that

govern certain nontrivial conformal field theories (CFT) at least in the large-N limit.

It is well known that free CFT’s have vast symmetries that extend the conformal algebra

to infinite-dimensional associative algebras, called higher spin algebras in this context. In

particular, the correlation functions can be computed as invariants of higher spin symmetries

[19–22]. The structure of interacting CFT’s, however, is much more interesting to study. If

a given CFT admits a weakly-coupled limit, which is not necessarily free in terms of the

fundamental constituents, then one can think of such a CFT as enjoying a slightly broken

higher spin symmetry, the term coined in [11]. The examples of main interest include the

critical vector model, the Gross-Neveu model and, more generally, the Chern-Simons matter

theories in the large-N limit. The last model has recently been conjectured to exhibit a

number of interesting dualities [11, 23–27] and our expectation is that the dualities can be

explained by higher spin symmetries. The purpose of the paper is to define what a slightly

broken higher spin symmetry means in mathematical terms.

One obstacle is that higher spin algebras are typically rigid, that is, admit no defor-

mations. Indeed, in d > 2 the free CFT’s are isolated points and do not form continuous

families.1 The opposite conclusion is also true: higher spin symmetries are the symmetries

of free CFT’s in d > 2 [32–35]. Therefore, a slightly broken higher spin symmetry is not

about the usual deformation of associative algebras. Our proposal is that such deformations

fall into the class of A∞-algebras we are going to study.

1There is a one-parameter family of algebras in 4d [28–30], the free parameter λ being helicity. For

non-(half)integer values of the parameter these algebras do not have any natural spacetime and CFT in-

terpretation and for |λ| > 1 there is no local stress-tensor as well. Also, there is a one-parameter family

of algebras relevant for higher spin theories in AdS3, but the dual CFT’s are minimal models [31] with W

symmetry and higher-spin algebras do not seem to work in 2d CFT’s the way they do d > 2.
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On the other hand, the A∞-algebras that describe slightly broken higher spin symmetries

are still related to associative algebras and deformations thereof. The class of A∞-algebras

we construct may be of some interest by itself, being closely related to the so-called non-

commutative deformation quantization [36, 37]. In a few words, suppose that we have an

associative (in general non-commutative) algebra and, furthermore, that the product can be

deformed as

a ∗ b = ab+ φ(a, b)~+ · · · , (1.1)

~ being a formal deformation parameter. Here φ is a Hochschild 2-cocycle. Classifying

and constructing such deformations in the case of algebras of smooth functions on Poisson

manifolds are the standard problems of deformation quantization that have been solved

by Kontsevich [10] using a string-inspired construction of SHA. The deformation problem

we are lead to is to promote the formal parameter ~ to an element of the algebra itself.

This clearly has no sense in the realm of usual associative algebras. The idea is to go to

the category of A∞-algebras where it is legitimate to replace φ(a, b)~ with a tri-linear map

m3(a, b; u), with the ‘deformation parameter’ u being now an element of the same algebra.

The correspondence principle requires m3(a, b; ~) = φ(a, b)~. This is only the starting point

and all the higher structure maps mn(a, b; u, . . . , w) are to be constructed. Taken together,

the m’s solve the Maurer–Cartan equation and this amounts to defining an A∞-algebra.

One of our results is that the A∞-structure maps mn can all be expressed through φ and the

other coefficients of the expansion (1.1).

It is also important to realize the reason for such A∞-structures to originate from higher

spin algebras, given the fact that the latter algebras admit no relevant deformations. What is

relevant for the slightly broken higher spin symmetries is not the higher spin algebras them-

selves, but certain simple extensions thereof. In the simplest cases these are Z2-extensions

by the inversion map. We prove that as associative algebras these extensions admit at least

a one-parameter family of deformations. It is this deformation that is plugged in into the

general construction of A∞-algebras just described.

The physical interpretation of the abstract discussion above is that higher spin symme-

tries originate from higher spin currents Js = φ∂ · · ·∂φ + . . ., which are bi-linear in fields.

When higher spin symmetry is slightly broken by interactions, the higher spin currents are

no longer conserved. Nevertheless, the non-conservation, i.e., the breaking of the higher spin

symmetry, has a very specific form of double trace operators built out of higher spin currents

themselves. In a sense, higher spin currents are responsible for their own non-conservation.
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Therefore, the higher spin algebra is deformed, the parameter of deformation being an in-

finite multiplet of higher spin currents suppressed by the factor 1/N . A remarkable fact is

that the multiplet of higher spin currents is isomorphic to the higher spin algebra itself (up

to Z2-reflection by the inversion map). Therefore, in order to describe the slightly broken

higher spin symmetry we should be looking for a deformation of the higher spin algebra

which is controlled by another element of the algebra.

Of special interest is the case of three dimensions. Here the structure of the higher spin

symmetry breaking is richer than in higher dimensions due to the presence of an additional

parameter related to the level k of the Chern–Simons matter theories. The structure of

correlation functions is also more complicated with certain parity-odd structures contributing

to it [11, 14, 38]. More importantly, the theories with bosonic and fermionic matter seem

to describe the same physics and this has lead to the conjecture of the three-dimensional

bosonization and related ones [11, 23–27]. The first observation here is that the higher spin

algebras of free boson and free fermion CFT’s are isomorphic, meaning that they have to

lead to the same A∞-algebra. Secondly, the deformation is characterized by the second

Hochschild cohomology and turns out to be two-dimensional, while it is one-dimensional in

d > 3. The additional parameter is to be associated with the t’Hooft coupling λ = N/k.

This provides a good evidence for the conjecture to the leading order in 1/N . See also the

comments at the very end.

The rest of the paper is organized as follows. We begin in Section 2 by recalling several

definitions of A∞-algebras, of which we prefer the Gerstenhaber bracket. In Section 3, we

define and construct a class of A∞-algebras that can be thought of as non-commutative

deformation quantization of associative algebras. Various definitions and examples of higher

spin algebras are recalled in Section 4. In Section 5, we prove that certain simple extensions

of higher spin algebras admit deformations. Some explicit oscillator realizations of these

deformations are discussed in Section 6. Conclusions are in Section 7.

2 A∞ Algebras

There are several equivalent definitions of A∞-algebras: (i) via Stasheff’s relations [39]; (ii)

via a nilpotent coderivation on the tensor coalgebra of the suspended graded algebra; (iii)

via the Gerstenhaber bracket. While we prefer the last one and use it throughout the paper,

let us briefly discuss the other two. The initial data is a graded vector space V =
⊕

k V
k.
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Stasheff’s relations. A∞-structure is defined via multilinear maps mn : T nV → V of

degree 2− n that obey the Stasheff relations [40]

∑

a+b+c=n

(−)a+bcma+b+1(1
⊗a ⊗mb ⊗ 1⊗c) = 0 . (2.1)

It is difficult to explain the origin of signs and gradings. Moreover, additional signs will be

generated due to the Koszul rule when the actual arguments are plugged in.2

Coderivations. The Stasheff relations can be extracted from nilpotency of a coderivation.

To this end, one takes the reduced tensor algebra T̄ V by dropping the zeroth component:

T̄ V =
⊕

k>0

T kV . (2.2)

There is a natural coproduct ∆ : T̄ V → T̄ V ⊗ T̄ V defined by

∆(v1 ⊗ · · · ⊗ vn) =
n−1∑

i=1

(v1 ⊗ · · · ⊗ vi)
⊗

(vi+1 ⊗ · · · ⊗ vn) . (2.3)

It is not hard to see that each degree-one mapQ : T̄ V → V uniquely extends to a coderivation

Q : T̄ V → T̄ V (denoted by the same symbol), i.e., ∆Q = (1 ⊗ Q + Q ⊗ 1)∆. Each

degree-one coderivation Q squaring to zero defines an A∞-structure on V and the Stasheff

relations, together with the right signs,3 can be extracted by expanding the equality Q2 = 0

in homogeneous components.

Gerstenhaber bracket. Our preferable choice is to describe A∞-structure via the Ger-

stenhaber bracket J•, •K, which is defined on the space Hom(TV, V ) of maps (cochains) from

the tensor algebra of V to V itself. By definition,

Jf, gK = f ◦ g − (−1)|f ||g|g ◦ f , (2.4)

2The Koszul rule is that a sign accompanies whenever two graded objects has to be permuted:

(f ⊗ g)(u⊗ v) = (−)|g||u|f(u)⊗ g(v) ,

where |x| denotes the degree of an object x (an element of the vector space or a map).
3To get exactly these signs one needs to replace V in the definition above with its suspension V [1], i.e.,

V [1]k = V k+1. See also a comment below on how to avoid dealing with suspensions.
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where the non-associative ◦-product is defined by

(f ◦ g)(a1 ⊗ a2 ⊗ · · · ⊗ am+n−1) =

=
n−1∑

i=0

(−1)|g|
∑i

j=1
|aj |f(a1 ⊗ · · · ⊗ ai ⊗ g(ai+1 ⊗ · · · ⊗ ai+m)⊗ · · · ⊗ am+n−1) .

(2.5)

The Gerstenhaber bracket is graded skew-symmetric and obeys the Jacobi identity:

Jf, gK = −(−1)|f ||g|Jg, fK , JJf, gK, hK = Jf, Jg, hKK − (−1)|f ||g|Jg, Jf, hKK . (2.6)

Note: it is common in the literature to define A∞-algebras via maps on the suspension V [1] of

the corresponding graded space V . Then mn has degree 2−n, as above. We prefer to prepare

the experimental setup in such a way that V is already suspended. This prevents appearance

of many sign factors and all mn have now degree one. For example, an associative algebra

A is understood as a graded algebra with the only nonzero component leaving at degree zero.

Then the suspended space A[1] is nonzero at degree −1. When treated as an A∞-algebra, we

assume A to have only the A−1 component, so that multiplication is a degree-one map m2

taking A−1 ⊗ A−1 to A−1.

Given a graded space V and a summ = m1+m2+· · · of degree-one mapsmn : T nV → V ,

the A∞-structure is defined simply as a solution to the Maurer–Cartan equation:

Jm,mK = 0 . (2.7)

Upon expansion m = m1 +m2 + · · · the first few relations have a simple interpretation: m1

is a differential, m1m1 = 0; m2 is a product differentiated by m1 by the rule −m1m2(a, b) =

m2(m1(a), b)+(−)|a|m2(a,m1(b)). However, m2 is not associative in general, the associativity

is true up to a coboundary controlled by m3:

m2(m2(a, b), c)+(−)|a|m2(a,m2(b, c)) +m1m3(a, b, c) +m3(m1(a), b, c)+

+ (−)|a|m3(a,m1(b), c) + (−)|a|+|b|m3(a, b,m1(c)) = 0 .

There are certain special cases of A∞-algebras that deserve their own names. Minimal

A∞-algebras do not have the lowest map m1, i.e., differential. Such algebras arise naturally

when passing to the cohomology H(m1) of m1 and dragging the A∞-structures there, the

resulting algebras are called minimal models, see e.g. [4]. Differential graded algebras (DGA)

have only m1 and m2, i.e., a differential and a bi-linear product that respect the Leibniz rule.

Note that for a genuine A∞-structure to arise it is necessary that V has more than

one graded component due to the degree requirement. The only possibility with just one

nontrivial component is V = V−1, then m2 is an associative product on V .
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3 A∞ from Deformations of Associative Algebras

In this section, we discuss what kind of A∞-structures are related to higher spin symmetries.

From the A∞ point of view the only important property of higher spin algebras (HSA) to

be abstracted is that they are associative algebras. There are certain special properties of

HSA that allows one to describe the corresponding A∞-algebras in more detail and there are

tools to explicitly construct them, which will be discussed in Sections 5, 6. Throughout this

section, we let A denote any associative algebra.

Given an associative algebra A, it is clear that due to the restrictions imposed by the

grading, there cannot be any interesting A∞-structure on it; the only possibility is to deform

A itself as an associative algebra. We define the A∞-structure perturbatively and the first

step is to extend A by any its bimodule M ; in so doing, A and M are prescribed the degrees

−1 and 0, respectively. At the lowest order the A∞-structure is simply equivalent to the

definitions above: there is onlym2 that is defined for various pairs A−1⊗A−1 (the A product),

A−1 ⊗ A0 (the left action of A on M), A0 ⊗ A−1 (the right action of A on M). All these

conditions are summarize by the Stasheff identity:

m2(m2(a, b), c) + (−)|a|m2(a,m2(b, c)) = 0 ⇐⇒ Jm2, m2K = 0 . (3.1)

Denoting elements of A−1 by a, b, . . . and elements of the bimodule A0 by u, v, . . . we have 4

m2(a, b) = ab , m2(a, u) = au , m2(u, a) = −ua , m2(u, v) = 0 . (3.2)

Now one tries to deform this rather trivial A∞-structure and the first deformations m(1)

can be described in terms of the Hochschild cohomology of A. Introducing the Hochschild

differential δ = Jm2, •K, one can identify the nontrivial first-order deformations m(1) with

the nontrivial δ-cocycles,

δm(1) = 0 ⇐⇒ Jm2, m
(1)K = 0 . (3.3)

In other words, the space of infinitesimal deformations is identified with the δ-cohomology

in degree 1, while the second δ-cohomology group is responsible for possible obstructions to

deformation.

The first order deformation should have the form m(1) = m3(•, •, •) with arguments from

A−1 and A0. Various homogeneous components of δm3 = 0 are collected in Appendix A,

4The left/right action is denoted by multiplication, au and ua.
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while the first and the last ones are:

−am3(b, c, u) +m3(ab, c, u)−m3(a, bc, u) +m3(a, b, cu) = 0 , (3.4)

. . . = 0 , (3.5)

m3(u, a, b)v + um3(a, b, v) +m3(ua, b, v) +m3(u, ab, v)−m3(u, a, bv) = 0 . (3.6)

For any A there is at least one natural bimodule, that is, A itself. Let us take A0

to be A, in which case the deformation can be described in more detail. If A admits a

deformation as an associative algebra, then the second Hochschild cohomology group is

nonzero, HH2(A,A) 6= 0. Given an element [φ] ∈ HH2(A,A) represented by the cocycle φ,

the standard deformation of the associative structure reads

a ∗ b = ab+ φ(a, b)~+O(~2) , (3.7)

where the deformation parameter ~ can live in the base field or even in the center of A. If the

deformation is unobstructed we can construct a one-parameter family of algebras A~ that

starts at A for ~ = 0. When A0 ∼ A the A∞-algebra we are trying to construct upgrades

the deformation parameter ~ to an element of A0. The observation is that for A0 ∼ A one

can always put

m3(a, b, u) = φ(a, b)u , m3(a, u, v) = φ(a, u)v , (3.8a)

m3(a, u, b) = 0 , m3(u, a, v) = −uφ(a, v) , (3.8b)

m3(u, a, b) = 0 , m3(u, v, a) = 0 . (3.8c)

Here the ‘deformation parameter’ u ∈ A was placed on the right in m3(a, b, u). It is also

possible to place it on the left

m3(a, b, u) = 0 , m3(a, u, v) = 0 , (3.9a)

m3(a, u, b) = 0 , m3(u, a, v) = φ(u, a)v , (3.9b)

m3(u, a, b) = uφ(a, b) , m3(u, v, a) = −uφ(v, a) . (3.9c)

For u in the base field (or more generally in the center of A) the left uφ(a, b) and the right

φ(a, b)u deformations are clearly equivalent. This property extends to the A∞-structure,

namely, the left and right deformations differ from each other by a trivial deformation m3 =

δg, where g(a, u) = φ(a, u).

The A∞-algebra we are constructing extends the deformation parameter ~ to an element

of A0, which may be the algebra itself (or its bimodule). This is referred to as deformation

8



with noncommutative base. If such A∞-algebra can be constructed, it admits a truncation

where A0 is replaced by the center Z(A), or just by ~, that is closely related to the one-

parameter family of algebras A~.

3.1 Explicit Construction

The central statement of the present paper is that the A∞-structure, discussed in the pre-

vious section, is fully determined by the deformation of the underlying associative algebra.

Assuming that the deformed product

a ∗ b = ab+
∑

k>0

φk(a, b)~
k (3.10)

is known, we give an explicit formula for all mn. The defining relation for the A∞-structure,

i.e., the Maurer–Cartan equation

Jm,mK = 0 ⇐⇒ δmn +
∑

i+j=n+2

mi ◦mj = 0 , (3.11)

is satisfied as a consequence of the associativity of the deformed product

a ∗ (b ∗ c)− (a ∗ b) ∗ c = 0 ⇐⇒ δφn +
∑

i+j=n−1

φi ◦ φj = 0 . (3.12)

Here δ = Jm2, •K is the Hochschild differential associated to the undeformed product (3.2).

We have three equivalent forms of the solution for mn: recursive, in terms of binary trees,

and through generating equations. Let us discuss them in order.

In general, there are two types of ambiguities in the definition of mn. (i) As usual in

deformation quantization, one can redefine the deformed product ∗ via a linear change of

variables a → D(a) = a +
∑

kDk(a)~
k. Then, the new product is given by D(D−1(a) ∗

D−1(b)). (ii) One can perform various redefinitions at the level of A∞-structure, which is

done by exponentiating the infinitesimal gauge transformation

ṁ(t) = Jm(t), ξK , m(0) = m, (3.13)

for some cochain ξ of degree zero. The A∞ gauge transformations are more general than

redefinitions of the associative product. We have observed that the A∞-transformations

allow one to cast the first order deformation into the right form (with all, or all but one,

A0-factors staying on the right):

m3(a, b, u) = f3(a, b)u , m3(a, u, v) = f3(a, u)v , m3(u, a, v) = −f3(u, a)v , (3.14)

9



and all other orderings of a, b, u, v inm3 give zero result. Here f3(a, b) = φ1(a, b) is determined

by the first-order deformation in (3.10). The full solution can be sought for in the similar

form:

mn(a, b, u, . . . , v) = +fn(a, b, u, . . .)v , (3.15)

mn(a, u, . . . , v, w) = +fn(a, u, . . . , v)w , (3.16)

mn(u, a, . . . , v, w) = −fn(u, a, . . . , v)w . (3.17)

Therefore, the problem is reduced to defining one function fn of (n− 1) arguments per each

set of structure maps mn with only three orderings being nontrivial. It is not hard to see

that the equation for m4, δm4 +m3 ◦m3 = 0, is solved by

f4(a, b, u) = φ2(a, b)u+ φ1(φ1(a, b), u) . (3.18)

At the next order we have to solve δm5 +m3 ◦m4 +m4 ◦m3 = 0, which is satisfied by

f5(a, b, u, v) = φ1(φ1(φ1(a, b), u), v) + φ2(φ1(a, b), u)v + φ1(φ2(a, b), u)v+

+ φ1(φ2(a, b)u, v) + φ3(a, b)uv .
(3.19)

The following graphical representation can be useful. We consider planar binary trees with

vertices labelled by 1, 2, . . .. A vertex with label k corresponds to φk and the two incoming

edges correspond to the arguments. Functions f3, f4 and f5 can then be depicted as

f3 =
1

,

f4 =
1

1

+
2

0

,

f5 =
1

1

1

+
1

2

0

+
2

1

0

+
2

0

1

+
3

0

0

.

Solution, recursive formula. In order to write down a recursive formula for fn let us

introduce some further notation. It is clear that any fn can be decomposed according to the

number of the multiplicative arguments on the right:

fn(a, b, u, . . . , v, w) = fn,0(a, b, u, . . . , v, w) + fn,1(a, b, u, . . . , v)w + fn,2(a, b, u, . . .)vw + . . . .
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There is an associated filtration, where the leftover rn,k contains all the terms in the decom-

position with at least k multiplicative arguments on the right:

fn(a, b, . . . , v, w) ≡ rn,0(a, b, . . . , v, w) (3.20a)

= fn,0(a, b, . . . , v, w) + rn,1(a, b, . . . , v)w (3.20b)

= fn,0(a, b, . . . , v, w) + fn,1(a, b, . . . , v)w + rn,2(a, b, . . .)vw , etc. (3.20c)

Our claim is that all fn are obtained by means of the following recursive relations:5

fn,0 = φ1(rn−1,0, •) , (3.21a)

fn,1 = φ2(rn−2,0, •) + φ1(rn−1,1, •) , (3.21b)

fn,2 = φ3(rn−2,0, •) + φ2(rn−2,1, •) + φ1(rn−3,0, •) , (3.21c)

· · · (3.21d)

fn,k =
i=k∑

i=0

φk−i+1(rn−k+i−1,i, •) . (3.21e)

The formulae above together with the initial condition f3 = φ1 allows one to reconstruct the

A∞-structure, mn, in terms of the bi-linear maps φk defining the ∗-product (including the

initial product φ0(a, b) = ab).

While fn’s are, in general, quite complicated functions with nested φk, there are some

general properties that are easy to see. (a) The first and the last terms in fn are of the form

fn(a, b, u, . . . , v, w) = φ1(φ1(. . . (φ1(a, b), u), . . . , v), w) + · · ·+ φn−2(a, b)u . . . vw . (3.22)

The presence of the last term is obvious as for u, . . . , v, w in the base field the deformation

should reduce to the deformed product6

fn(a, b, ~, . . . , ~, ~) = φn−2(a, b)~
n−2 . (3.23)

(b) The graphs that show up in the decomposition of fn are all left-aligned, i.e., are the

simplest ones with all edges emerging from just one branch on the left. Such graphs can be

parameterized by a sequence of numbers listing the indices of the vertices when read from

left to right, e.g. (2, 0) and (1, 1) for f4. Such simple form is the consequence of a particular

A∞ gauge we chose. By making an A∞ gauge transformation one can arrive at various other

forms. In particular, there exists the right-aligned form, which is obtained by reflection of

5It is useful to define f2 = r2,0 as identity map.
6We should assume here that the deformation of the product is properly normalized, φk(a, 1) = 0.
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the graphs. (c) All graphs contributing to fn have the total weight n− 2, where the weight

is the sum over the indices of the vertices in a graph. (d) Not all possible left-aligned graphs

with a correct weight contribute to the expansion of fn. All admissible graphs enter with

multiplicity one.

Solution, explicit formula. Instead of the recursive definition given above it is possible

to describe the set of trees that contribute to fn in a more direct way. This is easier to do

in terms of the sequences of natural numbers

(mk, lk, . . . , m1, l1) (3.24)

that correspond to the trees encoded by the weights

mk + 1,

lk
︷ ︸︸ ︷

0, . . . , 0, mk−1 + 1, 0, . . . , 0, m2 + 1,

l2
︷ ︸︸ ︷

0, . . . , 0m1 + 1,

l1
︷ ︸︸ ︷

0, . . . , 0 , (3.25)

or, pictorially,

fn(a, b, u, . . . , w) ∋

a b

mk+1
u

m1+1
w

l1

lk (3.26)

Here the edges corresponding to the multiplicative arguments on the right are drawn a bit

shorter and some of the arguments are indicated.

Equivalently, every such sequence corresponds to the expression

φm1+1

(
. . . φmk−1+1(φmk+1(1,1)1

lk ,1)1lk−1, . . . ,1l2,1
)
1
l1(a0 ⊗ . . .⊗ an−2) , (3.27)

where 1 is the identity map. In this notation li is the number of the multiplicative arguments

on the right at level i and mi stands for the insertion of φmi+1. Now we need to specify which

of the sequences or trees are admissible. They satisfy

l1 ∈ [0, n− 2− k] , m1 ∈ [0, l1] ,

l2 ∈ [0, n− 2− k − l1] , m2 ∈ [0, l1 + l2 −m1] ,

· · ·

lk ∈ [0, n− 2− k − l1 − · · · − lk−1] , mk ∈ [0, l1 + ... + lk −m1 − · · · −mk−1] .

12



Equivalently, all the terms (trees) contributing to fn can be enumerated via pairs of Young

diagrams. One should write down all possible Young diagrams with the first row of length

n− 2− k for all k = 1, . . . , n− 2 and with k rows. Given such a diagram, one should write

down all possible subdiagrams such that the first row is of the same length n− 2− k. Any

such pair of Young diagrams gives a sequence of li and mi that are admissible. Some of li

and mi can be zero, provided that the Young diagram is a proper one (the length of the rows

is nondecreasing upwards). Pictorially, such pairs look as follows:

l1

n− 2− k

l2

l3

lk

k

m1

m2

mk

mk−1

(3.28)

For example, the pair of empty diagrams (•, •) means k = n − 2, l1,...,k = m1,...,k = 0 and

corresponds to

φ1(. . . φ1(φ1(a0, a1), a2), . . . , an−2) . (3.29)

The one-row Young diagram of length n − 3 implies that k = 1, m1 = l1 = n − 3 and

corresponds to

φn−2(a0, a1)a2 . . . an−2 . (3.30)

In this language the expansions for f4, f5 and f6 can be written as

f4 = (•, •)⊕ ( , ) ,

f5 = f4 ⊕ ( , )⊕ ( , )⊕ ( , ) ,

f6 = f5 ⊕ ( , )⊕ ( , )⊕ ( , )⊕ ( , )⊕ ( , )⊕ ( , )⊕
(

,
)

⊕
(

,
)

⊕
(

,
)

.

Solution, generating equation. A combinatorial proof that the two forms above do

solve our problem is sketched in Appendix B. Nevertheless, it is desirable to get all m’s in

a way that makes their existence obvious. To this end, we recall the construction of braces,

which were first introduced in [41] (see also [42, 43]). A k-brace is a multi-linear map that

13



assigns to k + 1 Hochschild cochains f, g1, . . . gk a new cochain f{g1, . . . , gk} defined by the

rule

f{g1, . . . , gk}(a1, . . .) =
∑

±f(a1, . . . , g1(. . .), . . . , g2(. . .), . . . , gk(. . .), . . .) . (3.31)

Here the cochains gi are inserted as arguments into the cochain f and the sum is over all

unshuffles (i.e., the order of gi is preserved) with the natural signs (whenever gi has to jump

over ai an obvious sign is generated). For k = 1 we get the Gerstenhaber ◦-product (2.5),

that is, f{g} = f ◦ g. As was shown in [42], any A∞-structure m on V can be lifted to an

A∞-structure M on the space of Hochschild cochains Hom(TV, V ) by setting

M(g1) = Jm, g1K , M(g1, . . . , gk) = m{g1, . . . , gk} , k > 1 . (3.32)

Using the properties of the braces, one can find [42, 43]

JM,MK(g1, . . .) = Jm,mK{g1, . . .} = 0 . (3.33)

In other words, M satisfies the Maurer–Cartan equation whenever m does so. Expanding

the former structure in homogeneous components, M =M1 +M2 + · · · , one gets an infinite

sequence of relations

JM1,M1K = 0 , JM1,M2K = 0 , . . . .

As is seen the first termM1 defines a differential D = Jm, •K on the space Hom(TV, V ). The

second relation takes then the form

DM2(g1, g2) +M2(Dg1, g2) + (−1)|g1|M2(g1, Dg2) = 0 . (3.34)

In particular, this means that M2 maps any pair of D-cocycles g1 and g2 to a D-cocycle

M2(g1, g2).

Suppose now that we are given a two-parameter family m = m(~, s) of A∞-structures on

V . Then, differentiating the defining condition Jm,mK = 0 by the parameters, one readily

concludes that the partial derivatives ∂~m and ∂sm are D-cocycles for all ~ and s, i.e.,

D∂~m = Jm, ∂~mK = 0 , D∂sm = Jm, ∂smK = 0 . (3.35)

Applying to them the above operation M2 yields one more family of D-cocycles

M2(∂~m, ∂sm) = m{∂~m, ∂sm} .

14



We can increase the number of parameters entering m by considering the flow in the space

of the Hochschild cochains

∂tm = m {∂~m, ∂sm} (3.36)

with respect to the ‘time’ t. Solutions to this equation form a three-parameter family of

the Hochschild cochains m(t, ~, u). A simple observation is that the flow (3.36) can be

consistently restricted to the surface Jm,mK = 0 identified with the set of Maurer–Cartan

elements. Indeed, denoting L = Jm,mK, we find

∂tL = 2Jm,m {∂~m, ∂sm}K = −J∂~L, ∂smK + J∂~m, ∂sLK . (3.37)

Hence, choosing initial data m(0, ~, s) for the solutions to Eq. (3.36) on the surface L = 0,

we will get three-parameter families m(t, ~, s) of the Maurer–Cartan elements. Let us take

m(0, ~, s) = µ(~) + s∂ . (3.38)

Here the parameter s is prescribed the degree 2; ∂ is the degree −1 differential on A−1 ⊕A0

that maps A0 to A−1 as identity isomorphism and maps A−1 to 0, which is essentially a

formal way to retract an element from the bimodule and reinterpret it as an element of the

algebra again; µ(~) is the algebra plus bimodule structure with respect to the full deformed

product (3.10):

µ(~)(a, b) = a ∗ b , µ(~)(a, u) = a ∗ u , µ(~)(u, a) = −u ∗ a .

The Maurer–Cartan equation for (3.38) is equivalent to the relations

Jµ(~), µ(~)K = 0 , Jµ(~), ∂K = 0 , J∂, ∂K = 0 , (3.39)

which are obviously satisfied. Notice that both (3.38) and the r.h.s. of (3.36) are of degree

1; hence, so is the solution m(t, ~, s) to Eq. (3.36) with the initial condition (3.38).

Now, all the mn can be generated systematically by solving (3.36) order by order in t,

m = m2 + tm3 + t2m4 + . . ., and setting ~ = s = 0 at the end. For example, at the first

order we find

m3 = µ{µ′, ∂} −→







µ{µ′, ∂}(a, b, u) = +µ(µ′(a, b), ∂(u))
~=0
= +φ1(a, b)u ,

µ{µ′, ∂}(a, u, v) = +µ(µ′(a, u), ∂(v))
~=0
= +φ1(a, u)v ,

µ{µ′, ∂}(u, a, v) = −µ(µ′(u, a), ∂(v))
~=0
= −φ1(u, a)v ,

(3.40)
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where on the right we evaluated the map on the left for various triplets of arguments. At

the second order we obtain the relation

2m4 = m3{∂~µ, ∂}+ µ{∂~m3, ∂} , (3.41)

and hence

m4(a, b, u, v) = µ(µ′(µ′(a, b), ∂(u)), ∂(v)) + 1
2
µ(µ(µ′′(a, b), ∂(u)), ∂(v)) = (3.42)

~=0
= φ1(φ1(a, b), u)v + φ2(a, b)uv , (3.43)

which is in agreement with (3.18).

To summarize, given a deformation of an associative algebra, we can explicitly construct

an A∞-algebra that can be thought of as a noncommutative deformation of this algebra,

where the deformation parameter is promoted to an element of the algebra itself.7 Re-

markably, the A∞-structure is determined by the deformed product up to an A∞ gauge

transformation. While the construction above is quite general, in the sequel we focus upon

the case of higher spin algebras and explain why and how these algebras can be deformed.

4 Higher Spin Algebras

In the first approximation, higher spin algebras (HSA) are just (infinite-dimensional) asso-

ciative algebras that arise in the study of higher symmetries of linear conformally invariant

equations or of higher spin extensions of gravity. Very often the same algebras show up

in other contexts under different names. For instance, one of the simplest examples is just

the Weyl algebra An. Rich examples of HSA are provided by various free conformal fields

theories, being free they possess infinite-dimensional algebras of symmetries. Below we give

a number of (almost) equivalent definitions and examples of HSA. The most important

definitions for our subsequent discussion are due to free CFT’s and universal enveloping

algebras.

7Let us mention another quite general approach to the deformation problem above. It is based on the

construction of an appropriate resolution for the initial algebra. The approach is applicable to associative

[44, 45] as well as to A∞/L∞-algebra deformations [46, 47]. The choice of a resolution, however, is rather

ambiguous and suitable resolutions may happen to be quite cumbersome. The advantage of the present

approach is that it does not require any structure beyond the deformation of the underlying associative

algebra and, in this sense, it is more universal.
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4.1 Various Definitions and Constructions

1. Higher symmetries of linear equations. Given some linear equation Lφ = 0, where

φ ≡ φ(x) is a set of fields and L = L(x, ∂) is a differential operator, it is useful to study

its symmetries and the algebra they form. A differential operator S = S(x, ∂) is called

a symmetry if it maps solutions to solutions, i.e., LSφ = 0 for any φ obeying Lφ = 0.

In practice, the latter implies that L can be pushed through S, i.e., LS = BSL for some

operator BS. The operators of the form CL are called trivial symmetries. These should be

quotiented out as they act trivially on-shell. It is also important that the product S1S2 of

two symmetries is a symmetry, as a consequence of the linearity of the equations. Therefore,

the algebra of symmetries – the algebra of all symmetries modulo trivial ones – is associative.

A canonical example [48, 49] is a free scalar field φ(x) in d-dimensional flat space and

L = �. The equation �φ = 0 is well known to be conformally invariant, with conformal

symmetries acting as8

δξφ(x) = ξa∂aφ(x) +
d− 2

2d
(∂aξ

a)φ(x) , ∂aξb + ∂bξa =
2

d
ηab∂mξ

m , (4.1)

where ξa(x) is a conformal Killing vector. These symmetries form the conformal algebra

so(d, 2) with respect to the commutator [δξ1 , δξ2 ] = δ[ξ1,ξ2]. As is pointed out above, the

product δξ1 · · · δξn is a symmetry too and is represented by a higher-order differential operator.

All such operators are related to the conformal Killing tensors

δvφ = va1...ak−1∂a1 · · ·∂ak−1
φ+more , ∂a1va2...ak + permutations− traces = 0 . (4.2)

It can be shown that the products of conformal symmetries generate the full symmetry

algebra [48, 49]. Higher powers of Laplacian, L = �
k, are also conformally-invariant oper-

ators and lead to interesting symmetry algebras [50, 51]. The symmetries of the free Dirac

equation /∂ψ = 0 are also known [52] as well as for many other differential operators.

The examples just given lead to infinite-dimensional associative algebras that contain

the conformal algebra so(d, 2) as a (Lie) subalgebra under commutators. Possible general-

izations are to consider other (not necessarily conformally invariant) differential operators,

e.g. massive Klein-Gordon equation.

8a, b, c, . . . = 0, . . . , d− 1 are the indices of the Lorentz algebra so(d− 1, 1).
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2. Higher spin currents and charges. Given a free field obeying �-type equations, e.g.

�φ = 0, one can construct an infinite number of conserved tensors [53]

ja1...as = φ∂a1 . . . ∂asφ+more terms , ∂mjma2...as = 0 . (4.3)

Due to the conformal invariance of �φ = 0 the conserved tensors can be made traceless

and are thereby quasi-primary operators of the free boson CFT. Contracting them with

conformal Killing tensors, one obtains conserved currents and the corresponding charges:

jm(v) = jma2...asv
a2...as , Qv =

∫

dd−1x j0 . (4.4)

The Noether theorem relates these currents and charges with the symmetries described in

item 1 above, i.e., Definition 2 is more or less equivalent to Definition 1. Such conserved

tensors and symmetries associated to them have been known since the 60’s, see e.g. [53, 54]

and references therein. It was also shown that they do not survive when interactions are

switched on. In the realm of CFT the opposite statement is also true: the existence of

conserved higher rank tensors implies the theory is free. [32–35]. The extensions of the

usual Poincare symmetry are constrained by Coleman–Mandula theorem [55].

3. Quotients of universal enveloping algebras. A more direct description of HSA

associated with linear conformally-invariant equations is via universal enveloping algebra

U(so(d, 2)), as the last paragraph of item 1 suggests: juxtaposing conformal transforma-

tions generates the associative symmetry algebra. Therefore, we may collect the generators

P a, Ka, Lab, D associated with the conformal algebra into TAB of so(d, 2).9 Then, any poly-

nomial

f(TAB) = f(P a, Ka, Lab, D) (4.5)

generates a symmetry transformation. However, there are some relations meaning that not

all the polynomials are independent and generate nontrivial transformations. For example,

for the free scalar field we have PaP
a ∼ 0. Also, if the fundamental field corresponds to

an irreducible representation of the conformal algebra, the Casimir operators should acquire

fixed numerical values. As a result, the symmetry algebra is isomorphic to the quotient of

the universal enveloping algebra U(so(d, 2)) by a two-sided ideal (annihilator) J :

hs ∼ U(so(d, 2))/J . (4.6)

9A,B,C, ... = 0, ..., d+1 are the indices of the conformal algebra so(d, 2) and ηAB = (−+ · · ·+−). Then,

Lab = Tab, D = −Td,d+1, Pa = Ma,d+1 −Ma,d, Ka = Ma,d+1 +Ma,d.
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A concrete definition of J depends on the free CFT (irreducible representation) we consider,

but, on general grounds, we expect all Casimir operators C2i to have some fixed values C2i.

In most of the cases J can be generated by a few elements of U(so(d, 2)).

In the case of the smallest unitary representation, e.g. the free conformal scalar field,

the annihilator J is also known as Joseph ideal [56]. Possible generalizations here is to

consider more general ideals in U(g) for any (not necessarily conformal) Lie algebra g, see

e.g. [28, 57, 58]. A useful for our studies example is provided by the HSA of the generalized

free field CFT.10

4. Quantization of coadjoint orbits. There is also a relation [49, 59, 60] between HSA

and deformation quantization [10, 61]. The fundamental field of any free CFT corresponds to

some irreducible representation of the conformal algebra. This representation, it its turn, is

associated to a certain coadjoint orbit (usually to a minimal nilpotent one). Not surprisingly

that a given HSA can be identified with the quantized algebra of functions on this coadjoint

orbit. Possible generalizations here is to consider deformation quantization in full generality,

i.e., for general symplectic or Poisson manifolds.

4.2 Examples

Let us discuss a few simple examples of HSA that will be important later. We mostly

employ the universal enveloping realization of HSA. The conformal or anti-de Sitter algebra

generators TAB obey

[TAB, TCD] = TADηBC − TBDηAC − TACηBD + TBCηAD . (4.7)

and by the Poincaré–Birkhoff–Witt theorem, the decomposition of the universal enveloping

algebra U(so(d, 2)) is given by symmetrized tensor products of the adjoint representation11

U(so(d, 2)) = • ⊕ ⊕



 ⊕ ⊕ ⊕ •



⊕



 ⊕ ⊕ · · ·



⊕ · · · . (4.8)

10Note that Definitions 1 and 2 do not apply here, while the Definitions 3 and 4 can still be used, see

below.
11The language of Young diagrams is useful here. For example, the fundamental and the adjoint repre-

sentations are depicted by and , respectively. The trivial representation is denoted by •.
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Here the first singlet • is the unit of U(so(d, 2)), ∼ TAB and the second • is the quadratic

Casimir operator

C2 = −
1

2
TABT

AB . (4.9)

In what follows we describe some ideals of U(so(d, 2)) and the corresponding quotients that

yield the HSA of interest.

Free Boson HSA. This is the simplest HSA and the generators of the ideal can be guessed

from the symmetries of �φ = 0. Since the solution space is an irreducible representation,

the values of the Casimir operators are fixed. Decoupling of null states implies PaP
a = 0 and

KaKa = 0. Finally, all anti-symmetric combinations of the conformal symmetry generators,

e.g. L[abPc] and L[abLcd], should vanish. All in all, the two-sided (Joseph) ideal is generated

by [49]12

J = ⊕ ⊕ (C2 − C2) , C2 = −
1

4
(d2 − 4) . (4.10)

The so(d, 2) decomposition of the quotient algebra contains traceless tensors described by

rectangular, two-row, Young diagrams:

hsF.B. = • ⊕ ⊕ ⊕ ⊕ · · · . (4.11)

More explicitly, the generators of the Joseph ideal read:

J ABCD = T [ABTCD] , (4.12a)

J AB = TA
C T

BC + TB
C T

AC − (d− 2)ηAB , (4.12b)

J = −
1

2
TABT

AB +
1

4
(d2 − 4) . (4.12c)

Free Boson and Free Fermion HSA in Three Dimensions. This is an even simpler

example since all of the Joseph ideal relations can be resolved thanks to the isomorphism

so(3, 2) ∼ sp(4).13 It turns out that the free boson and free fermion fields – as representations

of sp(4) – are equivalent to even and odd states in the Fock space of the 2d harmonic

oscillator:

P a1 ...P ak |φ〉 ∼ a†α1
...a†α2k

|0〉 , (4.13a)

P a1...P ak |ψ〉δ ∼ a†α1
...a†α2k

a†δ|0〉 . (4.13b)

12The full two-sided ideal is obtained by taking the generators and multiplying them by U(so(d, 2)).
13Some important facts contained already in [62]. Everything we discuss below can be found in [63–65].
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Here aα and a†β are the standard creation/annihilation operators satisfying

[aα, a†β] = δαβ , aα|0〉 = 0 , (4.14)

and α, β = 1, 2 are the spinor indices from the so(1, 2) point of view. The spinor-vector

dictionary is through the σ-matrices, e.g. Pm = σαβ
m a†αa

†
β. The sp(4) generators are realized

by the ten bilinears in aα and a†α:

Kαβ = aαaβ ,
1

2
Dδαβ + Lα

β =
1

2
{aα, a†β} , Pαβ = a†αa

†
β . (4.15)

This is the standard oscillator realization of sp(4). The algebra of all operators O(a, a†) in aα,

a†β is the Weyl algebra A2.
14 The HSA, as an algebra that maps on-shell states (4.13) to the

on-shell states, is the even subalgebra of the Weyl algebra A2, i.e., O(a, a
†) = O(−a,−a†).

The most important feature of the 3d case is that the HSA of the free boson and of the

free fermion are the same, the even subalgebra of A2. This is not so in d > 3 for an obvious

reason that the higher spin currents built out of the free fermion do not match those of the

free boson, see e.g. [66].

Generalized Free Field HSA. A generalized free (scalar) field, i.e., a conformal scalar

operator O∆(x) of some weight ∆ such that all correlators are computed via free Wick

contractions,15 is a useful approximation in many situations. The corresponding HSA, de-

noted by hs∆, is defined to be the quotient hs∆ = U(so(d, 2))/J∆ with respect to the ideal

generated by

J∆ = ⊕ (C2 − C2(∆)) , C2(∆) = ∆(d−∆) , (4.16)

or, in components,

J ABCD = T [ABTCD] , J = −
1

2
TABT

AB − C2(∆) . (4.17)

The interpretation of the ideal is obvious. That J ABCD must vanish is a manifestation of the

lowest state |∆〉 being scalar, which implies that the descendants P a . . . P c|∆〉 are symmetric

14The subscript indicates the number of canonical pairs, two in our case.
15For generic ∆, generalized free field does not have a local stress-tensor and does not have (local) higher

spin currents. Also, there are no equations to be imposed. Therefore, the definitions (1) and (2) are not

applicable. Nevertheless, the algebra can be defined via definition (3) (and also via (4)) as we do here. A

good consistency check is that it reduces to the already known HSA at the expected values of ∆.
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tensors and the combinations of the generators with more than two anti-symmetrized indices

vanish. The so(d, 2)-decomposition contains more tensors than that of the free boson HSA,

namely,

hs∆ = • ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ · · · . (4.18)

The additional components are due to the absence of the generator.16

Clearly, the HSA of generalized free field O∆(x) form a one-parameter family of algebras

because ∆ is a free parameter. At the critical values ∆k = d/2 − k, k = 1, 2, . . ., the

algebra is not simple and acquires a two-sided ideal. The resulting quotient algebra is the

symmetry algebra of the free scalar field �
kφ = 0 [50, 51]. The one-parameter family of

HSA corresponding to generalized free fields will be important for the discussion below since

it underlies the deformation of the other HSA.

4.3 Higher Spin Currents Equal Higher Spin Algebra

As it was already mentioned, the higher spin symmetry of free CFT’s is manifested by an

infinite number of higher-spin currents Js, which are quasi-primary operators from the CFT

point of view. Schematically, they are

Ja1...as = φ∂a1 . . . ∂asφ+more , ∂cJca2...as = 0 . (4.19)

The stress-tensor, which is responsible for the so(d, 2)-part of the HSA is the s = 2 member

of the family. By construction, the free field is a fundamental representation of this HSA.17

The infinite multiplet J of higher spin currents Js is the representation that is next to the

fundamental one.18 The lowest lying OPE’s can be written as

φφ = 1+ J , JJ = 1+ J +O2 , (4.20)

16It may seem that one can pick several elements of U(so(d, 2)) in random and declare them to generate an

ideal, but in doing so one may discover that the ideal coincides with the full U(so(d, 2)). In particular, it is

impossible to add the component to the generating set for generic ∆ without trivializing the quotient.
17Representations (modules) of HSA are quite easy to describe, see e.g. [67]. Roughly speaking, the

free field is a vector space V and HSA is gl(V ) for this V . Other representations are just tensor products

V ⊗ · · · ⊗ V projected onto any irreducible representation of the permutation group (the permutation group

commutes with the gl(V )-action on T (V )).
18One should be careful about tensor product vs. associativity issues and imply either the Lie subalgebra

of a HSA (via commutators) or the tensor product of HSA that naturally acts on the tensor product of its

representations.
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where 1 is the identity operator and O2 is a multiplet of double-trace operators, which is

given by the quartic tensor product of the free field itself.

Regarding the free field as a vector space V and HSA as gl(V ), the higher spin currents

belong to V ⊗ V , which is very close to gl(V ) ∼ V ⊗ V ∗. This heuristic reasoning can be

made more precise.19 If |φ〉 is the free field vacuum, then

Ka|φ〉 = 0 , Lab|φ〉 = 0 , D|φ〉 = d−2
2
|φ〉 (4.21)

and the descendants correspond to P a . . . P c|φ〉. Higher spin currents are the quasi-primary

states in the tensor product

J ∼ φ× φ ∼ P a . . . P c|φ〉 ⊗ P b . . . P d|φ〉 , (4.22)

while the HSA can be viewed as the span of operators of the form

P a . . . P c|φ〉 ⊗ 〈φ|Kb . . .Kd . (4.23)

Clearly, the two spaces are formally isomorphic and the map between them is the conjugation

〈φ| = |φ〉†, which is defined via the inversion map I.20 Therefore, the higher spin currents

together with descendants, as a module of the conformal (and also a HSA-module), can be

viewed as the same HSA where the right action is twisted by I. Therefore, JI is formally

isomorphic to HSA.

In interacting CFT’s with slightly broken higher spin symmetry higher spin currents are

no longer conserved, but their non-conservation has a very specific form of

∂ · J =
1

N
[JJ ] , (4.24)

where [JJ ] is a specific (set of) double-trace operators, whose form may also depend on

the coupling constants, see [11–14, 71] for some explicit formulas. The non-conservation is

supposed to be a small effect, which is controlled by 1/N for large-N . Therefore, J itself is

a deformation parameter and we will take advantage of the fact that JI is isomorphic to the

HSA originating from J in order to apply the construction of A∞-algebras from Section 3.

19See [68] for subtleties that may arise in some formal manipulations. That the tensor product decomposes

into (all) higher spin currents was shown, for d = 3, in [69] (the currents, as representations of so(d, 2), viewed

as anti-de Sitter algebra, are the same as massless fields in AdSd+1, which is the interpretation adopted in

[69]). See [53] for the result in any d. See also [70] that elaborates on the relation between this construction

and U(so(d, 2)), showing, in particular, that the shadow of J0 can also be treated by the same tools.
20Note that at the level of the Lie algebra we have Ka = IP aI, Lab = ILabI, P a = IKaI and −D = IDI.

We see that P a +Ka and Lab are stable and form so(d− 1, 2) subalgebra of the conformal algebra so(d, 2).

We can also define −Ka = IP aI, Lab = ILabI, −P a = IKaI and −D = IDI. Then, it is P a −Ka and Lab

that are stable and form so(d, 1).
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5 Deformations of Higher Spin Algebras

As it was already mentioned, typical HSA admit no deformations as associative algebras,

which means that HH2(hs, hs) = ∅.21 Nevertheless, certain simple extensions of HSA do

admit deformations and it is these deformations that are also responsible for theA∞-structure

that originate from any given HSA. The deformations turn out to exist due to the fact that

certain subalgebras of HSA are related to the generalized free field whose weight is a free

parameter.

In view of the way higher spin symmetry gets broken, the deformation parameter is

the multiplet of higher spin currents, J . Also, JI – J twisted by the inversion map – is

isomorphic to the HSA. In order to treat both the HSA hs and J on an equal footing, we

take a bigger algebra, namely, HSA extended by I, which we call the double and denote

D(hs). This just the simplest example of the smash product B ⋊ Γ, where B is an algebra

and Γ is a finite group of automorphisms of B. Its elements have the form a+ bI, a, b ∈ hs

and the product law reads

(a + bI)(a′ + b′I) = (aa′ + bI(b′)) + (ab′ + bI(a′))I , (5.1)

where I(a) is the action of the inversion on the algebra elements, which can be obtained

by extending I(P a) = IP aI = Ka, etc. to series in P a, Ka, Lab, D, i.e., to hs, and we used

I2 = 1.

An important observation is that D(hs) belongs to a one-parameter family of algebras

(while hs usually does not). Then, we can apply the general construction of A∞ from Section

3. Finally, we can take the truncation of the A∞ that reduces D(hs) to hs in the sector of

A−1 and to hs · I – the bimodule of higher spin currents – in the sector of A0. This gives

precisely the A∞-algebra we are looking for.22

The reason for D(hs) to admit a deformation is quite simple. The I-stable subalgebra,

I(a) = a, a ∈ hs, of hs, turns out to be the HSA of the generalized free field in d − 1

dimension and, therefore, admits a deformation. Extending hs to D(hs) allows one to uplift

this deformation to D(hs). Let us discuss this in more detail.

21What we discuss below applies also to the examples where they do admit such deformations.
22It is worth stressing that even if a given hs happens to belong to a one-parameter family of algebras, it

will not lead to the A∞-algebra we need, for the deformation parameter has to be in hs · I rather than hs.

Restriction of the A∞ we need to the Lorentz subalgebra (see below) leads to this type of A∞.
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Higher Spin Lorentz Subalgebra. The most convenient definition of HSA at the mo-

ment is via universal enveloping algebra U(so(d, 2)). Suppose we are given some hs as

hs = U(so(d, 2))/J for some J . We also assume that hs corresponds to some free on-shell

field. The so(d, 2)-generators TAB can be split into the AdS-Lorentz generators LAB and

AdS-translations PA.23 The AdS-Lorentz subalgebra L(hs) of hs is defined as the enveloping

algebra of the so(d, 1) subalgebra generated by LAB. This is the stability algebra of the

inversion map.24

The Lorentz subalgebra L(hs) can be understood as a HSA itself (so(d, 1) is viewed here as

the Euclidian conformal algebra in d−1 dimensions): it has more or less the same properties,

but the Casimir value corresponds to an off-shell conformal field in (d− 1) dimensions.

For example, the ideal that is responsible for the free boson HSA, when TAB is decom-

posed into LAB and PA, reads:

J ABCD = L[ABLCD] , (5.2a)

J ABC5 = {L[AB, PC]} , (5.2b)

J AB = LAC L
BC + LBC L

AC − PAPB − PBPA − (d− 2)ηAB , (5.2c)

J A5 = {LAC , P
C} , (5.2d)

J 55 = 2PAP
A + (d− 2) , (5.2e)

J = −
1

2
LABL

AB + PAP
A +

1

4
(d2 − 4) , (5.2f)

from which it follows

J ABCD = L[ABLCD] , J = −
1

2
LABL

AB +
d

4
(d− 2) . (5.3)

This is exactly the ideal that defines the HSA of the generalized free field, but in one

dimension lower, cf. (4.17). The conformal weight of this fictitious generalized free field in

(d− 1) dimensions is (d− 2)/2 or d/2.25

23For example, LAB = TAB and P
A = TA5 where 5 is the extra dimension of an so(d, 2) vector as compared

to an so(d, 1) one η55 = −1. Here A,B, . . . = 0, . . . , d are the indices of the AdS Lorentz algebra so(d, 1).
24Another reason for the relevance of the AdS-Lorentz interpretation is that ILAB

I = L
AB and IP

A
I =

−P
A if we define IP a

I = −Ka etc. Such automorphism of the AdS-algebra is used in the study of higher

spin fields in AdS, see e.g. [72]. If we define IP a
I = Ka etc., then the stability algebra is so(d− 1, 2), which

can be interpreted as the conformal algebra in (d − 1)-dimension. Such definition is more physical since it

is the so(d − 1, 2) subalgebra that would admit supersymmetric extensions once so(d, 2) does for lower d.

Nevertheless, below we mostly use the so(d, 1)-interpretation.
25The value of the Casimir operator is ∆(∆− (d− 1)). Notice that both the roots are above the unitarity

bound (d− 1)/2− 1.
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Thanks to the fact that the weight of this fictitious generalized free field is generic the

Lorentz subalgebra belongs to a one-parameter family of algebras. Therefore, the Lorentz

subalgebra can be deformed.

To sum up, the Lorentz subalgebra L(hs) of a HSA hs belongs to a one-parameter

family of deformations. In particular, the second Hochschild cohomology group is not empty,

HH2(L(hs), L(hs)) 6= 0.

Deformation of the Double. That the I-stable subalgebra L(hs) admits a one-parameter

family of deformations is a strong indication that the I-extended algebra D(hs) also does.

However, there does not seem to be any general theorem that would allow one to directly

construct such a deformation. The following three justifications are helpful. (1) In the case

of the smash-product of Weyl algebra by a finite group of symplectic reflections (which is

the case that many HSA can be reduced to) it can be shown that such deformations do

exist and it is even possible to explicitly construct them, see [44, 45]. (2) For many algebras

there is a duality [73] between Hochschild homology and cohomology26 and we can explicitly

construct the cycle that the sought for Hochschild two-cocycle is dual to (see below). (3) At

least for the algebras we are interested in this paper there is a simple oscillator realization

and in Section 6 we construct the deformed double D~(hs) explicitly.

Dual Cycle. Cochains act in a natural way on the chains, the latter form a module over

the former [74]. As different from cocycles, cycles are usually easier to find. Then, if the

algebra falls into the class of algebras for which Hochschild cohomology HH•(A) is dual to

the homology HH•(A), one can compute the dimension of various HH•(A) from those of

HH•(A). Another usage of nontrivial cycles is to test whether a given cocycle is nontrivial

since the chain differential is dual to the cochain differential with respect to the natural

pairing. We will construct the dual cycle for D(hs), which implies that there is a dual

cocycle.

Note first, that the HSA hs of some free field27 is determined by a certain two-sided ideal

J of U(so(d, 2)). For the free fields obeying the equation �φ = 0 the ideal contains the

generator described by the Young diagram . Taken together with the fixed value of the

Casimir operator this means that the AdS-momentum squares to a constant:

PAP
A =M2 . (5.4)

26We do not list the quite technical assumptions of the theorem in [73].
27Here we avoid generalized free fields at generic value of the conformal weight.

26



For example, for the HSA of the free boson CFT we find [70] (5.2e)28

PAP
A = −

(d− 2)

2
. (5.5)

Now, consider the two-chain29

γ = 1⊗ PA ⊗ PA . (5.6)

It is a nontrivial cycle of hs with values in the representation that is twisted by I:

∂γ = PA ⊗ PA − 1⊗ PAP
A + I(PA)⊗ PA = 0 . (5.7)

Here we used (5.4) and the fact that the complex is normalized, i.e., M2 ∼ 0 when it appears

in any of the factors except the first one. In this case it is easy to uplift the cycle from the

normalized complex to the original one. Indeed,

γ′ = 1⊗ PA ⊗ PA +M2(1⊗ 1⊗ 1) (5.8)

is closed as it is. Therefore, γ′ represents a class in HH2(hs, hs
I). This cycle can also be

uplifted to the cycle of the full double D(hs)

γ′ = I⊗ PA ⊗ PA +M2(1⊗ 1⊗ 1) , (5.9)

representing thus an element ofHH2(D(hs), D(hs)). It should be dual to a nontrivial cocycle

φ that is an element of HH2(D(hs), D(hs)). This is the cocycle we need to deform D(hs).

It is a nontrivial solution to the equation

aφ(b, c)− φ(ab, c) + φ(a, bc)− φ(a, b)I(c) = 0 , a, b, c ∈ hs . (5.10)

The deformation of D(hs) it induces can be written as

(a+ a′I) ∗ (b+ b′I) = (ab+ aI(b′)) + (ab′ + a′I(b))I + ~φ(a+ a′I, b+ b′I)I +O(~2) .

28This is the AdS-base rewriting of P aPa = 0, KaKa = 0, and C2 −
1

4
(d2 − 4) = 0.

29The Hochschild differential acts as (note the twist by I)

∂(c0 ⊗ c1 ⊗ · · · ⊗ ck) = c0c1 ⊗ c2 · · · ⊗ ck − c0 ⊗ c1c2 ⊗ · · · ⊗ ck + · · ·+ (−)kI(ck)c0 ⊗ c1 · · · ⊗ ck−1 .

Also, note that ck>0’s are assumed to take values in hs/K, where K ⊂ hs is the base field. In practice this

means that K ∼ 0 for all the factors except for the first one. Such complex is called normalized and it is

known to have the same homology HH•(hs/K, hsI) ∼ HH•(hs, hs
I).
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Let us also consider the special case of three dimensions. Firstly, we can replace (5.9) with

an equivalent two-cycle

γ′ = LAB ⊗ PA ⊗ PB +
1

4
1⊗ LAB ⊗ LAB −

1

2
CL1⊗ 1⊗ 1 , ∂γ′ = 0 , (5.11)

where CL = −1
2
LABL

AB is the value of the Casimir operator of the AdS-Lorentz subalgebra,

see e.g. (5.3). Secondly, in the sl(2,C) spinorial language generators TAB of so(3, 2) de-

compose into Pαα̇, and Lαβ , Lα̇β̇,
30 the latter being (anti)-selfdual components of LAB. Then,

(5.11) reduces to the two independent cycles

γ′ = Lαβ ⊗ Pαγ̇ ⊗ Pβ
γ̇ +

1

2
1⊗ Lαβ ⊗ Lαβ − cL1⊗ 1⊗ 1 , ∂γ′ = 0 , (5.12)

where cL = −1
2
LαβL

αβ = −3/4 and the second cycle is obtained by complex conjugation.

These two cycles imply that there are two independent deformations of the free boson HSA

and free fermion HSA (which is the same) in three dimensions. Below, we provide a com-

pletion of the ∗-product for the examples of interest.

Constructing A∞-algebra. The complete algorithm for constructing the A∞ description

of the slightly broken higher spin symmetry for any given HSA hs is as follows. Firstly, one

takes the double D(hs) by adding the inversion I and constructs the one-parameter family

of associative algebras D~(hs). Expanding the product a ∗~ b in powers of ~ yields then the

bi-linear maps φk(•, •). Next, the A∞-algebra is constructed by building up the structure

maps mn following the general method of Section 3. Lastly, it is easy to see that all elements

from A−1 can be restricted to hs, while all elements from A0 can be restricted to hsI to be

interpreted as JI for the multiplet of higher spin currents J .

6 Explicit Oscillator Realizations

We have proved the existence of certain deformations of higher spin algebras (HSA), but

in practice one may also need an efficient way to perform computations with the deformed

algebras. All reasonable HSA admit oscillator realizations and, after briefly reviewing these

realizations, we modify them as to construct the deformed HSA.

30α, β, . . . = 1, 2 and α̇, β̇, . . . = 1, 2 are the indices of the fundamental representation of sl(2,C) and its

conjugate. The dictionary between the vectorial and spinorial languages is via σ-matrices, e.g. PA = σαα̇
A Pαα̇.
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6.1 Toy Model: Weyl Algebra A1

The simplest example, which nevertheless underlies all the other deformations, is the smallest

Weyl algebra A1, i.e., one-dimensional harmonic oscillator. The Weyl algebra A1 is defined

in our notation as31

[yα, yβ] = 2iǫαβ , α, β = 1, 2 . (6.1)

Let us define the automorphism I as the reflection I(yα) = −yα. Therefore, the I-stable

subalgebra – the ’Lorentz’ subalgebra – is simply the subalgebra Ae
1 of even functions in y’s,

f(y) = f(−y). It is well known that the Weyl algebra does not admit any deformation as

an associative algebra, but the ’Lorentz’ subalgebra does belong to a one-parameter family

of algebras. Indeed, sp(2) ∼ sl(2) is a subalgebra of the Weyl algebra, which is realized by

the three generators tαβ = tβα:

tαβ = − i
4
{yα, yβ} , [tαβ , tγδ] = ǫαδtβγ + three more . (6.2)

The I-stable subalgebra Ae
1 coincides with the enveloping algebra of tαβ and it is not hard

to see that it is the quotient of U(sl2) by the two-sided ideal generated by C2− (−3
4
), where

C2 = −1
2
tαβt

αβ is the Casimir operator; the constant −3
4
is value of C2 in the oscillator

realization. This algebra belongs to a one-parameter family of algebras,32 called hs(λ) that

are obtained in the same way except that the value of the Casimir is kept to be a free

parameter:

hs(λ) = U(sl2)/J , J = U(sl2)[C2 + (λ2 − 1)] . (6.3)

hs(λ) is nothing but a noncommutative (fuzzy) sphere, whose radius is controlled by λ.

Therefore, we have Ae
1 ∼ hs(λ∗), where λ∗ = 1/2. According to our general result, the

Weyl algebra A1 extended by the automorphism I should admit a one-parameter family of

deformations. The double D(A1) of A1 is defined by

[yα, yβ] = 2iǫαβ , {yα, k} = 0 , k2 = 1 . (6.4)

Indeed, the latter commutation relations and the algebra they generate are a particular

case of the so-called deformed oscillator algebra Aq(ν),33 which is defined by the following

31Here, ǫαβ is the invariant sp(2)-tensor, the anti-symmetric tensor with ǫ12 = −ǫ21 = 1.
32This algebras were defined in [75] and dubbed glλ since they reduce to glN for certain values of λ and

can be thought of as algebras interpolating between glN and glN+1.
33Defined implicitly in [76] and explicitly in e.g. [77–79], see also [80].
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relations on its generators:

[qα, qβ] = 2iǫαβ(1 + νK) , {qα, K} = 0 K2 = 1 . (6.5)

It is clear that the double of the Weyl algebra D(A1) is isomorphic to Aq(0). Another

description of the deformed oscillator algebra is

Aq(ν) = U(osp(1|2))/J , J = U(osp(1|2))[C2 +
1

4
(1− ν2)] . (6.6)

This algebra is nothing but a noncommutative super-sphere S2|2 whose radius is controlled by

ν. The structure constants of hs(λ) and of the deformed oscillators are available in the liter-

ature in several forms [30, 81–84]. Therefore, the components φk(•, •) of the deformed HSA-

algebra product are known, which can be used to explicitly write down the A∞-structure.

Notice that the classical limit of the deformed algebra is just a two-dimensional symplectic

space with coordinates yα and k that anti-commutes to it.

One may wonder to which extent the deformation described above is unique. For the

Weyl algebra it is well known that HH2(A,A∗) is one-dimensional. In the same time, the

I-map identifies the dual module A∗ with the I-twisted one. For the double D(A1) the

cohomology is known to be one-dimensional and the deformation is unique.

6.2 Deformations of the Free Boson Algebra

The simplest example of a HSA is the symmetry algebra of the free boson CFT [49]. The

case of three dimensions is somewhat special and is discussed in the next section. The

A∞-algebra originating from this HSA should be responsible for the breaking of higher spin

symmetries in the large-N critical vector model in d dimensions.34

There exists a quasi-conformal realization of this HSA by the minimal number of oscil-

lators where the Joseph ideal is completely resolved [86]. This realization is non-linear and

for simplicity let us stick to another, linear, form [72], in which the Joseph ideal is partially

resolved. Such realization appears naturally from the manifestly conformally-invariant de-

scription of the free conformal scalar field in the ambient space [87]. One begins with the

34Due to the unitarity constraints the unitary cases are confined to 2 < d < 4 and 4 < d < 6 [85]. It would

be interesting to extend the A∞-algebra to fractional dimensions d.
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embedding of the HSA into the Weyl algebra Ad+2:
35

[Y A
α , Y

B
β ] = 2iηABǫαβ . (6.7)

The bilinears in Y form sp(2(d + 2)), which contains a Howe dual pair so(d, 2) ⊕ sp(2) of

algebras such that the so(d, 2) generators TAB commute with the sp(2) generators tαβ:

TAB = +
i

4
ǫαβ{Y A

α , Y
B
β } , tαβ = −

i

4
{Y A

α , YAβ} . (6.8)

We consider the enveloping algebra of TAB, i.e., functions f(Y ) ≡ f(T ), which can also be

defined as the centralizer of sp(2), [tαβ , f(Y )] = 0. By construction, a part of the Joseph

ideal vanishes identically since one cannot have more than two anti-symmetrized indices of

so(d, 2):

T [ABTCD] ∼ ∼ 0 . (6.9)

The resulting algebra is not simple and its so(d, 2) decomposition contains traceful tensors

with the symmetry of two-row rectangular Young diagrams:

f(T ) ∼ • ⊕
�❅
�❅⊕

�❅
�❅

�❅
�❅⊕

�❅
�❅
�❅
�❅
�❅
�❅ ⊕ · · · . (6.10)

The HSA is defined as a quotient of this algebra by the ideal generated by traces:

f ∈ hsF.B. : [tαβ , f ] = 0 , f ∼ f + tαβ ⋆ g
αβ , (6.11)

where gαβ transforms as an sp(2)-tensor. Note that the sp(2)-generators tαβ are exactly the

contractions of Y ’s, i.e., traces. The resulting spectrum is (4.11), as expected.

The automorphism I that corresponds to the inversion map in the CFT base and to the

flip of the AdS-translations in the AdS base is realized as I(yAα , yα) = (yAα ,−yα), i.e., it flips

the sign of the A1 subalgebra generators. As we already explained, the Lorentz subalgebra

of the HSA belongs to a one-parameter family of algebras. Since the I-map does not affect

yAα , the whole construction is very similar to the A1 toy model. The double D(hsF.B.) is easy

to construct:

[yAα , y
B
β ] = +2iǫαβη

AB , [yα, yβ] = −2iǫαβ , {yα, k} = 0 . (6.12)

35Here A,B, . . . = 0, . . . , d + 1 are indices of so(d, 2). We will also split them as A = {A, 5}, etc.,

where A,B, . . . = 0, . . . , d are the indices of the AdS-Lorentz algebra so(d, 1) and 5 is an extra dimension.

LAB = TAB, PA = TA5, η55 = −1, so that [PA, PB] = LAB.
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The deformed double is then obtained with the help of the deformed oscillators,

[yAα , y
B
β ] = +2iǫαβη

AB , [qα, qβ] = −2iǫαβ(1 + νk) , {qα, k} = 0 , (6.13)

and is defined following (6.11) as

Dν(hs) ∋ f(yAα , qα, k) : [f, tαβ ] = 0 , f ∼ f + tαβ ⋆ g
αβ(y, q, k) , (6.14)

where the new sp(2) generators are

tαβ = −
i

4
{yAα , yAβ}+ ταβ , ταβ =

i

4
{qα, qβ} . (6.15)

At this point, there is no need in the deformed oscillators themselves, it is sufficient to know

that the deformation of the algebra in yα, k is given by the quotient of U(osp(1|2)), the fuzzy

super-sphere.

The first few levels of the deformed double are easy to explore. Following the general

logic, one can define the Lorentz and translation generators

PA = +
i

4
{yAα , qβ}ǫ

αβ , LAB = +
i

4
{yAα , y

B
β }ǫ

αβ (6.16)

that commute with sp(2):

[tαβ , PA] = 0 , [tαβ , LAB] = 0 , [tαβ , k] = 0 . (6.17)

The relations of the so(d, 2) algebra get modified at one place

[PA, PB] = (1 + νk)LAB , [LAB, LCD] = LADηBC + . . . , [LAB, PC] = PAηBC − PBηAC ,

which is the first nontrivial component of the Hochschild cocycle. The term νkLAB in [PA, PB]

is dual to the cycle (5.11).

6.3 Three Dimensions

The case of three dimensions is special due to the fact that the HSA of the free boson CFT

is the same as the HSA of the free fermion CFT. The unique HSA is the even subalgebra Ae
2

of the Weyl algebra A2:
36

hs ∋ f(Y ) : f(Y ) = f(−Y ) , [Y A, Y B] = 2iCAB . (6.18)

36A,B, ... = 1, ..., 4 are the sp(4) vector indices, sp(4) ∼ so(3, 2). The AdS-Lorentz algebra is sl(2,C) ∼

so(3, 1) and it is convenient to use the indices α, β, . . . = 1, 2 and α̇, β̇, . . . = 1, 2 of the fundamental of

sl(2,C) and its conjugate.
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In the AdS-base the quartet Y A can be split into the commuting yα, ȳα̇ in terms of which

Lαβ = −
i

4
{yα, yβ} , Pαα̇ = −

i

4
{yα, ȳα̇} , L̄α̇β̇ = −

i

4
{ȳα̇, ȳβ̇} . (6.19)

In the conformal base we have (4.15). The I-map acts either as I(yα, ȳα̇) = (−yα, ȳα̇)

or as I(yα, ȳα̇) = (yα,−ȳα̇). In the conformal base it corresponds to I(aα, a†β) = (a†α, a
β)

or I(aα, a†β) = (−a†α,−a
β). That there are two different realizations of the I-map is in

accordance with the existence of two independent cocycles, which was already deduced in

Section 5 from the dual cycles. The double of this algebra is just two copies of the one for

A1:
37

{yα, k} = 0 , [ȳα̇, k] = 0 , {ȳα̇, k̄} = 0 , [yα, k̄] = 0 . (6.20)

The exact deformation of the double is given by two copies of the deformed oscillators:

[qα, qβ ] = 2iǫαβ(1 + µk) , {qα, k} = 0 , [q̄α̇, k] = 0 , (6.21)

[q̄α̇, q̄β̇ ] = 2iǫα̇β̇(1 + µ̄k̄) , {q̄α̇, k̄} = 0 , [qα, k̄] = 0 . (6.22)

The reality conditions q†α = q̄α̇ imply that µ = νeiθ, µ̄ = νe−iθ for real ν. Therefore,

the deformed double of the higher spin algebra leads to two copies of the noncommutative

super-sphere S2|2 × S2|2 that have the same (absolute) value of radii.

The deformed Lorentz and translation generators are given by the same formulae

Lαβ = −
i

4
{qα, qβ} , Pαα̇ = −

i

4
{qα, q̄α̇} , L̄α̇β̇ = −

i

4
{q̄α̇, q̄β̇} . (6.23)

The algebra they form is consistent with the structure of the dual cycles (5.12)

[Pαα̇, Pββ̇] = (1 + µk)ǫαβL̄α̇β̇ + (1 + µ̄k̄)ǫα̇β̇Lαβ . (6.24)

The deformation that is isomorphic to the one obtained by setting d = 3 in the free boson

case corresponds to θ = 0 and projection by (1 + kk̄)/2. Now, the question of uniqueness of

the deformation described above is of physical significance since the resulting A∞-algebra is

supposed to describe the slightly broken higher spin symmetry realized in the Chern-Simons

matter theories. The double D is a particular case of the smash-product algebras. The

Hochschild cohomology of such algebras is known [89] and in our case the second Hochschild

cohomology group is two-dimensional [45, 90]. Therefore, we exhaust all possible deforma-

tions.

37The same algebra appeared in [88] as N = 2 super-HSA.
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7 Concluding Remarks

One of the main results of the paper is the explicit construction of a class of A∞-algebras that

can be viewed as noncommutative deformation quantization of a given associative algebra

A. We show that if A admits a deformation as an associative algebra, then we can replace

the formal deformation parameter ~ by an element of A itself by going to A∞ setting. It

turns out that the structure maps mn of the A∞-algebra are completely determined (up to

a natural equivalence) by the deformation of A.

One straightforward application of the above construction is to describe the slightly

broken higher spin symmetry that is present in a class of CFT’s at least in the large-N

limit. The associative algebra here is any higher spin algebra which is associated with the

infinite dimensional symmetries of the free field theory limit. The deformation parameter

is the multiplet of higher spin currents. It can be shown that up to an inversion map this

multiplet is isomorphic to the algebra itself. The inversion map plays an important role

since the algebra A that admits a deformation is not the higher spin algebra itself, but its

Z2-extension by the inversion. It can also be shown that the reason for the deformation to

exist is (generically) a generalized free field in one dimension lower whose dimension turns

out to be the deformation parameter ~.

A more general point of view on the deformation we have faced is that a higher spin

algebra is just a particular case of quantization of the algebra of functions on a Poisson

manifold M . In the higher spin case the manifold is symplectic and coincides with the

closure of the nilpotent coadjoint orbit of so(d, 2), see [59]. A Poisson manifold may have

some discrete symmetries, e.g. the inversion map that we used. Once we restrict ourselves

to the subalgebra of functions that are invariant under these symmetries we can find new

deformations. Geometrically, one can view the algebra of invariant functions as the algebra

of functions on the quotient space of M by the action of the symmetry group G. In case

the action is not free, the quotient space M/G has the structure of an orbifold rather than

a smooth Poisson manifold. In [37], it was shown that, in addition to the usual Poisson

structures, the orbifold M/G admits non-commutative Poisson structures associated with

the fixed-points of the G-action. Applying the deformation quantization technique to these

new non-commutative Poisson structures gives rise to new deformations. This is the case of

higher spin algebras: in general we have a two-parameter family of algebras A~1,~2, where

the first deformation parameter ~1 (that was implicit in the paper) comes from the usual

deformation quantization and ~2 is due to the action of Z2-automorphisms having the origin
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in the space of y’s as the only fixed-point.

The case of three dimensions is special and there are two additional deformations

A~,µ=νeiθ,µ̄=νe−iθ , while ~ leads to the Weyl–Moyal product. The microscopical description of

these 3d CFT’s with slightly broken higher spin symmetry is via the Chern-Simons matter

theories with the two parameters N and k (in the simplest situation). So far the deformation

parameters θ and ν are just phenomenological. At least in the large-N limit it is possible

[24, 91] to relate them to the microscopical parameters θ = π
2
N
k
, ν ∼ Ñ−1, Ñ = 2N sinπλ

πλ
.

It is remarkable that the higher spin symmetry breaking in these theories is fully described

by a (two copies) rather simple associative algebra of fuzzy super-sphere S2|2. In particular,

the correlation functions of the single-trace operators should be expressed simply in terms

of the invariants of this algebra, similarly to the ν = ν̄ = 0 case.
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A First Order Deformation

The first-order deformation of anA−1-bimodule A0, regarded as anA∞-algebra, is a collection

of six tri-linear maps m3(•, •, •) that have to obey:

−am3(b, c, u) +m3(ab, c, u)−m3(a, bc, u) +m3(a, b, cu) = 0 , (A.1a)

m3(a, b, u)c− am3(b, u, c) +m3(ab, u, c)−m3(a, bu, c)−m3(a, b, uc) = 0 , (A.1b)

m3(a, u, b)c− am3(u, b, c) +m3(au, b, c) +m3(a, ub, c)−m3(a, u, bc) = 0 , (A.1c)

m3(u, a, b)c−m3(ua, b, c) +m3(u, ab, c)−m3(u, a, bc) = 0 , (A.1d)
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and

m3(a, b, u)v − am3(b, u, v) +m3(ab, u, v)−m3(a, bu, v) = 0 , (A.1e)

m3(u, v, a)b− um3(v, a, b) +m3(u, va, b) +m3(u, v, ab) = 0 , (A.1f)

m3(a, u, b)v − am3(u, b, v) +m3(au, b, v) +m3(a, ub, v)−m3(a, u, bv) = 0 , (A.1g)

−m3(u, a, v)b− um3(a, v, b)−m3(ua, v, b) +m3(u, av, b) +m3(u, a, vb) = 0 , (A.1h)

−m3(a, u, v)b− am3(u, v, b) +m3(au, v, b) +m3(a, u, vb) = 0 , (A.1i)

m3(u, a, b)v − um3(a, b, v)−m3(ua, b, v) +m3(u, ab, v)−m3(u, a, bv) = 0 , (A.1j)

where a, b, c are elements of A−1 and u, v, w ∈ A0. It is easy to see that (3.8) and (3.8) are

solutions. These two solutions are equivalent via an A∞ change of variables, which at this

order is m3 → m3 + δf , for f(a, u) = φ1(a, u).

More generally, the first equation (A.1a) seems to be the most important one. Its so-

lution correspond to the second Hochschild cohomology group HH2(A,M), where M is

Hom(M,M) endowed with the natural bimodule structure (in our case M ∼ A0). If

A−1 ∼ A1 is the polynomial Weyl algebra on two generators, then HH3(A1, N) = 0 for

any bimodule N as the enveloping algebra Ae
1 admits a projective resolution of length 2.

This means that the deformations are unobstructed. The same is true for the matrix alge-

bras Matn(A1) acting on the bimodule Matn(A1) (the algebras A1 and Matn(A1) are Morita

equivalent).

B Sketch of the Proof

We need to check that mn defined in Section 3 do solve the Maurer-Cartan equation

δmn +
∑

i+j=n+2

mi ◦mj = 0 . (B.1)

Due to the specific form of mn (with arguments from A−1 on the left) there are fewer

equations to be checked. Firstly, one can restrict oneself to the sector with three A−1 factors

and n−2 factors in A0, i.e., the arguments in (B.1) are permutations of abcuv . . . w. Secondly,

the nontrivial equations can be parameterized by the position of c:

Ek(a, b, . . . , u, c,

k
︷ ︸︸ ︷
v, . . . , w) = δmn +

∑

i+j=n+2

mi ◦mj

∣
∣
∣
a,b,...,u,c,v,...,w

= 0 . (B.2)
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The differential δ is very simple for most of k’s, k = 1, . . . , n− 3:

δmn(a, b, . . . , u, c, v, . . . , w) = −mn(a, b, . . . , uc, v, . . . , w) +mn(a, b, . . . , u, cv, . . . , w) (B.3)

and contains four terms for the maximal k = n− 2

δmn(a, b, c, v, . . . , w) = −amn(b, c, v, . . . , w) +mn(ab, c, v, . . . , w)+

−mn(a, bc, v, . . . , w) +mn(a, b, cv, . . . , w) .
(B.4)

The rationale for the recursive formula given in the main text is that the differential (B.3)

annihilates those components of mn that have too many multiplicative arguments on the

right. Therefore, one can start at k = 1, to which only m3 and mn−1 contribute:

E1(a, b, . . . , u, c, w) =−mn(a, b, . . . , uc, w) +mn(a, b, . . . , u, cv)+

−mn−1(a, b, . . . , m3(u, c, w)) +m3(mn−1(a, b, . . . , u), c, v) = 0 .

This equation determines the part of fn that has no multiplicative arguments at all. Using

mn−1 = fn−1(a, b, . . .)u and explicit form of m3, one observes that fn = φ1(fn−1(a, b, . . .), u),

i.e., mn = fn(a, b, . . . , u)w, up to the terms with more direct factors. Next, one should

proceed to k = 2 and fix the part of fn that has one direct factor. At each order one

will get the equations that are supposed to be true for m3,...,k+2. The trick here is that Ek

contains Gerstenhaber products of m3, mn−1, . . . , mk+2, mn−k and the lowest fn−k always

enters with the same arguments, i.e., can be treated as a single variable. Eventually, Ek can

be reduced to equations for m3,. . . , mk+2 irrespective of n. For example, E1 = 0 is solved

by fn = φ1(fn−1, •) irrespective of what fn−1 is, but the same time this fixes the lowest

component of fn−1 itself, and so on.

A non-recursive proof is based on manipulations with the trees. Let us recall that fn is

a sum over all terms that are depicted by trees (with one branch)38

fn(a, b, u, . . . , w) ∋

a b

u

w

(B.5)

38Recall that the (green) dots correspond to some φm+1, while the simple vertices are mapped into inser-

tions of multiplicative arguments on the right.

37



To deal with more complicated trees we introduce an order. A tree is called ordered if it

does not contain vertices of the form

m+1
0

(B.6)

i.e., in the actual expression any φm+1(•, •) does not have any factors on the left, e.g.

aφm+1(b, c), where a can be any expression possibly containing several factors and other φ’s.

The bad vertices can be ordered via

k
0

= 0

k

− 0
k

+ k

0

+
∑

i+j=k

j

i

− j
i

(B.7)

Equation Ek contains several terms, those coming from δmn are already ordered (except for

En−2). Also, only good vertices arise when mi is inserted into mj as an (right) argument of

some φk:

(B.8)

The only source of bad vertices is when mi in inserted into an argument of mj that corre-

sponds to a multiplicative argument (simple vertex):

(B.9)

These terms need to be reordered and will eventually generate (with the opposite sign) all the

trees with one branch (B.5) or two branches (B.8) that are already present. Therefore, the

Maurer–Cartan equation is indeed satisfied. It would be interesting to find an appropriate

configuration space where the proof would reduce to the Stokes theorem.
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