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Abstract. The problem of 1/f noise has been with us for about a cen-
tury. Because it is so often framed in Fourier spectral language, the most
famous solutions have tended to be the stationary long range dependent
(LRD) models such as Mandelbrot’s fractional Gaussian noise. In view
of the increasing importance to physics of non-ergodic fractional renewal
models, I present preliminary results of my research into the history of
Mandelbrot’s very little known work in that area from 1963-67. I spec-
ulate about how the lack of awareness of this work in the physics and
statistics communities may have affected the development of complexity
science; and I discuss the differences between the Hurst effect, 1/f noise
and LRD, concepts which are often treated as equivalent.
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1 Ergodic and non-ergodic solutions to the paradox of
1/f noise

“The problem of 1/f noise” has been with us for about 100 years since the pio-
neering work of Schottky and Johnson [I0J9I30]. It is usually framed as a spectral
paradox, i.e.“how can the Fourier spectral density S’(f) of a stationary process
take the form S’(f) ~ 1/f and thus be singular at the origin (or equivalently
how can the autocorrelation function “blow up” at large lags and thus not be
summable) ? 7. When a problem is seen this way, the solution will also tend to
be sought in spectral terms. The desire of for a solution to the problem with a
satisfying level of generality increased in the 1950s with the recognition of an
analogous time domain effect (the Hurst phenomenon) seen in the statistical
growth of range in Nile minima [9]. The first stationary solution which could ex-
hibit the Hurst effect and 1/f noise was presented by Mandelbrot in 1965 using
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fractional Gaussian noise (fGn), the increments of fractional Brownian motion
(fBm), and was subsequently developed with Van Ness and Wallis, particularly
in the hydrological context [919]. fGn is a stationary ergodic process, for which
a power spectrum is a natural and well-defined concept, the paradox here resides
in its singular behaviour at zero.

However, in the last two decades it has increasingly been realised in physics
that another class of models, the fractional renewal processes, can also give 1/ f
noise in a very different way[2I]. Physical interest has come from phenomena
such as weak ergodicity breaking (in e.g. blinking quantum dots [2925/28]) and
the related question of how many different classes of model can share the common
property of the 1/f spectral shape (e.g. [26l27]). In view of this resurgence of ac-
tivity, my first aim in this paper is to report (Section 2) preliminary results from
my historical research which has found, to my great surprise, that the dichotomy
between ergodic and non-ergodic origins for 1/ f spectra was not only recognised
but also published about by Mandelbrot 50 years ago in some still remarkably
little known work [AIT5IT6II7]. He carried it out in parallel with his seminal work
on the ergodic, stationary f{Gn model. In these papers, and the bridging essays
he wrote when he revisited them late in life for his collected Selecta volumes,
particularly [I8/19], he developed and published a series of fractional renewal
models. In these the periodogram, the empirical autocorrelation function (acf),
and the observed waiting time distributions, all grow in extent with the length
of time over which they are measured. He explicitly [I7] drew attention to this
non-ergodicity and its origins in what he called “conditional” stationarity. He
explicitly contrasted the fractional renewal models with the stationary, ergodic
fGn which is today very much better known to physicists, geoscientists and many
other time series analysts [Bl9]. Mandelbrot’s work at IBM was itself in parallel
with other developments, one notable example being the work of Pierre Mertz
[22123] at RAND on modelling telephone errors, so my preliminary report is not
an attempt to assign priority. I hope to return to the history of this period in
more detail in future articles.

My next purpose (Section 3) is to clarify the subtle differences between 3
phenomena: the empirical Hurst effect, the appearance of 1/f noise in peri-
odograms, and the concept of LRD as embodied in the stationary ergodic fGn
model, and to set out their hierarchy with respect to each other, aided in part
by this historical perspective. This paper will not deal with another possibility-
multiplicative models-[I8)26], though I do of course recognise that they remain
a very important alternative source of 1/f behaviour, particularly that arising
from turbulent cascades. I will also not be considering 1/ f-type spectra arising
from nonstationary self-similar walks such as fractional Brownian motion.

I will (Section 4) conclude by speculating on the how the relative neglect
of [ITHITEITT] at the time of their publication may have had long-term effects.



1.1 fGn and the fractional renewal process compared
fGn [3] is effectively a derivative of fractional Brownian motion Yy o(t):

1

H,2

Yio(t) = / dLy(s) Kgo(t —s) (1)
R

which in turn extends the Wiener process to include a self-similar, memory kernel

Ky o(t — s), where

Kyat —s) = [(t—s) 172 = (=s)1/2] (2)

thus giving a decaying, non-zero weight to all of the values in the time integral
over dL.

In consequence fGn shows long range dependence, and has indeed become
a very important paradigmatic model for LRD. The attention paid to its 1/f
spectrum, and long-tailed acf, as diagnostics of LRD, has often led to it being
forgotten that its stationarity is an equally essential ingredient for LRD in this
sense. Intuitively one can see that without stationarity there can be no LRD
because there is no infinitely long past history over which the process can be
dependent. Models like fGn, and also fractionally integrated noise (FIN) and the
autoregressive fractionally integrated moving average (ARFIMA) process, which
have been widely studied in the statistics community (e.g. [203]) exhibit LRD by
construction, i.e. stationarity is assumed at the outset in defining them.

While undeniably important to time series analysis and the development of
complexity science, we can already see from the restriction to stationary pro-
cesses that the LRD concept, at least as embodied in fGn, will be insufficient
to describe the whole range of either 1/f or Hurst behaviour that observations
may present us with. Full awareness of this limitation has been slow because of
three widespread, deeply-ingrained, but unfortunately erroneous beliefs: i) that
an observed Fourier periodogram can always be taken to estimate a power spec-
trum, ii) that the Fourier transform of an empirically obtained periodogram is
always a meaningful estimator of an autocorrelation function, and iii) that the
observation of a 1/f Fourier periodogram in a time series must imply the kind of
long range dependence that is embodied in the ergodic fractional Gaussian noise
model. The first two beliefs are routinely cautioned against in any good course
or book on time series analysis, including classics like Bendat’s [I]. The third
belief remains highly topical, however, because it is only relatively recently being
appreciated in the theoretical physics literature just how distinct two paradig-
matic classes of 1/f noise model are, and how these differences relate not only to
LRD but also to the fundamental physical question of weak ergodicity breaking
(e.g. [6I21125]).

The second paradigm for 1/f noise mentioned above is the fractional renewal
class, which is a descendent of the classic random telegraph model [I], and so
looks at first sight to be stationary and Markovian, but has switching times
at power law distributed intervals. A particularly well studied variant is the
alternating fractal renewal process (AFRP, e.g. [I3I14]), which is also closely



connected to the renewal reward process in mathematics. When studied in the
telecommunications context, however, the AFRP has often had a cutoff applied
to its switching time distribution for large times to allow analytical tractability.
The use of an upper cutoff unfortunately masks some of its most physically
interesting behaviour, because when the cutoffs are not used the periodogram,
the empirical acf, and observed waiting time distributions, all grow with the
length of time over which they are measured, rendering the process both non-
ergodic and non-stationary in an important sense (Mandelbrot preferred his
own term “conditionally stationary”). In particular, Mandelbrot stressed that
the process no longer obeys the necessary conditions on the Wiener-Khinchine
theorem for its empirical periodogram to be interpreted as an estimate of the
power spectrum. This property of weak ergodicity breaking (named by Bouchaud
in the early 1990s [6]) is now attracting much interest in physics, see e.g. Niemann
et al [25], on the resolution of the low frequency cutoff paradox, and subsequent
developments [T27I26127].

The existence of this alternative, nonstationary, nonergodic fractional re-
newal model makes it clear that there is a difference between the observation of
an empirical 1/f noise alone, and the presence of the type of LRD that is em-
bodied in the stationary ergodic f{Gn model. We will develop this point further
in section 3, but will first go back to the 1960s and Mandelbrot’s twin tracks to

1/f.

2 Mandelbrot’s fractional renewal route to “1/f”

What seems to have gone almost completely unnoticed, is the remarkable fact
that Mandelbrot was not only aware of the distinction between fGn and frac-
tional renewal models [I8/19], but also published a nonstationary model of the
AFRP type in 1965 [15I16] and had explicitly discussed the time dependence of
its power spectrum as a symptom on non-ergodicity by 1967 [17].

There are 4 key papers in Mandelbrot’s consideration of fractional renewal
models. The first, cowritten with physicist Jay Berger [4], appeared in IBM Jour-
nal of Research and Development. It dealt with errors in telephone circuits, and
its key point point was the power law distribution of times between errors, which
were themselves assumed to take discrete values. Switching models were already
being looked at, and the authors acknowledged that Pierre Mertz of RAND had
already studied a power law switching model [22], but Mandelbrot’s early expo-
sure to the extended central limit theorem, and the fact that he was studying
heavy tailed models in economics and neuroscience among other applications,
evidently helped him to see their broader significance.

The second, [15] was in the IEEE Transactions on Communication Technol-
ogy, and essentially also used the model of Berger and Mandelbrot. The abstract
makes it clear that it describes:

. a model of certain random perturbations that appear to come in clus-
ters, or bursts. This will be achieved by introducing the concept of “self-
similar stochastic point process in continuous time.” The resulting mech-



anism presents fascinating peculiarities from the mathematical viewpoint.
In order to make them more palatable as well as to help in the search
for further developments, the basic concept of “conditional stationarity”
will be discussed in greater detail than would be strictly necessary from
the viewpoint of the immediate engineering problem of errors of trans-
mission.

It is clear that by 1965 Mandelbrot had come to appreciate that the appli-
cation of the Fourier periodogram to the fractional renewal process would give
ambiguous results, saying in [15] that:

The now classical technique of spectral analysis is inapplicable to the
processes examined in this paper but it is sometimes unavoidable that
otherwise excellent spectral estimates be applied in this context. Another
publication of the author[that paper’s Ref 18] is devoted to an examina-
tion of the expected outcomes of such operations. This will lead to fresh
concepts that appear most promising indeed in the context of a statistical
study of turbulence, excess noise, and other phenomena when interesting
events are intermittent and bunched together (see also [that paper’s Ref

19)).

The third key paper, the “other publication ... Ref 18”, resulted from an IEEE
conference talk in 1965. It [16] is now available but in the post hoc edited form in
which all his papers appeared in his Selecta[I8I19]. “Reference 19”7, meanwhile,
seems originally to have been intended to be a paper in the physics literature,
the fate of which is not clear to me but whose role was effectively taken over
by the fourth key paper [I7]. With the proviso that the Selecta version of [16]
may not fully reflect the original’s content, one can nonetheless see that by mid-
1965 Mandelbrot was already focusing on the implications for ergodicity of the
conditional stationarity idea. He remarked that:

In other words, the existence of f9=2 noises challenges the mathemati-
cian to reinterpret spectral measurements otherwise than in “Wiener-
Khinchin” terms. [...] operations meant to measure the Wiener-Khinchin
spectrum may unvoluntarily measure something else, to be referred to as
the “conditional spectrum” of a “conditionally covariance stationary”
random function. [17]

Taking the two papers [16/17] together we can see that Mandelbrot expanded
on this vision by discussing several fractional renewal models, including in [I6] a
three state, explicitly nonstationary model with waiting times whose probability
density function decayed as a power law p(t) ~ t— (140 This stochastic process
was intended as a “cartoon” to model intermittency, in which “off” periods of
no activity were interrupted by jumps to a negative (or positive) “on” active
state. His key finding, confirmed in [I7] for a model with an arbitrary number of
discrete levels, was that the traditional Wiener-Khinchine spectral diagnostics
would return a 1/f periodogram and thus a spectral “infrared catastrophe”
when viewed with traditional methods, but building on the notion of conditional



stationarity proposed in [I5], that a conditional power spectrum S(f,T) could
be decomposed into a stationary part in which no catastrophe was seen, and one
depending on the time series’ length 7', multiplying a slowly varying function
L(f). He found
S(f,T) ~ fO7 L(HQ(T) (3)
where Q(T)T'~? was slowly varying, and that the conditional spectral density
S’(f,T) obeys
d
!
S(1.1) = 5
Rather than representing a true singularity in power at the lowest frequencies,
in the Selecta [I8] he described the apparent infrared catastrophe in the power
spectral density in the fractional renewal models as a “mirage” resulting from
the fact that the moments of the model varied in time in a step-like fashion, a
property he called “conditional covariance stationarity”.
In [I7] Mandelbrot noted a clear contrast between his conditionally station-
ary, non-Gaussian fractional renewal 1/ f model and his stationary Gaussian fGn

model (the 1968 paper concerning which, with Van Ness, was then in press at
STAM Review):

S(f,T) ~ fO2T° 7 L(F) (4)

Section VI [... of this paper... ] showed that some f®~2L(f) noises have
a very erratic sampling behavior. Some other f9=2 noises are Gaussian
and, therefore, perfectly “well-behaved;” an example is provided by the

“fractional white noise” [i.e. fGn] which is the formal derivative of the
process of Mandelbrot and Van Ness [i.e. fBm]

He identified the origin of this erratic sampling behaviour in the non-ergodicity
of the fractional renewal processes. Niemann et al [25] have recently given a very
precise analysis of the behaviour of the random prefactor S(T") , obtaining its
Mittag-LefHler distribution and checking it by simulations.

3 The Hurst effect vs. 1/f vs. LRD

Informed in part by the above historical investigations, the purpose of this sec-
tion is now to distinguish conceptually between 3 phenomena which are still
frequently elided.

To recap, the phenomena are:

— The Hurst effect: the observation of “anomalous” growth of range in a time
series using a diagnostic such as Hurst and Mandelbrot’s R/S or detrended
fluctuation analysis (DFA)(e.g. [913]).

— 1/f noise: the observation of singular low frequency behaviour in the empir-
ical periodogram of a time series.

— Long range dependence (LRD): a property of a stationary model by con-
struction. This can only be inferred to be a property of an empirical time
series if certain additional conditions are known to be met, including the
important one of stationarity



The reason why it is necessary to unpick the relationship between these ideas
is that there are three commonly held misperceptions about them.

The first is that observation of the Hurst effect in a time series necessarily implies
stationary LRD. This is “well known” to be erroneous, see e.g. the work of [5]
who showed the Hurst effect arising from an imposed trend rather than from
stationary LRD, but is nonetheless in practice still not very widely appreciated.

The second s that observation of the Hurst effect in a time series necessarily
implies a 1/ f periodogram. Although less “well known”, [§], for example, have
shown an example where the Hurst effect arose in the Lorenz model which has
an exponential power spectrum rather than 1/f.

The third is the idea that observation of a 1/f periodogram necessarily implies
stationary LRD. As noted above, this is a more subtle issue, and although little
appreciated since the pioneering work of [IBIT6/T7] it has now become central to
the investigation of weak ergodicity breaking in physics.

3.1 The Hurst effect

The Hurst effect was originally observed as the growth of range in a time series, at
first the Nile. The original diagnostic for this effect was R/S. Using the notation J
(not H) for the Joseph (i.e. Hurst) exponent that Mandelbrot latterly advocated
[19], the Hurst effect is seen when the rescaled range[3J9] grows with time as

5~ )

in the case that J # 1/2. During the period between Feller’s proof that an
iid stationary process had J = 1/2, and Mandelbrot’s papers of 1965-68 on
long range dependence in fGn [9], there was a controversy about whether the
Hurst effect was a consequence of nonstationarity and/or a pre-asymptotic effect.
This controversy has never fully subsided [9] because Occam’s Razor frequently
favours at least the possibility of change points in an empirically determined time
series (e.g. [24]), and because of the (at first sight surprising) non-Markovian
property of fGn.

A key point to appreciate is that it is easier to generate the Hurst effect over
a finite scaling range, as measured for example by R/S, than a true wideband
1/f spectrum. [§] for example shows how a Hurst effect can appear over a finite
range even when the power spectrum is known a priori not be 1/f, e.g. in the
Lorenz attractor case where the low frequency spectrum is exponential.

3.2 “1/f spectra

The term 1/ f spectrum is usually used to denote periodograms where the spec-
tral density S’(f) has an inverse power law form, e.g. the definition used in
1617

S'(f)~ 772 (6)



where 6 runs between 0 and 2.

One needs to distinguish here between bounded and unbounded processes.
Brownian, and fractional Brownian, motion are unbounded, nonstationary ran-
dom walks and one can view their 1/f172/ spectral density as a direct conse-
quence of nonstationarity, as Mandelbrot did (see pp 78-79 of [18]). In many
physical contexts however, such as the on-off blinking quantum dot process[25]
or the river Nile minima studied by Hurst[9] the signal amplitude is always
bounded and does not grow in time, requiring a different explanation that is
either stationary or “conditionally stationary”.

Mandelbrot’s best known model for 1/f noise remains the stationary, er-
godic, fractional Gaussian noise (fGn) that he advocated so energetically in the
1960s. But, evidently himself aware that this had had received a disproportion-
ate amount of attention, he was at pains late in his life (e.g. Selecta Volume N
[18] p.207, introducing the reprinted [I6JI7]) to stress that:

Self-affinity and an 1/f spectrum can reveal themselves in several quite
distinct fashions ... forms of 1/f behaviour that are predominantly due to
the fact that a process does not vary in “clock time” but in an “intrinsic
time” that is fractal. Those 1/f noises are called “sporadic” or “absolutely
intermittent”, and can also be said to be “dustborne” and “acting in
fractal time”.

He clearly distinguishes the LRD stationary Gaussian models like fGn from
from his “conditionally stationary” fractal time process, noting also that:

There is a sharp contrast between a highly anomalous (“non-white”)
noise that proceeds in ordinary clock time and a noise whose principal
anomaly is that it is restricted to fractal time.

In practise the main importance of this is to caution that, used on its own,
even a very sophisticated approach to the periodogram like the GPH method [3]
cannot tell the difference between a time series being stationary LRD of the fGn
type and “just” a “1/f” noise, unless independent information about stationarity
is also available.

One route to reducing the ambiguity in future studies of 1/f is to develop
non-stationary extensions to the Wiener-Khinchine theorem. An important step
[12] has been to distinguish between one which relates the spectrum and the
ensemble average correlation function, and a second relating the spectrum to the
time average correlation function. The importance of this distinction can be seen
by considering the Fourier inversion of the power spectrum-does the inversion
yield the time or the ensemble average? [E. Barkai, personal communication].

3.3 LRD

My readers will, I hope, now be able to see why I believe that the commonly used
spectral definition of LRD has caused misunderstandings. The problem has been



that on its own a “1/f” behaviour is necessary but not sufficient, and stationarity
is also essential for LRD in the sense so widely studied in statistics community
(e.g. in [2] and [3]). One may in fact argue that the more crucial aspect of LRD is
thus the “loose” one embodied in its name, rather than the formal one embodied
in the spectral definition, because a 1/f spectrum can only be synonymous with
LRD when there is an infinitely long past. The fact that {Gn exhibits LRD by
construction because the stationarity property is assumed, and also shows 1/f
noise, and the Hurst effect has led to the widespread misconception that the
converse is true, and that observing “1/f” spectra and/or the Hurst effect must
imply LRD.

4 Conclusions

Unfortunately [I7] received far less contemporary attention than did Mandel-
brot’s papers on heavy tails in finance in the early 1960s or the series with van
Ness and Wallis in 1968-69 on stationary fractional Gaussian models for LRD,
gaining only about 20 citations in its first 20 years. This has been rectified since
but I believe the consequences have been lasting. Perhaps it was because his
work on the AFRP was communicated primarily in the (IEEE) journals and
conferences of telecommunications and computer science, that it was largely in-
visible to the contemporary audience that encountered fGn and fBm in SIAM
Review and Water Resources Research. In fact, so invisible was it that one his
most articulate critics, hydrologist, Vit Klemes [11] used an AFRP model as a
paradigm for the absence of the type of LRD seen in the stationary f{Gn model,
clearly unaware of Mandelbrot’s work. Klemes’ paper remains very worthwhile
reading even today. It showed how at least two other classes of model could
exhibit the Hurst effect, the AFRP class and also integrated processes, such as
AR(1) with a ¢ parameter close to 1. Fascinatingly, despite the fact that Man-
delbrot had colleagues such as the hydrologist Wallis who published in Water
Resources Research, and thus may well have seen the paper, if he did he chose
not to enlighten Klemes about his earlier work. Sadly Klemes and Mandelbrot
seem also not to have subsequently debated nonstationary approaches on an
equal footing with fGn, as with the advantage of historical distance one can see
the importance of both as non-ergodic and ergodic solutions to the 1/ f paradox.

Although he revisited the 1963-67 fractional renewal papers with new com-
mentaries in the volume of his Selecta [I8] that dealt with multifractals and
“1/f” noise, Mandelbrot himself neglected to mention them explicitly in his
popular historical account of the genesis of LRD in [20]. That he saw them as
a representing a different strand of his work to fractional Brownian motion is
clear from the way that fBm and fGn and the Gaussian paths to 1/f were each
allocated a separate Selecta volume [I9]. Despite the Selecta, the relatively low
visibility has remained to the present day. Mandelbrot’s fractional renewal pa-
pers are for example not cited or discussed even in encyclopedic books on LRD
such as Beran et al’s [3].
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The long term consequence of this in the physics and statistics literatures
may have been to emphasise ergodic solutions to the 1/ f problem at the expense
of non-ergodic ones. This seems to me to be important, because, for example,
Per Bak’s paradigm of Self-Organised Criticality, in which stationary spectra and
correlation functions play an essential role, could not surely have been positioned
as the unique solution to the 1/f problem [30] if it had been widely recognised
how different Mandelbrot’s two existing routes to 1/f already were.
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