
MLCapsule: Guarded Offline Deployment of
Machine Learning as a Service

Lucjan Hanzlik∗, Yang Zhang∗, Kathrin Grosse∗, Ahmed Salem∗, Max Augustin†,
Michael Backes‡, Mario Fritz‡
∗CISPA, Saarland Informatics Campus

†Max Planck Institute for Informatics, Saarland Informatics Campus
‡CISPA Helmholtz Center i.G., Saarland Informatics Campus

Abstract—With the widespread use of machine learning (ML)
techniques, ML as a service has become increasingly popular.
In this setting, an ML model resides on a server and users can
query the model with their data via an API. However, if the
user’s input is sensitive, sending it to the server is not an option.
Equally, the service provider does not want to share the model
by sending it to the client for protecting its intellectual property
and pay-per-query business model.

In this paper, we propose MLCapsule, a guarded offline de-
ployment of machine learning as a service. MLCapsule executes
the machine learning model locally on the user’s client and
therefore the data never leaves the client. Meanwhile, MLCapsule
offers the service provider the same level of control and security
of its model as the commonly used server-side execution. In
addition, MLCapsule is applicable to offline applications that
require local execution.

Beyond protecting against direct model access, we demon-
strate that MLCapsule allows for implementing defenses against
advanced attacks on machine learning models such as model
stealing/reverse engineering and membership inference.

I. INTRODUCTION

Machine learning as a service (MLaaS) has become in-
creasingly popular during the past five years. Leading Internet
companies, such as Google,1 Amazon,2 and Microsoft3 have
deployed their own MLaaS. It offers a convenient way for a
service provider to deploy a machine learning (ML) model
and equally an instant way for a user/client to make use of
the model in various applications. Such setups range from
image analysis over translation to applications in the business
domain.

While MLaaS is convenient for the user, it also comes
with several limitations. First, the user has to trust the service
provider with the input data. Typically, there are no means
of ensuring data privacy and recently proposed encryption
mechanisms [7] come at substantial computational overhead
especially for state-of-the-art deep learning models contain-
ing millions of parameters. Moreover, MLaaS requires data
transfer over the network which constitutes to high volume
communication and provides new attack surface [25], [29].
This motivates us to come up with a client-side solution
such that perfect data privacy and offline computation can be
achieved.

1https://cloud.google.com/
2https://cloud.google.com/vision/
3https://azure.microsoft.com/en-us/services/machine-learning-studio/

As a consequence, this (seemingly) comes with a loss of
control of the service provider, as the ML model has to be
transfered and executed on the client’s machine. This raises
concerns about revealing details of the model or granting un-
restricted/unrevocable access to the user. The former damages
the intellectual property of the service provider, while the latter
breaks the commonly enforced pay-per-query business model.
Moreover, there is a broad range of attack vectors on machine
learning models that raise severe concerns about security and
privacy [31]. A series of recent papers have shown different
attacks on MLaaS that can lead to reverse engineering [41],
[27] and training data leakage [14], [13], [35], [44], [34]. Many
of these threats are facilitated by repeated probing of the ML
model that the service provider might want to protect against.
Therefore, we need a mechanism to enforce that the service
provider remains in control of the model access as well as
provide ways to deploy detection and defense mechanisms in
order to protect the model.

A. Our Contributions

In this paper, we propose MLCapsule, a guarded offline
deployment of machine learning as a service. MLCapsule
follows the popular MLaaS paradigm, but allows for client-
side execution while model and computation remain secret.
With MLCapsule, the service provider controls its ML model
which allows for intellectual property protection and business
model maintenance. Meanwhile, the user gains perfect data
privacy and offline execution, as the data never leaves the client
and the protocol is transparent

We assume that the client’s platform has access to an
Isolated Execution Environment (IEE). MLCapsule uses this
to provide a secure enclave to run an ML model, or more
specifically, classification inference. Moreover, since IEE pro-
vides means to prove execution of code, the service provider
is assured that the secrets that it sends in encrypted form can
only be decrypted by the enclave. This also keeps this data
secure from other processes running on the client’s platform.

To support security arguments about MLCapsule, we pro-
pose the first formal model for reasoning about the security of
local ML model deployment. The leading idea of our model is
a property called ML model secrecy. The simulator defined in
this property ensures that the client can simulate MLCapsule
using only a server-side API. In consequence, this means that

ar
X

iv
:1

80
8.

00
59

0v
1

 [
cs

.C
R

]
 1

 A
ug

 2
01

8

https://cloud.google.com/
https://cloud.google.com/vision/
https://azure.microsoft.com/en-us/services/machine-learning-studio/

if the client is able to perform an attack against MLCapsule,
the same attack can be performed on the server-side API.

We also contribute by implementing our solution on a
platform with Intel SGX. We design so called MLCapsule
layers, which encapsulate standard ML layers and are executed
inside the IEE. Those layers are able to decrypt (unseal)
the secret weight provisioned by the service provider and
perform the computation in isolation. This modular approach
makes it easy to combine layers and form large networks,
e.g. we implemented and evaluated the VGG-16 [37] and
MobileNet [17] neural networks. In addition, we provide an
evaluation of convolution and dense layer and compare the
execution time inside the IEE to a standard implementation.

The isolated code execution on the client’s platform renders
MLCapsule ability to integrate advanced defense mechanism
for attacks against machine learning models. For demonstra-
tion, we propose two defense mechanisms against reverse
engineering [27] and membership inference [35], [34], and
utilize a recent proposed defense [21] for model stealing
attack [41]. We show that these mechanisms can be seamlessly
incorporated into MLCapsule, with a negligible computation
overhead, which further demonstrates the efficacy of our
system.

B. Organization

The rest of the paper is organized as the following. In
Section II, we discuss the requirements of MLCapsule.
Section III provides the necessary technical background and
Section IV summarizes the related work in the field. In Sec-
tion V, we present MLCapsule in detail and formally prove
its security in Section VI. Section VII discusses the imple-
mentation and evaluation of MLCapsule. We show how to
incorporate advanced defense mechanisms in Section VIII.
Section IX provides a discussion, and the paper is concluded
in Section X.

II. REQUIREMENTS AND THREAT MODEL

In this section, we introduce security requirements we want
to achieve in MLCapsule.

A. Guaranteed Model Secrecy and Data Privacy

User Side. MLCapsule deploys MLaaS locally. This pro-
vides strong privacy guarantee to a user, as her data never
leaves her devices. Meanwhile, executing machine learning
prediction locally avoids the Internet communication between
the user and the MLaaS provider. Therefore, the user can use
the ML model offline. Possible attack surfaces due to network
communication [25], [29] are automatically eliminated.

Server Side. Deploying a machine learning model on the
client side naively, i.e., providing the trained model to the user
as a white box, harms the service provider in the following
two perspectives.
• Intellectual Property: Training an effective machine

learning model is challenging, the MLaaS provider needs
to get suitable training data and spend a large amount

of efforts for training the model and tuning various
hyperparameters [42]. All these certainly belong to the
intellectual property of the service provider. Providing the
trained model to the client as a white box will result in
the service provider completely revealing its intellectual
property.

• Pay-per-query: Almost all MLaaS providers implement
the pay-per-query business model. For instance, Google’s
vision API charges 1.5 USD per 1,000 queries.4 De-
ploying a machine learning model at the client side
naturally grants a user unlimited number of queries,
which naturally breaks the pay-per-query business model.

To mitigate all these potential damages to the service
provider, MLCapsule needs to provide the following guar-
antees:
• Protecting intellectual property
• Enable the pay-per-query business model

In a more general way, we aim for a client-side deployment
being indistinguishable from the current server-side deploy-
ment.

B. Protection against Advanced Attacks

Several recent works show that an adversary can perform
multiple attacks against MLaaS by solely querying its API
(black-box access). Attacks of such kind include model steal-
ing [41], [42], reverse engineering [27], and membership
inference [35], [34]. These attacks are however orthogonal
to the damages discussed in Section II-A, as they only need
black-box access to the ML model instead of white-box access.
More importantly, researchers have shown that the current
MLaaS cannot prevent against these attacks neither [41], [35],
[27], [42].

We consider mitigating these above threats as the require-
ments of MLCapsule as well. Therefore, we show defense
mechanisms against these advanced attacks can be seamlessly
integrated into MLCapsule.

III. BACKGROUND

In this section, we focus on the properties of Intel’s
Software Guard Extensions (SGX), the major building block
of MLCapsule, and recall a formal definition of Attested
Execution proposed by Fisch et al. [12]. We also formalize
a public key encryption scheme, which we will use for the
concrete instantiation of our system.

A. SGX

SGX is a set of commands included in Intel’s x86 processor
design that allows to create isolated execution environments
called enclaves. According to Intel’s threat model, enclaves are
designed to trustworthily execute programs and handle secrets
even if the host system is malicious and the system’s memory
is untrusted.

Properties. There are three main properties of Intel SGX:

4https://cloud.google.com/vision/pricing

2

https://cloud.google.com/vision/pricing

• Isolation: Code and data inside the enclave’s protected
memory cannot be read or modified by any external pro-
cess. Enclaves are stored in a hardware guarded memory
called Enclave Page Cache (EPC), which is currently
limited to 128 MB with only 90 MB for the appli-
cation. Untrusted applications can execute code inside
the enclave using entry points called Enclave Interface
Functions ECALLs, i.e. untrusted applications can use
enclaves as external libraries that are defined by those
call functions.

• Sealing: Data stored in the host system is encrypted and
authenticated using a hardware-resident key. Every SGX-
enabled processor has a special key called Root Seal Key
that can be used to derive a so called Seal Key that is
specific to the enclave identity. This key can then be used
to encrypt/decrypt data, which can be stored in untrusted
memory. One important feature is that the same enclave
can always recover the Seal Key if instantiated on the
same platform, however it cannot be derived by other
enclaves.

• Attestation: Attestation provides an unforgeable report
attesting to code, static data and meta data of an enclave,
as well as the output of the performed computation.
Attestation can be local and remote. In the first case, one
enclave can derive a shared Report Key using the Root
Seal Key and create a report consisting of a Message
Authentication Code (MAC) over the input data. This
report can be verified by a different enclave inside the
same platform, since it can also derive the shared Report
Key. In case of remote attestation, the actual report for the
third party is generated by a so called Quoting Enclave
that uses an anonymous group signature scheme (Intel
Enhanced Privacy ID [9]) to sign the data.

Side-channel Attacks. Due to its design, Intel SGX is prone
to side-channel attacks. Intel does not claim that SGX defends
against physical attacks (e.g., power analysis), but successful
attacks have not yet been demonstrated. On the other hand,
several software attacks have been demonstrated in numerous
papers [22], [43], [8]. Those kinds of attacks usually target
flawed implementations and a knowledgeable programmer can
write the code in a data-oblivious way, i.e., the software does
not have memory access patterns or control flow branches
that depend on secret data. In particular, those attacks are not
inherent to SGX-like systems, as shown by Costan et al. [11].

Rollback. The formal model described in the next subsection
assumes that the state of the hardware is hidden from the users
platform. SGX enclaves store encryptions of the enclave’s state
in the untrusted part of the platform. Those encryptions are
protected using a hardware-generated secret key, yet this data
is provided to the enclave by an untrusted application. There-
fore, SGX does not provide any guarantees about freshness
of the state and is vulnerable to rollback attacks. Fortunately,
there exist hardware solutions relying on counters [39] and
distributed software-based strategies [24] that can be used to
prevent rollback attacks.

B. Definition for SGX-like Hardware

There are many papers that discuss hardware security mod-
els in a formalized way. The general consensus is that those
abstractions are useful to formally argue about the security of
the system.

Barbosa et al. [5] define a generalized ideal interface to
represent SGX-like systems that perform attested computation.
A similar model was proposed by Fisch et al. [12] but was
designed specifically to abstract Intel’s SGX and support local
and remote attestation. Pass, Shi, and Tramèr [32] proposed an
abstraction of attested execution in the universal composability
(UC) model. In this paper we will focus on the formal
hardware model by Fisch et al. [12]. We decided to use this
particular model because it was specifically defined to abstract
the features that are supported by SGX, which is the hardware
also used by our implementation. However, since we will only
use remote attestation in our instantion, we omit the local
attestation part and refer the reader to the original paper for a
full definition.

Informally, this ideal functionality allows a registered party
to install a program inside an enclave, which can then be
resumed on any given input. An instance of this enclave
possesses internal memory that is hidden from the registering
party. However, the main property of attested execution is
that the enclave creates an attestation of execution. This
attestation provides a proof for third parties that the program
was executed on a given input yielding a particular output.

Formal Definition. We define a secure hardware as follows.

Definition 1. A secure hardware functionality HW for a
class of probabilistic polynomial time programs Q consists
of the following interface: HW.Setup, HW.Load, HW.Run,
HW.RunQuoteskquote , HW.QuoteVerify. HW has also an inter-
nal state state that consists of a variable HW.skquote and a
table T consisting of enclave state tuples indexed by enclave
handles. The variable HW.skquote will be used to store signing
keys and table T will be used to manage the state of the loaded
enclave.

• HW.Setup(1n): given input security parameter 1n, it gen-
erates the secret key skquote and stores it in HW.skquote.
It also generates and outputs public parameters params.

• HW.Load(params, Q): given input global parameters
params and program Q it first creates an enclave, loads
Q, and then generates a handle hdlthat will be used to
identify the enclave running Q. Finally, it sets T[hdl] = ∅
and outputs hdl.

• HW.Run(hdl, in): it runs Q at state T[hdl] on input in and
records the output out. It sets T[hdl] to be the updated
state of Q and outputs out.

• HW.RunQuoteskquote(hdl, in): executes a program in an
enclave similar to HW.Run but additionally outputs
an attestation that can be publicly verified. The algo-
rithm first executes Q on in to get out, and updates
T[hdl] accordingly. Finally, it outputs the tuple quote =
(mdhdl, tagQ, in, out, σ), where mdhdl is the metadata

3

associated with the enclave, tagQ is a program tag for
Q and σ is a signature on (mdhdl, tagQ, in, out).

• HW.QuoteVerify(params, quote): given the input global
parameters params and quote this algorithm outputs 1
it the signature verification of σ succeeds. It outputs 0
otherwise.

Correctness. A HW scheme is correct if the following holds.
For all aux, all programs Q, all in in the input domain of Q
and all handles hdl we have:
• if there exist random coins r (sampled in run time and

used by Q) such that out = Q(in), and
• Pr[HW.QuoteVerify(params, quote) = 0] = negl(λ),

where quote = HW.RunQuoteskquote(hdl, in).

Remote attestation unforgeability is modeled by a game be-
tween a challenger C and an adversary A.

1) A provides an aux.
2) C runs HW.Setup(1n, aux) to obtain public parameters

params, secret key skquote and an initialization string
state. It gives params to A, and keeps skquote and state
secret in the secure hardware.

3) C initialized a list query = {}.
4) A can run HW.Load on any input (params, Q) of its

choice and get back hdl.
5) A can also run HW.RunQuoteskquote on input (hdl, in)

of its choice and get quote = (mdhdl, tagQ, in, out, σ),
where the challenger puts the tuple (mdhdl, tagQ, in, out)
into query.

6) A finally outputs quote∗ = (md∗hdl, tag
∗
Q, in

∗, out∗, σ∗).
We define that adversary A wins the above game if

HW.QuoteVerify(params, quote∗) = 1 and (md∗hdl, tag
∗
Q, in

∗

, out∗) 6∈ query. The hardware model is remote attestation
unforgeable if no adversary can win this game with non-
negligible probability.

C. Public Key Encryption

Definition 2. Given a plaintext space M we define a public
key encryption scheme as a tuple of probabilistic polynomial
time algorithms:
• KeyGen(1n) : on input security parameters, this algorithm

outputs the secret key sk and public key pk.
• Enc(pk,m) : on input public key pk and message m ∈
M, this algorithm outputs a ciphertext c.

• Dec(sk, c) : on input secret key sk and ciphertext c, this
algorithm outputs message m.

Correctness. A public key encryption scheme is correct if for
all security parameters 1n, all messages m ∈M and all key-
pairs (sk, pk) = KeyGen(1n) we have Dec(sk,Enc(pk,m)) =
m.

Ciphertext Indistinguishability Against Chosen Plaintext
Attacks. We say that the public key encryption scheme is
indistinguishable against chosen plaintext attacks if there exists
no adversary for which |Pr[ExpEnc,A = 1] − 1

2 | is non-
negligible, where experiment ExpEnc,A is defined in Figure 1.

ExpEnc,A(λ)

(sk, pk) = KeyGen(1n)

(m0,m1)← A(pk)
b←$ {0, 1}
c← Enc(pk,mb)b̂← A(pk, c)
else return b̂ = b

Fig. 1: Indistinguishability against chosen plaintext attacks -
security experiment.

IV. RELATED WORK

In this section, we review related works in the literature.
We start by discussing cryptography and ML, concentrating
on SGX and homomorphic encryption. We then turn to mech-
anisms using watermarking to passively protect ML models.
In the end, we describe several relevant attacks against ML
models including model stealing, reverse engineering, and
membership inference.

SGX for ML. Ohrimenko et al. [28] investigated oblivious
data access patterns for a range of ML algorithms applied in
SGX. Their work deals with neural networks, support vector
machines and decision trees. Additionally, Tramèr et al. [40],
Hynes et al. [20], and Hunt et al. [19] used SGX for ML
– however in the context of training convolutional neural
network models. Our work instead focuses on the test-time
deployment of ML models. To the best of our knowledge,
only Gu et al. [15] consider convolutional neural networks and
SGX at test time. They propose to split the network, where
the first layers are executed in an SGX enclave, and the latter
part outside the enclave. The core of their work is to split the
network as to prevent the user’s input to be reconstructed. In
contrast, we focus on protecting the model.

Homomorphic Encryption and ML Models. Homomorphic
encryption has been used to keep both input and result private
from an executing server [3], [7]. In contrast to our approach,
however, homomorphic encryption lacks efficiency, especially
for deep learning models containing millions of parameters.
Moreover, it does not allows for implementing transparent
mechanisms to defend attacks on the ML model: the user
cannot be sure which code is executed. Furthermore, detecting
an attack might require further steps to prevent harm, which
contradict with the guaranteed privacy of inputs and outputs
in this encryption scheme.

Watermarking ML Models. Recently, watermarking has been
introduced to claim ownership of a trained ML model. Adi et
al. [1] propose to watermark a model by training it to yield
a particular output for a number of points, thereby enabling
identification. Zhang et al. [45], in contrast, add meaningful
content to samples used as watermarks. Watermarking as a
passive defense mechanism is opposed to our work in two
perspectives. First, MLCapsule deployed on the client-side
is indistinguishable from the server-side deployment. Second,

4

MLCapsule allows us to deploy defense mechanisms to
actively mitigate advanced attacks against ML models.

Model Stealing and Reverse Engineering. Model stealing
has been introduced by Tramèr et al. [41]. Before that,
however, Papernot et al. [30] worked on training substitute
models. The attacker’s goal in both cases is to duplicate a
model that is accessible only via an API. Recently, a defense
to these attacks called Prada has been proposed by Juuti et
al. [21]. We will evaluate Prada’s feasibility in MLCapsule.

A different line of work aims to infer specific details of
the model such as architecture, training method and type of
non-linearities, rather than its behavior. Such attacks are called
reverse engineering and were proposed by Oh et al. [27]. We
propose a defense against this attack and also show it can be
integrated in MLCapsule with little overhead.

Membership Inference. Membership inference attack against
machine learning models have been proposed recently. In this
setting, the attacker aims to decide whether a data point is in
the training set of the target machine learning model. Shokri
et al. are among the first to perform effective membership
inference against machine learning models [35]. Follow this
work, several other attacks have been proposed [44], [16], [34].
In this paper, we propose a defense mechanism to mitigate the
membership privacy risks which can be easily implemented
in MLCapsule.

V. MLCAPSULE

In existing MLaaS system, the service provider gives the
user access to an API, which she can then use for training and
classification. This is a classic client-server scenario, where the
service is on the server’s side and the user is transferring the
data. We focus on the scenario, where the service provider
equips the user with an already trained model and classifi-
cation is done on the client’s machine. In this scenario, the
trained model is part of the service. This introduces problems,
as previously discussed. In this section we will introduce
MLCapsule, our approach to tackle those problems. We then
argue that and how MLCapsule fulfills the requirements.

A. Overview

We start with an overview of the participants and then
introduce MLCapsule with its different execution phases.

Participants. In MLCapsule, we distinguish two participants
of the system. On the one hand, we have the service provider
(SP) that possesses private training data (e.g. images, genomic
data, etc.) that it uses to train a ML model. On the other hand,
we have users that want to use the pre-trained model as we
previously discussed in Section II.

We focus for the rest of the paper on deep networks, as they
have recently drawn attention due to their good performance.
Additionally, their size make both implementation and design
a challenge. Yet, MLCapsule generalizes to other linear
models, as these can be expressed as a single layer of a neural
network.

Provider

Untrusted IEE (secure)

 Code

 Code

Service App
1

2 3

2

1 - Initialize Service App
2 - Request model from provider
3 - Store encrypted model in local machine

Fig. 2: Our scheme with all steps of initialization.

We consider the design of the applied network to be publicly
known. The service provider’s objective is to protect the
trained weights and biases of all layers.

Approach. We now describe MLCapsule, which fulfills the
requirements from Section II. To start, we assume that all users
have a platform with an isolated execution environment. Note
that this is a viable assumption: Intel introduced SGX with
the Skylake processor line. Additionally, the latest Kaby Lake
generation of processors supports SGX. It is further reasonable
to assume that Intel will provide support for SGX with every
new processor generation and over time every PC with an Intel
processor will have SGX.

The core idea of MLCapsule is to leverage the properties
of the IEE to ensure that the user has to attest that the code is
running in isolation before it is provided the secrets by the SP.
This step is called the setup phase and is depicted in Figure 2.
Once the setup is done, the client can use the enclave for the
classification task. This step is called the inference phase and
is depicted in Figure 3. The isolation of the enclave ensures
that the user is not able to infer more information about the
model than given API access to a server-side model.

We now describe MLCapsule in more details.

Setup phase: The user and the service provider interact to
setup a working enclave on the users platform. The user has
to download the enclave’s code and the code of a service
application that will setup the enclave on the user’s side. The
enclave’s code is provided by the SP, where the code of the
service app can be provided by the SP but it can also be
implemented by the user or any third party that she trusts.
Note that the user can freely inspect the enclave’s code and
check what data is exchanged with the SP. This inspection
ensures that the user’s input to the ML model will be hidden
from the SP, as the classification is run locally and the input
data never leaves the user’s platform.

After the user’s platform attests that an enclave instance
is running, the SP provides the enclave with secret data

5

Untrusted IEE (secure)

 Code

 Code

Service App1

3

1 - Initialize Service App
2 - Load encrypted model
3 - User sends image to App
4 - Return classification result to user
5 - Store model and counter

2, 5

3

‘Penguin’
4

Fig. 3: Our scheme with all steps of offline classification.

composed of amongst others the weights of the network.
Finally, the enclave seals all secrets provisioned by the service
provider and the service application stores it for further use.
The sealing hides this data for other processes on the user’s
platform. With the end of the setup phase of MLCapsule, no
further communication with the SP is needed.

Inference phase: To perform classification, the user executes
the service app and provides the test data as input. The service
app restores the enclave, which can now be used to perform
classification. Since the enclave requires the model parameters,
the service app loads the sealed data stored during the setup
phase. Note that before classification, the enclave can also
perform an access control procedure that is based on the user’s
input data (available to the enclave in plaintext) and the current
state of the enclave. Due to some limitations (e.g. limited
memory of the IEE), the enclave can be implemented in a way
that classification is performed layer wise, i.e. the service app
provides sealed data for each layer of the network separately.
In the end, the enclave outputs the result to the service app and
might as well update its state, which is stored inside the sealed
data. This process of classification is depicted in Figure 3.

B. Discussion on Requirements

In this subsection we discuss how MLCapsule fulfills the
requirements stated in Section II.

User Input Privacy. MLCapsule is executed locally by
the user. Moreover, the user is allowed to inspect the code
executed in the secure hardware. This means that she can
check for any communication command with the SP and stop
execution of the program. Moreover, off-line local execution
ensures that the user’s input data is private because there is
no communication required with the SP. We conclude that
MLCapsule perfectly protects the user input.

Pay-per-query. To enforce the pay-per-query paradigm, the
enclave will be set up during provision with a threshold.

Moreover, the enclave will store a counter that is increased
with every classification performed. Before performing clas-
sification, it is checked whether the counter exceeds this
threshold. In case it does, the enclave returns an error instead
of the classification. Otherwise, the enclave works normally.

This solution ensures that the user cannot exceed the thresh-
old, which means that she can only query the model for the
number of times she paid. Unfortunately, it does not allow for
a fine-grained pay-per-query, where the user can freely chose
if she wants more queries at a given time. On the other hand,
this is also the model currently used by server-side MLaaS,
where a user pays for a fixed number of queries (e.g. 1000 in
case of Google’s vision API).

Intellectual Property. MLCapsule protects the service
provider’s intellectual property by ensuring that the isolation
provided by the hardware simulates in a way the black-box
access in the standard server-side model of MLaaS. In other
words, the user gains no additional advantage in stealing the
intellectual property in comparison to an access to the model
through an server-side API.

VI. SECURITY ANALYSIS

In this section, we introduce a formal model for
MLCapsule and show a concrete instantiation using the
abstracted hardware model by Fisch et al. [12] and a stan-
dard public key encryption scheme, which we recalled in
Section III. The goal is to prove that our construction possesses
a property that we call ML model secrecy. We define it as a
game that is played between the challenger and the adver-
sary. The challenger chooses a bit which indicates whether
the adversary is interacting with the real system or with a
simulator. This simulator gets as input the same information
as the adversary. In a nutshell, this means that the user can
simulate MLCapsule using a server-side API ML model.
Hence, classification using an IEE should not give the user
more information about the model as if she would be using
an oracle access to the model (e.g. as it is the case for a
server-side API access).

We begin the description of the model by binding it with
the high level description presented in Section V using three
algorithms that constitute the interactive setup phase (Train,
Obtain and Provide) and the local inference phase (Classify).
An overview of how MLCapsule fits into this composition
and details about the instantiation are given in Figure 4.
Moreover, in the next subsection we describe the security
model in more details and then present our formal instantiation
of MLCapsule.

A. Formalization of MLCapsule

We now define in more details the inputs and outputs of the
four algorithms that constitute the model for MLCapsule.
Then we show what it means that MLCapsule is correct and
show a game based definition of ML model secrecy.
• Train(traindata): this probabilistic algorithm is executed

by the service provider in order to create a machine

6

HW.Setup(1λ)
hdl = HW.Load(params, Q)

quote = HW.RunQuotesk (hld, (‘‘setup’’,∅))
MLreq =(params, quote) Setup

Phase

Inference
Phase

Service Provider User

MLmodel=(MLdef,MLsk)=Q(‘‘train’’,traindata) Q, MLdef

MLreq

HMLmodel

 HW.run(hdl,(‘‘classify’’,(MLdef,c,inputdata)))

 quote

Obtain(MLdef)

Classify(HMLmodel ,inputdata)

Provide(MLdef,MLsk,MLreq)

Train(traindata) IEE

HW.QuoteVerify((params,quote))
quote = (, , ,pk,)
c = Enc(pk, MLsk)
HMLmodel = (MLdef,c)

Fig. 4: Formal instantiation of MLCapsule.

learning model MLmodel = (MLdef ,MLsk) based on
training data traindata, where MLdef is the definition
of the ML model and MLsk are the secret weights
and biases. To obtain the classification outputdata for a
given input data inputdata one can execute outputdata =
MLmodel(inputdata).

• Obtain(MLdef): this algorithm is executed by the user
to create a request MLreq to use model with definition
MLdef . Further, this algorithm is part of the setup phase
and shown in steps 1 and 2 in Figure 2.

• Provide(MLdef ,MLsk,MLreq): this probabilistic algorithm
is executed by the service provider to create a hidden ML
model HMLmodel based on the request MLreq. Figure 2
depicts this algorithm in step 3 of the setup phase.

• Classify(HMLmodel, inputdata): this algorithm is executed
by the user to receive the output outputdata of the clas-
sification. Hence, it models the inference phase depicted
in Figure 3.

Correctness. We say that MLCapsule is correct if for
all training data traindata, all machine learning models
(MLdef ,MLsk) = Train(traindata), all input data inputdata
and all requests MLreq = Obtain(MLdef) we have
MLmodel(inputdata) = Classify(HMLmodel, inputdata), where
HMLmodel = Provide(MLdef ,MLsk,MLreq).

ML Model Secrecy. We define model secrecy as a game
played between a challenger C and an adversaryA. Depending
on the bit chosen by the challenger, the adversary interacts
with the real system or a simulation. More formally, we
say that MLCapsule is ML model secure if there exists a

ExpsecrecyMLCapsule,A−b(λ)
MLmodel ← Train(traindata)

(MLdef ,MLsk) = MLmodel

MLreq ← A(MLdef)

b←$ {0, 1}
if b = 0 HMLmodel ← Sim1(MLdef ,MLreq)

else HMLmodel ← Provide(MLdef ,MLsk,MLreq)

b̂← AO(MLmodel,HMLmodel,·)(HMLmodel)

else return b̂ = b

O(MLmodel,HMLmodel, inputdata)

parse MLmodel = (MLdef , ·)
if b = 0 return Sim2(MLmodel, inputdata)

else return Classify(MLdef ,HMLmodel, inputdata)

Fig. 5: ML model secrecy experiment.

simulator Sim = (Sim1,Sim2) such that the probability that
|Pr[ExpsecrecyMLCapsule,A−b(λ) = 1] − 1

2 | is negligible for any
probabilistic polynomial time adversary A.

B. Instantiation of MLCapsule

The idea behind our instantiation is as follows. The user
retrieves a program Q from the SP and executes it inside
a secure hardware. This secure hardware outputs a public
key and an attestation that the code was correctly executed.
This data is then send to the SP, which encrypts the secrets

7

Algorithm 1: Hardware Program Q

Input: command, data
Output: out

1: if command== ”train” then
2: run the ML training on datareceiving

MLmodel = (MLdef ,MLsk), store MLmodel and set
out = MLmodel

3: else if command== ”setup” then
4: execute (sk, pk) = KeyGen(1n), store sk and set

out = pk
5: else if command== ”classify” then
6: parse data = (MLdef , c, inputdata) and execute

Dec(sk, c) = MLsk, set MLmodel = (MLdef ,MLsk) and
out = MLmodel(inputdata)

7: end if
8: return out

corresponding to the ML model and sends it back to the
user. This ciphertext is actually the hidden machine learning
model, which is decrypted by the hardware and the plaintext is
used inside the hardware for classification. ML model secrecy
follows from the fact that the user cannot produce forged
attestations without running program Q in isolation. This also
means that the public key is generated by the hardware and due
to indistinguishability of chosen plaintext of the encryption
scheme, we can replace the ciphertext with an encryption of
0 and answer hardware calls using the model directly and not
the Classify algorithm. Below we presents this idea in more
details.
• Train(traindata): executes MLmodel = (MLdef ,MLsk) =
Q(”train”, traindata). Output MLdef .

• Obtain(MLdef): given MLdef , setup the hardware parame-
ters params by running HW.Setup(1n) and load program
Q using HW.Load(params, Q), receiving a handle to the
enclave hdl. Execute the HW setup command for program
Q by running HW.RunQuoteskquote(hdl, (”setup”, ∅)) a
quote quote (that includes the public key pk). Finally,
it sets MLreq = (params, quote).

• Provide(MLdef ,MLsk,MLreq): Abort if verification of
the quote failed: HW.QuoteVerify(params, quote) = 0.
Parse quote = (·, ·, ·, pk, ·), compute ciphertext c =
Enc(pk,MLsk) and set HMLmodel = (MLdef , c).

• Classify(HMLmodel, inputdata): Parse the hidden ma-
chine model HMLmodel as (MLdef , c) and return
HW.Run(hdl, (”classify”, (MLdef , c, inputdata))).

C. Security

Theorem 1. The MLCapsule presented in Section VI-B is
model secure if in the used public key encryption is indis-
tinguishable under chosen plaintext attacks and the hardware
functionality HW is remote attestation unforgeable.

Proof. We prove this theorem using the game based approach,
where we make slight changes that are indistinguishable
for the adversary. We start with GAME0, which is the

original ML model security experiment with bit b = 1,
i.e. ExpsecrecyMLCapsule,A−1(λ). We end the proof with GAME4,
which is actually the experiment ExpsecrecyMLCapsule,A−0(λ)
GAME1 Similar to GAME0 but we abort in case the

adversary outputs a valid request MLreq without running
program Q.

It is easy that by making this change we only lower the
adversary’s advantage by a negligible factor. In particular, an
adversary for which we abort GAME1 can be used to break
the remote attestation unforgeability of the hardware model.
Thus, we conclude that this change lowers the adversary’s
changes by a negligible factor.
GAME2 Now we replace the way the oracle O works.

On a given query of the adversary we will always run
Sim2(MLmodel, inputdata) = MLmodel(inputdata).

Note that this does not change the adversary’s advantage,
since both outputs should by correctness of MLCapsule give
the same output on the same input.
GAME3 We now replace the ciphertext given as part of

HMLmodel = (MLdef , c) to the adversary, i.e. we replace c with
an encryption of 0.

This change only lowers the adversary’s advantage by the
advantage of breaking the security of the used encryption
scheme. Note that by GAME1 we ensured that the public key
pk inside the request MLreq is chosen by the secure hardware
and can be set by the reduction. Moreover, the oracle O works
independently of HMLmodel.

GAME4 We now change how HMLmodel is computed.
Instead of running Provide(MLdef ,MLsk,MLreq), we use the
simulator Sim2(MLdef ,MLreq) = (MLdef ,Enc(pk, 0)), where
MLreq = (·, (·, ·, ·, pk, ·)).

It is easy to see that this game is actually the experiment
ExpsecrecyMLCapsule,A−0(λ) and we can conclude that our instan-
tiation is ML model secure because the difference between
experiments ExpsecrecyMLCapsule,A−0(λ) and ExpsecrecyMLCapsule,A−1(λ)
is negligible.

VII. SGX IMPLEMENTATION AND EVALUATION

In the setup phase, MLCapsule attests the execution of the
enclave and decrypts the data send by the service provider.
Both tasks are standard and supported by Intel’s crypto
library [2]. Thus, in the evaluation we mainly focused on
the inference phase and the overhead the usage of the IEE
introduces over executing the classification without it.

We used an Intel SGX enabled desktop PC with Intel(R)
Core(TM) i7-6700 CPU @ 3.40GHz that was running Ubuntu
18.04. The implementation was done using C++ and based on
the code of Slalom [40], which uses a custom lightweight C++
library for feed-forward networks based on Eigen. Note that
porting well-known ML frameworks, such as TensorFlow, to
SGX is not feasible at this point, because enclave code cannot
access OS-provided features (e.g. multi-threading, disk, and
driver IO). If not stated otherwise, we used the -O3 compiler
optimization and C++11 standard.

8

w … w
 . . .
w … w

Standard LayerMLCapsule Layer

IEE

f

w … w
 . . .
w … w

 input weights
f

w … w
 . . .
w … w

output

input weights

unsealing

output

Fig. 6: Difference between MLCapsule and standard layer.

In MLCapsule, we wrap standard layers to create new
MLCapsule layers. Those layers take the standard input of
the model layer but the weights are given in sealed form. Inside
the enclave, the secret data is unsealed and forwarded to the
standard layer function. MLCapsule layers are designed to
be executed inside the enclave by providing ECALL’s. See
Figure 6 for more details. This approach provides means to
build MLCapsule secure neural networks in a modular way.

Since the sealed data is provided from outside the enclave
it has to be first copied to the enclave before unsealing.
Otherwise, unsealing will fail. We measured the execution time
of MLCapsule layers as the time it takes to:

1) allocate all required local memory
2) copy the sealed data to the inside of the enclave
3) unseal the data
4) perform the standard computation using the unsealed

weights and plaintext input
5) free the allocated memory

A. Implementation Issues

Applications are limited to 90 MB of memory, because there
is currently no SGX support for memory swapping. Linux
provides an OS based memory swap, but the enclave size has
to be final and should not expand to prevent page faults and
degrade performance. This performance issue is visible in our
results for a dense layer with weight matrix of size 4096 ×
4096. In this case, the MLCapsule layer allocates 4×4096×
4096 = 64 MB for the matrix and a temporary array of the
same size for the sealed data. Thus, we exceed the 90 MB
limit, which leads to a decrease in performance. In particular,
the execution of such a layer took 1s and after optimization,
the execution time decreased to 0.097s.

We overcome this problem by encrypting the data in chunks
of 2 MB. This way the only large data array allocated inside
the MLCapsule layer is the memory for the weight matrix.
Using 2 MB chunks the MLCapsule layers require only
around 2 × 2 MB more memory than implementations of
standard ML layers. We implemented this optimization only

for data that requires more than 48 MB, e.g. in case of a VGG-
16 network we used it for the first and second dense layer.
Comparisons between MLCapsule and standard layers are
given in Table I, Table II, and Table III. From the former, we
see that the overhead for convolutional layers averages around
1.2, with a peak to 2.3 in case of inputs of size 512×14×14. In
case of dephtwise separable convolutional layers, the execution
time of MLCapsule layers is comparable with standard layer.
In fact, in this case, the difference is almost not noticeable for
smaller input sizes. Applying additional activation functions
or/and pooling after the convolution layer did not significantly
influence the execution time. In case of dense layers, we
observe a larger overhead. For all the kernel dimension the
overhead is not larger than 25 times. We also evaluated dense
layers without -O3 optimization. The results show that in such
a case the overhead of MLCapsule is around the factor 3. We
suspect that the compiler is able to more efficiently optimize
the source code that does not use SGX specific library calls
and hence the increase in performance is due to the optimized
compilation.

B. Evaluation of Full Classification

In this subsection we combine MLCapsule layers to form
popular ML networks, i.e. VGG-16 and MobileNet. The first
network can be used to classify images and work with the
ImageNet dataset (size of images 224× 224× 3). Similar, the
second network can also be used for the same task. It is easy
to see from Table IV that MLCapsule has around 2-times
overhead in comparison to an execution of the classification
using standard layer and without the protection of SGX.

VIII. ADVANCED DEFENSES

Recently, researchers have proposed multiple attacks against
MLaaS: reverse engineering [27], model stealing [41], [42],
and membership inference [35], [34]. As mentioned in Sec-
tion II, these attacks only require the black-box access (API)
to the target ML model, therefore, their attack surface is
orthogonal to the one caused by providing the model’s white-
box access to an adversary. As shown in the literature, real-
world MLaaS suffers from these attacks [41], [35], [42], [34].

In this section, we propose two new defense mechanisms
against reverse engineering and membership inference (test-
time defense). We show that these mechanisms together with
a proposed defense for model stealing can be seamlessly
integrated into MLCapsule.

A. Detecting Reverse Engineering of Neural Network Models

Oh et al. have shown that by only having black box access
to neural network model, a wide variety of model specifics can
be inferred [27]. Such information include network topology,
training procedure as well as type of non-linearities and filter
sizes, which thereby turns the model step by step into a
white-box model. This equally affects the safety of intellectual
property as well as increases attack surface.

Methodology. Up to now, no defense has been proposed
to counter this attack. We propose the first defense in this

9

TABLE I: Average dense layer overhead for 100 executions. This comparison includes two ways of compiling the code, i.e.
with and without the g++ optimization parameter -O3.

Matrix Dimension MLCapsule Layer (no -O3) MLCapsule Layer Standard Layer Standard Layer (no -O3)

256×256 0.401ms 0.234ms 0.164ms 0.020ms
512×512 1.521ms 0.865ms 0.637ms 0.062ms
1024×1024 6.596ms 4.035ms 2.522ms 0.244ms
2048×2048 37.107ms 26.940ms 10.155ms 1.090ms
4096×4096 128.390ms 96.823ms 40.773ms 4.648ms

TABLE II: Average convolution layer overhead for 100 executions and 3× 3 filters.

Input/Output Size MLCapsule Layer Standard Layer Factor

64×224×224 80ms 66ms 1.21
128×112×112 70ms 63ms 1.11
256×56×56 55ms 54ms 1.02
512×28×28 61ms 51ms 1.20
512×14×14 30ms 13ms 2.31

TABLE III: Average depthwise separable convolution layer overhead for 100 executions and 3× 3 Filters.

Input/Output Size MLCapsule Layer Standard Layer Factor

64×224×224 41ms 27ms 1.52
128×112×112 18ms 16ms 1.125
256×56×56 9ms 9ms 1.00
512×28×28 7ms 7ms 1.00
512×14×14 2ms 2ms 1.00

TABLE IV: Average neutal network evaluation overhead for 100 executions.

Network MLCapsule Layer Standard Layer Factor

VGG-16 1145ms 736ms 1.55
MobileNet 427ms 197ms 2.16

domain and show that it can be implemented seamlessly into
MLCapsule. We observe that the most effective method
proposed by Oh et al. [27] relies on crafted input patterns that
are distinct from benign input. Therefore, we propose to train a
classifier that detects such malicious inputs. Once a malicious
input is recognized, service can be immediately denied which
stops the model from leaking further information. Note that
also this detection is running on the client and therefore the
decision to deny service can be taken on the client and does
not require interactions with a server.

We focus on the kennen-io method by Oh et al. [27] as it
leads to the strongest attack. We also duplicate the test setup
on the MNIST dataset.5 In order to train a classifier to detect
such malicious inputs, we generate 4500 crafted input image
with the kennen-io method and train a classifier against 4500
benign MNIST images. We use the following deep learning

5http://yann.lecun.com/exdb/mnist/

architecture:

Input Image→ conv2d(5× 5, 10)

max(2× 2)

conv2d(5× 5, 20)

max(2× 2)

FullyConnected(50)

FullyConnected(2)

softmax→ Output

where conv2d(a× a, b) denotes a 2d convolution with a
by a filter kernel and b filters, max(c×c) denotes max-pooling
with a kernels size of c by c, FullyConnected(d) denotes
a fully connected layer with d hidden units and softmax
a softmax layer. In addition, the network uses ReLU non-
linearties and drop-out for regularization. We represent the
output as 2 units – one for malicious and one for benign. We
use a cross-entropy loss to train the network with the ADAM
optimizer.

Evaluation. We compose a test set of additional 500 malicious

10

http://yann.lecun.com/exdb/mnist/

input samples and 500 benign MNIST samples that are disjoint
from the training set. The accuracy of this classifier is 100%,
thereby detecting each attack on the first malicious example,
which in turn can be stopped immediately by denying the
service. Meanwhile, no benign sample leads to a denied
service. This is a very effective protection mechanism that
seamlessly integrates into our deployment model and only
adds 0.832 ms to the overall computation time. While we are
able to show very strong performance on this MNIST setup,
it has to be noted that the kennen-io method is not designed
to be “stealthy” and future improvements of the attack can be
conceived that make detection substantially more difficult.

B. Detecting Model Stealing

Model stealing attack aims at obtaining a copy from an
MLaaS model [41], [30]. Usually, this is done by training
a substitute on samples rated by the victim model, resulting
in a model with similar behavior and/or accuracy. Hence,
successful model stealing leads to the direct violation of the
service provider’s intellectual property. Very recently, Juuti
el al. [21] propose a defense, namely Prada, to mitigate this
attack which we implement in MLCapsule.

In a nutshell, Prada maintains a growing set of user-
submitted queries. Whether a query is appended to this grow-
ing set depends on the minimum distance to previous queries
and a user set threshold. Benign queries lead to a constant
growing set, whereas Juuti et al. show that malicious samples
generally do not increase set size. Hence, an attack can be
detected by the difference of the growth of those sets.

As the detection is independent of the classifier, it can
be easily implemented in MLCapsule. The resulting com-
putation overhead depends heavily on the user submitted
queries [21]. We thus measure the general overhead of first
loading the data in the enclave and second of further compu-
tations.

Juuti et al. state that the data needed per client is 1-20MB.
We plot the overhead with respect to the data size in Figure 7.
We observe that the overhead for less than 45MB is below
0.1s. Afterwards, there is a sharp increase, as the heap size
of the enclave is 90MB: storing more data requires several
additional memory operations. For each new query, we further
compute its distance to all previous queries in the set—a costly
operation. We assume a set size of 3, 000, corresponding to
roughly 5, 000 benign queries. Table V shows that a query
on the GTSDB dataset6 is delayed by almost 2s, or a factor
of five. For datasets with smaller samples such as CIFAR7 or
MNIST, the delay is around 35ms.

C. Membership Inference

Shokri et al. are among the first to demonstrate that ML
models are vulnerable to membership inference [35]. The main
reason behind their attack’s success are common overfitting
problems in machine learning: A trained model is more con-
fident facing a data point it was trained on than facing a new

6http://benchmark.ini.rub.de/
7https://www.cs.toronto.edu/∼kriz/cifar.html

10 20 30 40 50 60 70
Data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(s

ec
on

ds
)

Fig. 7: Overhead in seconds to load additional data for
a defense mechanism preventing model stealing, namely
Prada [21].

Algorithm 2: Noising mechanism to mitigate membership
inference attack.
Input: Posterior of a data point P , Noise posterior T
Output: Noised posterior P ′

1: Calculate η(P) # the entropy of P
2: α = 1− η(P)

log |P | # the magnitude of the noise
3: P ′ = (1− cα)P + cαT
4: return P ′

one, and this confidence is reflected in the model’s posterior.
Shokri et al. propose to use a binary classifier to perform
membership inference. To derive the data for training the
classifier, they rely on shadow models to mimic the behavior
of the target model. Even though the attack is effective, it is
complicated and expensive to mount. More recently, Salem
et al. relax the assumption of the threat model by Shokri et
al. and show membership inference attacks can be performed
in a much easier way [34]. In particular, Salem et al. show
that by only relying on the posterior’s entropy, an adversary
can achieve a very similar inference as the previous one.8 This
attack is much easier to mount thus cause more severer privacy
damages. We use it as the membership inference attack in our
evaluation. However, we emphasize that our defense is general
and can be applied to other membership inference attacks as
well.

Methodology. We define the posterior of an ML model
predicting a certain data point as a vector P , and each class
i’s posterior is denoted by Pi. The entropy of the posterior is

8This is the third adversary model proposed by Salem et al. [34].

11

http://benchmark.ini.rub.de/
https://www.cs.toronto.edu/~kriz/cifar.html

TABLE V: Overhead of detecting a model stealing attack, Prada. We assume 3000 samples in the detection set, enough to
query 5000 benign samples.

Dataset Size SGX Outside SGX Factor

MNIST 1×28×28 35ms 2.6ms 13.5
CIFAR 3×32×32 38ms 10.1ms 3.8
GTSDB 3×215×215 2200ms 440ms 5

defined as the following.

η(P) = −
∑
Pi∈P

Pi logPi

Lower entropy implies the ML model is more confident on
the corresponding data point. Following Salem et al., the
attacker predicts a data point with entropy smaller than a
certain threshold as a member of the target model’s training
set, and vice versa [34].

The principle of our defense is adding more (less) noise
to a posterior with low (high) entropy, and publishing the
noised posterior. The corresponding algorithm is listed in Al-
gorithm 2. In Step 1, we calculate η(P). In Step 2, we derive
from η(P) the magnitude of the noise, i.e., α = 1 − ηP

log |P | .
Here, ηP

log |P | is the normalized η(P) which lies in the range
between 0 and 1. Hence, lower entropy implies higher α,
i.e., larger noise, which implements the intuition of our de-
fense. However, according to our experiments, directly using
α generates too much noise to P . Thus, we introduce a
hyperparameter, c, to control the magnitude α: c is in the range
between 0 and 1, its value is set following cross validation. In
Step 3, we add noise T to P with cα as the weight. There are
multiple ways to initialize T , in this work, we define it as the
class distribution of the training data. Larger cα will cause the
final noised P ′ to be more similar to the prior, which reduces
the information provided by the machine learning model.

It is worth noting that our defense is the first one not
modifying the original ML model’s structures and hyper-
parameters, i.e., it is a test-time defense. Previous works
either rely on increasing the “temperature” of the softmax
function [35], or implementing dropout on the neural network
model [34]. These defense mechanisms may affect the model’s
performance as a mature ML model’s hyperparameters are
normally chosen with a large amount of engineering effort.
More importantly, the previous mechanisms (implicitly) treat
all data points equally, even those that are very unlikely to
be in the training data. In contrary, our defense adds different
noise based on the entropy of the posterior.

Evaluation. For demonstration, we perform experiments on
VGG-16 trained on the CIFAR-100 dataset. Our experimental
setup follows previous works [34]. Mainly, we divide the
dataset into two equal parts for training and testing to train
the VGG model.

We mirror the membership inference attack’s performance
using the AUC score calculated on the entropy of the target
model’s posteriors. Figure 8a shows the result of our defense

with different values of c. As we can see, setting c to 0 -not
adding any noise- results in a high AUC score -0.97- which
means an attacker can determine the membership state of a
point with high certainty. The AUC score starts dropping when
increasing the value of c as expected. When the value of c
approaches 0.5 the AUC score drops to almost 0.5, which
means the best an attacker can do is random guessing the
membership state of a point.

We also study the utility of our defense, i.e., how added
noise affects the performance of the target model. From
Algorithm 2, we see that our defense mechanism only adjusts
the confidence values in a way that the predicted labels stay
the same. This means the target model’s accuracy, precision,
and recall do not change. To perform an in-depth and fair
analysis, we report the amount of noise added to the poste-
rior. Concretely, we measure the Jensen-Shannon divergence
between the original posterior (P) and the noised one (P ′),
denoted by JSD(P, P ′), following previous works [26], [4].
Formally, JSD(P, P ′) is defined as:

JSD(P, P ′) =
∑
Pi∈P

Pi log
Pi
Mi

+ P ′i log
P ′i
Mi

where Mi =
Pi+P

′
i

2 . Moreover, we measure the absolute
difference between the correct class’s original posterior (Pδ)
and its noised version (P ′δ), i.e., |Pδ−P ′δ|, this is also referred
to as the expected estimation error in the literature [36], [6],
[46]. In Figure 8b, we see that both JSD(P, P ′) and |Pδ−P ′δ|
increase monotonically with the amount of noise being added
(reflected by c). However, when c is approaching 0.5, i.e.,
our defense mechanism can mitigate the membership inference
risk completely, JSD(P, P ′) and |Pδ−P ′δ| are still both below
0.25, this indicates that our defense mechanism is able to
preserve the target model’s utility to a large extent.

We measure the overhead of this defense and it only adds
0.026ms to the whole computation. This indicates our defense
can be very well integrated into MLCapsule.

IX. DISCUSSION

In this section, we address limitations of MLCapsule. We
start with the limitations of our formal reasoning, and then
argue about the defenses we proposed.

Our formal proof shows the our setting is indistinguishable
from the access to a MLaaS API. We want to emphasize
here that cryptographic proofs do not guarantee security in
the case of side channel attacks, such as timing attacks, or the
attacks against ML models. This includes model stealing or
membership inference, as discussed in this paper.

12

0.0 0.1 0.2 0.3 0.4
c

0.5

0.6

0.7

0.8

0.9

A
U

C

(a)

0.0 0.1 0.2 0.3 0.4
c

0.00

0.05

0.10

0.15

0.20

0.25

D
is

ta
nc

e

JSD(P, P ′)
|Pδ − P ′δ|

(b)

Fig. 8: The relation between the hyperparameter controlling the noise magnitude, i.e., c, and (a) [higher is better] membership
prediction performance and (b) [lower is better] target model utility. JSD(P, P ′) denotes the Jensen-Shannon divergence
between the original posterior P and the noised P ′, while |Pδ − P ′δ| is the absolute difference between the correct class’s
posterior (Pδ) and the noised one (P ′δ).

Defenses to attacks targeting ML directly are in general
an open research question [10]. Yet, MLCapsule provides
a way to easily integrate any state-of-the-art defense. This
extends to other attacks, such as evasion at test time. In
evasion attacks, a sample is altered minimal to change the
classifiers output. For these malicious test points, state-of-the-
art defenses like specific training [23], [33] or verification[18]
can be used, in both cases without overhead, as the defense is
applied during training. Even more, any defense or mitigation
in MLCapsule is transparent, as the code can be inspected,
and thus MLCapsule does not rely on security by obscurity.

Finally, we also consider detection of attacks. Even if found
not useful in the area of evasion [10] attacks, such detection
might be very useful in MLCapsule: in contrast to the stan-
dard MLaaS setting, an enclave is tied to a particular person. It
is hence possible to identify a user who submitted malicious
data. Additionally, setting up a fresh enclave requires some
effort. This implies that the service provider is actually able
to persecute or expel clients who are found out to run attacks.

X. CONCLUSION

We have presented a novel deployment mechanism for ML
models. It provides the same level of security of the model
and control over the model as conventional server-side MLaaS
execution, but at the same time it provides perfect privacy of
the user data as it never leaves the client. In addition, we
show the extensibility of our approach and how it facilities a
range of features from pay-per-view monetization to advanced
model protection mechanisms – including the very latest work
on model stealing and reverse engineering.

We believe that this is an important step towards the overall
vision of data privacy in machine learning [31] as well as
secure ML and AI [38]. Beyond the presented work and direct
implications on data privacy and model security – this line
of research implements another line of defense that in the
future can help to tackle several problems in security related
issues of ML that the community has been struggling to make
sustainable progress. For instance, a range of attacks from
membership inference, reverse engineering to adversarial per-
turbations rely on repeated queries to a model. Our deployment
mechanism provides a scenario that this compatible with wide
spread use of ML models - but yet can control or mediate
access to the model directly (securing the model) or indirectly
(advanced protection against inference attacks).

REFERENCES

[1] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning Your
Weakness Into a Strength: Watermarking Deep Neural Networks by
Backdooring,” in Proceedings of the 2018 USENIX Security Symposium
(Security). USENIX, 2018. 4

[2] J. Aumasson and L. Merino, “SGX Secure Enclaves in Practice: Security
and Crypto Review,” in Proceedings of the 2016 Black Hat (Black Hat),
2016. 8

[3] S. Avidan and M. Butman, “Blind Vision,” in Proceedings of the 2006
European Conference on Computer Vision (ECCV). Springer, 2006,
pp. 1–13. 4

[4] M. Backes, M. Humbert, J. Pang, and Y. Zhang, “walk2friends: Inferring
Social Links from Mobility Profiles,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2017, pp. 1943–1957. 12

[5] M. Barbosa, B. Portela, G. Scerri, and B. Warinschi, “Foundations of
Hardware-Based Attested Computation and Application to SGX,” in
Proceedings of the 2016 IEEE European Symposium on Security and
Privacy (Euro S&P). IEEE, 2016, pp. 245–260. 3

13

[6] P. Berrang, M. Humbert, Y. Zhang, I. Lehmann, R. Eils, and M. Backes,
“Dissecting Privacy Risks in Biomedical Data,” in Proceedings of the
2018 IEEE European Symposium on Security and Privacy (Euro S&P).
IEEE, 2018. 12

[7] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine Learning
Classification over Encrypted Data,” in Proceedings of the 2015 Network
and Distributed System Security Symposium (NDSS). Internet Society,
2015. 1, 4

[8] F. Brasser, U. Muller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” in Proceedings of the 2017 USENIX Workshop on Offensive
Technologies (WOOT). USENIX, 2017. 3

[9] E. Brickell and J. Li, “Enhanced Privacy ID from Bilinear Pairing
for Hardware Authentication and Attestation,” in Proceedings of the
2010 IEEE International Conference on Social Computing (SocialCom).
IEEE, 2010, pp. 768–775. 3

[10] N. Carlini and D. Wagner, “Towards Evaluating the Robustness of Neural
Networks,” in Proceedings of the 2017 IEEE Symposium on Security and
Privacy (S&P). IEEE, 2017, pp. 39–57. 13

[11] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation,” in Proceedings of the 2016
USENIX Security Symposium (Security). USENIX, 2016, pp. 857–874.
3

[12] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
Functional Encryption using Intel SGX,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 2017, pp. 765–782. 2, 3, 6

[13] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks
that Exploit Confidence Information and Basic Countermeasures,” in
Proceedings of the 2015 ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2015, pp. 1322–1333. 1

[14] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in Pharmacogenetics: An End-to-End Case Study of Person-
alized Warfarin Dosing,” in Proceedings of the 2014 USENIX Security
Symposium (Security). USENIX, 2014, pp. 17–32. 1

[15] Z. Gu, H. Huang, J. Zhang, D. Su, A. Lamba, D. Pendarakis, and
I. Molloy, “Securing Input Data of Deep Learning Inference Systems
via Partitioned Enclave Execution,” CoRR abs/1807.00969, 2018. 4

[16] J. Hayes, L. Melis, G. Danezis, and E. D. Cristofaro, “LOGAN:
Evaluating Privacy Leakage of Generative Models Using Generative
Adversarial Networks,” CoRR abs/1705.07663, 2017. 5

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neu-
ral Networks for Mobile Vision Applications,” CoRR abs/1704.04681,
2017. 2

[18] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety Verification
of Deep Neural Networks,” in Proceedings of the 2017 International
Conference on Computer Aided Verification (CAV). Springer, 2017, pp.
3–29. 13

[19] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Ch-
iron: Privacy-preserving Machine Learning as a Service,” CoRR
abs/1803.05961, 2018. 4

[20] N. Hynes, R. Cheng, and D. Song, “Efficient Deep Learning on Multi-
Source Private Data,” CoRR abs/1807.06689, 2018. 4

[21] M. Juuti, S. Szyller, A. Dmitrenko, S. Marchal, and N. Asokan,
“PRADA: Protecting against DNN Model Stealing Attacks,” CoRR
abs/1805.02628, 2018. 2, 5, 11

[22] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch
Shadowing,” in Proceedings of the 2017 USENIX Security Symposium
(Security). USENIX, 2017, pp. 557–574. 3

[23] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks,” CoRR
abs/1706.06083, 2017. 13

[24] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback Protection for Trusted
Execution,” in Proceedings of the 2017 USENIX Security Symposium
(Security). USENIX, 2017, pp. 1289–1306. 3

[25] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Inference
Attacks Against Collaborative Learning,” CoRR abs/1805.04049, 2018.
1, 2

[26] P. Mittal, C. Papamanthou, and D. Song, “Preserving Link Privacy in
Social Network Based Systems,” in Proceedings of the 2013 Network

and Distributed System Security Symposium (NDSS). Internet Society,
2013. 12

[27] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards Reverse-
Engineering Black-Box Neural Networks,” in Proceedings of the 2018
International Conference on Learning Representations (ICLR), 2018. 1,
2, 5, 9, 10

[28] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious Multi-Party Machine Learning
on Trusted Processors,” in Proceedings of the 2016 USENIX Security
Symposium (Security). USENIX, 2016, pp. 619–636. 4

[29] T. Orekondy, S. J. Oh, B. Schiele, and M. Fritz, “Understanding
and Controlling User Linkability in Decentralized Learning,” CoRR
abs/1805.05838, 2018. 1, 2

[30] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in Ma-
chine Learning: from Phenomena to Black-Box Attacks using Adver-
sarial Samples,” CoRR abs/1605.07277, 2016. 5, 11

[31] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “SoK: Towards
the Science of Security and Privacy in Machine Learning,” in Proceed-
ings of the 2018 IEEE European Symposium on Security and Privacy
(Euro S&P). IEEE, 2018. 1, 13

[32] R. Pass, E. Shi, and F. Tramér, “Formal Abstractions for Attested Execu-
tion Secure Processors,” in Proceedings of the 2017 Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT). Springer, 2017, pp. 260–289. 3

[33] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified Defenses against
Adversarial Examples,” in Proceedings of the 2018 International Con-
ference on Learning Representations (ICLR), 2018. 13

[34] A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, “ML-
Leaks: Model and Data Independent Membership Inference Attacks and
Defenses on Machine Learning Models,” CoRR abs/1806.01246, 2018.
1, 2, 5, 9, 11, 12

[35] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in Proceedings
of the 2017 IEEE Symposium on Security and Privacy (S&P). IEEE,
2017, pp. 3–18. 1, 2, 5, 9, 11, 12

[36] R. Shokri, G. Theodorakopoulos, J.-Y. L. Boudec, and J.-P. Hubaux,
“Quantifying Location Privacy,” in Proceedings of the 2011 IEEE
Symposium on Security and Privacy (S&P). IEEE, 2011, pp. 247–
262. 12

[37] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” CoRR abs/1409.1556, 2014. 2

[38] I. Stoica, D. Song, R. A. Popa, D. PaŁerson, M. W. Mahoney, R. Katz,
A. D. Joseph, M. Jordan, J. M. Hellerstein, J. Gonzalez, K. Goldberg,
A. Ghodsi, D. Culler, and P. Abbeel, “A Berkeley View of Systems
Challenges for AI,” CoRR abs/1712.05855, 2017. 13

[39] R. Strackx and F. Piessens, “Ariadne: A Minimal Approach to State
Continuity,” in Proceedings of the 2016 USENIX Security Symposium
(Security). USENIX, 2016, pp. 875–892. 3

[40] F. Tramer and D. Boneh, “Slalom: Fast, Verifiable and Private Execution
of Neural Networks in Trusted Hardware,” CoRR abs/1806.03287, 2018.
4, 8

[41] F. Tramér, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
Machine Learning Models via Prediction APIs,” in Proceedings of the
2016 USENIX Security Symposium (Security). USENIX, 2016, pp.
601–618. 1, 2, 5, 9, 11

[42] B. Wang and N. Z. Gong, “Stealing Hyperparameters in Machine
Learning,” in Proceedings of the 2018 IEEE Symposium on Security
and Privacy (S&P). IEEE, 2018. 2, 9

[43] W. Wang, G. Chen, X. Pan, Y. Zhang, and X. Wang, “Leaky Cauldron on
the Dark Land: Understanding Memory Side-Channel Hazards in SGX,”
in Proceedings of the 2017 USENIX Security Symposium (Security).
ACM, 2017, pp. 2421–2434. 3

[44] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy Risk in
Machine Learning: Analyzing the Connection to Overfitting,” in Pro-
ceedings of the 2018 IEEE Computer Security Foundations Symposium
(CSF). IEEE, 2018. 1, 5

[45] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting Intellectual Property of Deep Neural Networks
with Watermarking,” in Proceedings of the 2018 ACM Asia Conference
on Computer and Communications Security (ASIACCS). ACM, 2018,
pp. 159–172. 4

[46] Y. Zhang, M. Humbert, T. Rahman, C.-T. Li, J. Pang, and M. Backes,
“Tagvisor: A Privacy Advisor for Sharing Hashtags,” in Proceedings of
the 2018 Web Conference (WWW). ACM, 2018, pp. 287–296. 12

14

