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Abstract

We discuss a discrete-time model for motion of substance in a chan-
nel of a network. For the case of stationary motion of the substance
and for the case of time-independent values of the parameters of the
model we obtain a new class of statistical distributions that describe
the distribution of the substance along the nodes of the channel. The
case of interaction between a kind of substance specific for a node of
the network and another kind of substance that is leaked from the
channel is studied in presence of possibility for conversion between
the two substances. Several scenarios connected to the dynamics of
the two kinds of substances are described. The studied models: (i)
model of motion of substance through a channel of a network, and
(ii) model of interaction between two kinds of substances in a network
node connected to the channel, are discussed from the point of view
of human migration dynamics and interaction between the population
of migrants and the native population of a country.

1 Introduction

Nonlinear dynamics of complex systems is studied much in the last decades
[1] - [19] and special attention was set on the areas of social dynamics and
population dynamics [20] - [32].
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In the last decades models of flows in networks are much used in the
study of different kinds of problems, e.g, transportation problems [33]-[39].
In the course of the years the research interest (that initially was focused
on problems such possible maximal flows in a network, minimal cost flow
problems, or meeting fixed schedule with minimum number of individuals)
expanded to the research areas of: just in time scheduling, shortest path
finding, self-organizing network flows, facility layout and location, modeling
and optimization of scalar flows in networks [40], optimal electronic route
guidance in urban traffic networks [41], isoform identification of RNA [42],
memory effects [43], etc. (see, e.g., [44] - [52]). We shall discuss in this article
a discrete - time model for the motion of a substance through a network
channel in presence of possibility for ”leakage” of substance. One possible
application of the discussed model is for the flow of a substance through a
channel with use of part of the substance in some industrial process in the
nodes of the channel. However the model has more possible applications and
we shall show this for the case of human migration flow. Human migration
is an actual research topic that is very important for taking decisions about
economic development of regions of a country [53] - [62]. Human migration
is closely connected, e.g., to: (i) migration networks [63], [64]; (ii) ideological
struggles [27], [28] ; (iii) waves and statistical distributions in population
systems [25] - [31]. We note that the probability and deterministic models
of human migration are interesting also from the point of view of applied
mathematics [65] - [77].

The text below is organized as follows. In Sect.2 we discuss a discrete
- time model for motion of substance in a channel containing finite number
of nodes. A class of statistical distributions is obtained in Sect. 3. These
distributions describe the distribution of the substance in the nodes of the
channel for the case of stationary motion of substance through the channel.
Particular cases of the distributions obtained in Sect.3 and in Appendix A are
the distributions of Waring, Yule-Simon, and Zipf . In Sect. 4 we study the
interaction between two kinds of substances in a node of the network. The
substances are: (i) substance that is ”native” for the node of the network,
and (ii) substance that ”leaks” from the corresponding node of the channel
to to studied node of the network. In Sect. 5 we apply the the results
from Sect. 4 to the case of interaction between population of migrants (the
number of migrants may increase by inflow of migrants from the migration
channel) and native population of a country. Several concluding remarks
are summarized in Sect. 6. Appendix A contains results for the class of
statistical distributions that describe the distribution of substance along the
nodes of the channel for the case of infinite length of the studied channel.

2



2 Mathematical formulation of the model

Let us consider a network consisting of nodes connected by edges. We assume
existence of a channel in this network - Fig. 1. The structure of the channel

0 1 2 3 4 5

Figure 1: A network and a channel. The channel consists of 6 nodes labeled
from 0 to 5. The node 0 is the entry node of the channel (the substance
enters the channel through this node). The nodes and the edges of the
channel are marked by bold lines. The other nodes and edges of the network
are represented by rectangles and dashed lines.

and it relation to the network are as follows. Several of the nodes of the
network together with the corresponding edges belong also to the channel.
In Fig. 1 these nodes and edges are marked by bold lines. An exchange of
substance between the channel and the network may happen in the nodes of
the channel (denoted as ”leakage” below). We shall assume that the processes
in the network don’t influence the flow of the substance in the channel. The
”leakage” of the substance from a node of the channel however may influence
the processes in the corresponding node of the network. We shall discuss
such an influence in Sect. 4.

We assume further that the channel consists of a chain of N + 1 nodes
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(labeled from 0 to N) connected by corresponding edges. Each edge connects
two nodes and each node is connected to two edges except for the 0-th node
and N -th node that are connected by one edge. We assume that a substance
can move through the channel. The substance enters the channel through
the 0-th node and moves through the channel. The time is discrete and
consists of equal time intervals. At each time interval the substance in a
node of the channel (we shall call these nodes also cells below in the text) can
participate in one of the following three processes: (a) the substance remains
in the same cell and stays in the channel; (b) the substance moves to the next
node (i.e., the substance moves from the node m to the node m+1); (c) the
substance”leaks” from the channel: this means that the ”leaked” substance
doesn’t belong anymore to the channel. Such substance may spread through
the network. In order to obtain intuition about the process of leaking let us
consider a migration channel (this example will be discussed in more detail
in Sect. 4 and Sect. 5). The network in this case is a network of countries
connected by roads (e.g., the network of European countries). The channel
consists of several countries connected by corresponding roads. There is an
entry country of the channel and there is a last country (sometimes called
the final destination country) of the channel. What moves in this channel are
migrants. They move in the direction from the entry country of the channel
to the final destination country. In a time interval the migrants: (a) may stay
in some of the countries with an intention to move to the next country of the
channel.; (b) may move from one country of the channel to the next country
of the channel; or (c) may ”leak” from the channel for some reason (e.g.,
they may have obtained permission to stay in the corresponding country of
the channel).

Let us formalize mathematically the above considerations. The following
processes can be observed in a node of the studied channel:

• exchange (inflow and outflow) of substance with the previous node of
the channel (for the nodes 1, . . . , N -th of the channel);

• exchange (outflow and inflow) of substance with the next node of the
channel (for the nodes 0, . . . , N − 1 of the channel;

• exchange (inflow and outflow) of substance with the environment of
the network;

• ”leakages”: exchange (outflow and inflow) of substance between the
node of the channel and the the correspondent node of the network .

We consider discrete time tk, k = 0, 1, 2, . . .. Let us denote the amount
of the substance in the i-th node of the channel at the beginning of the
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time interval [tk, tk +∆t] as xi(tk). For the processes happening in this time
interval in the n-th node of the channel we shall use the following notations

• ien(tk) and oen(tk) are the amounts of inflow and outflow of substance
from the environment to the n-th node of the channel (the upper index
e denotes that the quantities are for the environment);

• ocn(tk) is the amount of outflow of substance from the n-th node of the
channel to the (n+1)-th node of the channel (the upper index c denotes
that the quantities are for the channel);

• icn(tk) is the amount of the inflow of substance from the (n + 1) node
of the channel to the n-th node of the channel;

• onn(tk) and inn(tk) are the amounts of outflow and inflow of substance
between the n-th node of the channel and the corresponding node of
the network (the upper index n denotes that the quantities are for the
network).

For the entry node of the channel (the 0-th node) we have exchange of sub-
stance with the environment (inflow and outflow); exchange of substance
with the next node of the channel (inflow and outflow) and ”leakage” of sub-
stance from the channel. Thus the change of the amount of substance in the
0-th node of the channel is described by the relationship

x0(tk+1) = x0(tk) + ie0(tk)− oe0(tk)− oc0(tk) + ic0(tk)− on0 (tk) + in0 (tk) (1)

For the nodes of the channel numbered by i = 1, . . . , N −1 there is exchange
with the environment, ”leakage” to the network and exchange with (i − 1)-
st and (i + 1)-st node of the channel. Thus the change of the amount of
substance in the i-th node of the channel is described by the relationship

xi(tk+1) = xi(tk) + iei (tk)− oei (tk) + oci−1(tk)− ici−1(tk)− oci(tk) + ici(tk)−

oni (tk) + ini (tk), i = 1, . . . , N − 1 (2)

For the last node (the N -th node of the channel) there is exchange with the
environment, ”leakage” to the network and exchange with (N − 1)-st node
of the channel. Thus the change of the amount of substance in the i-th node
of the channel is described by the relationship

xN (tk+1) = xN(tk) + ieN (tk)− oeN (tk) + ocN−1(tk)− icN−1(tk)−

onN(tk) + inN (tk) (3)
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Eqs.(1) - (3) describe the general case of motion of substance along the
channel of the studied network. Below we shall discuss a particular case where
no exchange with the environment is present except for the entry node of the
channel. In addition we shall assume that:

• there is no inflow of substance from the nodes of the network to the
channel.

• there is no outflow of substance from the 0-th node of the channel to
the environment

• there is no inflow of substance from the i-th node of the channel to the
i− 1-th node of the channel, i = 1, . . . , N .

For the particular case described above the system of model equations (1) -
(3) becomes

x0(tk+1) = x0(tk) + ie0(tk)− oc0(tk)− on0 (tk) (4)

xi(tk+1) = xi(tk) + oci−1(tk)− oci(tk)− oni (tk), i = 1, . . . , N − 1 (5)

xN (tk+1) = xN (tk) + ocN−1(tk)− onN (tk) (6)

Below we shall study the following particular cases of the quantities from
the system of equations (4) - (6)

ie0(tk) = σ(tk)x0(tk); oc0(tk) = f0(tk)x0(tk);

on0 (tk) = γ0(tk)x0(tk); oci−1(tk) = fi−1(tk)xi−1(tk);

oci(tk) = fi(tk)xi(tk); oni (tk) = γi(tk)xi(tk);

ocN−1(tk) = fN−1(tk)xN−1(tk); onN (tk) = γN(tk)xN (tk); (7)

For this particular case the system of equation (4) - (6) becomes

x0(tk+1) = x0(tk) + σ(tk)x0(tk)− f0(tk)x0(tk)− γ0(tk)x0(tk) (8)

xi(tk+1) = xi(tk)+fi−1(tk)xi−1(tk)−fi(tk)xi(tk)−γi(tk)xi(tk) i = 1, . . . , N−1
(9)

xN (tk+1) = xN (tk) + fN−1(tk)xN−1(tk)− γN(tk)xN (tk) (10)

We shall study the model equations (8) - (10) in more detail below.
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3 Distributions of substance corresponding to

stationary regime of functioning of the chan-

nel

Below we discuss the model described by Eqs.(8) - (10) for the case when
the parameters of the model are time independent (i.e., when σ(tk) = σ;
αi(tk) = αi, i = 0, . . . , N ; γi(tk) = γi,i = 0, . . . , N , fi(tk) = fi,i = 0, . . . , N ).
In this case the system of model equations becomes

x0(tk+1) = x0(tk) + σx0(tk)− f0x0(tk)− γ0x0(tk) (11)

xi(tk+1) = xi(tk) + fi−1xi−1(tk)− fixi(tk)− γixi(tk) i = 1, . . . , N − 1 (12)

xN (tk+1) = xN (tk) + fN−1xN−1(tk)− γNxN (tk) (13)

In addition we shall consider the stationary state: xi(tk) = x∗

i . This
stationary state occurs when xi(tk+1) = xi(tk) (i.e., there is a motion of
substance through the cells of the channel but the motion happens in such
a way that the amount of the substance in a given cell remains the same in
the course of the time). From the system of equations (11) - (13) we obtain
(i = 1, . . . , N − 1, x∗

0 is a free parameter)

x∗

i = x∗

0

i
∏

j=1

fj−1

fj + γj
; x∗

N = x∗

0

fN−1

γN

N−1
∏

j=1

fj−1

fj + γj
(14)

The total amount of the substance in the channel is

x∗ = x∗

0

[

1 +
N−1
∑

k=1

k
∏

j=1

fj−1

fj + γj
+

fN−1

γN

N−1
∏

j=1

fj−1

fj + γj

]

(15)

We can consider the statistical distribution y∗i = x∗

i /x
∗ of the amount of

substance along the nodes of the channel. y∗i can be considered as probability
values of distribution of a discrete random variable ζ : y∗i = p(ζ = i), i =
1, . . . , N . For this distribution we obtain

y∗0 =
1

[

1 +
N−1
∑

k=1

k
∏

j=1

fj−1

fj+γj
+ fN−1

γN

N−1
∏

j=1

fj−1

fj+γj

]

y∗i =

i
∏

j=1

fj−1

fj+γj

[

1 +
N−1
∑

k=1

k
∏

j=1

fj−1

fj+γj
+ fN−1

γN

N−1
∏

j=1

fj−1

fj+γj

] ; i = 1, . . . , N − 1
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y∗N =

fN−1

γN

N−1
∏

j=1

fj−1

fj+γj

[

1 +
N−1
∑

k=1

k
∏

j=1

fj−1

fj+γj
+ fN−1

γN

N−1
∏

j=1

fj−1

fj+γj

] (16)

Eq.(16) describes a class of statistical distributions (fi and γi are still not
specified). To the best of our knowledge the general form (16) of this class
of distributions was not discussed by other authors. Fig. 2 shows several
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Figure 2: Several examples for distributions from the class of distributions
(16) for a channel consisting of 14 nodes. Figure (a): γi = 0.001, fi =
0.001/(i + 1) + 0.001. Figure (b): γi = 0.001, fi = 0.001(i + 1). Figure
(c) γi = 0.001, fi = 0.0075 − 0.00002i. Figure (d): γi = 0.00041, fi =
0.01− 0.0005(i+ 1).

examples for distributions of the class (16). The form of the distribution can
be standard as in Fig. 2a but there exist another possible form connected
to concentration of substance in the last node of the channel - Figs. 2b,c,d.
Fig.2d shows a an interesting form of the distribution that can arise only
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in channel having finite number of nodes: the probability increases with
increasing number of the node. We shall discuss again the distributions from
Fig. 2 in Sect. 5 where we shall consider the application of the model to
channels of human migration.

We note that the class of distributions (16) has interesting particular
cases that have been discussed in connection with channels of migration of
substance or migration channels of human migration. For and example let
fi = αi + βii, i = 1, . . . , N , αi > 0, βi ≥ 0, σ0 > 0, γi ≥ 0. Then the
stationary amount x∗

i of the substance along the modes of the channel is
given by the relationship

x∗

i =

i
∏

j=1
[αi−j + (i− j)βi−j]

i
∏

j=1
(αj + jβj + γj)

x∗

0, i = 1, . . . , N − 1

x∗

N =

N
∏

j=1
[αN−j + (N − j)βN−j ]

γN
N−1
∏

j=1
(αj + jβj + γj)

x∗

0 (17)

and the statistical distribution connected to this stationary state of function-
ing of the channel is

y∗0 =
1

1 +
N−1
∑

i=1

i
∏

j=1

[αi−j+(i−j)βi−j ]

i
∏

j=1

(αj+jβj+γj)

+

N
∏

j=1

[αN−j+(N−j)βN−j ]

γN

N−1
∏

j=1

(αj+jβj+γj)

y∗i =

i
∏

j=1

[αi−j+(i−j)βi−j ]

i
∏

j=1

(αj+jβj+γj)

1 +
N−1
∑

i=1

i
∏

j=1

[αi−j+(i−j)βi−j ]

i
∏

j=1

(αj+jβj+γj)

+

N
∏

j=1

[αN−j+(N−j)βN−j ]

γN

N−1
∏

j=1

(αj+jβj+γj)

, i = 1, . . . , N − 1

y∗N =

N
∏

j=1

[αN−j+(N−j)βN−j ]

γN

N−1
∏

j=1

(αj+jβj+γj)

1 +
N−1
∑

i=1

i
∏

j=1

[αi−j+(i−j)βi−j ]

i
∏

j=1

(αj+jβj+γj)

+

N
∏

j=1

[αN−j+(N−j)βN−j ]

γN

N−1
∏

j=1

(αj+jβj+γj)

(18)
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The distribution (18) is a generalization, e.g., of the truncated Waring dis-
tribution [79] as well as a generalization of one of distributions discussed in
[80]. We note that the corresponding distribution for the case of channel of
infinite length is a generalization of the Waring distribution and because of
this it contains as particular cases several famous distributions such as Zipf
distribution or Simon-Yule distribution (see Appendix A). The distribution
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(a)
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Figure 3: The distribution (18) for a channel consisting of 14 nodes. All
parameters γi have the same value γi = 0.001 (i = 0, . . . , 13) in all figures - 3a,
3b, 3c, 3d. All parameters αi have the same value αi = 0.001 (i = 0, . . . , 13)
in all figures - 3a, 3b, 3c, 3d. Figures show the changes in the form of the
distribution when the parameter βi is changed. Figure (a): βi = 0.001i.
There is a concentration of the substance in the last node of the channel.
Figure (b): βi = 0. The amount of substance in the second half of the channel
decreases in comparison to Fig. (a). There is no concentration of substance
in the last node of the channel. Figure (c): βi = −0.00002i. Amount of
substance in the second half of the channel decreases in comparison to the
case from Fig. (b). Figure (d): βi = 0.01i. There is a large concentration of
substance in the last node of the channel.
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(18) is visualized in Fig. 3 for fixed values of the parameters αi and γi and
for different values of the parameters βi. As we can see the values of the
parameters βi influence the situation about the amount of the substance in
the second half of the channel. Specific feature of the discussed distributions
is the relatively large value of the probability (large value of the amount of
substance) in the last node of the channel - Fig. 3a. This probability can in-
crease if the values of βi are increased - Fig. 3d. The probability can decrease
when the values of βi are set to 0 or become negative - Figs. 3b, 3c. Then
the tendency is for concentration of substance in the first half of the chan-
nel. We shall discuss the distribution (18) below in the text as it describes
an interesting situation for the case of channel of human migration, namely
the situation where the attractiveness of the countries from the second half
of the channel is larger (positive values of βi) (or smaller - negative values
of βi) with respect to the attractiveness of the countries from the first half
of the channel. Let us note that more information about the corresponding
distribution for the case of infinite channel can be obtained from Appendix
A.

4 On interaction between substances in a node

that belongs to the channel and to the net-

work

As we have seen above a part of the substance may leave the channel as an
outflow (”leakage”) from the channel to the corresponding node of the net-
work. Let us study the following problem. We consider a node of the network
that contains some amount A(tk) of substance A and obtains (through its
connection with the channel) amount c(tk) of the substance B in the time
interval between tk and tk+1. Let us assume presence of two kinds of pro-
cesses in the discussed node. These processes can: (i) lead to change of the
amount of substances A and B without conversion of A to B and B to A,
and (ii) lead to changes in the amount of the substances A to B by means of
conversion of A to B and B to A. The model system for the change of the
amount of substances in the discussed node will be

A(tk+1) = A(tk) + p(tk)A(tk) + q(tk)A(tk)B(tk),

B(tk+1) = B(tk) + c(tk) + r(tk)B(tk)− q(tk)A(tk)B(tk), (19)

where p(tk) is the parameter that describes the changes in the amount of the
substance A as a result of processes that do not lead to conversion between A
and B; r(tk) is the parameter that describes the changes in the amount of the
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substance B as a result of processes that do not lead to conversion between
A and B; q(tk) is parameter that describes the changes as a consequence of
the conversion between A and B. The stationary state of the system (19)
(A(tk+1) = A(tk); B(tk+1) = B(tk)) is

A∗(tk) =
r(tk)p(tk)− c(tk)q(tk)

p(tk)q(tk)
; B∗(tk) = −

p(tk)

q(tk)
(20)

Let us first assume that the parameters c,p,q,r don’t depend on time. Fig.
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Figure 4: Influence of parameter q for the case of constant values of the
parameters in Eqs. (19). Solid line: amount of substance A. Dashed line:
amount of substance B. Figure (a): q = 7 · 10−9. Figure (b): q = 4 · 10−9.
Figure (c): q = 2 ·10−9. The values of the other parameters are: p = 5 ·10−4,
r = 2 · 10−2, c = 5 · 103. The initial conditions are: A(0) = 106, B(0) = 105.

4 shows the influence of the parameter q of the amounts of the substances
and describes Scenario No.1: Limitation of the amount of substance B by

conversion. Larger values of q mean that larger amount of the substance B
is converted to substance A. The other parameters are chosen in such a way
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that the rate of increase of substance B is larger than the rate of increase of
the substance A and in addition the substance B increases also by means of
some substance that arrives at the node from the the channel. Despite the
favorable conditions for increase of the amount of substance B the presence of
possibility for conversion of B to A leads to a result that B decreases to very
low values after some time - Fig. 4a. Even if the conversion rate decreases
and even if the amount of substance B becomes larger than the amount of
substance A (Fig. 4b) the final result may be the same. Further decreasing
of the value of q may lead to large time of dominance of the substance B in
the node of the network - Fig. 4c but the final result can be the same as in
the other two figures: because of the conversion A prevails and B is reduced
to negligible amounts. Additional decreasing of the value of q can however
lead to change of the situation. At some critical low value of q the conversion
can’t compensate anymore the rate of increase of B and the amount of B
can exceed A. This dominance of the amount of substance B can last as long
as the parameters of the system in the studied node of the system remain
unchanged. Such a situation can be easily observed if we just put q = 0 in
Eqs.(19). There is no more coupling of the amounts of the substances A and
B and because of its larger rate of increasing it is just a matter of time for
the amount of substance B to exceed the amount of substance A. All this
shows that the mechanism of limitation by conversion has its limits.

The combination of appropriate values of parameters can lead to inter-
esting evolution of the amounts of the the substances A and B in the studied
node of the network. Fig. 5 shows the influence of negative rate of increase of
the substance A compensated by positive rate of conversion from substance
B to substance A. The scenario here is Scenario No.2: Cyclic behavior of

the amounts of the substance A and B. The value of the rate of increase
r of substance B increases from Fig. 5a to Fig. 5c. The result is a cyclic
evolution of the amounts of substances A and B and the period of the cycle
is influenced by the parameter r: an increase of r leads to a decrease of the
value of the period.

The parameter c (it regulates the inflow of substance B from the the
channel to the studied node of the network) can have considerable influence
on the dynamics of the amounts of substances A and B in the studied node
of the network. One scenario: Scenario No.3: Dominance through inflow and

conversion of substance connected to such a large influence is shown in Fig.6.
Fig. 6a shows the situation in presence of a negligible amount of substance B
coming from the channel. The inflow of substance B in not felt and the main
processes that determine the dynamics of the substances in the node are the
conversion of B to A, the decrease of A (e.g., because of its use in some
process) and the increase of the amount of B due to processes happening
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Figure 5: Interplay of conversion and negative rate p of increase of the
substance A with the influence of increasing positive rate r of increase of the
amount of the substance B. Solid line: amount of substance A. Dashed line:
amount of substance B. Initial conditions are: A(0) = 106, B(0) = 2 · 105.
The values of the parameters are as follows. p = −0.05, q = 2·10−8, c = 5000.
Figure (a): r = 0.02. Figure (b): r = 0.1. Figure (c): r = 0.2. The rate of
(non-conversion) increase of the amount of substance B influences the cyclic
behavior of the substances A and B.

inside the studied node of the network. As we can see a cyclic behavior of
the amounts of substances occurs in the studied node. Let us now begin
to increase the parameter c, i.e., the amount of substance B per unit time
increases that flows in the studied node from the channel. The characteristics
of the cyclic behavior of the amounts of the substances in the studied node
change. In Fig 6b the value of c is 750 time larger that the value of c for
Fig 6a. The period of the observed cycle decreases. The explanation is that
the fast increasing of the substance B activates the processes that convert
substance B to substance A and these processes are much more intensive in
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Figure 6: Influence of increasing value of parameter c on the dynamics of
the amounts of substances A and B in the studied node of the network .
Interplay of conversion and negative rate of increase of the substance A with
the influence of increasing positive rate of increase of the amount of the
substance B. Solid line: amount of substance A. Dashed line: amount of
substance B. Initial conditions are: A(0) = 106, B(0) = 2 · 105. The values
of the parameters are as follows. p = −0.05, q = 2 · 10−8, r = 0.1. Figure
(a): c = 20. Figure (b): c = 15, 000. Figure (c): c = 50, 000.

comparison to the case shown in Fig. 6a. Further increasing of the value
of c (further increasing of the amount of inflow of substance B from the
channel to the node of the network) leads to vanishing of the cyclic behavior
- Figure 6c. Instead of this a stationary state occurs where the amount of
the substances A and B in the studied node have constant values.

The last situation we shall discuss for the case of constant values of the
parameters in the model equations is the situation of positive p (the pro-
cesses in the node of the network lead to increasing amount of the substance
A), negative r (the processes in the node of the network lead to decreasing
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Figure 7: Influence of negative value of parameter r and negative value of
parameter q on the dynamics of the amounts of substance in the studied node
of the network. Solid line: amount of substance A. Dashed line: amount of
substance B. Initial conditions are: A(0) = 106, B(0) = 2 · 105. The values
of the parameters are as follows. p = 0.005, q = −10−8, c = 100. Figure (a):
r = −0.001. Figure (b): r = −0.004. Figure (c): r = −0.02.

amount of the substance B) and negative values of q (processes happen in
the network node that lead to conversion of substance A to substance B)
- Scenario No.4: Conversion can’t compensate for decreasing. Fig.7 shows
the influence of decreasing values of the rate r. Large values of r lead to
dominance of the substance B: despite the smaller value of this substance
at the node of the network in the initial moment of time the amount of the
substance B increases fast because of the conversion and then remains larger
that the amount of the substance A (and this is despite the fact that the rate
p is positive). The decreasing of the value of the rate r leads to appearing
of cyclic behavior and there is an interval of values of the rate r where the
dominance is exchanged: for some time interval the amount of the substance
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B is larger than the amount of the substance A and in the next time interval
the amount of the substance A is larger that the amount of the substance B.
If the value of the ratio r decreases further then the cyclic behavior in the
node may persist for the long time but the substance A remains dominant.
At some value of r the cyclic behavior vanishes. The vanishing may take
some time (as in the case of Fig. 6c). or may be faster if the value of r is
small enough.
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Figure 8: Evolution of the system for the case of coefficient p(tk) that
decreases with increasing time. On all figures p(tk) = 0.01− 0.00003tk. The
other parameters of the system (19) are: q = 2 · 10−8, c = 5000. Parameter
r has different vales as follows. Figure (a): r = 0.02. Figure (b): r = 0.1.
Figure (c): r = 0.15. Figure (d): r = 0.2 The initial values for the amounts
of the substance are: A(0) = 106, B(0) = 2 · 105.

Let us now discuss Eqs.(19) for some cases when the participating param-
eters change their values in the course of the time. If Figs. 8 and 9 we present
results for such situation in which the parameter p decreases slowly with the
time for some finite interval of time. This decrease is the same for Figs. 8a
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- 8d. In addition we have different values of parameter r: the smallest value
of r is for the situation shown in Fig.8a and the largest value of r is for the
situation shown in Fig. 8d. Two oscillation regimes are observed. Let us call
them regime of smaller amplitude oscillations and regime of larger amplitude
oscillations. The regime of smaller amplitude oscillations is shown in Fig.
8a. The specific feature of this regime is that the amount of the substance
A oscillates in time around a fixed value whereas the amount of the sub-
stance B oscillates in time around a line characterizing a trend of increase
of the value of substance B. The increasing value of parameter r decreases
the interval of time in which the substances from the network node change
their amount in the regime of smaller amplitude oscillations. This regime
is followed by a regime of larger amplitude oscillations - Fig. 8b. Further
increase of the value of r leads to an increase of the time in which the system
of two substances is in the regime of larger amplitude oscillations. Finally
the increase of the value of r above some threshold value leads to vanishing
of the oscillation regime for the values of the substances - Fig. 8d.

Figure 9 is connected again to the situation of slowly decreasing values
of the parameter p with increasing time. In Figs. 9a - 9d this decrease
is the same. The differences among the figures 9a - 9d are because of the
differences in the values of the parameter q. The smallest value of q is for
Fig. 9a and the largest value of q is for Fig. 9d. The values of parameters
in Fig. 9a lead to a non-oscillation regime for the both substances in the
cell of the network. The increase of conversion rate q leads to arising of a
regime of larger oscillations - Fig. 9b and with further increasing value of
q one observes regime of smaller amplitude oscillation of the amount of the
substances that is followed by a regime of larger amplitude oscillations - Fig.
9c. The increasing of the value of parameter q above a threshold value leads
to vanishing of the oscillation regime. Thus for the case of slowly decreasing
of the value of p in the time the effect of the increasing q is opposite to the
effect of increasing r.

5 Application of obtained results to the case

of motion of migrants in a migration chan-

nel

Let us now consider the models discussed above from the point of view of:
(i) dynamics of motion of migrants in a migration channel and (ii) dynamics
of migrant population B and native population A in a corresponding node
(country) of the network of countries. Let us remember that from the point of
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Figure 9: Evolution of the system for the case of coefficient p(tk) that
decreases with increasing time. On all figures p(tk) = 0.011−0.00003tk. The
other parameters of the system (19) are: r = 0.15, c = 5000. Parameter q has
different vales as follows. Figure (a): q = 2 · 10−8 . Figure (b): q = 3 · 10−8.
Figure (c): q = 4 · 10−8. Figure (d): q = 5 · 10−8. The initial values for the
amounts of the substance are: A(0) = 106, B(0) = 2 · 105.

view of modeling of migration flows we shall consider the channel described in
the previous sections as a chain of countries. Migrants enter the channel from
the entry country and may move through the channel to its last node (the last
country called final destination country). In the general case migrants may
move in the both directions: towards the final destination country or towards
the entry country of the channel. The ”leakage” in the channel is connected
to change of the status of some migrants, e.g., they may obtain permission
to stay in the corresponding country. This leakage may lead to situation in
which one may observe a presence of native population A and population of
migrants B in a country. These populations have growth rates (p and r).
In general p and r depend on the time. In addition a process of integration
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may exist: the migrants of the population B become native citizens in the
course of the time (case of positive values of the parameter q). q may have
also non-positive values, i.e., the migrants are not integrated and they may
start to convert the native population that accepts the characteristics of the
migrant population. Then instead of integration one may observe absorption
of the native population by the population of migrants.

Let us first discuss Figs. 2 and 3 from the point of view of migration dy-
namics. We note that for the case of migration channel and for distributions
where fi = αi + βii, the parameters αi characterize permeability of the the
borders between the i-th and i+1-st country of the channel. The parameters
βi characterize the attractiveness of the i-th country of the channel and the
parameters γi characterize the part of migrants that obtain permission to
stay in the i-th country of the channel. For the cases visualized in Fig. 2
the ”leakage” parameter γi has the same values for all four figures and for all
countries of the channel. For the situation corresponding to Fig. 2a the per-
meability of the borders decrease with increasing i and the attractiveness of
the countries of the channel is the same. The form of the distribution (16) is
similar to the standard form of such distribution for the case of infinite chan-
nel (see Appendix A). Specific effect connected to the finite channel arises in
Fig. 2b. The situation there is characterized by increasing permeability of
the borders between the countries of the channel with increasing value of i
and by lack of attractiveness of the countries of the channel (βi = 0). In this
case the probability connected with the final destination country is larger
than the probabilities connected to countries of the channel with smaller
value of i. This corresponds to concentration of migrants in the final desti-
nation country of the channel. Let us call this effect CP effects - effect of
Concentration because of Permeability of the borders. Fig. 2c shows that
CP effect can exist even if the attractiveness of the countries decreases with
increasing value of i. Fig. 2d shows that CP effect can lead to unusual form
of the distribution of migrants where the probability increases with increas-
ing i (this is opposite to the usual cases shown in Fig. 2a where probability
decreases with increasing value of i).

Fig. 3 demonstrates another kind of effect we shall call CA effect - effect
of Concentration because of Attractiveness. In all figures 3a, 3b, 3c, and
3d the value of the ”leakage parameter” γi is the same for all countries of
the channel. The same is the situation with the value of the parameter αi.
From Figs. 3a and 3b we observe the CA effect - if we set the attractiveness
parameter βi to 0 then the large probability for the last country of the channel
vanishes - Fig. 3b. This clearly shows the existence of CA effect. Thus we
have two effects that influence the number of the migrants in the last country
of the channel (the final destination country) - CP effect and CA effect. Fig.
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3d shows that CA effect can be quite large if the parameter β has large
enough positive vales.

Figures 4 - 9 describe the dynamics of native and migrant populations in
a country in presence of inflow of migrants from a migration channel. We
note that this situation may become more actual in the course of years as the
human population of Earth still increases and there are numerous military
conflicts accompanied by poverty in many countries. In addition the climate
changes may lead to large additional migration (”climate” migration). Above
we have described 4 scenarios and let us now discuss these scenarios from
the point of view of dynamics of human migration. Fig. 4 shows the effect
of integration of the migrants in the corresponding society. If the integration
politics is consequent it can lead to increase of the native population in
the course of the time even if the rate of increase of the native population
(accounted by the parameter p) are much smaller than the rate of increase
of the migrant population (accounted by the parameter r). Of course the
capabilities of integration are limited. If the inflow of migrants is large and
the integration is not effective it is a matter of time for the situation to
happen in which the number of non-integrated migrants will be larger and
then much larger that the number of people from the native population.

Fig. 5 describes another possible scenario connected to a cyclic behavior
of the number of individuals from native and migrant populations. This sit-
uation may arise when the rate of increase of the native population (births
minus deaths) is negative and the rate of conversion is positive (a number
of migrants are integrated and become part of the native population). The
period of the cycle depends on the rate r of increase of the population of
migrants. With increase of r the period of domination of migrants popula-
tion (the time in which the number of migrants is large than the number of
individuals from the native population) decreases . What we observe is a
possibility of large intervals of time characterized by dominance of the mi-
grant population. It may happen that the sign of the parameter q is reversed
at some moment of such an interval. Then the native population of the coun-
try may become extinct. Another scenario is shown in Fig. 6. Here despite
(i) the increasing inflow of migrants from the migration channel and (ii) a
positive values of the parameter r, stable dominance of the native population
exists. The reason for this is the integration politics leading to positive value
of the parameter p.

An interesting effect of negative value of the parameter q (case when
migrants integrate the native population) and negative value of parameter
r (the rate of increasing of migrants (births minus deaths) is negative) is
shown in Fig. 7. When r has small negative values the interval of time of
domination of the migrant population can be quite large - Fig. 7a. When
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parameter r decreases however the native population can become dominant
despite the situation with the integration and a cyclic behavior occurs for
the numbers of populations of migrants and native individuals.

The time-dependence of the parameters of the model of native and mi-
grant populations leads to more complicated dynamics. Two possible sce-
narios are shown in Figs. 8 and 9. We note the following: there is a specific
diagonal in all cases of Figs. 8 and 9. This diagonal starts from the bottom
left corner of the corresponding figure and ends at the top right corner of the
figure. If the phase trajectory is below this diagonal then there is a domi-
nance of the native population (the number of individuals from the native
population is larger than the number of individuals of the migrants popula-
tion). If the phase trajectory is above this diagonal then the population of
migrants is dominant. In Fig. 8a we observe a regime of small oscillations
that happens in the area of dominance of migrants population. The increase
of the value of parameter r leads to substitution of this regime by regime of
large amplitude oscillations - Figs. 8b, 8c. Finally a regime of dominance of
population A occurs - Fig. 8d. Fig. 9 shows several possible situations for
the case when the rate p(tk) of increasing of the native population decreases
slowly and in addition the rate of increasing of the migrant population in-
creases from Fig. 9a to Fig. 9d. There is a constant rate of conversion of
migrant population to native population. The final results from this situation
may vary: domination of the native population - Fig. 9a; large oscillations
of the number of individuals with exchange of domination - Fig. 9b; small
oscillations with dominance of migrant population - Fig. 9c; final domination
of the native population - fig. 9d.

6 Concluding remarks

In this article we discuss a discrete-time model of motion of substance in
a finite-size channel of a network. The mathematical form of the general
model is given by Eqs. (1) - (3). The particular case where the exchange of
substance between the channel and the environment happens only through
first node of the channel is studied in more detail. For the stationary regime
of motion of a substance through the channel we obtain a new class of sta-
tistical distributions that contain as particular case the truncated Waring
distribution. Further we study the dynamics of two substances in a node of
network that has access to the channel and because of this some amount of
substance leaks from the channel to the studied node of the network. The
second substance is specific for the node of the network and can interact with
the substance that comes from the channel. Four possible scenarios for the
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dynamics of the amounts of substance are described. The obtained results
for the general case of motion of substance through the channel are applied
to the case of motion of migrants in a migration channel that is positioned in
a network of countries. Finally in Appendix A we obtain the class of statis-
tical distributions for the case of stationary motion of substance in a channel
of infinite length. These distributions contain as particular cases the famous
long tail Waring distribution, Yule-Simon distribution and Zipf distribution.

A Statistical distribution of the substance for

the case of channel of network containing

infinite number of nodes

Let us consider the system of model equations for the case of infinite channel
that corresponds to the system of model equations (11)-(13) for the case of
finite channel. This system is

x0(tk+1) = x0(tk) + σx0(tk)− f0x0(tk)− γ0x0(tk) (21)

xi(tk+1) = xi(tk) + fi−1xi−1(tk)− fixi(tk)− γixi(tk) i = 1, 2, . . . (22)

Let us now consider a stationary state: xi(tk) = x∗

i . This stationary state
occurs when xi(tk+1) = xi(tk). From the system of equations (21), (22) we
obtain (i = 1, 2 . . ., x∗

0 is a free parameter)

x∗

i = x∗

0

i
∏

j=1

fj−1

fj + γj
(23)

The total amount of the substance in the channel is

x∗ = x∗

0

[

1 +
∞
∑

k=1

k
∏

j=1

fj−1

fj + γj

]

(24)

We can consider the statistical distribution of the amount of substance along
the nodes of the channel y∗i = x∗

i /x
∗. For this distribution we obtain

y∗0 =
1

[

1 +
∞
∑

k=1

k
∏

j=1

fj−1

fj+γj

]

y∗i =

i
∏

j=1

fj−1

fj+γj

[

1 +
∞
∑

k=1

k
∏

j=1

fj−1

fj+γj

] ; i = 1, 2, . . . (25)
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Eq.(25) describes a class of statistical distributions (fi and γi are still not
specified). To the best of our knowledge this general form of the class of
distributions was not discussed by other authors. Fig. 10 shows that the
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Figure 10: The distribution (25) . fi is selected to be of the kind: fi = αi+iβi

where αi and βi in general can depend on i. Figure (a): fi = 0.001/(i +
1) + 0.001, γi = 0.0001. The effect of decreasing αi with increasing i is
shown. Figure (b): fi = 0.001 + 0.001i2, γi = 0.001. The effect of increasing
βi with increasing i is shown. Figure (c): fi = 0.001/(i + 1) + 0.0015,
γi = 0.001(i + 1)2. The effect of decreasing αi and increasing γi is shown.
Figure (d): fi = 0.001/((i + 1)2) + 0.0001, γi = 0.0001. The effect of fast
decreasing αi with increasing i is shown.

shapes of the distribution depends on the form of fi and γi. fi is of the kind
fi = αi+iβi. This can be interpreted as αi accounting for the permeability of
the edge between i-th and i+1-th node of the channel and βi accounting for
the ”attractiveness” of the i-th node for the substance. Fig.10a shows that
the decreasing permeability of edges of the channel may lead to increase of the
amount of substance around the entry node and then the amount of substance
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decreases smoothly in the depth of the channel. When the permeability
decreases very fast - Fig. 10d then the substance may concentrate in several
nodes close to the entry node of the channel. Figure. 10b shows the influence
of increasing ” attractiveness” on the shape of the distribution: we observe
the form of a standard long tail distribution. Figure. 10c shown the effect of
decreasing permeability and increasing γi which accounts for the ”leakage”
of substance in the corresponding node of the channel.

We note that the class of distributions (25) has interesting particular
cases that have been discussed in connection with channels of migration of
substance or migration channels of human migration. For and example let
us consider the case where αi and βi don’t depend on i, fi = αi + βii,
i = 1, . . . , N , αi > 0, βi ≥ 0, σ0 > 0, γi ≥ 0 (distributions of this kind have
been discussed in [78] - [?]) . For this case the stationary distribution x∗

i of
the substance along the modes of the channel is given by the relationship

x∗

i =

i
∏

j=1
[αi−j + (i− j)βi−j ]

i
∏

j=1
(αj + jβj + γj)

x∗

0, i = 1, 2, . . .

(26)

and the statistical distribution connected to this stationary state of function-
ing of the channel is

y∗0 =
1

1 +
∞
∑

i=1

i
∏

j=1

[αi−j+(i−j)βi−j ]

i
∏

j=1

(αj+jβj+γj)

y∗i =

i
∏

j=1

[αi−j+(i−j)βi−j ]

i
∏

j=1

(αj+jβj+γj)

1 +
∞
∑

i=1

i
∏

j=1

[αi−j+(i−j)βi−j ]

i
∏

j=1

(αj+jβj+γj)

, i = 1, 2, . . . (27)

The distribution (27) is a generalization, e.g., of the Waring distribution [79]
as well as a generalization of one of distributions discussed in [80]. Several
forms connected to this distribution are shown in Fig.11. As we can see
the changes in the values of the parameters βi influence the form of the
distribution. From the point of view of application of theory to the case of
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Figure 11: The distribution (27) for a channel of infinite length. All param-
eters γi have the same value γi = 0.0001 (i = 0, . . . ,) in all figures - 2a, 2b,
2c, 2d. All parameters αi have the same value αi = 0.001 (i = 0, . . . ,) in all
figures - 2a, 2b, 2c, 2d. Figures show the changes in the form of the distribu-
tion when the parameter βi is changed. Figure (a): βi = 0.001i. Note that
in the case of infinite channel the effect of concentration of the substance in
the last node of the channel is missing. Figure (b): βi = 0. The amount of
substance in the nodes of the network decreases smoothly from node to node
of the channel. Figure (c): βi = 0.0015i. βi are larger in comparison to Fig
2a. The effect of these larger values of βi is concentration of substance in the
entry node of the channel. This effect is seen also in Figure (d) where the
values of βi are even larger: βi = 0.0025i.

channels of human migration parameters βi account for the attractiveness
of the corresponding country of the channel. When all parameters βi = 0
(equally attractive countries) then the values of the distribution decrease
slowly with increasing i. For the case of nonzero values of βi we observe
increasing of the rate of migrants in the entry country of the channel. This
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effect is connected with the infinite size of the channel. If the chanel has a
finite size then a concentration of substance in the last node of the channel
could be observed.
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