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Abstract 

Account of drifts and currents dramatically decreases the accessible time step for the integration 

of time dependent equations of SOLPS-ITER code for edge modeling. Running the code with 

sophisticated EIRENE Monte-Carlo model for neutrals and large number of fluid equations for 

multiple ion species makes the computation time unacceptably long. In the paper the main 

mechanisms leading to the time step limitations caused by drifts are discussed. Several methods 

of the suppression of these mechanisms are suggested and the results of numerical scheme tests 

with the applied corrections are presented. Application of these schemes decreases the time of 

convergence to steady state solution by more than an order of magnitude. 

 

1. Introduction 

 

Understanding of edge plasma performance and divertor exhaust is crucial for operation of ITER 

and other tokamaks. Traditionally this is done by transport codes like SOLPS and others, based 

on Braginskii model for parallel transport, experimentally based description of anomalous 

transport and Monte-Carlo model for neutral transport. In the early versions of SOLPS[1,2] self-

consistent electric fields, drifts and currents were ignored. These effects were introduced into the 

version which is known as SOLPS5.0 [3]. The physics of the edge plasma with drifts is treated 

much better by the new version [4], however one has to pay a price by slower convergence of the 
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code. Later modifications - SOLPS5.2 [5] and its upgrade by the ITER Organization to form a 

new package, SOLPS-ITER [6,7] still demonstrate low convergence.  

Account of drifts and currents dramatically decreases the accessible time step for the 

integration of time dependent equations of the code. Running the code with sophisticated 

EIRENE Monte-Carlo model for neutrals and large number of fluid equations for multiple ion 

species makes the computation time unacceptably long.  

In the present paper the mechanisms leading to the time step limitations in SOLPS-ITER 

are analyzed as well as the ways to relax these limitations. The numerical instability driven by 

drifts is associated with poloidal redistribution of particles inside the separatrix by E B  drift in 

combination with modification of the radial electric field by diamagnetic currents. It can be 

overcome by implementation of one of two algorithms. The first method uses artificial slowing 

down of poloidal density and temperatures redistribution. In the second method equations are 

modified to get faster convergence to the solution close to the true one, which then is used as an 

initial approximation for convergence to the true solution. Application of these schemes 

decreases the time of convergence to steady state solution by more than an order of magnitude. 

Additional ways to improve convergence by introducing artificial particle sources and artificial 

increase of the time derivatives are also suggested.  

Without the suggested methods for ITER parameters the time step with drifts is of the 

order of 10
-8

 s, for AUG parameters the time step with drifts is 10
-7

 s. It was found that the 

limiting value of the time step is associated with the value of the artificial anomalous 

conductivity AN . The artificial current yAN

AN

y Ej )(  was first introduced in the current balance 

equation to increase its order to 2 in the y direction [3]. After the addition of perpendicular 

viscosity current the order of equation increased to 4 [5], but the anomalous current was retained 

for convergence purposes. The limiting time step increases approximately linearly with the value 

of AN . The possible solution to keep large anomalous conductivity is unacceptable, since the 

realistic solution for the electrostatic potential demands a condition 
NEO

AN  [8]. Here 
NEO  is 

a neoclassical conductivity, which for ITER conditions decreases considerably compared to 

ASDEX-Upgrade (AUG) [9]. Therefore, the anomalous conductivity in the modeling of ITER 

should be taken smaller than for AUG. For AUG typical values for accurate description of 

electric field are 
eAN en510)51(  (here AN , electron charge e and electron density en  are 

in SI units) while for ITER one should use 
eAN en710)51(   . The situation is even more 

dramatic for ITER runs since the characteristic times are typically longer for larger machines, the 

simple “diffusive” estimate is 2~ L  where L is characteristic length typically proportional to 

size of the device. Modeling experience shows that typical characteristic times for ITER are 



indeed longer by approximately an order of magnitude. Therefore, the direct calculations for 

ITER with drifts without any numerical scheme improvements proved unacceptably time 

consuming, the typical computation times on a 64 processor cluster could reach several years.  

 Here in section 2 the main mechanism leading to the time step limitations driven by drifts 

is discussed. The methods of the suppression of this mechanism are suggested and the results of 

the numerical scheme tests with the applied corrections are presented in sections 3.1-3.2. In 

sections 3.3-3.4 possible ways of further decrease of computation time based on understanding 

of typical longest time scales are discussed.  

 

2. Scheme of numerical instability 

The code SOLPS-ITER is based on the solution of the fluid equations for plasma: the heat 

balance for electrons is used to obtain electron temperature eT ; the heat balance for ions is used 

to find temperature iT  common for all ions species; the current balance is used to obtain 

electrostatic potential  . The parallel velocity 
||aV  and the density 

an  for each ion species a are 

found using separate equations of the parallel momentum balance and continuity equation 

correspondingly. The neutral particles are described by either fluid equations or by Monte-Carlo 

EIRENE package. The latter is much more accurate due to the large (compared to the plasma 

SOL width) mean free path of the neutrals. Each of fluid equations is discretized using 

conservative finite volume method on a spatial mesh adjusted to the flux surfaces based on a 

fixed magnetic equilibrium. A typical mesh for AUG modeling can be found for example in 

Ref.[3]. Equations are linearized and solved using implicit Euler method. The main source of 

iteration process instability caused by the fact that although each equation is solved using 

implicit method, the process of solution in general is not fully implicit. To produce the solution 

of equation for each quantity (
ie TTnV ,,,,||  ) the numerical scheme uses the other quantities 

calculated previously. Therefore the time step of the iterations is limited by the shortest 

characteristic time scales of the processes in which interplay of main plasma parameters is 

important. The convergence to the steady state as well as the description of processes in SOLPS-

ITER time-dependent mode demands calculations for several characteristic time scales of the 

slowest processes. So the number of necessary iterations can be estimated as a ratio the of 

longest to the shortest characteristic times.  

The more stable algorithm should solve the equations simultaneously and get the 

quantities at each time step in a self-consistent manner. Indeed, this numerical technique is used 

in some plasma edge codes, e.g. UEDGE [10]. Unfortunately, this algorithm even for single 

species plasma increases the solved matrix dimension by a factor 5, and in the case of multi-



component plasma the factor is considerably larger. For example for a deuterium plasma with 

helium and neon impurities, the factor is 29. The increase in the computational time for a time 

step together with necessity to reconsider all the procedures of the code, makes this way of code 

improvement not very attractive.   

 Additional limitation is associated with coupling of fluid equations of the code to the 

EIRENE module. Fully implicit scheme including Monte-Carlo modeling of EIRENE is hardly 

possible, hence UEDGE is limited to using a fluid model for neutrals. Present experience shows 

that for ITER the limitation of time step associated with EIRENE coupling is about 10
-6

 s. 

Therefore, the changes in the numerical scheme are desirable increasing the time step limitations 

for the fluid part of the code up to the EIRENE limitations, without transition to a fully implicit 

scheme. Such changes can be attained by an artificial increase of the smallest characteristic time 

scales. Alternative approach, if the steady state solution is looked for, is an artificial reduction of 

the largest characteristic time scales. The goal of this paper is to suggest a combination of both 

approaches giving the best results in the framework of the numerical scheme of the code SOLPS-

ITER.  

2.1 Analytical consideration 

The main typical feature of the instability, when the “limiting” time step is exceeded, is 

oscillation of the electrostatic potential inside the separatrix, from positive to negative values and 

back, with increasing amplitude from one time step to another. The potential oscillations have no 

poloidal structure, and they lead to the rise of a big radial electric field changing its sign at each 

time step.  Such behavior resembles geodesic acoustic mode (GAM) formation with a 

characteristic frequency 
i

ie

m

TT

R




1
 [11]. The GAM is characterized by the oscillating radial 

electric field with poloidal and toroidal mode numbers m=0, n=0, similar to the electric field of 

the numerical instability. If the model includes the mechanisms, leading to GAM, the time step 

of iterations should be smaller than the mode period, 1t .  If this condition is violated, the 

solution will not be reproduced correctly. Moreover, for an explicit numerical scheme the radial 

electric field will oscillate with increasing amplitude giving no convergence of the solution. 

 The simplest description of GAM includes the radial balance of the polarization current 

and a diamagnetic current, and the particle balance in which the E B  drift and parallel 

transport lead to the density perturbation. The ion particle balance and current balance can be 

analyzed, leaving all the other quantities unchanged. The temperatures can be assumed flux 

surface functions. In a simple toroidal co-ordinates (  ,,r ) of flux surfaces with circular cross 

section and no Shafranov shift the GAM electric field can be written as )exp(10 tiEEEr   



and the density distribution as )exp(sin10 tinnn   . The periodic perturbation of pressure 

leads to the parallel velocity perturbation: )exp(cos10|| tiVVV   . The linearization of the 

continuity equation gives  

02 0

1

0
1

1  n
r

Vb
n

RB

E
ni  .  (1) 

Here BBbRr /,/   , and only oscillating contributions corresponding to poloidal E B  

drift and parallel flow are taken into account. Parallel momentum balance gives  
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cb
Vi s  (2) 

with 
i

ie

s
m

TT
c


2 .  The pressure perturbation leads to the average diamagnetic current through 

the flux surface  

1

)( n
BR

TT
j iedia

r


 ,  (3) 

 which is compensated by the polarization current ( )P

rj , 

)()( P

r

dia

r jj   (4) 
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0)( Ei
B

nm
j iP

r  .  (5) 

Combining Eqs.(1), (2), (4) the GAM frequency can be obtained 

)
1

2(
22

2

2

qR

cs   (6) 

where  bq /  is safety factor. The limiting time step of iterations in the code describing the 

GAM physics then would be max
22 1

GAM

s

qR
t

c q
 


.  

 The polarization current is absent in the set of equations solved in SOLPS-ITER. In the 

description of the evolution of electrostatic potential perturbation it is replaced by the anomalous 

current: 

1

)(
Ej AN

AN

r   . (7) 

Then, instead of Eq. (4) the current balance is  

)()( AN

r

dia

r jj  . (8) 

Combining Eqs.(1), (2) and (8) the imaginary oscillation frequency can be obtained 
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, (9) 



leading to the exponential decrease for the pressure perturbation and perturbation of E B  drift 

instead of oscillatory solution, 1 1, ~ exp( )n E t  where i  . The characteristic time step for 

the explicit iteration scheme of SOLPS-ITER is then limited by the decrement of that 

exponential decrease 
1t   , so that  

 

 

2

max

AN

e i

BR
t

n T T


 


.  (10) 

The maximal time step is proportional to the anomalous conductivity value. Taking AUG 

parameters ~ ~ 500e iT T eV , enAN

510  , one gets st 7

max 10  which is close to the values 

used in our previous simulations. Still, the simple solution to increase AN  cannot be applied in 

the calculations with drifts directly. The neoclassical conductivity [8] 

1

2 2

NEO i

B R


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 (11)
 

should be an order of magnitude bigger than AN , otherwise the result would not reproduce real 

physics. In the Pfirsch-Schlueter regime 1

1

 iiii nT
 
[12] giving 1

max

 iit  . In the banana 

regime, typical for ITER plasma, 
12/322

max

 iiii TRqmt   decreases with temperature rise. 

In the simulations without drift effects, when E B  drift is absent, the parallel velocity 

and density oscillations leading to numerical instability still exist. In this case the Eq. (1) should 

be written without the drift contribution  

1
1 0 0

b V
i n n

r

    (12) 

Combining Eq. (2) and Eq. (10) one obtains the characteristic frequency 

sc

qR
  , (13) 

and characteristic limiting time step is 
max

v

s

qR
t

c
  . The result is not surprising, since vtm ax  is just 

the characteristic time for parallel pressure redistribution on the flux surface with the sound 

speed. Taking into account that the anomalous conductivity should be considerably smaller than 

the neoclassical conductivity it can be shown that the restriction on the time-step with drifts in 

any regime (Pfirsch-Schlueter, plateau or banana) is stronger than that without drifts. In the 

Pfirsch-Schlueter regime max max/ /v

ii st t qR c   , the value in the r.h.s. is bigger than unity by 

definition of Pfirsch-Schlueter regime. In the banana regime the rate of the characteristic times in 

SOLPS-ITER is 2/3

maxmax / 



r

bc
tt

ii

xsv  . 



Therefore, the oscillations associated with the drifts start developing at smaller time steps 

than without drifts. The influence of parallel velocity redistribution on the density equation with 

drifts can be neglected, it can start limiting the time-step only if drifts are switched off.  

 

 

2.2 Numerical realization 

 

Now let us discuss briefly realization of the instability in the numerical scheme. The equations 

are solved and corrections are applied in sequence first for density and then for electrostatic 

potential. Assume no temperature perturbation and initial density deviation from steady-state at 

the closed flux surface: n(top)>n(bottom), δn/n<<1, and no perturbation of the radial electric field. In 

the code SOLPS-ITER the diamagnetic current is changed to grad B driven current ( )diaj giving 

the same divergence [3]. For given initial value of density perturbation average current through 

the flux surface associated with grad B drift is directed inwards. Then solving the equation for 

potential the quasineutrality demands non-zero average current ( )diaj  through the flux surface to 

be compensated. The anomalous current is the biggest current, which depends directly on the 

electrostatic potential that can compensate it (the potential equation is solved for   with all other 

variables fixed). So, solving the equation for electrostatic potential one obtains ( )ANj  directed 

outwards, and the electric field should get positive.  

 To solve the continuity equation for density on the next time step and obtain the new 

density distribution one should take into account the E B  drift. For positive electric field 

E B  drift leads to the negative time derivative for δn at the top and positive – at the bottom. 

For sufficiently big time step, we have n(top)<n(bottom) at the next time step. If the new values of 

density have bigger asymmetry between top and bottom of the flux surface, the new δn will 

cause bigger absolute values of ( )ANj  and electric field on the next time step. The change of the 

sign of anomalous current leads to the change of electric field direction at each time step. After 

several time steps the calculations disrupt. 

 One can estimate the critical time step. The average grad B current at the k-th time step is 

proportional to the pressure difference between top and bottom of the flux surface, 

 ( )

( ) ~

k

e idia
n T T

j
BR





 . It should be compensated by anomalous current ( ) ( )~dia ANj j  , 

which gives the radial electric field perturbation, 
AN

iekk

BR

TT
nE




)()( ~ . On the next time step 

integration of continuity equation for ions gives 
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
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 (14)
 

If  )()1( / kk nn  1 - a collapse of the numerical scheme is observed. The estimate for the 

limiting time step coincides with Eq.(10). 

 The heat balance is also involved in the oscillations. The pressure perturbation, 

determining the grad B current through the flux surface, is a combination of temperature and 

density perturbations. The temperature perturbation oscillates on the time step due to the terms in 

the heat balance equation including the poloidal E B  drift. Due to the solution method 

implemented in the code, for temperature poloidal perturbation it follows     

BR

E
tTTT

k
kk

)(
)()1(

3

5 
   (15) 

Comparing this equation with Eq.(14) it can be concluded that the temperature perturbations give 

comparable contributions to the scheme of numerical instability. 

 

3. Possible solutions for convergence speed-up 

 

3.1. Method of intermediate solution 

The idea of the speed-up scheme is to seek first an intermediate solution, which is close to the 

final true solution running the code with large anomalous radial current. While obtaining this 

intermediate solution simulations are performed with a large value of anomalous conductivity 

AN  thus permitting big time step. Simultaneously, neoclassical radial conductivity is increased 

artificially by introducing artificial large parallel viscosity, to compensate large anomalous 

current and at the same time to have intermediate profile of radial electric field close to the final 

one. At this stage other modifications of the equations are introduced in order to avoid 

unphysical acceleration in the toroidal directon and unphysical change of the radial electron 

density profiles. At the second stage all modifications are switched off, AN  is reduced to a low 

level and the true solution is obtained.  

The stages of seeking the solution are then the following:  

1) Increase anomalous radial conductivity, and modify the equations inside the separatrix. 

Increase time step to the values limited by processes not associated with electrostatic potential 

equation convergence. The time step can be of the order of the time step without drifts. Prepare 

converged state as initial one for step 2.  

2) Return to the initial set of equations, decrease anomalous current and time step. Calculate final 

solution. 



The equations in step 1 are modified as follows. Here the coordinate system (x,y,z) of the code 

SOLPS-ITER is used with x- for poloidal, y- for radial and z- for toroidal coordinate, 
x

hx



1

, 

h
y

y 


1
, h

zz  

1
, g h h hx y z . When anomalous current, which does not exist in reality, is 

added to the equations, plasma is artificially accelerated toroidally due to 
( )ANj B  toroidal 

force. To avoid this artificial acceleration it is instructive to introduce simultaneously an 

additional purely poloidal force F  acting on ions inside the separatrix, proportional to the radial 

current so that 
( ) 2/AN

y x zj F B B . Note that there is no additional radial electron transport, since 

electron momentum balance is unaffected and neoclassical cancellation of radial drift terms for 

electrons [13] holds. The ion flow 
( ) /AN

y y iV j en , associated with the artificial force should also 

be added to the ion particle balance. This flow after integration over the flux surface will be 

compensated by ion E B  and grad B drift flows.  

 Force F


, having no toroidal component, has the parallel component 

( )

|| /AN

y x zF j BB B  which should be added to the parallel momentum balance. The solution for 

the neoclassical electric field, obtained from parallel momentum balance [12] will be affected by 

this force. After averaging of the parallel momentum balance one has 
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(Here the averaging procedure is  dxgdxgFF / , all the notations correspond to 

[3,5,8]) 

From the neoclassical theory it is known that the average parallel viscosity may be 

expressed as a function of the radial derivatives of electrostatic potential, ion temperature and 

density. The general expression, which is valid in all regimes of collisionality, is
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where the viscosity coefficient 1i is calculated in [12]. The numerical coefficient kT is 2.7, 1.5 

and –0.17 in the Pfirsch-Schlueter, plateau and banana regimes correspondingly. For a tokamak 



with circular cross section and small Rr / , where r, R are the radius of flux surface and the 

major radius accordingly, 
i
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3 
 . 

The l.h.s. of Eq.(16) can be neglected in the absence of the toroidal spin-up. The 

neoclassical electric field corresponds to the solution: 0||  


B , giving a simple equation 

for the electrostatic potential z
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 . When the artificial force F


 is 

added to the r.h.s., the equation is modified to: 
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In the case of 
( ) 0AN

yj   we again have the neoclassical solution for electric field 
yh

E
y

y






. To 

have approximately the same solution, it is necessary to increase artificially the parallel viscosity 

coefficient 1i  so that 
zxi

mp

AN BBBnm //
2)(  . This condition is equivalent to NEO

AN   

Eq.(11). 

 The toroidal force balance determining the radial profile of toroidal rotation is not solved 

in SOLPS-ITER explicitly. Instead, the toroidal balance can be derived from parallel momentum 

balance and the expression for radial current, where all drift terms are kept. To get the 

neoclassical cancellation of the toroidal component of classical viscosity, one should have the 

same coefficients in the classical viscosity terms in the radial current and in the parallel 

momentum balance. Therefore the coefficient 1i  should be increased also in the classical 

viscosity contributions to current balance. 

The main predictable discrepancy between the true solution and the solution of equations 

with artificial force contributions and increased viscosity, is a radial scale for transition from 

SOL to neoclassic electric field. In [14] it is shown that this scale is 

2/1

1

2

22

~ 








ixB

rB
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
 , where  - 

anomalous perpendicular viscosity coefficient. For AUG parameters this scale at the outer 

midplane is several mm. Artificially increasing classical viscosity one decreases the scale for the 

electric field radial variation.  

When the anomalous conductivity, classical viscosity contributions and time step are 

simultaneously decreased at the stage 2, the radial electric field in the separatrix vicinity should 

change correspondingly. The physical time of the change of electric field can be estimated as 

time of redistribution of the parallel velocity due to perpendicular viscosity on the scale  . 



Taking into account that Dnmi  this time can be estimated as 
D

E

2
  . Substituting  the 

estimate can be made 
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i
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 ) and 1 iE  in the banana 

regime. 

This time scale is orders of magnitude smaller than the scales of the diffusive processes, 

which are required to reach stationary solution at stage 1. So, the speed-up scheme can give 

considerable decrease of the computation time. Moreover, the calculations focused on the 

physical problems associated with processes in the SOL can be stopped at stage 1. The solution 

inside the separatrix, which serves as a boundary condition to the problem in SOL, differs at 

stages 1 and 2 only by details of the poloidal distribution of parallel velocity. For most of the 

SOL parameters (degree of detachment, heat load distribution at the divertor plates and others) 

this difference in boundary conditions is insignificant. 
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(c)                                                                                (d)         

Fig.1. Solution after initial and final stage of calculations for ITER geometry and typical input 

parameters. Electron density at the outer midplane (a); energy flow at the outer divertor plate (b); 

radial electric  field at the outer midplane (c); parallel velocity at the outer midplane (d). 

 



The proposed scheme was tested for ITER simulations. The simulations were performed 

on a mesh 36x90, for H-mode [9], 100 MW power discharge, for deuterium plasma with helium 

and neon impurity. All the details necessary to reproduce the calculations presented here and 

further in the text can be obtained from authors. The full master version of the code SOLPS-

ITER is distributed officially by ITER Organization. The preliminary calculations were 

continued for about two CPU months with the time step 10
-6

 s, eAN en6104   and with the 

viscosity coefficient increased by a factor 20. Then for a CPU month the calculations were 

performed from the solution converged at step 1, with the time step 2∙10
-8

s, with 710AN een   

and with physically correct viscosity coefficient. The comparison of the preliminary calculations 

results  and final calculations results is shown in Fig. 1. It is seen that the radial profiles of 

electron density and temperature at the outer midplane did not change. The difference in the 

radial electric field and toroidal rotation inside the separatrix is small but visible, while the 

density and heat flow at the outer target are almost unaffected.  

The temporal evolution of the calculation is routinely traced using the averaged 

densities, integral flows or particle contents in different regions of the calculation domain. The 

example of such evolution of the calculation on the stage 2 is shown in Fig. 2. The deuterium 

density at the separatrix, Fig.2a, redistributes in a time scale of about msBi 1~~ 11   , at the 

same time scale at which the electric field can be expected to redistribute. The relative change in 

deuterium density is moderate at this time scale, about 1.5%. The following increase of 

deuterium density at the separatrix has the same long characteristic time as in the initial 

preliminary calculation. This time can be calculated as a rate of a plasma parameter 

(temperature, density, number of particles in a region ets…), to its time derivative. Characteristic 

times longer than 1 s are typical for physically meaningful solutions, which can be considered as 

converged. The neon flow across the separatrix, Fig. 2b, after the transition period of 1 ms is the 

only parameter that stabilizes at considerably different level. The detailed analysis shows that the 

viscosity change from preliminary to final stage of calculations influences the impurity 

distribution inside the separatrix more than other parameters. The poloidal distribution of the 

impurities is very sensitive to the details of the main ions parallel velocity distribution. At the 

same time the drift radial flows of impurities through the flux surface are sensitive to the 

poloidal distribution of impurities. Therefore the slight change of parallel velocity and electric 

field in the vicinity of separatrix leads to the impurity density shift in all the core region. The 

characteristic times of the process are diffusive ones, of the order of 0.1 s. The analysis of the 

change in drift flows gives the estimate for the expected change of impurity density in the core of 

about 10%. To obtain it, a calculation time of about three CPU years can be expected, estimating 



5000 iterations per CPU day with the time step 2∙10
-8

s and the discharge evolution time 0.1 s, 

which demands 5∙10
6
 iterations. The estimate is given for the computer cluster of St Petersburg 

State Polytechnical University, where the calculation is performed using 56 processors Intel 

Xeon E5 (2.6 GHz, 64 Gb). The full time of discharge evolution, if we calculate it from 

considerably different initial state, is determined not only by the diffusive time scales in the 

transport barrier but also by the processes in the SOL and can reach several seconds. In this case 

the CPU time necessary for full convergence of ITER calculation with time step 2∙10
-8

s reaches 

hundred of years.   

As one of the future tasks a method of automatic adjustment of multiplication factor for 

the viscosity, the anomalous conductivity and the time step during the calculation can be 

discussed, in order to obtain the converged correct solution in a continuous code run.    
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(a)                                                                                          (b)  

Fig. 2. Time dependencies of parameters during switch from time step 10
-6

s, viscosity 

multiplied by factor 20, to the time step 2∙10
-8

 s, correct viscosity. Switching happens at 1.6715 

s. (a) Deuterium ion density at the separatrix, (b) neon flow through the separatrix.  

 

3.2. Method of partial flux surface averaging 

To relax the time step limitations it is possible to separate the time derivative of average density 

and heat energy on the flux surface and that of the density and temperature perturbation for the 

region inside the separatrix. For the average density and stored energy at the flux surface the 

derivatives are determined by anomalous diffusion and heat conductivity. The diffusive 

processes are slow DLD /~ 2 . Taking the transport barrier width and the diffusion coefficient 

for estimate, we get estimate ~D 100 ms for ITER (
2~ 5 , ~ 0.03 /L cm D m s ) and 1 ms for 

AUG (
2~ 1.5 , ~ 0.2 /L cm D m s ). Therefore one should numerically follow the evolution of 

average density and temperatures for several slow characteristic time scales to get the converged 

solution. The instability as shown above is driven by the density and temperature perturbations at 



faster time scales. So it would be reasonable to decrease numerically the time derivative of the 

density perturbation. The implementation of this scheme in the code is described below.  

 First, the corrections for plasma component densities 
( )

,

k

al mn  (a –  ion species, k – time 

step index, l - radial and m - poloidal indexes of numerical grid cells), and for electron and ion 

temperatures 
( )

,

k

el mT , 
( )

,

k

il mT  are calculated routinely at the time step. Next, inside the separatrix 

the average corrections:  
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are calculated on each flux surface and are applied to each cell. Such averaging gives the same 

increase/decrease of the full number of particles and stored energy in electron and ion 

components of plasma in the volume between chosen flux surfaces as initial correction. Then, 

the corrections for densities and temperatures perturbations are calculated and applied with 

scaling coefficients 1a , 1T , aT  ~  . At the beginning of the next time-step the 

densities and temperatures are:    

( 1) ( ) ( ) ( ) ( )

, , ,( )k k k k k

al m al m al a al m aln n n n n         

( 1) ( ) ( ) ( ) ( )

, , ,( )k k k k k

el m el m el T el m elT T T T T         

( 1) ( ) ( ) ( ) ( )

, , ,( )k k k k k

il m il m il T il m ilT T T T T         

The modification of correction should not be applied to the partially ionized impurity states that 

have very strong poloidal density variation inside the separatrix due to big ionization sources and 

sinks. For such ionisation states the modification of correction can in some cases lead to negative 

densities. Therefore after the application of modified correction the density is checked to ensure 

that it does not fall below the limiting value minan which is determined by user. In case if it is not 

determined explicitely,  
34

min 10  mna . If some of the density values for species a at the flux 

surface are below the limit after application of modified correction, the modification of 



correction cancels out and the correction is applied without modification for species a at this flux 

surface.  

 The correction modification is applied only inside the separatrix in the volume cells (not 

applied in the narrow boundary cells at the core boundary). The boundary cells should be 

excluded from the correction due to following reasons. The usual boundary condition is (in its 

numerical realization) of Dirichlet type. For example for density it is realized through the 

solution of equation: 

( 1) ( ) ( 1)

, , , 0( )k k k

al m al m al m mn n n n     

Where 0n  is prescribed value and   is a big coefficient. If no correction is applied then 

( )

, 0( 1)

, 0,
1

k

al m mk

al m m

n n
n n












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
, and that is the required result.  
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          (a)                                                                   (b) 

Fig.3. Time evolution of the neon flow through the separatrix (a), and full number of neon ions 

in system (b) for ITER modeling with different speed-up parameters. 

 

The correction in volume cells inside the separatrix damps the effect of the redistribution 

of particles at the flux surface due to the E B  drift and permits the increase of time step 

roughly by a factor 
11

~


mainaT   (here “main” is the label for the ion species contributing most 

to the plasma pressure). In the case 1 Ta   the modification of correction disappears. This 

scheme does not affect the converged solution. The coefficients a  for small fractions of 

impurity (the criteria is )()( iemainaieaa TTnTTZn  ) can be chosen equal to unity, since the 

time scales for pressure redistribution at the flux surface for small fractions of impurity are long 

and at the same time the poloidal pressure perturbation influences their neoclassical radial 

transport. The instability depends on full pressure and will not be affected by these impurities. 



The scheme should not be used for the modeling of the discharges in a state of deep detachment, 

where the density and pressure perturbation at the flux surfaces next to X-point can be of the 

order of unity. 

 The described scheme was tested for the same ITER shot as in the section 3.1 where the 

time step limitation without corrections was 5∙10
-8

 s. The time evolution of the discharge at the 

stage 2, described in section 3.1 was calculated with time step 5∙10
-7

 s for 0.04, 0.02T a   . 

Fig.2 shows that the time evolution at the small time scales of the order of several milliseconds 

depends on the speed-up parameters aT  , . Still, finally speed-up scheme tends to the same 

steady-state result as the calculation with the small time step. 
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(a)                                                                         (b) 

Fig.4. Time evolution average separatrix density of (a) Neon (b) Deuterium with the speed-up 

scheme and after the speed-up scheme turning off. 

 

 The time evolution at the longer time scales was investigated with three sets of 

parameters for speed-up scheme, since the time of calculations for the scheme without speed-up 

was too big. Here, the number of time steps, 4∙10
4
,
 
was fixed, giving a physical time of 40 ms for 

the biggest time step 10
-6 

s. The neon puffing was increased by 20 % in the beginning, to 

investigate the behavior of different speed-up schemes in the case of change in the modeling 

parameters. The time evolution obtained in a week of calculations is presented in Fig. 3. The 

time traces in the first 5 ms are considerably different. Still the flow of neon through the 

separatrix tends to the same values for all three speed-up parameter sets during the following 

evolution. The full number of neon ions in the calculation domain, Fig. 4b, differs slightly for 

different speed-up parameters. This can be explained by the effect of different misbalance 

between puffing and pumping at the initial stage, for the first 5 ms. Nevertheless, the time 

derivatives for all three schemes after the first 5 ms tend to the same value showing the same 

difference between puffing and pumping. The following evolution of the discharge is the same 

for all three schemes but “delayed” by about 7 ms for calculation with time step 2∙10
-7

s 



comparatively to calculation with time step 10
-6 

s. Taking into account typical characteristic time 

about 100 ms for ITER core and several seconds for ITER SOL , this delay in time evolution is 

insignificant.  

The test of converged solution was performed at the next step. The speed-up scheme was 

applied with coefficients 02.0,04.0  aT   for time step 10
-6 

s and then after the convergence 

of calculation the time step was decreased to 2∙10
-8 

s and speed-up scheme turned off. The 

calculation gives characteristic times of about 2 seconds for the evolution of the solution after the 

turn-off of the speed-up in Fig. 4, which corresponds to the converged state. The evolution of 

calculation shows no great change during the speed-up turning off. 

The described scheme proved to be robust for ITER conditions. The time step limitation 

from EIRENE coupling is 10
-6 

s, therefore further increase of convergence speed is limited by 

EIRENE. Since on a large time scale the evolution of the system is the same with or without 

speed-up the increase of the time step leads to the proportional decrease of the necessary number 

of time steps and therefore to the decrease of CPU time (each time step needs almost the same 

CPU time), in described case of ITER by a factor 50.  

Another set of tests was made for AUG conditions. The possible increase in the time step 

was from 2·10
-7

 s for no speed-up coefficients up to 10
-5

 s. The AUG shot evolution was traced 

after the drifts turning on and after the change in pumping rate. In the first case tracings for 

speed-up coefficients 0.04T a    and time step 2.5∙10
-6

 s were compared to tracings for 

0.01T a    and time step 10
-5

 s, Fig.5.  
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     (a)                                                                     (b) 

Fig. 5. The full number of particles in different regions during the evolution of the AUG 

discharge with neon impurity after the drifts turning on. Speed-up coefficients 0.04T a    

and time step 2.5∙10
-6

 s – solid lines; speed-up coefficients 0.01T a    and time step 10
-5

 s – 

dashed lines. (a) Neon (b) Deuterium.  
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 (a)                                                                                  (b)  

Fig. 6. The full number of particles in different regions during the evolution of the discharge 

with the speed-up scheme (dashed lines) and after the speed-up scheme turning off (solid lines). 
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(a)                                                                                  (b)  

Fig. 7. The full number of particles in different regions during the evolution of the discharge 

after increase of pumping. Speed-up coefficients 1.0,5.0  nT   and time step 10
-6

 s – solid 

lines); 02.0,05.0  nT   and time step 10
-5

 s – dashed lines.   (a) Nitrogen (b) Deuterium 

 

The two sets of speed-up parameters give the same evolution of the calculation with the 

only difference that the steady state solution for time step 10
-5

 s can be obtained 4 times faster in 

terms of calculation time. The full convergence without the speed-up scheme would take 

correspondingly about 10
2
 times longer, for our calculation capacities it would be several years. 

Therefore, to make the test of converged solution it was obtained in a month of calculation with 

speed-up parameters 0.01T a    and the time step 10
-5

 s and then the calculation was 

continued without the speed-up scheme and with small time step 2∙10
-7

s. The points in time 

where the calculations were continued are shown in Fig. 5(a) with arrows on tracings. The time 

tracings of the calculation before and after the change of the time step are shown in Fig.6. The 



calculation without the speed-up scheme shows that the stationary solution indeed does not 

change if the scheme is turned off.  

The evolution of AUG shot with nitrogen impurity is shown in Fig.7 after the change in 

pumping rate from albedo at the cryopumping surface 0.81 to 0.74. The tracings for speed-up 

coefficients 0.5, 0.1T a    and time step 10
-6

 s were compared to tracings 

0.05, 0.02T a    and time step 10
-5

 s. Again for different time steps and different speed-up 

coefficients the evolution of the full amount of nitrogen and deuterium in the system is almost 

the same. It can be explained by the smallness of the time of radial electric field redistribution. 

Even for artificially increased electric field redistribution time, this time is much smaller than the 

time of the radial density and temperature profile change. So the electric field follows the 

evolution of the radial density and temperature profile (approximately in a neoclassic manner 

inside the separatrix [3]) with almost no delay with different coefficients in speed-up scheme. 

Therefore, we expect this speed-up scheme to be valuable for the time dependent mode of 

SOLPS-ITER.   

All these tests prove the robust behavior of the speed-up scheme applied in SOLPS-ITER 

with EIRENE treatment of neutrals, which can be recommended for routine application. 

Corresponding tests were performed in the calculations with fluid neutrals description. In case of 

pure deuterium both in ITER and in AUG geometry the tests show that the new scheme allows to 

achieve a tenfold increase of time step in order to get steady state solution of plasma equations 

with drifts. The tests in AUG geometry were performed also for multispecies plasma. It was 

found for multispecies plasma with the fluid description of neutrals that impurity behavior 

depends on the time step even in the case of no speed-up coefficients. The time of convergence 

to stationary state for impurity increased with the time step, both with and without the 

application of speed-up coefficients. Still, the converged solutions were the same. It could be 

concluded that for multispecies plasma with the fluid description of neutrals the effect of 

application of the speed-up scheme is still positive but it is smaller than for calculations with 

EIRENE.  

 

3.3 Method of effective source 

The time step increase above the level 10
-6 

s for ITER and 10
-5

 s for AUG is problematic due to 

coupling to EIRENE. This limitation requires about 10
5 

time steps for AUG and more than 10
6
 

time steps for ITER to obtain converged solutions, which for typical cluster performance means 

between a month and a year of simulations.  



 Usually the longest characteristic time determining the convergence to steady-state is a 

time necessary to balance gas puff and pumping rates. The pumping rate is determined by the 

number of particles in front of the pumping surface and albedo coefficient at this surface while 

the puffing is determined by the user as a given inflow. To balance the puffing and pumping in 

the case, for example, of puffing rise, the system should accumulate enough particles to increase 

the neutral pressure under the dome or in other location where the pumping surface is situated. In 

the case of puffing decrease the extra particles should be pumped. The estimate for the 

characteristic time of this process can be made using a very simple model of the gas reservoir of 

volume V, with constant pressure and pumping rate proportional to the density. Let in the initial 

steady state the gas puff to be 0  and it is changed to   at t=0. The equation for density 

evolution is: 

nR
dt

dn
V   (20) 

where R is a pumping rate coefficient. The solution is  

)/exp(0 VtR
RR

n 





  (21) 

The characteristic time for density variation is V/R, the same time as for pumping of all particles 

from the volume. To estimate the characteristic time in plasma we can take the rate of full 

particle amount in the system to the pumping flow, which in ITER is about 1 s. For convergence 

several such times should pass. For deuterium this estimate is typically several times smaller 

than for neon due to the neon concentration in the core and upper part of SOL. This estimate 

should be used with extreme care since the tokamak is a complex non-linear system. For 

example, degree of detachment can change the pressure under the dome and therefore the 

pumping efficiency without considerable change in plasma content inside the separatrix. Still for 

the general understanding of the problem the simplified model is useful.  

 The characteristic time of pumping-puffing equilibrium is determined by pumping 

efficiency and in the case of small pumping can be unacceptably long. The process can be 

accelerated by simultaneous increase of pumping coefficient and puffing flow, since the 

saturated density depends on their ratio while the characteristic time depends only on R. The 

natural limit to this approach is smallness of the puffing and pumping flows compared to the 

sound speed, to be consistent with constant pressure assumption. In nonlinear tokamak case the 

restrictions are even stronger, to provide generally the same solution the increased puffing 

should not lead to significant local perturbations of plasma. However, even minimal changes in 

the solution due to nonlinearity make the solution of problem with increased puffing and 



pumping acceptable only as a preliminary step. On the finalizing step both puffing and pumping 

should be decreased and calculations continued. Therefore this way is not very promising.  

Another possible solution is addition of volumetric artificial source S proportional to the 

difference between puffing and pumping flows, leading to the equation: 

SnR
dt

dn
V  , (22) 

where )( nRS   . The characteristic time in this case decreases by a factor )1(  , while 

saturated density does not change. For converged solution the artificial source disappears so that 

we come to the correct solution in one cycle of calculations.  

 This approach was implemented for SOLPS-ITER. The additional source of main ions 

and impurities was applied through the multiplication factor on the source EirS  , which is passed 

from EIRENE to fluid part of the code and includes both ionization from neutrals and 

recombination. Since the source is mainly determined by ionization of the recycled neutrals the 

full ionization in the volume dVSEir  is typically about two or three orders of magnitude bigger 

than the puffing and pumping flows, so the artificial source implemented as slight increase or 

decrease of ionization source should not affect the local solution dramatically. The ionization 

source is localized mainly in the divertor regions, therefore the additional source is distributed 

mainly there. Both the puffing wall  from the wall and the particle flow through the inner core 

boundary core  should be taken into account. The multiplication factor  should be calculated as 

follows: 

wall core pump

EirS dV
 

  



 (23) 

where   is a numerical coefficient. Flows pump , wall  and core  are summed over all the charge 

species of the same nuclei, the former is taken positive if directed from the plasma, while two 

others are positive when directed into the plasma. The coefficient   is then averaged on chosen 

time scale tt 500   ( t  is a time step of iteration) in order to avoid oscillations of this value due 

to EIRENE statistical noise in the source and pumping flow:  
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restricted by 0.05 in absolute value and finally applied to the EIRENE source. The modified 

source is )1(
~

 EirEir SS  if 05.0  or (1 0.05 / )Eir EirS S    if 05.0 .  



 This source modification was applied to the ITER runs. In several cases it gives the 

opportunity to decrease calculation time by a factor of 10. The best results were obtained using 

this approach with 5010 . The proposed scheme was tested for the plasma without material 

sputtering/re-deposition at the wall. In the case of sputtering and re-deposition, for example for 

modeling of ITER plasma with beryllium, the scheme should be reconsidered. When the 

recycling in the divertor region is modified by this artificial source, the puffing to pumping 

balance can be achieved quickly with accuracy 80-90% by proper choice of parameter  . Our 

experience shows that characteristic time of puffing to pumping balance in typical ITER 

conditions can be made smaller than typical times of particle redistribution due to diffusion and 

impurity convection in the SOL. 

  

3.4 Use of multiplicators 

The perpendicular anomalous diffusion time in the transport barrier and SOL 
2~ /y yL D  

can be estimated for each specific condition of plasma. The impurity redistribution inside the 

separatrix is determined by neoclassical diffusivity of impurities [12,13], which is typically of 

the order of or larger than the anomalous diffusion coefficient in the transport barrier. The time 

of parallel redistribution of the main ions in the SOL is comparatively small – it is determined by 

the ion temperature redistribution by parallel heat conductivity of ions and characteristic time of 

pressure redistribution. The characteristic time of parallel transport of impurities can be longer. 

According to modeling experience the impurities are redistributed in the parallel direction in the 

SOL by convective flows that are determined by temperature and parallel velocity of the main 

ions [15]. The redistribution time in this case can be estimated as ||~ / ( )x xrB B V , and for the 

regions in the far SOL, where parallel main ions velocity 
||V  is small, it can be of the order of 

diffusive times or more.  

In several cases the convergence time limited by diffusion and impurity convection can 

be decreased by using multiplicators. These multiplicators increase the time derivatives of 

physical values by a factor defined by the user. The multiplicators for density of each sort of 

particles and for temperature equations can be chosen separately for each of four regions: two 

divertors, SOL above the X-point, core. No universal recommendation can be given about them. 

The choice of multiplicators is based on understanding of physically longest times and on the 

relative importance of different sorts of particles in nonlinear solution. For example, in the case 

of small impurity fraction (“trace impurity”) the convergence of equations for this impurity can 

be accelerated without numerical instability. The multiplicators 10-100 can be recommended for 

equations for density of trace impurities in all regions. This approach is especially effective if the 



impurity distribution is calculated on the background of solution for the main ions already 

converged to steady state.  

In the case of a deep transport barrier, the multiplicators 10-100 can be recommended for 

impurities, even if their density is considerable, inside the separatrix. The multiplicators 10 

inside the separatrix for the main ions density and temperatures can be applied simultaneously 

with corresponding 10 times decrease of coefficients a main  and T  as described in section 3.2. 

The multiplicators 3-10 can be applied for impurity density in the SOL above the X-point if the 

slowest diffusion and parallel redistribution processes are there, but with care, since for 

significant impurity radiation such coefficients can lead to artificial oscillatory solution or no 

convergence of calculation. The non-linear solution in the divertor region is especially sensitive 

to the impurity accumulation and radiation, therefore no multiplicators for impurity and main 

ions density are recommended there in the case of considerable impurity fraction, the decrease of 

convergence time in this region is provided by modification of EIRENE sources by coefficient 

. 

 The impact of the effective sources and multiplicators on the time evolution of the 

calculation for ITER with neon and helium impurities and drifts turned on, is shown in Fig. 8. At 

time 2.207 s the neon puffing in initially steady state run was increased from 

195.5 10 /particles s  to 198.0 10 /particles s . Three computational schemes were applied: first, 

only partial flux surface averaging inside the separatrix was turned on in order to keep the time 

step 10
-6 

s; second, the effective sources were applied additionally with the factor 50  ; third, 

the effective sources were combined with the multiplicators, as given by table 1. In the first 

scheme the density of the neon at the separatrix starts increasing but very slowly. The slope of 

the density tracing indicates characteristic time of more than 1 second, while misbalance of the 

puffing and pumping shows no evolution visible on the background of EIRENE noise. 

Estimating the time of puffing to pumping balance according to the section 3.3, the time 

necessary for ITER reaching steady state is about several seconds, which means more than 10
6
 

iterations. Estimating a performance of 3 000-10 000 iterations in 24 CPU hours typical for 

modern computer clusters, this calculation will demand more than one year of CPU. In the case 

of effective sources turned on the characteristic time of puffing-pumping balance is 50 times 

smaller, about 20 ms, which is seen in Fig.8a. The neon density at the separatrix at the initial 

stage increases in this case 20 times faster, Fig.8b, as a result of bigger density in the divertor 

regions. Now the limiting factor for the convergence to the steady state is a diffusive time in the 

transport barrier, of about 100 ms, which means the decrease of the CPU time by factor 10 

comparing to computation without effective source. Still, CPU can be more than a month. The 



best scheme is application of both the effective sources and multiplicators. In this case the 

characteristic time can be further decreased, in the example case by factor 5, and solution can be 

obtained in 50 ms, corresponding to less than a month of CPU, which is acceptable for the ITER 

research program.   
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Fig.8. Time dependencies of parameters in calculations where the neon puffing was increased 

from 195.5 10 /particles s  to 198.0 10 /particles s .  

(a) Neon pumping; (b) neon density at the separatrix.  
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(a)                                                                               (b) 

Fig.9. Time dependencies of parameters during the application of multiplicators and EIRENE 

source modification (1.15-1.245s) and after their switch off (after 1.245s). (a) Helium pumping; 

(b) helium density at the separatrix.  

 

The characteristic times and comparative gains of the multiplicators and effective sources 

usage can be different in different cases, due to complexity of the system. In Fig.9 the coefficient

50   and the multiplicators given in table 1 are applied at the beginning of calculations in 

which the flux of helium from the core was increased at t=1.15 s from 
195 10 /particles s  to 



2010 /particles s . Here the characteristic times are about twice bigger. The convergence is 

obtained in 100 ms with the time step 10
-6

 s, demanding 10
5
 iterations. The calculations were 

performed here without drifts in order to avoid using the speed-up scheme described in section 2 

and test the multiplicators and EIRENE source modification separately. After the approximate 

convergence at t=1.245 s the multiplicator coefficients and EIRENE source modifications were 

turned off. One can see that the balance of the puffing to pumping did not change during this 

final stage while the helium density at the separatrix shows the linear decrease with the 

characteristic time scale of about 2 s, corresponding to an acceptable level of convergence.  

 

region Deuterium Neon Helium Temperature 

equations 

core 10 100 100 10 

SOL 1 3 10 1 

Inner divertor 1 1 3 1 

Outer divertor 1 1 3 1 

Table 1. Multiplicators for calculations in Fig. 9.  

 

Conclusions 

Simulations of edge tokamak plasmas with the full SOLPS-ITER model including EIRENE 

neutrals and charged particle drifts are possible with acceptable convergence time scales only 

with implementation of improved numerical schemes. The most challenging limitation of 

convergence time step is associated with the poloidal redistribution of particles inside the 

separatrix by drifts of the geodesic acoustic mode nature. It can be overcome by implementation 

of one of two methods. The first one uses artificial slowing down of poloidal density and 

temperatures redistribution on the closed flux surfaces (partial flux surface averaging). In the 

second one (method of intermediate solution) the equations are modified so that they can be 

solved faster, with the fast solution very close to one we are seeking, as an initial approximation 

for convergence to the true solution.  

The biggest characteristic times of the problem are times for balancing of puffing and 

pumping rates and different transport times. The time of puffing to pumping balancing can be 

decreased by introduction of an artificial particle source (method of artificial sources) into the 

problem. The transport times can be in several cases decreased by artificial multiplication of time 

derivatives for different equations in chosen separate regions.  



Implementation of these methods can speed up the modeling time by more than an order 

of magnitude. The best simulation strategy (including major choices that lead to very different 

codes) can be an important field for future work.  
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Appendix  

Here the practical recommendations are summed up for use of speed up schemes.  

 

Method of intermediate solution 

Restrictions and application limits: 

 The new numerical scheme has been successfully tested on ITER cases with one main 

(hydrogenic) species plus impurities with kinetic neutrals. 

 The scheme provides robust initial approximation for normal code convergence towards 

the final solution. This initial approximation can be discussed as one very close to 

solution in SOL and divertor region, and can be used for analysis of physical processes in 

these regions.  

 The scheme demands final stage of calculation without modification of coefficients 

consuming about half of the CPU time if accurate description of the flows inside the 

separatrix is of interest. 

 

Practical recommendations 

Step one 

1) In b2mn.dat increase the time step from 2∙10
-8 

s to 10
-6

: 

'#b2mndr_dtim'      '2.0e-8' 

'b2mndr_dtim'      '1.0e-6' 

 

2) In b2mn.dat increase the value of anomalous conductivity AN  from 710 een  to 
64 10 een : 

Instead of 

*cfsig     (0)        (1)          (2)          (3)          (4)          (5)          (6)          (7) 

  '-1'   1.0e-07  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00 

*cfalf     (0)        (1)          (2)          (3)          (4)          (5)          (6)          (7) 

  '-1'   1.0e-07  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00 

set the following 

*cfsig     (0)        (1)          (2)          (3)          (4)          (5)          (6)          (7) 

  '-1'   4.0e-06  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00 

*cfalf     (0)        (1)          (2)          (3)          (4)          (5)          (6)          (7) 

  '-1'   4.0e-06  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00  0.0e+00 

 

3) In b2mn.dat increase the viscosity coefficient by a factor of 20: 



'#b2trcl_cvsa_mltpl'        '1.0'    by default 

'b2trcl_cvsa_mltpl'        '20.0' 

 

4) Calculate to converged state 

 

Step two 

Return the initial values of coefficients and continue the calculations from the state obtained 

on step 1, for about 50 000 iterations  

 

 

Method of partial flux surface averaging 

Restrictions and application limits: 

 The application of new numerical scheme converges to the same steady state solution as 

one can get without this scheme, i.e. after reaching the converged steady state solution no 

additional run with modified input parameters is needed. 

 The new numerical scheme has been successfully tested on cases with one main 

(hydrogenic) species and fluid neutrals (no impurities). 

 The new numerical scheme has been successfully tested on cases with one main 

(hydrogenic) species plus impurities with kinetic neutrals. 

 The scheme should not be applied if the strong poloidal density and/or temperature 

variation are expected in the solution, e.g. for detached plasma with cold X-point. 

 

Practical recommendations 

In b2mn.dat increase the time step: 

 for ASDEX-Upgrade 

'#b2mndr_dtim'      '1.0e-7' 

'b2mndr_dtim'      '1.0e-5' 

 for ITER 

'#b2mndr_dtim'      '1.0e-8' 

'b2mndr_dtim'      '1.0e-6' 

 

In b2mn.dat set up the desired minimal density value 

'b2mndr_na_min'              '1.0e8' 

In b2.numerics.parameters set up the control parameters a , T  for each species and for 

temperature (example is given for D+N plasma) 

corr_core_dn(0)=10*0.01, 

corr_core_dt=0.01, 

Here corr_core_dn stands for 𝛼𝑎  and corr_core_dt stands for 𝛼𝑇 . 

 



Method of effective source

 

Restrictions and application limits: 

 The new numerical scheme has been successfully tested on ITER cases with one main 

(hydrogenic) species plus impurities with kinetic neutrals. 

 The application of new numerical scheme converges to the same steady state solution as 

one can get without this scheme, i.e. after reaching the converged steady state solution no 

additional run with modified input parameters is needed. 

Practical recommendations 

In b2mn.dat set the numerical coefficient  : 

'#b2stbr_sna_corr'       '0.0' by default 

'b2stbr_sna_corr'       '50.0' 

 

 


