
Sketching, Streaming, and Fine-Grained
Complexity of (Weighted) LCS
Karl Bringmann
Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

Bhaskar Ray Chaudhury
Max Planck Institute for Informatics, Saarland Informatics Campus,
Graduate School of Computer Science, Saarbrücken, Germany
braycha@mpi-inf.mpg.de

Abstract
We study sketching and streaming algorithms for the Longest Common Subsequence problem
(LCS) on strings of small alphabet size |Σ|. For the problem of deciding whether the LCS of strings
x, y has length at least L, we obtain a sketch size and streaming space usage of O(L|Σ|−1 logL).
We also prove matching unconditional lower bounds.

As an application, we study a variant of LCS where each alphabet symbol is equipped with
a weight that is given as input, and the task is to compute a common subsequence of maximum
total weight. Using our sketching algorithm, we obtain an O(min{nm, n+m|Σ|})-time algorithm
for this problem, on strings x, y of length n,m, with n ≥ m. We prove optimality of this running
time up to lower order factors, assuming the Strong Exponential Time Hypothesis.

2012 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases algorithms, SETH, communication complexity, run-length encoding

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.40

1 Introduction

1.1 Sketching and Streaming LCS
In the Longest Common Subsequence problem (LCS) we are given strings x and y and the
task is to compute a longest string z that is a subsequence of both x and y. This problem has
been studied extensively, since it has numerous applications in bioinformatics (e.g. comparison
of DNA sequences [5]), natural language processing (e.g. spelling correction [40, 49]), file
comparison (e.g. the UNIX diff utility [23, 38]), etc. Motivated by big data applications, in
the first part of this paper we consider space-restricted settings as follows:

LCS Sketching: Alice is given x and Bob is given y. Both also are given a number L.
Alice and Bob compute sketches skL(x) and skL(y) and send them to a third person, the
referee, who decides whether the LCS of x and y is at least L. The task is to minimize
the size of the sketch (i.e., its number of bits) as well as the running time of Alice and
Bob (encoding) and of the referee (decoding).
LCS Streaming: We are given L, and we scan the string x from left to right once, and
then the string y from left to right once. After that, we need to decide whether the LCS
of x and y is at least L. We want to minimize the space usage as well as running time.

Analogous problem settings for the related edit distance have found surprisingly good solutions
after a long line of work [11, 29, 46, 16]. For LCS, however, strong unconditional lower
bounds are known for sketching and streaming: Even for L = 4 the sketch size and streaming

© Karl Bringmann and Bhaskar Ray Chaudhury;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 40; pp. 40:1–40:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

81
0.

01
23

8v
1 

 [
cs

.D
S]

  2
 O

ct
 2

01
8

mailto:kbringma@mpi-inf.mpg.de
mailto:braycha@mpi-inf.mpg.de
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.40
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


40:2 Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

memory must be Ω(n) bits, since the randomized communication complexity of this problem
is Ω(n) [47]. Similarly strong results hold even for approximating the LCS length [47], see
also [35]. However, these impossibility results construct strings over alphabet size Θ(n).

In contrast, in this paper we focus on strings x, y defined over a fixed alphabet Σ (of
constant size). This is well motivated, e.g., for binary files (Σ = {0, 1}), DNA sequences
(Σ = {A,G,C, T}), or English text (Σ = {a, . . . , z, A, . . . , Z} plus punctuation marks). We
therefore suppress factors depending only on |Σ| in O-notation throughout the whole paper.
Surprisingly, this setting was ignored in the sketching and streaming literature so far; the
only known upper bounds also work in the case of large alphabet and are thus Ω(n).

Before stating our first main result we define a run in a string as the non extendable
repetition of a character. For example the string baaabc has a run of character a of length 3.
Our first main result is the following deterministic sketch.

I Theorem 1. Given a string x of length n over alphabet Σ and an integer L, we can
compute a subsequence CL(x) of x such that (1) |CL(x)| = O(L|Σ|), (2) CL(x) consists of
O(L|Σ|−1) runs of length at most L, and (3) any string y of length at most L is a subsequence
of x if and only if it is a subsequence of CL(x). Moreover, CL(x) is computed by a one-pass
streaming algorithm with memory O(L|Σ|−1 logL) and running time O(1) per symbol of x.

Note that we can store CL(x) using O(L|Σ|−1 logL) bits, since each run can be encoded
using O(logL) bits. This directly yields a solution for LCS sketching, where Alice and Bob
compute the sketches skL(x) = CL(x) and skL(y) = CL(y) and the referee computes an LCS
of CL(x) and CL(y). If this has length at least L then also x, y have LCS length at least L.
Similarly, if x, y have an LCS z of length at least L, then z is also a subsequence of CL(x)
and CL(y), and thus their LCS length is at least L, showing correctness. The sketch size is
O(L|Σ|−1 logL) bits, the encoding time is O(n), and the decoding time is O(L2|Σ|), as LCS
can be computed in quadratic time in the string length O(L|Σ|).

We similarly obtain an algorithm for LCS streaming by computing CL(x) and then CL(y)
and finally computing an LCS of CL(x) and CL(y). The space usage of this streaming
algorithm is O(L|Σ|−1 logL), and the running time is O(1) per symbol of x and y, plus
O(L2|Σ|) for the last step.

These size, space, and time bounds are surprisingly good for |Σ| = 2, but quickly
deteriorate with larger alphabet size. For very large alphabet size, this deterioration was to
be expected due to the Ω(n) lower bound for |Σ| = Θ(n) from [47]. We further show that
this deterioration is necessary by proving optimality of our sketch in several senses:

We show that for any L,Σ there exists a string x (of length O(L|Σ|)) such that no string x′
of length o(L|Σ|) has the same set of subsequences of length at most L. Similarly, this
string x cannot be replaced by any string consisting of o(L|Σ|−1) runs without affecting
the set of subsequences of length at most L. This shows optimality of Theorem 1 among
sketches that replace x by another string x′ (not necessarily a subsequence of x) and then
compute an LCS of x′ and y. See Theorem 4.
More generally, we study the Subsequence Sketching problem: Alice is given a string x
and number L and computes skL(x). Bob is then given skL(x) and a string y of length L
and decides whether y is a subsequence of x. Observe that any solution for LCS sketching
or streaming with size/memory S = S(L,Σ) yields a solution for subsequence sketching
with sketch size S.1 Hence, any lower bound for subsequence sketching yields a lower

1 For LCS sketching this argument only uses that we can check whether y is a subsequence of x by testing
whether the LCS length of x and y is |y|. For LCS streaming we use the memory state right after



K. Bringmann and B. R. Chaudhury 40:3

bound for LCS sketching and streaming. We show that any deterministic subsequence
sketch has size Ω(L|Σ|−1 logL) in the worst case over all strings x. This matches the
run-length encoding of CL(x) even up to the logL-factor. If we restrict to strings of
length Θ(L|Σ|−1), we still obtain a sketch size lower bound of Ω(L|Σ|−1). See Theorem 7.
Finally, randomization does not help either: We show that any randomized subsequence
sketch, where Bob may err in deciding whether y is a subsequence of x with small constant
probability, has size Ω(L|Σ|−1), even restricted to strings x of length Θ(L|Σ|−1). See
Theorem 10.

We remark that Theorem 1 only makes sense if L � n. Although this is not the best
motivated regime of LCS in practice, it corresponds to testing whether x and y are “very
different” or “not very different”. This setting naturally occurs, e.g., if one string is much
longer than the other, since then L ≤ m� n. We therefore think that studying this regime
is justified for the fundamental problem LCS.

1.2 WLCS: In between min-quadratic and rectangular time
As an application of our sketch, we determine the (classic, offline) time complexity of a
weighted variant of LCS, which we discuss in the following.

A textbook dynamic programming algorithm computes the LCS of given strings x, y
of length n in time O(n2). A major result in fine-grained complexity shows that further
improvements by polynomial factors would refute the Strong Exponential Time Hypothesis
(SETH) [1, 13] (see Section 5 for a definition). In case x and y have different lengths n and
m, with n ≥ m, Hirschberg’s algorithm computes their LCS in time O((n+m2) logn) [22],
and this is again near-optimal under SETH. This running time could be described as “min-
quadratic”, as it is quadratic in the minimum of the two string lengths. In contrast, many
other dynamic programming type problems have “rectangular” running time2 Õ(nm), with
a matching lower bound of (nm)1−o(1) under SETH, e.g., Fréchet distance [4, 12], dynamic
time warping [1, 13], and regular expression pattern matching [43, 10].

Part of this paper is motivated by the intriguing question whether there are problems with
intermediate running time, between “min-quadratic” and “rectangular”. Natural candidates
are generalizations of LCS, such as the weighted variant WLCS as defined in [1]: Here
we have an additional weight function W : Σ → N, and the task is to compute a common
subsequence of x and y with maximum total weight. This problem is a natural variant of
LCS that, e.g., came up in a SETH-hardness proof of LCS [1]. It is not to be confused with
other weighted variants of LCS that have been studied in the literature, such as a statistical
distance measure where given the probability of every symbol’s occurrence at every text
location the task is to find a long and likely subsequence [6, 18], a variant of LCS that favors
consecutive matches [36], or edit distance with given operation costs [13].

Clearly, WLCS inherits the hardness of LCS and thus requires time (n + m2)1−o(1).
However, the matching upper bound Õ(n+m2) given by Hirschberg’s algorithm only works
as long as the function W is fixed (then the hidden constant depends on the largest weight).
Here, we focus on the variant where the weight function W is part of the input. In this case,
the basic O(nm)-time dynamic programming algorithm is the best known.

Our second main result is to settle the time complexity of WLCS in terms of n and m
for any fixed constant alphabet Σ, up to lower order factors no(1) and assuming SETH.

reading x as the sketch skL(x) and then use the same argument.
2 By Õ-notation we ignore factors of the form polylog(n).

FSTTCS 2018



40:4 Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

I Theorem 2. WLCS can be solved in time O(min{nm, n+m|Σ|}). Assuming SETH, WLCS
requires time min{nm, n+m|Σ|}1−o(1), even restricted to n = Θ(mα) and |Σ| = σ for any
constants α ∈ R, α ≥ 1 and σ ∈ N, σ ≥ 2.

In particular, for |Σ| > 2 the time complexity of WLCS is indeed “intermediate”, in
between “min-quadratic” and “rectangular”! To the best of our knowledge, this is the first
result of fine-grained complexity establishing such an intermediate running time.

To prove Theorem 2 we first observe that the usual O(nm) dynamic programming
algorithm also works for WLCS. For the other term n + m|Σ|, we compress x by running
the sketching algorithm from Theorem 1 with L = m. This yields a string x′ = Cm(x)
of length O(m|Σ|) such that WLCS has the same value on (x, y) and (x′, y), since every
subsequence of length at most m of x is also a subsequence of x′, and vice versa. Running
the O(nm)-time algorithm on (x′, y) would yield total time O(n + m|Σ|+1), which is too
slow by a factor m. To obtain an improved running time, we use the fact that x′ consists
of O(m|Σ|−1) runs. We design an algorithm for WLCS on a run-length encoded string x′
consisting of r runs and an uncompressed string y of length m running time O(rm). This
generalizes algorithms for LCS with one run-length encoded string [7, 20, 37]. Together, we
obtain time O(min{nm, n + m|Σ|}). We then show a matching SETH-based lower bound
by combining our construction of incompressible strings from our sketching lower bounds
(Theorem 4) with the by-now classic SETH-hardness proof of LCS [1, 13].

1.3 Further Related Work
Analyzing the running time in terms of multiple parameters like n,m,L has a long history
for LCS [8, 9, 19, 22, 24, 26, 42, 44, 51]. Recently tight SETH-based lower bounds have been
shown for all these algorithms [14]. In the second part of this paper, we perform a similar
complexity analysis on a weighted variant of LCS. This follows the majority of recent work on
LCS, which focused on transferring the early successes and techniques to more complicated
problems, such as longest common increasing subsequence [39, 33, 52, 17], tree LCS [41], and
many more generalizations and variants of LCS, see, e.g., [32, 15, 48, 28, 3, 34, 30, 21, 45, 25].
For brevity, here we ignore the equally vast literature on the closely related edit distance.

1.4 Notation
For a string x of length n over alphabet Σ, we write x[i] for its i-th symbol, x[i . . . j] for
the substring from the i-th to j-th symbol, and |x| for its length. For c ∈ Σ we write
|x|c := |{i | xi = c}|. For strings x, y we write x ◦ y for their concatenation, and for k ∈ N
we write xk for the k-fold repetition x ◦ . . . ◦ x. A subsequence of x is any string of the form
y = x[i1] ◦ x[i2] ◦ . . . ◦ x[i`] with 1 ≤ i1 < i2 < . . . < i` ≤ |x|; in this case we write y � x.
A run in x is a maximal substring x[i . . . j] = cj−i+1, consisting of a single alphabet letter
c ∈ Σ. Recall that we suppress factors depending only on |Σ| in O-notation.

2 Sketching LCS

In this section design a sketch for LCS, proving Theorem 1. Consider any string z defined
over alphabet S ⊆ Σ. We call z a (q, S)-permutation string if we can partition z =
z(1) ◦ z(2) ◦ . . . ◦ z(q) such that each z(i) contains each symbol in S at least once. Observe
that a (q, S) permutation string contains any string y of length at most q over the alphabet
S as a subsequence.



K. Bringmann and B. R. Chaudhury 40:5

I Claim 3. Consider any string x = x′ ◦ c ◦ x′′, where x′, x′′ are strings over alphabet Σ and
c ∈ Σ. Let S ⊆ Σ. If some suffix of x′ is an (L, S)-permutation string and c ∈ S, then for all
strings y of length at most L we have y � x if and only if y � x′ ◦ x′′.

Proof. The “if”-direction is immediate. To prove the “only if”, consider any subsequence
y of x of length d ≤ L and let y = x[i1] ◦ x[i2] ◦ . . . ◦ x[id]. Let ` and r be the length of x′
and x′′, respectively. If ik 6= `+ 1 for all 1 ≤ k ≤ d, then clearly y � x′ ◦ x′′. Thus, assume
that ik = `+ 1 for some k. Let a be minimal such that x[a . . . `] only contains symbols in S.
By assumption, x[a . . . `] is an (L, S)-permutation string, and c = x[`+ 1] ∈ S. Let j ≥ 1 be
the minimum index such that x[ij ] . . . x[ik] only contains symbols in S. Since j is minimal,
x[ij−1] /∈ S and thus ib < a for all b < j. Therefore x[i1] ◦ x[i2] ◦ . . . ◦ x[ij−1] � x[0 . . . a− 1].
Since x[a . . . `] is an (L, S)-permutation string and |x[ij ] ◦ . . . ◦ x[ik]| ≤ d ≤ L, it follows
that x[ij ] ◦ . . . ◦ x[ik] is a subsequence of x[a . . . `]. Hence, x[i1] ◦ . . . ◦ x[ik] � x′ and
x[ik+1] ◦ . . . ◦ x[id] � x′′, and thus y � x′ ◦ x′′. J

The above claim immediately gives rise to the following one-pass streaming algorithm.

Algorithm 1 Outline for computing CL(x) given a string x and an integer L
1: initialize CL(x) as the empty string
2: for all i from 1 to |x| do
3: if for all S ⊆ Σ with x[i] ∈ S, no suffix of CL(x) is an (L, S)-permutation string then
4: set CL(x)← CL(x) ◦ x[i]
5: return CL(x)

By Claim 3, the string CL(x) returned by this algorithm satisfies the subsequence property
(3) of Theorem 1. Note that any run in CL(x) has length at most L, since otherwise for
S = {c} we would obtain an (L, S)-permutation string followed by another symbol c, so that
Claim 3 would apply. We now show the upper bounds on the length and the number of runs.
Consider a substring z = CL(x)[i . . . j] of CL(x), containing symbols only from S ⊆ Σ. We
claim that z consists of at most rL(|S|) := 2(L+ 1)|S|−1 − 1 runs. We prove our claim by
induction on |S|. For |S| = 1, the claim holds trivially. For |S| > 1 and any k ≥ 1, let ik
be the minimal index such that z[1 . . . ik] is a (k, S)-permutation string, or ik = ∞ if no
such prefix of z exists. Note that iL ≥ |z|, since otherwise a proper prefix of z would be an
(L, S)-permutation string, in which case we would have deleted the last symbol of z. The
string z[ik−1 + 1 . . . ik − 1] contains symbols only from S \ {z[ik]} and thus by induction
hypothesis consists of at most rL(|S| − 1) runs. Since iL ≥ |z|, we conclude that the number
of runs in z is at most L · (rL(|S| − 1) + 1) ≤ L · 2(L+ 1)|S|−2 ≤ 2(L+ 1)|S|−1 − 1 = rL(|S|).
Thus the number of runs of CL(x) is at most rL(|Σ|) ∈ O(L|Σ|−1), and since each run has
length at most L we obtain |CL(x)| ∈ O(L|Σ|).

Algorithm 2 shows how to efficiently implement Algorithm 1 in time O(1) per symbol of x.
We maintain a counter tS (initialized to 0) and a set QS (initialized to ∅) for every S ⊆ Σ with
the following meaning. After reading x[1 . . . i], let j be minimal such that x[j . . . i] consists of
symbols in S. Then tS is the maximum number t such that x[j . . . i] is a (t, S)-permutation
string. Moreover, let k be minimal such that x[j . . . k] still is a (tS , S)-permutation string.
Then QS ⊆ S is the set of symbols that appear in x[k + 1 . . . i]. In other words, in the future
we only need to read the symbols in S \QS to complete a (tS + 1, S)-permutation string. In
particular, when reading the next symbol x[i+ 1], in order to check whether Claim 3 applies
we only need to test whether for any S ⊆ Σ with x[i+ 1] ∈ S we have tS ≥ L. Updating tS
and QS is straightforward, and shown in Algorithm 2.

FSTTCS 2018



40:6 Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

Algorithm 2 Computing CL(x) in time O(1) per symbol of x
1: set ts ← 0, QS ← ∅ for all S ⊆ Σ
2: set CL(x) to the empty string
3: for all i from 1 to |x| do
4: if tS < L for all S ⊆ Σ with x[i] ∈ S then
5: set CL(x)← CL(x) ◦ x[i]
6: for all S such that x[i] ∈ S do
7: set QS ← QS ∪ {x[i]}
8: if QS = S then
9: set QS ← ∅

10: set tS ← tS + 1
11: for all S such that x[i] /∈ S do
12: set tS ← 0
13: set QS ← ∅

Since we assume |Σ| to be constant, each iteration of the loop runs in time O(1), and
thus the algorithm determines CL(x) in time O(n). This finishes the proof of Theorem 1.

3 Optimality of the Sketch

In this section we show that the sketch CL(x) is optimal in many ways. First, we show that
the length and the number of runs are optimal for any sketch that replaces x by any other
string z with the same set of subsequences of length at most L.

I Theorem 4. For any L and Σ there exists a string x such that for any string z with
{y | y � x, |y| ≤ L} = {y | y � z, |y| ≤ L} we have |z| = Ω(L|Σ|) and z consists of Ω(L|Σ|−1)
runs.

Let Σ = {0, 1, . . . , σ − 1} and Σk = {0, 1, . . . , k − 1}. We construct a family of strings
x(k) recursively as follows, where m := L/|Σ|:

x(0) = 0m

x(k) = (x(k−1) ◦ k)m ◦ x(k−1) for 1 ≤ k ≤ σ − 1.

Theorem 4 now follows from the following inductive claim, for k = σ − 1.

I Claim 5. For any string z with {y | y � x(k), |y| ≤ m(k+ 1)} = {y | y � z, |y| ≤ m(k+ 1)}
we have |z| ≥ mk+1 and the number of runs in z is at least mk.

Proof. We use induction on k. For k = 0, since y = 0m � x(0) we have z = 0m′ with m′ ≥ m
and the number of runs in z is exactly 1. For any k > 0, if |x(k)|k > |z|k then km � xk

but km � z, and similarly if |x(k)|k < |z|k then km+1 � z but km+1 � x(k) (note that
m(k + 1) ≥ m+ 1 since k ≥ 1, and thus y can be km+1). This implies |z|k = m and thus we
have z = z(0) ◦ k ◦ z(1) ◦ k ◦ . . . ◦ k ◦ z(m), where each z(i) is a string on alphabet Σk−1. Hence,
for any 0 ≤ i ≤ m and string y′ of length at most mk, we have y = kiy′km−i � z if and only
if y′ � z(i). Similarly, y � x(k) holds if and only if y′ � x(k−1). Since y � z is equivalent to
y � x by assumption, we obtain that y′ � z(i) is equivalent to y′ � x(k−1). By induction
hypothesis, z(i) has length at least mk and consists of at least mk−1 runs. Summing over
all i, string z has length at least mk+1 and consists of at least mk runs. J



K. Bringmann and B. R. Chaudhury 40:7

x(z)

x(1,0) 2 x(1,1) 2 x(1,2)

x(0,0) 1 x(0,1) 1 x(0,2) 2 x(0,3) 1 x(0,4) 1 x(0,5) 2 x(0,6) 1 x(0,7) 1 x(0,8)

0z[0] 1 0z[1] 1 0z[2] 2 0z[3] 1 0z[4] 1 0z[5] 2 0z[6] 1 0z[7] 1 0z[8]

Figure 1 Illustration of constructing x(z) from z. Let m = σ = 3. Consider a string z of length
mσ−1 = 9. The figure shows the construction of x(z) from z

2 1 y 1 2

Figure 2 Illustration of the construction of pat(i, y). Letm = σ = 3. Consider i = 4 = 1·31 +1·30.
Therefore pat(i, y) = 21y12.

Note that the run-length encoding of CL(x) has bit length O(L|Σ|−1 logL), since CL(x)
consists of O(L|Σ|−1) runs, each of which can be encoded using O(logL) bits. We now show
that this sketch has optimal size, even in the setting of Subsequence Sketching: Alice is given
a string x of length n over alphabet Σ and a number L and computes skL(x). Bob is then
given skL(x) and a string y of length at most3 L and decides whether y is a subsequence
of x.

We construct the following hard strings for this setting, similarly to the previous con-
struction. Let Σ = {0, 1, 2, . . . , σ − 1} and m ∈ N. Consider any vector z ∈ {0, . . . ,m− 1}k,
where k := mσ−1. We define the string x = x(z) recursively as follows; see Figure 1 for an
illustration:

x(z) = x(σ−1,0)

x(c,i) =
(
©m−2
j=0 x(c−1,m·i+j) ◦ c

)
◦ x(c−1,m·i+m−1) for 1 ≤ c ≤ σ − 1

x(0,i) = 0z[i]

A straightforward induction shows that |x(z)| ≤ mσ − 1. Moreover, for any 0 ≤ i < mσ−1

with base-m representation i =
∑σ−2
j=0 ij ·mj , where 0 ≤ ij < m, we define the following

string; see Figure 2 for an illustration:

pat(i, y) :=
(
©σ−1
j=1 (σ − j)iσ−1−j

)
◦ y ◦

(
©σ−1
j=1 j

m−1−ij−1
)
.

The following claim shows that testing whether pat(i, y) is a subsequence of x(z) allows
to infer the entries of z.
I Claim 6. We have pat(i, y) � x(z) if and only if y � 0z[i].

Proof. See Figure 3 for illustration. Given i and y, let z(c) = cic−1 ◦ z(c−1) ◦ cm−1−ic−1 for
all 1 ≤ c ≤ σ − 1, and z(0) = y. Note that z(σ−1) = pat(i, y) . Set jc :=

∑σ−2
l=c il ·ml−c,

so in particular we have jc = m · jc−1 + ic. Observe that z(c) � x(c,jc) if and only if
z(c−1) � x(c−1,jc−1), which follows immediately after matching all c’s in z(c) and x(c,jc).

3 In the introduction, we used a slightly different definition where Bob is given a string of length exactly L.
This might seem slightly weaker, but in fact the two formulations are equivalent (up to increasing L
by 1), as can be seen by replacing x by x′ = 0L1x and y by y′ = 0L−|y|1y. Then y � x if and only if
y′ � x′, and y′ has fixed length L+ 1.

FSTTCS 2018



40:8 Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

0z[0] 1 0z[1] 1 0z[2] 2 0z[3] 1 0z[4] 1 0z[5] 2 0z[6] 1 0z[7] 1 0z[8]

2 1 y 1 2

Figure 3 Illustration of Claim 6. Let m = σ = 3 and i = 4. Then pat(i, y) = 21y12. Now observe
that pat(i, y) � x(z) if and only if y � x(0,i) = 0z[i].

Therefore, pat(i, y) = z(σ−1) � x(σ−1,0) = x(z) holds if and only if z(c) � x(c,jc) for
any c ≤ σ − 2. Substituting c = 0 we obtain that pat(i, y) � x(z) holds if and only if
y = z(0) � x(0,j0) = x(0,i) = 0z[i]. J

I Theorem 7. Any deterministic subsequence sketch has size Ω(L|Σ|−1 logL) in the worst
case. Restricted to strings of length Θ(L|Σ|−1), the sketch size is Ω(L|Σ|−1).

Proof. Let m := L/|Σ|. Let z ∈ {0, . . . ,m− 1}k with k = m|Σ|−1 and let x = x(z) as above.
Alice is given x, L as input. Notice that there are mk distinct inputs for Alice. Assume for
contradiction that the sketch size is less that k · logm for every x. Then the total number of
distinct possible sketches is strictly less than mk. Therefore, at least two strings, say x(z1)
and x(z2), have the same encoding, for some z1, z2 ∈ {0, . . . ,m− 1}k with z1 6= z2. Let i be
such that z1[i] 6= z2[i], and without loss of generality z1[i] < z2[i]. Now set Bob’s input to
y = pat(i, z2[i]), which is a valid subsequence of x(z2), but not of x(z1). However, since the
encoding for both x(z2) and x(z1) is the same, Bob’s output will be incorrect for at least one
of the strings. Finally, note that |y| ≤ mσ = L. Hence, we obtain a sketch size lower bound
of Ω(k logm) = Ω(L|Σ|−1 logL).

If we instead choose z from {0, 1}k, then the constructed string x(z) has length O(k) =
O(L|Σ|−1), and the same argument as above yields a sketch lower bound of Ω(L|Σ|−1). J

We now discuss the complexity of randomized subsequence sketching where Bob is allowed
to err with probability 1/3. To this end, we will reduce from the Index problem.

I Definition 8. In the Index problem, Alice is given an n-bit string z ∈ {0, 1}n and sends a
message to Bob. Bob is given Alices’s message and an integer i ∈ [n] and outputs z[i].

Intuitively, since the communication is one-sided, Alice cannot infer i and therefore has
to send the whole string z. This intuition also holds for randomized protocols, as follows.
I Fact 9 ([31]). The randomized one-way communication complexity of Index is Ω(n).

Claim 6 shows that subsequence sketching allows us to infer the bits of an arbitrary
string z, and thus the hardness of Index carries over to subsequence sketching.

I Theorem 10. In a randomized subsequence sketch, Bob is allowed to err with probability
1/3. Any randomized subsequence sketch has size Ω(L|Σ|−1) in the worst case. This holds
even restricted to strings of length Θ(L|Σ|−1).

Proof. We reduce the Index problem to subsequence sketching. Let z ∈ {0, 1}k be the input
to Alice in the Index problem, where k = m|Σ|−1. As above, we construct the corresponding
input x(z) to Alice in subsequence sketching. Observe that |x(z)| = O(m|Σ|−1). For any
input i to Bob in the Index problem, we construct the corresponding input pat(i, 0) for Bob
in subsequence sketching. We have pat(i, 0) � x(z) if and only if z[i] = 1 (by Claim 6). This
yields a lower bound of Ω(k) = Ω(m|Σ|−1) = Ω(L|Σ|−1) on the sketch size (by Fact 9). J



K. Bringmann and B. R. Chaudhury 40:9

4 Weighted LCS

I Definition 11. In the WLCS problem we are given strings x, y of lengths n,m over alphabet
Σ and given a function W : Σ→ N. A weighted longest common subsequence (WLCS) of x
and y is any string z with z � x and z � y maximizing W (z) =

∑|z|
i=1W (z[i]). The task is

to compute this maximum weight, which we abbreviate as WLCS(x, y).

In the remainder of this section we will design an algorithm for computing WLCS(x, y) in
time O(min{nm, n+m|Σ|}). This yields the upper bound of Theorem 2. Note that here we
focus on computing the maximum weight WLCS(x, y); standard methods can be applied
to reconstruct a subsequence attaining this value. We prove a matching conditional lower
bound of min{nm, n+m|Σ|}1−o(1) in the next section.

Let x, y,W be given. The standard dynamic programming algorithm for determining
LCS(x, y) in time O(nm) trivially generalizes to WLCS(x, y) as well. Alternatively, we can
first compress x to x′ := Cm(x) in time O(n) and then compute the WLCS(x′, y), which is
equal to WLCS(x, y) since all subsequences of length at most m of x are also subsequences
of Cm(x). We show below in Theorem 12 how to compute WLCS of a run-length encoded
string x′ with r runs and a string y of length m in time O(rm). Since x′ = Cm(x) consists of
O(m|Σ|−1) runs and the length of y is m, we can compute WLCS(x, y) = WLCS(Cm(x), y)
in time O(m|Σ|). In total, we obtain time O(min{nm, n+m|Σ|}).

It remains to solve WLCS on a run-length encoded string x with r runs and a string
y of length m in time O(rm). For (unweighted) LCS a dynamic programming algorithm
with this running time was presented by Liu et al. [37]. We first give a brief intuitive
explanation as to why their algorithm does not generalize to WLCS. Let x = c`1

1 c
`2
2 . . . c`rr

be the run-length encoded string, where ci ∈ Σ, and let Li =
∑i
j=1 `j . Let D(i, j) :=

WLCS(x[1 . . . Li], y[1 . . . j]). Liu et al.’s algorithm relies on a recurrence for D(i, j) in terms
of D(i, j − 1). Consider an input like x = ba1a2 · · · akb and y = a1a2 · · · akbb with W (b) >∑
`∈[k]W (a`). Note that D(k+2, k+1) =

∑
`∈[k]W (a`)+W (b), but D(k+2, k+2) = 2W (b).

Thus D(k + 2, k + 2) = D(k + 2, k + 1)−
∑
`∈[k]W (a`) +W (b). Therefore, in the weighted

setting D(i, j) and D(i, j − 1) can differ by complicated terms that seem hard to figure out
locally. Our algorithm that we develop below instead relies on a recurrence for D(i, j) in
terms of D(i− 1, j′).

I Theorem 12. Given a run-length encoded string x consisting of r runs, a string y of
length m, and a weight function W : Σ→ N we can determine WLCS(x, y) in time O(rm).

Proof. We write the run-length encoded string x as c`1
1 c

`2
2 . . . c`rr with ci ∈ Σ and `i ≥ 1.

Let Li =
∑i
j=1 `j . We will build a dynamic programming table D where D(i, j) stores

the value WLCS(x[1 . . . Li], y[1 . . . j]). In particular, D(0, j) = D(i, 0) = 0 for all i, j. We
will show how to compute this table in O(1) (amortized) time per entry in the following.
Since we can split WLCS(x[1 . . . Li], y[1 . . . j]) = max0≤k≤jWLCS(x[1 . . . Li−1], y[1 . . . k]) +
WLCS(c`ii , y[k + 1 . . . j]), we obtain the recurrence D(i, j) = max0≤k≤j D(i− 1, k) +W (ci) ·
min{`i, |y[k + 1 . . . j]|ci}. Since D(i, j) is monotonically non-decreasing in i and j, we may
rewrite the same recurrence as

D(i, j) = max
0≤k≤j : |y[k+1...j]|ci≤`i

D(i− 1, k) +W (ci) · |y[k + 1 . . . j]|ci .

= W (ci) · |y[1 . . . j]|ci + max
0≤k≤j : |y[k+1...j]|ci≤`i

D(i− 1, k)−W (ci) · |y[1 . . . k]|ci

Let bi,j be the minimum value of 0 ≤ k ≤ j such that |y[k + 1 . . . j]|ci ≤ `i. Note that bi,j
is well-defined, since for k = j we always have |y[k + 1 . . . j]|ci = 0 ≤ `i, and note that bi,j

FSTTCS 2018



40:10 Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

is monotonically non-decreasing in j. We define the active k-window Ki,j as the interval
{bi,j , bi,j + 1, . . . , j}. Note that Ki,j is non-empty and both its left and right boundary are
monotonic in j. Let hi(k) := D(i− 1, k)−W (ci) · |y[1 . . . k]|ci be the height of k. We define
highest(Ki,j) as maxk∈Ki,j hi(k). With this notation, we can rewrite the above recurrence as

D(i, j) = W (ci) · |y[1 . . . j]|ci + highest(Ki,j).

We can precompute all values |y[1 . . . j]|c in O(m) time. Hence, in order to determine D(i, j)
in amortized time O(1) it remains to compute highest(Ki,j) in amortized time O(1). To this
end, we maintain the right to left maximum sequence of the active window Ki,j . Specifically,
we consider the sequence RTLM(Ki,j) = 〈ks, ks−1, . . . , k1〉 where k1 = j and for any p > 1,
kp is is the largest number in Ki,j with kp < kp−1 and hi(kp) > hi(kp−1). In particular, ks
is the largest number in Ki,j attaining hi(ks) = highest(Ki,j). Hence, from this sequence
RTLM(Ki,j) we can determine highest(Ki,j) and thus D(i, j) in time O(1). It remains to
argue that we can maintain RTLM(Ki,j) in amortized time O(1) per table entry. We sketch
an algorithm to obtain RTLM(Ki,j) from RTLM(Ki,j−1).

Algorithm 3 Computing RTLM(Ki,j) from RTLM(Ki,j−1)
1: Initialize RTLM(Ki,j) = RTLM(Ki,j−1)
2: while the smallest (=leftmost) element k of RTLM(Ki,j) satisfies |y[k + 1 . . . j]|ci > `i

do
3: Remove k from RTLM(Ki,j)
4: while the largest (=rightmost) element k of RTLM(Ki,j) satisfies hi(k) ≤ hi(j) do
5: Remove k from RTLM(Ki,j)
6: Append j to RTLM(Ki,j)

It is easy to see correctness, since the first while loop removes right to left maxima
that no longer lie in the active window, the second while loop removes right to left max-
ima that are dominated by the new element j, and the last line adds j. Note that
|y[k + 1 . . . j]|c = |y[1 . . . j]|c − |y[1 . . . k]|c can be computed in time O(1) from the pre-
computed values |y[1 . . . j]|c, and thus the while conditions can be checked in time O(1). A
call of Algorithm 3 can necessitate multiple removal operations, but only one insertion. By
charging removals to the insertion of the removed element, we see that Algorithm 3 runs
in amortized time O(1). We therefore can compute each table entry D(i, j) in amortized
time O(1) and obtain total time O(rm). Pseudocode for the complete algorithm is given
below. J

Algorithm 4 Computing WLCS(x, y) in time O(r ·m)
1: precompute |y[1 . . . i]|c for all i ∈ [m] and c ∈ Σ.
2: set D(i, 0) = D(0, j) = 0 for any 0 ≤ i ≤ r and 0 ≤ j ≤ m.
3: for i = 1, . . . , r do
4: RTLM(Ki,0)← 〈0〉.
5: for j = 1, . . . ,m do
6: Update RTLM(Ki,j) as in Algorithm 3
7: Let k be the smallest (=leftmost) element of RTLM(Ki,j)
8: Compute highest(Ki,j) = hi(k) = D(i− 1, k)−W (ci) · |y[1 . . . k]|ci
9: D(i, j)←W (ci) · |y[1 . . . j]|ci + highest(Ki,j).

10: return D(r,m)



K. Bringmann and B. R. Chaudhury 40:11

5 Conditional lower bound for Weighted LCS

In this section, we prove a conditional lower bound for Weighted LCS, based on the standard
hypothesis SETH, which was introduced by Impagliazzo, Paturi, and Zane [27] and asserts
that satisfiability has no algorithms that are much faster than exhaustive search.

Strong Exponential Time Hypothesis (SETH): For any ε > 0 there is a k ≥ 3 such
that k-SAT on n variables cannot be solved in time O((2− ε)n).

Essentially all known SETH-based lower bounds for polynomial-time problems (e.g. [1,
10, 12, 13, 14]) use reductions via the Orthogonal Vectors problem (OV): Given sets A,
B ⊆ {0, 1}D of size |A| = N , |B| = M , determine whether there are a ∈ A, b ∈ B that are
orthogonal, i.e.,

∑D
i=1 a[i]·b[i] = 0, where the sum is over the integers. Simple algorithms solve

OV in time O(2D(N +M)) and O(NMD). The fastest known algorithm for D = c(N) logN
runs in time N2−1/O(log c(N)) (when N = M) [2], which is only slightly subquadratic for
D � logN . This has led to the following reasonable hypothesis.

(Unbalanced) Orthogonal Vectors Hypothesis (OVH): For any γ > 0, OV restricted
to M = Θ(Nγ) and D = No(1) requires time (NM)1−o(1).

A well-known reduction by Williams [50] shows that SETH implies OVH in case γ = 1.
Moreover, an observation in [14] shows that if OVH holds for some γ > 0 then it holds for
all γ > 0. Thus, OVH is a weaker assumption than SETH, and any OVH-based lower bound
also implies a SETH-based lower bound. The conditional lower bound in this section does
not only hold assuming SETH, but even assuming the weaker OVH.

We use the following construction from the OVH-based lower bound for LCS [1, 13]. For
binary alphabet, such a construction was given in [13].

I Theorem 13. Given A,B ⊆ {0, 1}D of size N , in time O(DN) we can compute strings xA
and yB on alphabet {0, 1} of length Θ(DN) as well as a number τ such that LCS(xA, yB) ≥ τ
holds if and only if there is an orthogonal pair of vectors in A and B. In this construction,
xA and yB depend only on A and B, respectively, and |xA|, |yB |, τ depend only on N,D.

We now prove a conditional lower bound for WLCS, i.e., the lower bound of Theorem 2.

I Theorem 14. Given strings x, y of lengths n,m with n ≥ m over alphabet Σ, computing
WLCS(x, y) requires time min{nm, n+m|Σ|}1−o(1), assuming OVH. This holds even restricted
to n = mα±o(1) and |Σ| = σ for any fixed constants α ∈ R, α ≥ 1 and σ ∈ N, σ ≥ 2.

Proof. Let Σ = {0, 1, . . . , σ − 1} and α = αI + αF , where αI = bαc and αF = α − αI
are the integral and fractional parts. Let M ∈ N and set N = min{MαI · dMαF e,Mσ−1}.
Note that M divides N . Consider any instance A = {a0, a1, . . . , aN−1} ⊆ {0, 1}d and
B = {b0, b1, . . . , bM−1} ⊆ {0, 1}D of the Orthogonal Vectors problem. Partition A into
A0, A1, . . . , AN/M−1, where |Ai| = M . Then by Theorem 13 we can construct strings x(i)

A

and yB on alphabet {0, 1} of length Θ(DM) and τ ∈ N in time O(DM) such that Ai and
B contain an orthogonal pair of vectors if and only if LCS(x(i)

A , yB) ≥ τ . Note that A
and B contain an orthogonal pair of vectors if and only if for some 0 ≤ i < N

M , Ai and B
contain an orthogonal pair of vectors. Hence, A and B contain an orthogonal pair if and
only if max0≤i< N

M
LCS(x(i)

A , yB) ≥ τ . In the following, we encode the latter inequality into
an instance of WLCS.

For simplicity we only give the proof for integral α and α < σ (the remaining cases are
omitted and can be found in the appendix). In this case, N = Mα and the running time
lower bound that we will prove is (nm)1−o(1).

FSTTCS 2018



40:12 Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

We set λ to any value such that λ > |yB |/M , and note that λ ∈ Θ(D) suffices. Set
W (k) = λ ·Mk−1 for k ≥ 2, andW (1) = W (0) = 1. Let Σk = {0, 1, . . . , k − 1}. We construct
strings x and y as follows:

x = x(α,0)

x(k,i) =
(
©M−2
j=0 x(k−1,M ·i+j) ◦ k

)
◦ x(k−1,M ·i+(M−1)) for 2 ≤ k ≤ α

x(1,i) = xiA for 0 ≤ i < N/M

y = y(α)

y(k) = kM−1 ◦ y(k−1) ◦ kM−1 for 2 ≤ k ≤ α

y(1) = yB .

Observe that for all k, x(k,i) and y(k) are defined on Σk. In particular, since α ≤ σ − 1
we only use symbols from Σ. Let `(k) denote the length of x(k,i) for any i. Observe
that `(k) = M · `(k − 1) + (M − 1) and `(1) ∈ Θ(DM). Thus, `(k) ∈ Θ(DMk) and
n := |x| ∈ Θ(DMα). It is straightforward to see that m := |y| = Θ((k +D)M) = Θ(DM),
since k ≤ |Σ| = O(1). Recall that for any string z, W (z) is its total weight.
I Claim 15. For any integer 2 ≤ k ≤ α, we have (1) (M − 1) ·

∑k
`=2W (`) = λ(Mk −M) and

(2) W (y(k)) < W (k + 1) + λ · (Mk −M).

Proof. For (1), we calculate (M − 1) ·
∑k
`=2W (`) = (M − 1) ·

∑k−1
`=1 λM

` = λ(Mk −M).
For (2), by definition of y(k) and λ we have

W (y(k)) < λM + 2(M − 1) ·
k−1∑
`=2

W (l) (1)= λM + 2λ(Mk −M) = W (k+ 1) +λ(Mk −M).J

We now can perform the core step of our correctness argument.

I Lemma 16. For any 2 ≤ k ≤ α and 0 ≤ i < Mk−1, we have (1) WLCS(x(k,i), y(k)) ≥
λ(Mk−M), and (2) WLCS(x(k,i), y(k)) = (M−1) ·W (k)+WLCS(x(k−1,j), y(k−1)) for some
M · i ≤ j < M · (i+ 1).

Proof. For (1), clearly ©k
j=2j

M−1 is a common subsequence of x(k,i) and y(k). Together
with Claim 15.(1), we obtain WLCS(x(k,i), y(k)) ≥

∑k
j=2(M − 1) ·W (j) = λ(Mk −M).

For (2), we claim that kM−1 is a subsequence of any WLCS of x(k,i) and y(k). Assuming
otherwise, the WLCS can contain at most M − 2 symbols k and all of y(k−1). Therefore,

WLCS(x(k,i), y(k)) ≤ (M − 2) ·W (k) +W (y(k−1))
< (M − 2) ·W (k) +W (k) + λ(Mk−1 −M) by Claim 15.(2)
= (M − 1) · λMk−1 + λ(Mk−1 −M) = λ · (Mk −M).

This contradicts WLCS(x(k,i), y(k)) ≥ λ(Mk −M). It follows that kM−1 is a subsequence of
the WLCS of x(k,i) and y(k). Hence, WLCS(x(k,i), y(k)) = (M−1)·W (k)+WLCS(x(k−1,j), y(k−1))
for some j with M · i ≤ j < M · (i+ 1). J

Recursively applying the above lemma and substituting x(1,j) by xjA, we conclude that
WLCS(x, y) = λ · (Mα −M) + max0≤j<Mα−1 LCS(xjA, yB). Using Mα = N and the con-
struction of xjA, yB , we obtain that WLCS(x, y) ≥ λ(N −M) + τ holds if and only if there is
an orthogonal pair of vectors in A and B. Since OVH asserts that solving the OV instance
(A,B) in the worst case requires time (NM)1−o(1), even for D = No(1), we obtain that



K. Bringmann and B. R. Chaudhury 40:13

determining WLCS(x, y) requires time (NM)1−o(1) = (nm/D2)1−o(1) = (nm)1−o(1). This
completes the proof for all instances where α < σ is integral. Note that if α ≥ σ, the claimed
lower bound trivially holds as it matches the input size. Now we consider the two remaining
cases, where σ − 1 < α < σ and α < σ − 1.

Case σ − 1 < α < σ: Then N = MαI = Mσ−1. We construct strings x and y as follows:

x = x(αI ,0) ◦ αI ◦ 0DM
α

y = y(αI) ◦ αI .

Again, since αI ≤ σ − 1 the strings x and y only use symbols in Σ. We now have n := |x| ∈
Θ(DMα) and m := |y| ∈ Θ(DM). Clearly, WLCS(x, y) ≥WLCS(x(αI ,0), y(αI)) +W (αI) ≥
W (αI)+λ(MαI −M). Similar to the proof for integral α, we claim that αMI is a subsequence
of the WLCS of x and y. Assuming otherwise, the WLCS of x and y contains at most M − 1
symbols αI and all of y(αI−1). Therefore,

WLCS(x, y) ≤ (M − 1) ·W (αI) +W (y(αI−1))
< (M − 1) ·W (αI) +W (αI) + λ(MαI−1 −M) by Claim 15.(2)
= W (αI) + λ · (MαI −MαI−1 +MαI−1 −M) = W (αI) + λ(MαI −M).

This contradicts WLCS(x, y) ≥ W (αI) + λ(MαI −M). Hence, αMI is a subsequence of
the WLCS of x and y, and WLCS(x, y) = W (αI) + WLCS(x(αI ,0), y(αI)). It follows that
WLCS(x, y) ≥ λMαI−1 +λ(MαI −M)+ τ holds if and only if there exists an orthogonal pair
of vectors in A and B. OVH asserts that solving the OV instance (A,B) in the worst case
requires time (NM)1−o(1), even for D = No(1). Using N = Θ(MαI ) = Θ(Mσ−1), we obtain
that determining WLCS(x, y) requires time (NM)1−o(1) = (Mσ)1−o(1) = ((m/D)σ)1−o(1) =
(m|Σ|)1−o(1). This completes the proof in the case σ − 1 < α < σ.

Case α < σ−1: In this case αI ≤ σ−2 and N = MαI ·dMαF e. Let f = dMαF e as shorthand.
We construct x and y as follows:

x =
(
©f−2
j=0 x

(αI ,j) ◦ (αI + 1)
)
◦ x(αI ,f−1)

y = (αI + 1)f ◦ y(αI) ◦ (αI + 1)f

Once again x and y consist of symbols in Σ, since αI ≤ σ − 2. Since |x(αI ,i)| ∈ Θ(DMαI ),
we have n := |x| ∈ Θ(DMαI+αF ) = Θ(DMα), and m := |y| ∈ Θ(DM). The same argument
as before, now with f instead of M parts, shows that WLCS(x, y) = (f − 1)W (αI + 1) +
WLCS(x(αI ,j), y(αI)) holds for some 0 ≤ j < f . Plugging in WLCS(x(αI ,j), y(αI)), we see
that

WLCS(x, y) = λ(f − 1)MαI + λ(MαI −M) + max
0≤j≤ N

M−1
LCS(xjA, yB).

Hence, WLCS(x, y) ≥ λ(f−1)MαI+λ(MαI−M)+τ holds if and only if there is an orthogonal
pair of vectors in A and B. OVH asserts that solving the OV instance (A,B) in the worst
case requires time (NM)1−o(1), even for D = No(1). Using N = Θ(MαI · f) = Θ(Mα),
we obtain that determining WLCS(x, y) requires time (NM)1−o(1) = (Mα+1)1−o(1) =
(nm/D2)1−o(1) = (nm)1−o(1). This completes the proof of the last case α < σ − 1.

Finally, note that in all cases we constructed strings over alphabet size σ of length
n = Mα±o(1) and m = M1±o(1), and thus n = mα±o(1). J

FSTTCS 2018



40:14 Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time hard-
ness of LCS and other sequence similarity measures. In Proc. 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’15), pages 59–78, 2015.

2 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’15), pages 218–230, 2015.

3 Jochen Alber, Jens Gramm, Jiong Guo, and Rolf Niedermeier. Towards optimally solving
the longest common subsequence problem for sequences with nested arc annotations in lin-
ear time. In Proc. 13th Annual Symposium on Combinatorial Pattern Matching (CPM’02),
pages 99–114, 2002.

4 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5(1–2):78–99, 1995.

5 Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.
Basic local alignment search tool. Journal of Molecular Biology, 215(3):403 – 410, 1990.

6 Amihood Amir, Zvi Gotthilf, and B. Riva Shalom. Weighted LCS. Journal of Discrete
Algorithms, 8(3):273–281, 2010.

7 Hsing-Yen Ann, Chang-Biau Yang, Chiou-Ting Tseng, and Chiou-Yi Hor. A fast and simple
algorithm for computing the longest common subsequence of run-length encoded strings.
Information Processing Letters, 108(6):360–364, 2008.

8 Alberto Apostolico. Improving the worst-case performance of the Hunt-Szymanski strategy
for the longest common subsequence of two strings. Inf. Process. Lett., 23(2):63–
69, 1986. URL: http://dx.doi.org/10.1016/0020-0190(86)90044-X, doi:10.1016/
0020-0190(86)90044-X.

9 Alberto Apostolico and Concettina Guerra. The longest common subsequence problem
revisited. Algorithmica, 2:316–336, 1987. URL: http://dx.doi.org/10.1007/BF01840365,
doi:10.1007/BF01840365.

10 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
In Proc. 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS’16),
pages 457–466, 2016.

11 Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document
exchange. In Proc. 57th Annual Symposium on Foundations of Computer Science, pages
51–60, 2016.

12 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’14), pages 661–670, 2014. doi:10.1109/FOCS.
2014.76.

13 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proc. 56th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’15), pages 79–97, 2015.

14 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proc. 29th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’18), 2018. To appear.

15 Mauro Castelli, Riccardo Dondi, Giancarlo Mauri, and Italo Zoppis. The longest filled
common subsequence problem. In Proc. 28th Annual Symposium on Combinatorial Pattern
Matching (CPM’17), 2017. To appear.

16 Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouckỳ. Streaming algorithms for
computing edit distance without exploiting suffix trees. ArXiv:1607.03718, 2016.

http://dx.doi.org/10.1016/0020-0190(86)90044-X
http://dx.doi.org/10.1016/0020-0190(86)90044-X
http://dx.doi.org/10.1016/0020-0190(86)90044-X
http://dx.doi.org/10.1007/BF01840365
http://dx.doi.org/10.1007/BF01840365
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1109/FOCS.2014.76


K. Bringmann and B. R. Chaudhury 40:15

17 Wun-Tat Chan, Yong Zhang, Stanley P.Y. Fung, Deshi Ye, and Hong Zhu. Efficient al-
gorithms for finding a longest common increasing subsequence. Journal of Combinatorial
Optimization, 13(3):277–288, 2007.

18 Marek Cygan, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
Polynomial-time approximation algorithms for weighted LCS problem. Discrete Applied
Mathematics, 204:38–48, 2016.

19 David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse dynamic
programming I: Linear cost functions. J. ACM, 39(3):519–545, July 1992. URL: http:
//doi.acm.org/10.1145/146637.146650, doi:10.1145/146637.146650.

20 Valerio Freschi and Alessandro Bogliolo. Longest common subsequence between run-length-
encoded strings: a new algorithm with improved parallelism. Information Processing Let-
ters, 90(4):167–173, 2004.

21 Zvi Gotthilf, Danny Hermelin, Gad M. Landau, and Moshe Lewenstein. Restricted LCS.
In Proc. 17th International Conference on String Processing and Information Retrieval
(SPIRE’10), pages 250–257, 2010.

22 Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. J.
ACM, 24(4):664–675, 1977. URL: http://doi.acm.org/10.1145/322033.322044, doi:
10.1145/322033.322044.

23 J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Computing
Science Technical Report 41, Bell Laboratories, 1975.

24 James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest sub-
sequences. Commun. ACM, 20(5):350–353, 1977. URL: http://doi.acm.org/10.1145/
359581.359603, doi:10.1145/359581.359603.

25 Costas S Iliopoulos, Marcin Kubica, M Sohel Rahman, and Tomasz Waleń. Algorithms for
computing the longest parameterized common subsequence. In Proc. 18th Annual Confer-
ence on Combinatorial Pattern Matching (CPM’07), pages 265–273, 2007.

26 Costas S. Iliopoulos and M. Sohel Rahman. A new efficient algorithm for computing the
longest common subsequence. Theory of Computing Systems, 45(2):355–371, 2009. URL:
http://dx.doi.org/10.1007/s00224-008-9101-6, doi:10.1007/s00224-008-9101-6.

27 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Computer and System Sciences, 63(4):512–530, 2001.

28 Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. The longest common subsequence
problem for arc-annotated sequences. Journal of Discrete Algorithms, 2(2):257–270, 2004.

29 Hossein Jowhari. Efficient communication protocols for deciding edit distance. In Proc.
European Symposium on Algorithms, pages 648–658, 2012.

30 Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. On the longest common paramet-
erized subsequence. Theoretical Computer Science, 410(51):5347–5353, 2009.

31 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complexity, 8(1):21–49, 1999.

32 Keita Kuboi, Yuta Fujishige, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Faster STR-IC-LCS computation via RLE. In Proc. 28th Annual Symposium on Combin-
atorial Pattern Matching (CPM’17), 2017. To appear, arXiv:1703.04954.

33 Martin Kutz, Gerth Stølting Brodal, Kanela Kaligosi, and Irit Katriel. Faster algorithms
for computing longest common increasing subsequences. Journal of Discrete Algorithms,
9(4):314–325, 2011.

34 Gad M. Landau, Baruch Schieber, and Michal Ziv-Ukelson. Sparse LCS common substring
alignment. Information Processing Letters, 88(6):259–270, 2003.

35 David Liben-Nowell, Erik Vee, and An Zhu. Finding longest increasing and common sub-
sequences in streaming data. Journal of Combinatorial Optimization, 11(2):155–175, 2006.

FSTTCS 2018

http://doi.acm.org/10.1145/146637.146650
http://doi.acm.org/10.1145/146637.146650
http://dx.doi.org/10.1145/146637.146650
http://doi.acm.org/10.1145/322033.322044
http://dx.doi.org/10.1145/322033.322044
http://dx.doi.org/10.1145/322033.322044
http://doi.acm.org/10.1145/359581.359603
http://doi.acm.org/10.1145/359581.359603
http://dx.doi.org/10.1145/359581.359603
http://dx.doi.org/10.1007/s00224-008-9101-6
http://dx.doi.org/10.1007/s00224-008-9101-6


40:16 Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

36 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. Text Summariz-
ation Branches Out, 2004.

37 Jia Jie Liu, Yue-Li Wang, and Richard CT Lee. Finding a longest common subsequence
between a run-length-encoded string and an uncompressed string. Journal of Complexity,
24(2):173–184, 2008.

38 Webb Miller and Eugene W. Myers. A file comparison program. Softw., Pract. Exper.,
15(11):1025–1040, 1985. URL: http://dx.doi.org/10.1002/spe.4380151102, doi:10.
1002/spe.4380151102.

39 Johra Muhammad Moosa, M. Sohel Rahman, and Fatema Tuz Zohora. Computing a
longest common subsequence that is almost increasing on sequences having no repeated
elements. Journal of Discrete Algorithms, 20:12–20, 2013.

40 Howard L. Morgan. Spelling correction in systems programs. Communications of the ACM,
13(2):90–94, 1970.

41 Shay Mozes, Dekel Tsur, Oren Weimann, and Michal Ziv-Ukelson. Fast algorithms for
computing tree LCS. Theoretical Computer Science, 410(43):4303–4314, 2009.

42 Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorith-
mica, 1(2):251–266, 1986. URL: http://dx.doi.org/10.1007/BF01840446, doi:10.1007/
BF01840446.

43 Gene Myers. A four russians algorithm for regular expression pattern matching. Journal
of the ACM (JACM), 39(2):432–448, 1992.

44 Narao Nakatsu, Yahiko Kambayashi, and Shuzo Yajima. A longest common subsequence
algorithm suitable for similar text strings. Acta Inf., 18:171–179, 1982. URL: http://dx.
doi.org/10.1007/BF00264437, doi:10.1007/BF00264437.

45 Pavel Pevzner and Michael Waterman. Matrix longest common subsequence problem, dual-
ity and Hilbert bases. In Proc. 3th Annual Symposium on Combinatorial Pattern Matching
(CPM’92), pages 79–89, 1992.

46 Michael Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to
monotonicity and asymmetric edit distance. In Proc. 24th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1698–1709, 2013.

47 Xiaoming Sun and David P. Woodruff. The communication and streaming complexity of
computing the longest common and increasing subsequences. In Proc. 18th Annual ACM-
SIAM Aymposium on Discrete Algorithms, pages 336–345, 2007.

48 Alexander Tiskin. Longest common subsequences in permutations and maximum cliques
in circle graphs. In Proc. 17th Annual Symposium on Combinatorial Pattern Matching
(CPM’06), pages 270–281, 2006.

49 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J.
ACM, 21(1):168–173, 1974. URL: http://doi.acm.org/10.1145/321796.321811, doi:
10.1145/321796.321811.

50 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005.

51 Sun Wu, Udi Manber, Gene Myers, and Webb Miller. An O(NP ) sequence comparison
algorithm. Inf. Process. Lett., 35(6):317–323, 1990. URL: http://dx.doi.org/10.1016/
0020-0190(90)90035-V, doi:10.1016/0020-0190(90)90035-V.

52 I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for computing
a longest common increasing subsequence. Information Processing Letters, 93(5):249–253,
2005.

http://dx.doi.org/10.1002/spe.4380151102
http://dx.doi.org/10.1002/spe.4380151102
http://dx.doi.org/10.1002/spe.4380151102
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1007/BF00264437
http://dx.doi.org/10.1007/BF00264437
http://dx.doi.org/10.1007/BF00264437
http://doi.acm.org/10.1145/321796.321811
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1016/0020-0190(90)90035-V
http://dx.doi.org/10.1016/0020-0190(90)90035-V
http://dx.doi.org/10.1016/0020-0190(90)90035-V

	1 Introduction
	1.1 Sketching and Streaming LCS
	1.2 WLCS: In between min-quadratic and rectangular time
	1.3 Further Related Work
	1.4 Notation

	2 Sketching LCS
	3 Optimality of the Sketch
	4 Weighted LCS
	5 Conditional lower bound for Weighted LCS

