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Abstract

Experimental observations in JET tokamak plasmas and gyrokinetic simulations point to an important role,

for electron heat transport, of electron-scale instabilities and of their interaction with ion-scale instabilities. Since

these effects are maximized for strong electron heating and ion-scale modes close to marginal stability, these

findings are of high relevance for ITER plasmas, featuring both conditions. Gyrokinetic and quasi-linear transport

models accounting for multi-scale effects are assessed against JET experimental results.

Introduction: Understanding turbulent electron heat transport is of fundamental importance for future magnetic
fusion reactors such as ITER. Both the main heating systems and, in a Deuterium-Tritium plasma, the fusion burn
↵-particle heating will deliver power mainly to the electron channel, whilst ions will be mainly heated by electrons
via collisional coupling. Therefore, the core temperature and fusion performance will strongly depend on electron
heat transport, which is dominated by turbulent processes. Historically, ion-scale micro-instabilities, i.e. ITG (Ion
Temperature Gradient) modes [1] and TEM (Trapped Electron Modes) [2], have been deemed to cause most of the
electron heat flux, qe [3, 4, 5], with electron-scale ETG (Electron Temperature Gradient) modes [6] playing a minor
role due to their small wavelength. However, a quantitative comparison with non-linear gyrokinetic (GK) simulations
of the experimental qe and its slope vs R/LTe = R |rTe| /Te (R being the plasma major radius and Te the electron
temperature) - which determines the stiffness of the Te profiles against a flux increase - was attempted only very re-
cently. This pointed out that, in some cases, ion-scale low-k modes are not able to account for the measured electron
heat transport [7, 8, 9]. Both theoretical [6, 8, 10, 11, 12] and experimental [13, 14, 15] studies, including studies
in spherical tokamaks [16, 17, 18, 19], extending to the high-k range have then shown that, in some experimental
conditions, ETGs can carry a significant fraction of the turbulent heat flux and electron and ion scales can have
strong interactions. The importance of sub-ion instabilities and of the interactions between different scales has also
been investigated and observed in other magnetized plasma phenomena, such as in magnetic reconnection [20, 21]
and solar wind [22]. In fusion plasmas, it was found in computationally demanding multi-scale GK simulations,
including a simulation of a DIII-D ITER baseline discharge with dominant electron heating [23], that a large impact
of ETG modes takes place when ion-scale instabilities are close to marginal stability and high electron heating is
present [8, 11]. This will be the case in the ITER baseline scenario, motivating the present study on JET, the
largest existing tokamak. We focus on JET L-mode plasmas with high electron heating, on which we performed
dedicated transport experiments, comparing results with GK simulations. The target of the work is to quantify the
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role of electron-scale instabilities in electron heat transport in these low power plasmas, more amenable than high
performance scenarios to detailed transport physics studies due to the lack of strong magneto-hydro dynamic activity
and ELMs (Edge Localized Modes). A precise experimental quantification of electron heat transport properties such
as critical gradient for ETG onset and stiffness level on JET is an essential piece of information to validate both GK
models and the most recent TGLF (SAT1) [24, 25, 26] quasi-linear model, to support their application to high power
scenario predictions in present and future devices. A first experimental indication of the role of ETG modes in JET
plasmas will be reported as well as strong confirmations from gyrokinetic simulations, including a first multi-scale
simulation of a JET discharge.

Experimental observations: A variety of experimental observations pointing to a significant role of ETG
modes in determining qe has been gathered in a set of JET C-wall dedicated electron heat transport experiments
in L-mode plasmas with toroidal magnetic field BT ⇠ 3.35 T , plasma current Ip ⇠ 2 MA, safety factor at the
magnetic surface enclosing the 95% of the poloidal magnetic flux q95 ⇠ 5, electron density in the plasma center
ne,0 ⇠ 2–3.5ů1019 m�3 and different levels of Neutral Beam Injection (NBI) and Ion Cyclotron Resonance Heating
(ICRH). In these experiments, mid-radius qe scans at constant total power were carried out by using on- vs off-axis
ICRH power in 3He � D plasmas with n3He/ne ⇠ 18% to achieve mode conversion and pure electron heating, as
discussed in detail in Ref. [7]. These qe scans allow to determine the R/LTe threshold for the onset of turbulent
electron heat transport and the electron stiffness [3, 4]. In addition, Te modulation was also carried out, to comple-
ment the information [27, 28]. The first striking observation (Fig. 1a) is a remarkable correlation at the analyzed
radius ⇢tor =

p
(�/⇡BT )/(�/⇡BT )max = 0.5 (where � is the toroidal magnetic flux) between R/LTe and the pa-

rameter ⌧ = Ze↵ůTe/Ti (Ti being the ion temperature and Zeff the effective plasma charge), which is a key term
in the ETG threshold [29]. The ⌧ dependence dominates over dependences on other parameters that also vary in
the dataset, including the power level. The stabilizing effect of ⌧ for electron heat transport can be seen in more
detail in Fig. 1b, showing the gyro-Bohm normalized electron heat flux qe,gB = qe/(neTecs⇢

2
s), where cs =

p
Te/Mi

and ⇢s = Mics/eB, Mi being the ion mass, as a function of R/LTe and for different ⌧ values. Here a clear increase
of the electron threshold (i.e. the intercept at qe,gB = 0) is seen for increasing ⌧ , dominating over the scatter due
to having included all points in the database, regardless of variations in other parameters (except BT and Ip which
are always the same). A consistent sound observation is that adding NBI power to an ICRH electron heated plasma
induces a flattening of the Te profile and an increase of the electron stiffness, as reported in Ref. [7, 30]. Last, using
a critical gradient formula [31] and the electron stiffness measured experimentally for few cases using qe scans and
Te modulation, the R/LTe thresholds have been calculated for these discharges. These thresholds are compared, as
a function of ⌧ , in Fig. 1c, with the theoretical values using analytical formulae proposed in Ref. [2] for TEM and
in Ref. [29] for ETGs. We see that experimental thresholds lie close to the ETG threshold and have a similar trend
with ⌧ up to ⌧ ⇠ 4, whilst TEM thresholds have an opposite trend with ⌧ .
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The experimental observations presented above are suggestive of a dominant role of ETG in electron heat transport
in our dataset, but the quantitative evaluation of the relative impact of ITG, TEM and ETG modes on qe requires
comparing the experimental plot of qe,gB(R/LTe) (at constant other parameters) with non-linear gyrokinetic simu-
lations.

Gyrokinetic simulation setup: For detailed non-linear simulations, carried out using the GENE code [6] in
the radially local limit, input data from JET discharge n. 78834 (with 2.5 MW of ICRH power directed to elec-
trons and with 1.7 MW of NBI power) at t = 7 s and ⇢tor = 0.53 have been used. Non-linear single-scale (on
both ion and electron scales) and a first JET non-linear multi-scale simulation have been performed. A scan in
R/LTe = 8.5, 10, 11 (experimental value: R/LTe = 9.3± 0.8) has been done in the simulations. Other important pa-
rameters are s = 0.98, q = 2.1, R/Ln = 2.1, R/LTi = 3.6, Ti/Te = 0.88, Zeff = 1.82, �ExB = �r0/qů@⌦/@růR/cs =

0.01,�e = 8⇡neTe/B
2
0 ⇡ 1e� 04, where s is the magnetic shear, r0 is the minor radius of the considered flux surface

and �ExB is the E⇥B shear due to the plasma rotation ⌦. The low value of � justify the electrostatic approximation
used in the simulations. The simulations are electrostatic and feature Miller geometry, collisions, kinetic D ions and
electrons and perpendicular flow shear rate. In order to cover both ion and electron scales, toroidal mode numbers
up to electron-scale have been coupled in the multi-scale simulation, using 0.1 . ky⇢s . 48. In the single ion and
electron-scale simulations 0.05 . ky⇢s . 2.4 and 3 . ky⇢s . 48 have been used respectively. Perpendicular box sizes
were [Lx, Ly] ⇡ [64, 64]⇢s in the ion-scale and multi-scale simulations and [Lx, Ly] ⇡ [4, 4]⇢s in the electron-scale sim-
ulations (⇢s = cs/⌦i, cs = (Te/mi)0.5 and ⌦i = eB0/mi, mi being the D mass and B0 being the background magnetic
field). The number of grid points used in the multi-scale simulation were [nx, ny, nz, nv, nµ] = [1280, 448, 36, 32, 12]

(GENE field-aligned coordinates: x=radial direction, y=binormal direction, z=parallel direction (to B0), v=parallel
velocity, µ= magnetic moments). In the single-scale simulations [nx, ny, nz, nv, nµ] = [256, 48, 36, 32, 12]. In the
electron-scale simulations, the saturation of qe has been achieved by artificially increasing the level of the perpendic-
ular flow shear until heat flux convergence was reached (using �ExB = 0.048), due to ETG streamer shearing leading
to a reduction of box-scale effects [32]. This technique has been assumed to be a proxy for ion-scale structures
saturating the ETG streamers. The total predicted qe,gB from single-scale simulations has then been calculated with
a simple sum of the fluxes from ion-scale and electron-scale simulations. Convergence tests have been made for the
single-scale simulations but not for the multi-scale simulations due to the too high amount of computational resources
that they would require.

Gyrokinetic simulation results: A first assessment of linear stability using GENE for plasmas at differ-
ent values of ⌧ is shown in Fig. 2. In the simulations, C has been used as an impurity species in the plasma
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in order to reproduce the experimental levels of Zeff . In general, ITGs tend to be the dominant low-k mode for
ky . 0.7. For higher ky values TEM/ETG dominate. In many cases, ETGs have been found unstable also for
high ⌧ values, but a region with almost zero growth rate is present between the low and the high-k regions. For
lower ⌧ values, ITGs are in general more stable (in many cases due to an increase in Ti/Te [34]), while TEM and
ETG growth rates never decrease going from ion to electron scales. Considering that ETGs are expected to play
a significant role when ion-scale instabilities are not highly unstable [8, 10, 11], the results from the linear simu-
lations go in the right direction to predict a stronger role of ETGs for lower ⌧ values in these JET discharges.
Regarding non-linear simulations, the time evolution of qe,gB , qi,gB from the multi-scale simulation is shown in Fig.
3, while the comparison between non-linear simulations and experiment is shown in Fig. 6a. In both ion-scale
and multi-scale simulations the qi,gB was matched within error-bars and no substantial differences in qi,gB have
been observed when multi-scale interactions and high-k instabilities have been considered. The qe,gB predicted by
ion-scale simulations is not enough to reproduce the experimental data. This was first pointed out in Ref. [7], but
without any study of the electron-scale contribution, which is addressed in detail in this Letter. As shown in Fig. 6a,
adding the qe,gB from the electron-scale simulations it is possible to reproduce both the qe,gB level and the electron
stiffness. When multi-scale interactions are considered, no big differences in qe,gB with respect to the single ion-scale
simulations have been observed for R/LTe = 8.5, while a strong increase of qe,gB has been observed with respect to
the ion-scale simulations for R/LTe = 10 (+50%) and R/LTe = 11 (+80%). These increments are due to an increase
of the high-k instabilities as can be seen from the � � Tk (electrostatic potential-parallel temperature fluctuations)
cross-phases, from the appearance in the snapshot of �(x/⇢

s

, y/⇢

s

) of the typical ETG streamer structures and from
the appearance in the density fluctuation of a second peak around 5 < ky⇢s < 10 when R/LTe is increased (Fig.
4,5).
A strong reduction of the fluxes and of the stiffness is observed with respect to the sum of the single-scale simulations,

indicating that the saturation of ETGs due to ion-scale turbulent structures is a key factor and must be considered,
as reported also in [8, 11, 10]. To gauge this interplay, using only the net free energy received by a mode from the
nonlinear interaction with all other modes, i.e. T (kx, ky, z), see previous works [35, 36] or the equivalent definition
in [37], we define the overall flux of free energy across the k?(z) scales as ⇧(k?, z) =

R
|k?(z)|�k?

T (kx, ky, z)dkxdky.
Here, we absorb the z-depended Jacobian into T for simplicity. In Fig. 4e, the plot of the flux of the free energy
across the k? scales, for each value of z, is shown for the case R/LTe = 10. As can be seen, the overall flux is
directed from large to small scales (positive flux values indicate a direct cascade, while negative flux values denote
an inverse cascade) with the main contribution from modes that coincide with the ITG modes (0.2 < ky⇢s < 0.4)
and ETG modes (5 < ky⇢s < 10) peaks for qe,gB . To gauge solely the contribution of the ETG ky modes to the
overall flux of free energy across k?(z), we employ the same flux definition but restrict ourselves to the desired ky
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range, i.e. T (kx, ky 2 [5, 10]/⇢s, z). Looking at this ETG contribution (Fig. 4f), a z dependent flux is visible. While
a comprehensive analysis of scale interactions is desired, this simple diagnostic indicates that ETG modes can influ-
ence the ITG like scales through an inverse energy cascade process, which impacts the self-organization of structures
(streamers) and the saturation level of qe,gB , even when the overall scale flux is indicative of energy cascading down
to smaller scales. This can be seen at k?⇢s ⇠ 10, where positive and negative flux values coexist for the same
scale. These gyrokinetic results indicate that ETGs and multi-scale interactions can be important contributors to
electron heat transport in these JET L-mode plasmas. The fact that quantitatively the qe,gB values of the multi-scale
simulation are still lower than the experimental ones should not be seen as a failure of the multi-scale simulation,
but rather as an indication that more ITG stabilizing mechanisms have to be introduced in the simulation, such as
the presence of light impurities in the plasma (C,3 He in this case) [38, 39]. These have not been included for sake
of numerical resources. As indicated in Ref. [8, 10, 11], when ITG modes are close to threshold, a strong increment
of both electron and ion heat flux can be observed. In our case, lower values of R/LTi, outside error bars, would be
needed in the present multi-scale simulation. However, adding impurities would lead to further stabilization of ITG
modes whilst keeping the experimental R/LTi [38, 39]. This could lead to an enhancement of both electron and ion
heat fluxes related to the presence of ETGs, with better agreement with experiment. This is left to future work.

Quasi-linear simulations: A study using the quasi-linear model TGLF has been done using the same input
parameters and settings as in the GENE multi-scale simulation and the new TGLF saturation rule (sat 1) [26]. This
new saturation rule takes into account the effect of ion-scale zonal flow on ETG instability and has been derived and
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tested using the multi-scale simulations reported in [8, 12]. In the right plot of Fig. 6b, the comparison between
TGLF and the multi-scale simulation is shown, while in the left plot the level of qi,gB is shown. TGLF predicts a
strong impact of ion-scale ZF on ETGs, as can be seen by the large variation of qe,gB with R/LTi (different colors
and symbols in the figure), with large ETG fluxes when ions are close to marginality. When qi,gB is matched between
TGLF and the multi-scale simulation, the predictions for qe,gB are in good agreement (green diamonds and black
pentagons). In this case a larger value of R/LTi (5 instead of 3.6 as in the gyrokinetic simulations) was needed in
order to match the experimental flux. Furthermore, a strong increase of qe,gB due to ETGs is predicted by TGLF
for higher values of R/LTe, reaching the experimental level of qe,gB and also of the electron stiffness. The compar-
ison of the electron heat flux between TGLF and the GENE ion-scale simulation (not shown) is also good. Both
GENE and TGLF indicate that ion-scale instabilities alone are not explaining the experimental qe,gB , and inclusion
of electron-scales is essential.

Discussion: Experimental results in JET L-mode plasmas and their modelling with gyrokinetic simulations point
to an important role of high-k instabilities and multi-scale interactions for electron heat transport. These findings
represents a first proof of the role of ETGs in JET plasmas. Quasi-linear simulations are in good agreement, when
the ion heat flux is matched, with the multi-scale GK simulation, indicating that these tools are useful for an at
least qualitative prediction for ITER. Both the decrease of tau and the ITG stabilization due to increased rotation
and non-linear e.m. stabilization [40], leading to enhanced ETG modes, may be the cause for the reduced value to
which Te peaking is seen clamped in JET high NBI power performant scenarios. In JET, due to lower collisional
coupling and to the presence of ion heating, this deterioration of electron heat transport is less penalizing for fusion
performance than it could be in ITER. Indeed simple linear GK simulations of the ITER baseline plasma with the
parameters predicted in [33] yield a ratio of high to low k growth rates comparable to what observed in these JET
plasmas (Fig. 2), suggesting a similarly non-negligible role of ETGs. Therefore, these findings call for the need
of properly accounting for high-k instabilities and multi-scale interactions in future ITER simulations and also of
foreseeing ITER turbulence diagnostics covering reliably both low and high k ranges.
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