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Abstract

Metal oxides have become an important component in solar cells, (photo)catalysts,
and (opto)electronic devices. Depending on the application conductivity is often ei-
ther required or should be suppressed for certain types of charge carriers. For both
scenarios a detailed theoretical understanding is necessary in order to predict new
functional materials. One important factor limiting the conductivity is the interaction
of the charge carrier with polar phonon modes. Such a phonon-dressed charge carrier
is called polaron. The strength of the electron-phonon (el-ph) interaction determines
the localization of the polaron, which in turn defines its characteristic temperature de-
pendence for the charge-carrier mobility and ensuing properties. We focus on materi-
als with strong el-ph coupling, where small polarons are formed, i.e., the localization
length is in the order of the unit cell size, and consequently mobility is reduced.

Density-functional theory is often used for calculating properties of polarons. How-
ever, there are two challenges that have not been addressed systematically so far: sen-
sitivity of the calculated properties to the errors in exchange-correlation (XC) treat-
ment and finite-size effects in supercell calculations. In this work, we develop an
approach that addresses these challenges. The polaron properties are obtained using
a modified neutral potential-energy surface (PES). Using the hybrid HSE functional
and considering the whole range 0 < o < 1 of exact exchange, we show that the mod-
ified PES model significantly reduces the dependence of the polaron energy level and
binding energy on the XC functional. Based on Pekar’s potential for the long-range
el-ph coupling, we derive the proper elastic long-range behavior of the polaron and
a finite-size correction that allows to obtain the polaron properties in the dilute limit.
These findings are proofed by an extensively test for rock salt MgO and rutile TiO,
using the all-electron, full-potential code package for material science FHI-aims.

Finally, the approach is used to investigate the influence of the crystal structure on
the polaron properties for rutile and anatase TiO», as well as for the monoclinic 3- and
orthorhombic k-phase of Ga;O3. While in rutile TiO; only small electron polarons are
stable, only small hole polarons are found in anatase. Further, small hole polarons exist
in both Ga;O3 polymorphs but have significantly different binding energies. Thus, we
conclude that growing crystals of the same material but with different structure can
be used to manipulate conductivity and charge-carrier mobility.






Zusammenfassung

Wichtige Bestandteile in Solarzellen, (Photo-)Katalysatoren, und (opto-)elektronischen
Geradten werden mittlerweile aus Metalloxiden hergestellt. Je nach Anwendungsge-
biet kann die Leitfdhigkeit im Metalloxid fiir bestimmte Typen von Ladungstragern
entweder erwiinscht oder unerwiinscht sein. Fiir beide Szenarien ist ein genaues
theoretisches Verstindnis notwendig, um neue funktionelle Materialien vorhersagen
zu konnen. Ein Faktor, der die Leitfdhigkeit limitiert, ist die Wechselwirkung der
Ladungstrager mit polaren Phononenmoden. Dabei wird das resultierende Quasi-
teilchen als Polaron bezeichnet. Die Starke der Elektron-Phonon-Wechselwirkung bes-
timmt die Starke der Lokalisierung des Polarons, welche wiederum die Charakteris-
tik der Temperaturabhingigkeit der Ladungstragermobliltit und darauf aufbauende
Eigenschaften definiert. Wir fokussieren uns auf Materialien mit starker Elektron-
Phonon-Kopplung, durch die sich kleine Polaronen bilden, d.h. sie lokalisieren in der
Groflenordnung der Elementarzelle. Infolgedessen wird die Mobilitdt reduziert.

Die Dichtefunktionaltheorie wird héufig fiir die Berechnung von Polaroneneigen-
schaften verwendet. Jedoch gibt es hierbei zwei Schwierigkeiten, welche noch nicht
hinreichend systematisch untersucht wurden: Die Sensitivitdt der berechneten Eigen-
schaften in Abhédngigkeit der Fehler im Austausch-Korrelations (XC)-Funktional und
der Effekt der endlichen Grofse der fiir die Simulation verwendeten Superzelle. In
dieser Arbeit entwickeln wir eine Methode, die beide Probleme behandelt. Die Po-
laroneneigenschaften werden auf einer modifizierten neutralen Potentialoberfliche
(PES) berechnet. Unter Verwendung des hybriden HSE-Funktional und der Bertick-
sichtigung des gesamten Bereiches 0 < o < 1 fiir den Anteil der exakten Austausch-
energie zeigen wir, dass das modifizierte PES-Modell deutlich die Abhéngigkeit des
Polaronenergielevels und der Polaronbindungsenergie vom XC-Funktional reduziert.
Basierend auf dem Potential der Elektron-Phonon-Kopplung von Pekar leiten wir das
korrekte elastische langreichweitige Verhalten des Polarons und darauf aufbauend
eine Korrektur fiir die Reduzierung des Einflusses der endlichen Superzellgrofle ab.
Dies Erkenntnisse wurden durch ausgiebige Tests an Steinsalz MgO und Rutil TiO,
mit dem FHI-aims Softwarepaket tiberpriift.

Anschliefilend wird die oben beschriebene Methode zur Untersuchung des Ein-
flusses der Kristallstruktur auf die Bildung von Polaronen in Rutil und Anatas TiO,
und in der monoklinischen - und orthorhombischen x-Phase von Ga;O3 angewen-
det. Wihrend in Rutil nur kleine Elektronpolaronen stabil sind, finden wir in Anatas
nur stabile Lochpolaronen. Hingegen existieren in beiden Phasen von Ga;O3 nur sta-
bile Lochpolaronen, jedoch mit deutlich unterschiedlichen Bindungsenergien. Dem-
nach konnen durch das Ziichten von Kristallen desselben Materials mit unterschied-
lichen Strukturen Eigenschaften wie Leitfahigkeit und Mobilitdt der Ladungstrager
beeinflusst werden.






vii

Acknowledgements

This thesis is the result of my research during a four years period at the Fritz Haber
Institute (FHI) in Berlin and I have to admit that this time as PhD student was one
of the best I have had so far. The project about polarons was brought into being by
my supervisor Matthias Scheffler, head of the theory department. I am truly grateful
to him for giving me this opportunity as well as for many beautiful conferences and
all the resources and knowledge available at the FHI. However, the outcome of my
work would have been less successful without the help of my group leader Sergey
Levchenko. Spending uncountable hours on scientific discussions and correcting my
wording and writing he did help so much to clarify my thoughts and to improve my
scientific writing. Moreover, I also benefited from the excellent thesis of my prede-
cessor, Norina Richter, underlining the great work you, Sergey, are doing as a group
leader. For my first paper written at the FHI and main part of this thesis I am grate-
ful for the help of Patrick Rinke for his suggestions, thoughts, and improvements.
Additionally, special thanks to Honghui Shang and Christian Carbogno, whose sug-
gestions and discussions improved my understanding about polarons and electron-
phonon coupling at a very early stage of my PhD time. I also would like to thank
the people from the Leibnniz ScienceCampus GraFOx giving me the opportunity to
interact with experimentalists and to discuss the relevance of polarons in experiments.

Next, I would like to thank the people who shared the office T1.23 with me for this
period. In the first place this is Saswata Bhattacharya who helped me to get started
with FHI-aims. The last two years I thankfully could share T1.23 with Henrik Kowal-
ski and Maja Lenz making the office to a harmonic place full of many useful dis-
cussions, funny stories, mutual help, and inappropriate comments. Of course, there
are much more people I would like to thank: Bjorn Bieniek, Franz Knuth, Markus
Schneider, Arvid Thrig, Aliaksei Mazheika, Christopher Sutton, Florian Knoop, Niklas
Menzel, Majid Mortazavi, Carsten Baldauf, and many more for their open ears, fruit-
ful discussions and entertaining after-conference and -work-shop hours. Thanks to all
the people, who are keeping the FHI theory department running and who helped me
with so many things, especially Hanna, Julia, Steffen, and Birgit.

As life is a succession of events and any subsequent event is the consequence of
previous ones this work did benefit — directly or indirectly — from every single moment
of my life as well, which is why I am grateful for all the help, support, and inspiration
I experienced from my friends and family accompanying me through my life. In the
tirst place these are my parents, Sibylle and Rainer, as well as my grandparents, who
did make everything possible for me. This is my brother Lukas, who enriched my life
from the very beginning. In addition many thanks to my badminton team and friends
for giving me the needed diversion for relaxation.

To Lena, thank you so much for all of your help, motivation, patience, listening,
and understanding. You made everything seem a lot easier.

June 2018
Sebastian Kokott



viii



Contents

Abstract

Acknowledgements

Introduction

1 Ab initio concepts for electrons, phonons, and their interactions

1.1
1.2
1.3
1.4

1.5
1.6
1.7

The crystallinesolid . . . .. ......... ... ... ... .......
The many-body problem . . . . . ... ...... ... ... ... .....
Adiabatic approximations . . . . ... ... L Lo L L oL
Density-functional theory . . . ... ... ... .. .. ... ....
141 Fundamentals . . .. ... ... ... .. ... ... ... . . ...
142 The Kohn-Shamscheme . . . .. ... ................
1.4.3 The physical meaning of the KSorbitals . . . . .. ... ......
144 The exchange-correlation functional . . . ... ... ... ... ..

Local-density approximations . . . . . .. ... .. .........

Generalized gradient approximations . . . . ... ... ... ...

Hybrid density functionals . . . ... ................
Numeric electronic-structure calculations with FHI-aims . . . . ... ..
The harmonic approximation and phonons . . . . .. ... ... .....
The electron-phonon interaction and polarons . . . . ... ... ... ..
1.7.1 The electron-phonon interaction . . .. ... ............
1.7.2 The polaron and model systems . . . . ... ... .........

2 Polarons and the DFT supercell approach

2.1
22

23

Elastic long-range behavior . . . ... ... .. ... ..... .. .....
The polaroninasupercell . . ... ... ... ....... ... ....
221 Thecharged supercell . ... ... ... .. ... . ... . .....
222 Theneutralsupercell . . . . .. ... ... ... .......

The new approach for simulating small polarons using DFT . . .
The adiabatic PES of the polaron . . . . . ... ...............

3 Small polarons in polymorphs of TiO; and Ga, 03

3.1
3.2

Rutile and anatase TiO, . . . . . . . . . . .. .. . . ... ... ..
The 8- and k—phaseof Ga;O3 . . . . ... ... .. ... ... .....

4 Conclusions

iX

iii

vii



5 Outlook 83

A Homogeneous electron gas 87

A1 Non-interactingelectrons . . . ... .. ... .. ... ....... ..., 87

A.2 The Hartree-Fock approximation forthe HEG. . . . . .. ... ... ... 88

A.21 FullyinteractingHEG . .. ... .. ... ..... .. ... .... 89

B The Freysoldt et al. correction scheme 91

C Pekar’s polaron and its relation to KS eigenstates 93

C.1 Pekar’s1:2:3:4theorem . . . ... ... ... .. ... . ... ... ... . 95

D The electronic properties of rocksalt MgO 97

D.1 Theelectronicstructure. . . . . .. ... .. ... ... ... .. .. 97
D.2 The high-frequency dielectric constants for

functionals including exactexchange . . . . . ... ... ... .. ... .. 98

E Convergence tests for the polaron in MgO 99

E.1 Comparing light and tight settings in FHI-aims . . . . .. ... ... ... 99

E.2 Geometry optimizationwithPBE . . . . ... ... ... ... ... .. 99

E.3 Supercell convergence of the polaron geometry . . . . . .. ... ... .. 100

E.4 Dependence of the polaron radius on the fraction of exact exchange . . . 102

F Properties of rutile and anatase TiO; 103

E1l RutileTiOp . . .. ... o 103

E2 AnataseTiOy . . . . . . . . . . e e 105

G Properties of the 3- and k—phase of Gaz03 107

G.1 B—Ga203 ..................................... 107

G.2 I{—GaQO;), ..................................... 108

G.3 Test of the supercell-size dependence for the hole polaron in k-Ga2Os . 109

Bibliography 111



Introduction

Metal oxides (MOs) have become a promising alternative to classical silicon-based or
II-V semiconductors for electronic and optoelectronic devices. They are in many as-
pects different compared to their predecessors, e.g. in band structure, conductivity, or
defect formation. Their success is founded in multiple and even contradicting features
realizable in a single material. For example an oxymoron such as transparent con-
ducting oxide implies that despite band gaps larger than 3 eV, at the same time these
solids can provide a large number of charge carriers. Many of the desired features are
present in crystalline and amorphous phases making them attractive for commercial
applications on a large scale production [1]. Moreover, MOs are successful as impor-
tant components in the design of new devices in other technological fields, too, such
as (Photo-)Catalysis [2, 3] or Photovoltaics [4, 5]. Beside new experimental methods
for designing and fabrication of oxide bulk materials and thin films, also fundamental
theoretical understandings of elemental processes in oxides are needed. This work
provides insights into the behavior of excess charge carriers in MOs. The diverse ap-
plications of MO require systems, where the conductivity should be either high or
suppressed for certain types of charge carriers. The most limiting physical process of
conductivity in pristine crystals is the interaction charge carriers with longitudinal-
optical (LO) phonon modes.

Traditional band theory only provides an incomplete picture in order to predict the
behavior of electrons and holes in polar semiconductors or insulators. In 1933 already
Landau [6] pointed out that the polarization of the solid due to the presence of an ex-
cess electron enhances its effective mass and, thus, decreases its mobility right up to
possible self-trapping of the charge carrier. The phenomenon of self-trapping was later
studied in greater detail by Pekar [7], Frohlich [8], and Holstein [9] and was extended
to include the interaction of LO phonon modes with electrons. The quasiparticle of
this electron-phonon (el-ph) interaction is called polaron and is further classified by
its spatial extent: Large polarons are delocalized over several unit cells, whereas small
polarons are typically strongly localized in one or very few unit cells. The proposed
semi-empirical Hamiltonian by Frohlich (only) represents an effective mass approxi-
mation of an electron (or hole) placed in a continuum polarizable medium and, thus,
is only capable to describe large polarons appropriately, because of its lack of micro-
scopic details. The localization itself depends on the strength of the el-ph coupling,
which can be measured with the Frohlich coupling constant [8]:

= — - = 1
aF=¢ 2R3w1 0 <soo 50> (M)
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with the band mass! m;, the frequency of the LO mode at the I'-point, the macroscopic
high-frequency dielectric constant £, and the static dielectric constant €y. The region
of Frohlich’s large polarons corresponds to ar < 1. The physics of small polarons
(o >> 1) was captured by Holstein’s model [9] describing their very different motion
through a crystal. The ar provides a rough estimation whether small polarons could
potentially form in a material. The needed parameters and the values of af for the
oxides investigated in this work are summarized in table 1. The detailed discussion
on the methods used for the ab initio calculations can be found in the chapters 2 and
3, where the materials are investigated in detail. The experimental and ab initio values
are in good agreement (errors are about 10% and below).

Although Holstein’s model was very successful in demonstrating the hopping of
small polarons and the ensuing temperature dependence, it only includes short-range
interactions of electrons and phonons. However, in ionic materials the formation of
small polarons occurs due to the (long-range) polarization of the medium. This means
both long- and short-range effects have to be considered. There is no (semi-)empirical
model that could capture the physics of small polarons in realistic materials. On the
other hand, first-principles methods provide a promising solution to the small-polaron
problem. Nowadays, density-functional theory (DFT) is widely used to model small
polarons. A first-principles model (without need of experimental references) is also
desirable for a prediction of small polaron properties in materials that have not been
synthesized yet. DFT provides access to approximations that enable solution of the
Schrodinger equation with sufficient accuracy. To simulate the host crystal, the super-
cell approach is most commonly used, where the polaron is embedded in a cell includ-
ing multiple unit cells. However, there are two challenges that have to be addressed
and are the main subject of the methodological part of this thesis: the sensitivity of the
calculated properties to the errors in exchange-correlation treatment and finite-size
effects in supercell calculations.

The structure of this thesis is as follows. In the first chapter the reader is guided
through the different approximations needed for calculating properties of electrons
and phonons, as well as their interactions, from first principles. First, the Kohn-Sham
scheme in DFT and famous approximations of the exchange-correlation functional are
introduced. Subsequently, we present main features of the electronic-structure pack-
age FHI-aims used throughout this work. Building on this, we explain the frozen-
phonon approach for describing properties of phonons in crystals. In the follow-
ing section, we lay out the general framework for modeling electron-phonon inter-
action with DFT. Next, we demonstrate that self-trapping cannot be obtained from
linear-response perturbation, since anharmonicity plays an important role in this phe-
nomenon. The formation of small polarons requires an explicit evaluation of the
potential-energy surface (PES).

The second chapter presents a detailed analysis of the polaron PES dependence on
the exchange-correlation functional approximations and the finite-size effects. As a

'We denote as band mass the effective mass of a charge carrier derived from the band dispersion of
the conduction or valence band (given as m, ' = 1i"20%¢(k)/0k>|k,, where ¢ is the single-particle energy
close to a conduction or valence band extremum ko). This should be distinguished from the effective
mass of the polaron m,, introduced later.
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rs-MgO | 21.41 (21.52%) | 3.08 2.94°) | (9.83°) | 035 | 3.65 11 44
r-TiO, 253 (25.24%) [ 7.25(7.33%) | (114°) [ 21-67 [ 31 [ 22-38 | 2.6
a-TiO; | 25.8(26.36° | 6.58 (5.67°) | (37.67°) | 2.5 0.4 1.2 26
-GasOs | 22.5* (24.28%) | 4.11 (3.57%) | (10%) 0.41 36 1.1 75
#-Gaz03 22.3* 433 (10°%) 0.22 57 1.0 12.8

*Value is given without non-analytic correction for the LO/TO splitting.

**Value is taken from the 3-Ga2Os3 phase, since no experimental values found.
aRef. [10]

PRef. [11] and references therein

“Ref. [12]

dRef. [13]

TABLE 1: The Frohlich coupling constants for electrons and holes, af and a}F‘, respec-
tively, for the materials treated in this thesis. The high-frequency dielectric constants e,
the band masses of the electron and hole m, and my,, and the frequency of the highest
LO mode wi o have been calculated from electron and phonon band structures on the ba-
sis of Kohn-Sham DFT simulations using the PBE exchange-correlation approximation.
The values in parenthesis represent results from experiments. The detailed analysis of
the basic material properties such as €., €9, My, and wio can be found in the chapters 2
and 3. In case of anisotropic materials the tensor of the corresponding property has been
averaged, e.g. £oo

main result, an accurate and at the same time computationally efficient approach for
calculating polaron properties is presented. In this work, we focus on calculating the
geometry of the self-trapped polaron, its binding energy, and the polaron energy level.

In the last chapter we apply the developed approach to investigate the dependence
of the formation of small polarons on the crystal structure. For this, two different
polymorphs of TiO; and GazOs3 are studied. The results are compared to available
experimental values. Finally, we present an outlook on the stability of distinct hole

= (500,195 + €oo,yy + Eoo,zz)/&

polarons in the phases of Ga20s.






Chapter 1

ADb initio concepts for electrons,
phonons, and their interactions

1.1 The crystalline solid

In this thesis, we only treat crystalline solids, where atoms are arranged in a lattice,
i.e., amorphous solids and glasses are not discussed in this work. The smallest (and
simplest) unit of the crystal is the unit cell* defined by the lattice vectors a;, as, and
as. The positions of the atoms 7,, within one unit cell are called basis. With this, any
nucleus can be addressed by its position:

Tip = Tp + Tks (1.1)

where 7, = p1-a1+p2-az+p3-azis an arbitrary lattice vector. Moreover, the definition
of the lattice in real space allows us to define the reciprocal space represented by the
reciprocal lattice vectors by, by, and b3z, where b;a; = 274;;. The unit cell in reciprocal
space (k-space) is called Brillouin zone (BZ). We denote an arbitrary reciprocal lattice
vector with G. The reciprocal space is occasionally a useful concept for explicitly
calculating periodic observables f obeying f(7p + 7.) = f(7x). Every function f(7p)
can be represented in Fourier space via a Fourier transform f(k) = >_, f (1p)etkTr
with k inside the BZ, which allows for a compact representation of sums (or integrals)
in a finite region.

The translational symmetry defined by the lattice vectors, and rotational symmetry
given by the basis atoms define the space group of the crystal. There exist 230 different
space groups in 3-dimensional space. Every space group generates specific classes of
points in the space with a certain symmetry. These points are called Wyckoff positions
and the corresponding symbol includes also the multiplicity of the site in the conven-
tional unit cell. This means that often even less parameters are needed than the three
lengths of the lattice vectors, the three angles between the vectors, and the positions of
all basis atoms. For example, rock salt MgO is fully determined by the specification of

'There are two commonly used types of unit cell: the conventional and the primitive unit cell. The
primitive unit cell has the smallest possible volume, whereas the conventional unit cell is the smallest
with defined lattice vectors according to their crystal system (e.g. cubic, hexagonal, trigonal, etc.)
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the space group number 225, the lattice constant a = 4.21 A, and the Wyckoff position
of the magnesium atom 4a=(0,0,0) and the oxygen atom 46=(0,0,1/2).

1.2 The many-body problem

To illustrate the complexity of the many-body problem we start with the non-relativistic,
time-independent Hamiltonian? of a system containing N electrons and Npye nuclei
with charges Z,, and masses M,,:

H =T(R) +T(r) + Hon + Hen + Hee

h? Nnuc 1 ) h? N 1 9 1 Nnue
=—— — -—— ) — = Zn Ly — R,
72 VR TS ;mvrn+2§/ v(Rp, — Ryy)
Nnue N | X
— Z ZZnU(Rn — 1)+ 3 Z v(ry — Ty)
n n n#n’
~T(R) + Ha(r, R) (12)

with
e the electron coordinates r» = (71, 79,...),

e the nuclei coordinates R = (R, Ry, ...),

e the nuclei kinetic energy operator T'(R) = —%2 S e M%LVQR",
e the electron kinetic energy operator 7'(r) = —h—; Zg vz,

e the nucleus-nucleus interaction operator Enn, = % ZT]:[;‘;CL, ZnZpv(Ry — Ryyr),
e the electron-nucleus interaction operator Een = Ziv e fo Znv(Ry, — 7)),

e the electron-electron interaction operator Hee = % EnN;én, (1T — ),

and the Coulomb interaction:

2

e
v(x) = Ineolz] (1.3)

The Hamiltonian of the electron problem is denoted by
Hu(r,R) = H — T(R). (1.4)

2Here, we do not explicitly restrict the Hamiltonian to periodic systems to avoid an overloaded index
notation. However, this can be simply adapted e.g. by changing the coordinates of the ions R, — 7xp
with the notation introduced in Eq. (1.1).



1.3. Adiabatic approximations 7

The states of this system and their corresponding energies are solutions of the eigen-
value problem:

HV (r,R) = EV (r, R) (1.5)

(Numerically) exact solutions of Eq. (1.5) exist only for a few number of systems (hy-
drogen atom, helium ion He', or the ionized hydrogen molecule
HJ [14]). For solids no exact solution exists, and even a numerical solution is im-
possible to obtain for realistic systems with today’s computational power.

1.3 Adiabatic approximations

A first step towards an approximate solution of Eq. (1.5) is the separation of the elec-
tronic and nuclear degrees of freedom. Let ®;(r; R) be the K orthonormal eigenfunc-
tions of

Hg®p(r; R) = Ex(R)®i(r; R) (1.6)

for each fixed R. This allows the following parametrization of the wave function of
the Hamiltonian Eq. (1.5):

K
U(r,R) =Y  Xi(R)®(r; R) (1.7)
k

The semicolon separating the R coordinates indicates that they are only treated as
parameters. Substituting into Eq. (1.5), multiplying by ®;,, and integrating over elec-
tronic coordinates yields:

K
> " [Er(R)dgy + T(R)S + T (R)] Xi(R) = EXp (R) (1.8)
k

s p2 . ) )

1 . 9?

The first term inside the sum in Eq. (1.9) vanishes for continuous and differentiable
parameterizations (this can be seen from integration by parts). Note that Eq. (1.8) is
still exact. The non-diagonal matrix elements I'y; describe the transition between dif-
ferent electronic states of the system due to the motion of the nuclei and are commonly
referred to as non-adiabatic or vibronic interactions. However, these elements are usually
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small and can be neglected, if the difference between electronic energies is sufficiently
large (see Eq. (1.11) for a sufficient condition). Equation (1.8) with he remaining di-
agonal elements k& = k" included is called the Born-Huang approximation [15]. In this
approximation, every electronic state of the system can be treated separately. The
wave functions for the kth potential energy surface (PES) are then given by:

Ui (r, R) = Xk (R)Px(r; R) (1.10)

The approximation of Eq. (1.7) as Eq. (1.10) is reasonable, if the following condition
holds:

(m/M;)Y* <« 1 (1.11)

Even the diagonal elements of I'y; are small compared to the kinetic energy of the
nuclei and are commonly neglected in the adiabatic approximation, too. If we do so,
we get the Born-Oppenheimer approximation:

[Ex(R) + T(R)] X1(R) = E°X(R). (1.12)

Interestingly, the energy of the ground state in the Born-Oppenheimer approximation
EBO is always a lower bound of Eq. (1.5) [16], and the energy of the Born-Huang
approximation E5H is an upper bound [15]:

E(])BO < EO,solid < E(])SH (1.13)

The BO approximation decouples the dynamics of the electrons and the nuclei and
allows to calculate the electronic ground-state energy of a solid separately. The energy
of the electrons can then be corrected for the motion of the nuclei. From now on we
only work within the BO approximation throughout this study and drop the index
“BO” for simplicity.

According to the theorem of Hellmann and Feynman the interatomic-forces can be
evaluated parametrically on the BO PES of the ground state (£ = 0) as follows:

Fy, = (@0(r; R)|V g, Ha|®o(r; R)) (1.14)

where F); denotes the force of the xth nuclei. Equation. (1.14) is important for describ-
ing the classical motion of the nuclei. Note that additional force contributions (e.g.
Pulay forces in case of atom-centered orbitals) can appear depending on the choice of
the electronic basis functions.
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1.4 Density-functional theory

In the previous section we have separated the dynamics of the electrons and the nu-
clei by means of the BO approximation. The Coulomb potential of the nucleus-nucleus
interaction now only appears as external potential vey in the Hamiltonian of the elec-
trons, Eq. (1.4), which means all coordinates of the nuclei are treated as parameters.
This is a great simplification, but solving the Schrédinger equation for the electrons
still remains impossible for many-electron systems. One way to tackle the problem
is by using wave-function-based methods. The first step in this framework is usually
the Hartree-Fock (HF) approximation, where single-electron wave functions (orbitals)
are varied in order to find the minimum energy for a single Slater determinant (cf.
App. A). The HF energy is variational and includes the correct exchange energy. The
remaining difference between the HF and exact energy is called correlation energy (to
emphasise the mean-field nature of HF approximation). In order to add correlation,
post-HF methods such as Meoller-Plesset perturbation theory [17], the coupled-cluster
approach [18], or the configuration interaction [19] are used. The price for the higher
accuracy in energy and wave functions is an increase in computational cost.

A groundbreaking new approach emerged based on the theory of Hohenberg and
Kohn in 1964 [20], where the ground state of the system is obtained by minimizing
an energy functional with respect to the electron density as the fundamental variable.
However, the breakthrough in terms of balancing accuracy and numerical effort was
made when the scheme proposed by Kohn and Sham [21] appeared just one year later,
which enabled the self-consistent calculation of single-electron orbitals similar to the
HF approach. The next section introduces the main ideas and approximations of this
theory, as well as the numerical realization within the software package FHI-aims.

1.4.1 Fundamentals

Before trying to cast the many-electron Schrodinger equation into a density-functional
form, we have to ensure that the mapping between the external potential, the wave
function, and the density is unique. We will start with some trivial maps first. With
vext € V we collect all local potentials® leading to a non-degenerate ground state. The
external potential vey: defines the form of the Hamiltonian H:

H1W) = (T+W + o) [) = E|T), (1.15)

where ¥ is the operator of the electron-electron interaction. By solving the eigenvalue
problem we obtain a set of eigenfunctions {¥;}, where the solutions are numbered
with ascending energy with i = 0 denoting the ground state. With this the solution of
H defines a surjective map C' : vexy — ¥o. Further, defining the ground-state electron

*In the context of the Hamiltonian of the solid Eq. (1.5) in the BO approximation wvex =
— Zi\]““c ZT]LV, Znv(Rn — ) + % Zf 2ns V(Rn — R,y/) is the potential of the electron-nuclei and nuclei-
nuclei interaction and, with this, a one particle operator of the electrons.
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density as:

N
no(r) = (Yol Y8 (r — ;) W) (1.16)
i=1
we get a second surjective map D : ¥y — ng. The question to be answered is whether
any ground-state density can be uniquely mapped onto the external potential, which
leads to the formulation of the following theorem first proposed by Hohenberg and
Kohn in 1964 [20]:

Theorem 1 (Hohenberg-Kohn I) The map C o D : vey — ng is bijective, apart from a
trivial additive constant for vey.

We follow the proof given by Dreizler and Gross [22]. First, for the map C' we have
to show that external potentials differing by more than a constant, vext # vl + const,
always lead to different ground states. We start with the two Hamiltonians:

(7 + W + tox) [ W) = Eo|%0) (1.17)
(T + W + i) [0 = B ) (1.18)

The assumption ¥y, = ¥, will give a contradiction. Subtracting Eq. (1.18) from (1.17)
results in:

(Pext — Boxe) [Wo) = (Eo — Ep) [Wo) (1.19)

and, since ey is multiplicative, we find for the potential differences tex — U0y = Eo —
E{, which is obviously only a constant. This means, two different external potentials
will always lead to two different ground states.

Second, to ensure that D is bijective we need to show that from ¥ # ¥ follows
ng # ng. For the two wave functions ¥, # ¥, we get the ground-state energies Fy =
(Wo| H|Wo) and E}, = (¥)|H'|¥}), respectively. Since the ground state ¥ minimizes the
expectation value of the corresponding Hamiltonian H, we get by means of the Ritz
principle:

By < (W4|H|Tp) = 0l (Dexe — Vext)[ W)
= /drno V(7)) — vext(r)] (1.20)

and equally for the primed system:
El < (Uo|H'| W) = Ey — /dr 1o (1) [vext(1) — vl (1)] - (1.21)
Adding Eq. (1.17) to Eq. (1.18) and assuming ng = n(, we find the inconsistency:

Eo + E) < Ey + E).

This proves that a map D! : ng — | ¥ [no]) exists, i.e., the wave function can be writ-
ten as a functional of the ground-state density. Consequently, the expectation value of
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the Hamiltonian H is a unique functional of the ground-state density, too:

Eyey [n0] = (Yo [n0] [T+ W + text| ¥o [no]) -
= Fyk [no) + [ drno(r)vex(r), (1.22)

where we defined the Hohenberg-Kohn functional
Feac = (Wo [no] [T+ W[ %o [no]) (1.23)

In the second theorem, Hohenberg and Kohn [20] established the variational character
of the functional E,, [no]

Theorem 2 (Hohenberg-Kohn II) The total-energy functional E,
ground-state density n = ng corresponding to vex.

[n] is minimized by the

ext

To prove this statement we can use arguments similar to the above ones. From the
Rayleigh-Ritz principle we get for the external potential vex::

EO S E’Uext [n] (124)

From the map C o D it obviously follows that equality in Eq. (1.24) only holds for
n = ng = C o D(vext), i.e., Ey = Ey,, [no]. As a consequence the exact ground-state
density can be obtained by minimizing the total-energy functional:

Ey = min E,, [n] (1.25)

with [drn(r) = N. Interestingly, the functional Fyk is independent on the external
potential vext, because the map D! is defined independently from vext. This means
that the form of Fyk is universal and is the same for all different atoms, molecules and
solids. Moreover, the HK theorem did not only lay the foundation for DFT. It addition-
ally shows that the three basic variables, i.e., vext, Yo, and ng are equivalent descriptors
of the electronic Hamiltonian. Thus, the solution of Eq. (1.15) can be obtained in three
different ways: wave-function-based methods ( e.g., full configuration interaction),
DEFT (e.g., orbital-free DFT [23]), and potential-functional theory [24]. However, one
of the most successful frameworks is introduced in the next section and the first ex-
pression for a practical re-writing of the expectation value Eq. (1.22) in terms of the
electron density is given.

1.4.2 The Kohn-Sham scheme

The first practical scheme for DFT was provided by Kohn and Sham [21] only one
year later. The authors suggested to use an effective single-particle scheme instead of
solving the complex many-particle problem. The main ideas are summarized in the
following:
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Kohn-Sham approach = still exact?
Exact DFT
/ Vext \ / Veft \\
V) = B|W) HK Theorem HK Theorem  1*%[¢:) = f?s |6i)
Uy, no ngs o
N Theorem N
no(r) = (Vol 32 0(r — i) |Wo) ng>(r) = 3 i (r)]?

FIGURE 1.1: Illustration of the two important theorems in DFT. The white box presents
the importance of the Hohenberg-Kohn I theorem. It ensures the equivalence between
the three basic variables of the many-electron problem, namely the external potential
vext, the ground-state wave function ¥y and the ground-state density ng. The blue box
shows the approach suggested by Kohn and Sham (KS) mapping the many-electron on
an effective single-electron problem.

Theorem 3 (Kohn-Sham) The exact ground-state density ng can be identified with a ground-
state nkS of an auxiliary system with non-interacting particles. The single-electron Hamilto-
nian of the auxiliary system hys is chosen to have the usual kinetic operator and an effective
potential vy acting on an electron at point .

Let us evaluate the content of these statements and their consequences. Let the ground-
state density of the interacting system be ng corresponding to the external potential
vext- Then, Kohn and Sham postulate:

N
no(r) = ns(r) = 3 [6i(r) (1.26)
i=1
where the single-electron wave functions are solutions of the equations:
his i) = <—h2v2 + ’Ueff> |¢) = €i|di) (1.27)
2m
and where we call: 2
7o) =~y > [ dr i n)Voi(r) (1.28)

the kinetic energy of the non-interacting system. We still have to answer the question
how veg is connected to vg. Let us re-write the total energy for the interacting system
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in the following way:

By, [n] = Tu ] + / dr n(r)vea(r) + / dro(ryon(r) + Beln]  (129)
with the Hartree potential:
vy = / dr UT) (1.30)
r —7|
and the exchange-correlation (xc) energy:
Exc[ } FHK /drn UH (131)
By variation of the total-energy functional JE,,, [n] = 0 one finds for the effective
potential veg:
Veff = Vext T VH + ¥Uxc, (1.32)

with vy, = 5EX“ [" . Egs. (1.26), (1.27), and (1.32) form the Kohn-Sham scheme. Since
these equatlons are interlinked, they have to be solved self-consistently in a similar
manner as for the HF approximation. However, we have not shown yet, whether the
density ng of the interacting system can be always represented by a non-interacting
potential vegr. Once this is ensured, uniqueness of veg is guaranteed by Theorem 1.17,
again. Besides simple model systems, this has not be proven in general and remains
a pure assumption. This is the mathematical Achilles heel of the Kohn-Sham scheme.
Nevertheless, the success of the DFT in the framework of the KS scheme demonstrates
at least that it is a reasonable approximation. After solving the Kohn-Sham equations
self-consistently, the ground-state total energy is calculated as:

N
Ey. [no] = Z € — % /dr no(r)vg(r)
i=1

By [no] — / dr no(r)ose (o] , 7). (133)

1.4.3 The physical meaning of the KS orbitals

Hitherto, we have mapped the many-electron problem onto an effective single-particle
problem, described by the KS equations eq. (1.27). Although we have shown that the
ground-state densities of both problems should be identical, the single-particle KS or-
bitals and their corresponding eigenvalues lack any physical meaning, since they only
represent an auxiliary system. Therefor, effort has been made to get more physical
information from the KS orbitals. Janak did a first important step in proving the rela-
tion [25]:
JE(N)
on; 5+

=€ (N) (1.34)
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with the total energy F, where the N in parenthesis denotes the ground state with N
electrons occupying the N lowest states, and the ith KS eigenvalue ¢; and occupation
number n;. The derivative is taken from the right (indicated by 6%). Perdew and
co-workers [26] proved for systems with fractional electron number that the chemical
potential 1 of the electrons is related to the IP and EA as follows:

—IP for N — 1 i < N
_8E_{ > for <n; < 7 (135)

= on ~ \—EA for N<m; < N+1

with the ionization potential IP= E(N —1)—E(N) and the electron affinity EA=E(N)—
E(N +1). By comparing Eq. (1.35) with (1.34) we find directly the IP theorem:

eho(N) = —1P. (1.36)

However, the similar expression for the EA is more difficult to evaluate. There is a
constant shift Avxc of the XC potential leading to:

en+1(V +1) = eny1(N) + Avxe (1.37)

from which follows:
6lu<N) + Avxc = —EA, (1.38)

with the lowest unoccupied state €, (V) = en4+1(V). Avxc is known as the XC deriva-
tive discontinuity [27, 28]. From this follows for the fundamental gap:
fund
Egnd = 1P — EA = Egasp + Avxc, (1.39)
which means that the KS gap Egasp = eny+1(No) —en, (Vo) (for the exact , but unknown

XC functional) underestimates the actual fundamental gap by Avxc. Nonetheless,
Eq. (1.36) has the following remarkable implications:

e The total energy is linear in between two integer occupation numbers
e The position of the highest-occupied state is independent on its occupation

e The total density far away from its localization (i.e.,  — oco0) decays as

no(?“) ~ e—2r\/eh02m/52 [29]

This underlines that it is important to have a consistent description of the total density,
total energies, and the ho states.

For any known XC approximation Eq. (1.36) is not satisfied in general in case of
localized ho orbitals. Formally, the exact XC functional would cancel the spurious self-
interaction in the Hartree term, e.g., as it is the case for the exact exchange introduced
later. Yet, there are only a few local approximations that ensure the cancellation for
many-electron systems, e.g. the SIC approach [30]. In general for functionals, where
the total energy is not piecewise-linear in between integer occupation numbers, we
denote the deviation from the straight line as Axc leading to the following general
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(a) Total energy  (b) Total energy derivative
IP | EA
BN — 1) oo i
concave | .
B(N) fo b } Egan’

convex

N-1 N N+1 N-1 N N+1

FIGURE 1.2: (a) The deviation of the straight-line behavior (black) for convex (red) and
concave (blue) XC-functionals. At integer electron number the total energies E(INV) have
been aligned to the same value. (b) The total energy derivatives corresponding to the IP

for N —1 < n; < N and the EA for N < n; < N + 1. Clearly, the fundamental gap Ef¢

= IP — EA is underestimated for convex and overestimated for concave functionals.

expression for XC approximations:
E(N —1) — E(N) = eno(N) + Axc. (1.40)

Figure 1.2 illustrates this issue. The self-interaction error (SIE) causes a convex cur-
vature with Axc > 0, whereas e.g. for the HF method a concave curvature can be
observed with Axc < 0. The main problem of the HF method is the missing electron
correlation, which leads to an over-localization of the states in the ionized system, the
so-called orbital-relaxation error. There is another weak point which have all known
XC approximations in common, that is, they do not show a discontinuity in the XC
potential Avxc at integer electron numbers. A promising concept for “restoring” the
derivative discontinuity even for (semi-)local functionals was suggested by Kraisler
and Kronik [31], where the system is treated as an ensemble of ionized and neutral
system. Unfortunately, this leads to orbital-dependent expressions and, hence, com-
putationally expensive evaluations.

Moreover, the statements Eq. (1.36) and (1.38) have been derived for atoms and
molecules, i.e. systems with finite extension, and transferring them to solids has to
be done carefully. Guided by the arguments of Williams and von Barth [32], one can
observe that for an infinitely large solid (or in general any delocalized wave function)
the fundamental and the KS gap become identical:

Efnd = B (1.41)
The arguments of Williams and von Barth has been extended to the concept of the
generalized KS theory [33], which applies for hybrid functionals and exact exchange.
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FIGURE 1.3: The PZ-LDA band gap versus the experimental band gap is shown for
eight different closed-shell oxides. The lowercase letters in front of the chemical sym-
bols indicate the specific phase (t — tetragonal, r — rutile, a — anatase, w — wurzite). All
structures are fully relaxed, i.e., all atom positions and all lattice constants and angles are
relaxed.The black dashed line corresponds to the ideal agreement between theory and
experiment. The black solid line represents the expectation value of the LDA gap based
on the mean relative error, and the red line corresponds to the shift of the experimental
values by the mean error (see text for details).

However, Eq. (1.41) does not mean that the band gaps obtained with certain XC ap-
proximations are generally in good agreement with experimental measurements, it
rather depends on the quality of the approximations that were made. Some of the
most famous XC approximations are introduced in the following section.

1.44 The exchange-correlation functional

Assuming that the Kohn-Sham theorem is correct (or at least a very good approxi-
mation) we now have to face the fact that all difficulties are just shifted into the XC
functional. At this point we are going to leave the ground of “exact” density-functional
theory and start to explore the area of density-functional approximations (DFA).

Local-density approximations

Kohn and Sham proposed in 1965 an approximation for the exchange and correlation
energy for slowly varying densities. Nowadays approximations of this type are called
local density approximation (LDA). The main idea is that for every point r the electron
density behaves locally as a homogeneous electron gas (HEG, for detailed expressions
c.f. App. A). Consequently, the XC functional becomes only a function of the density:

Exc[n] = Bx(n(r)) = / dr n(r)[ex (n (1)) + ec(n(r))]. (1.42)
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The explicit expressions for ex and e, are given in the Appendix by Egs. (A.15) and
(A.19), respectively. By the virtue of the approximation the LDA is expected to work
well for metals, where the valence-electron density is slowly varying. However, it
also works unexpectedly well for atoms, molecules, and solids with an energy gap.
Here, we will focus on the investigation of the performance of the LDA functional
for several closed-shell oxides shown in Fig. 1.3. The band gaps are obtained from
self-consistent calculations using FHI-aims, where all degrees of freedom (atom po-
sitions and lattice vectors) have been relaxed. In general, it can be observed that all
oxides are predicted to be insulators, but the band gap is clearly underestimated. We
find a mean relative error (MRE*) of about —48% with respect to the experimentally
measured band gaps. If the error in the LDA gap versus experiment depended on
the size of the gap, the LDA gaps would be on the gray line in Fig. 1.3. This line
corresponds to the expectation value of the LDA band gap FEg.p1pa based on MRE,
<Eéap,LD AJMRE = Eéap,exp-MRE. Clearly, this is not the case. Instead, it can be observed
that for our small test set of oxides the band gaps are shifted systematically by a con-
stant, where the shift is represented by the mean error (ME). The red line in Fig. 1.3
is obtained by shifting the experimental gaps by ME, (B¢, 1 pA)ME = Ejap exp +ME.
We find ME = —2.0 eV. Similar systematic trends for the deviation of the LDA band
gap from the experimental band gap have been found also for larger test sets [34]. In
conclusion, despite the crude approximations the LDA turns out to be a successful
starting point for the description of solids. Note that LDA functionals do not always
correctly predict a material to be a metal or an insulator. Especially for open-shell
systems, LDA is often failing, e.g. CoO is predicted to be metallic, but is measured to
have a band gap of about 2.5 eV. Another prominent example for the failure of LDAs
is the diamond Ge crystal, which is actually a semiconductor with a band gap of 0.74
eV, whereas LDA predicts Ge to be metallic.

Generalized gradient approximations

To improve the LDA, a first idea was simply to include the gradient of the density
|Vn| as the next order in the sense of a tailor expansion. Unfortunately, these gradient
expansion approximations did not improve the LDA results systematically. The main
issue of this ansatz were the large gradients for realistic materials. Hence, a more gen-
eral approach was used to include gradients of the density. The so-called generalized
gradient approximations (GGA) have the following form for the XC energy:

Ey[n] = / dr n(r)elEC (n) Fe(n, | Vnl, ...), (1.43)

where F is the XC-enhancement factor and e!FG the exchange energy density
(Eq. (A.15)) of the HEG. This much more flexible form of E. allows for the implemen-
tation of exact limits from DFT. Throughout this work we are using the GGA proposed

*MRE=1/N 3" (Eipoer — Ep is the experimentally measured and

5
Eéap,DFT the calculated band gap.

i i
ap,exp ) / E, gap,exp’ where E 'gap,exp
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FIGURE 1.4: The (a) PBE and (b) HSE(« = 0.25) band gap versus the experimental band
gap is shown for eight different closed-shell oxides. The lowercase letters in front of
the chemical symbols indicate the specific phase (t — tetragonal, r — rutile, a — anatase,
w — wurzite). All structures are fully relaxed for the PBE results, i.e., all atom positions
and all lattice constants and angles are relaxed. For the HSE results the PBE geometries
were used. The solid red and black line are calculated equally as for Fig. 1.3.

by Perdew, Burke, and Ernzerhof in 1996. For the explicit parametrization of the en-
hancement factors Fy. we refer to the original work Ref. [35]. It is important to note
that the performance of the PBE functional in terms of computational time is similar to
LDA, even though it is a semi-local functional (i.e., not only the density n at point r is
regarded, but additionally points in the infinitesimal vicinity). The test for the closed-
shell oxides has been repeated for the PBE functional, and the results are shown in
Fig. 1.4(a). Surprisingly, the inclusion of the density gradients has not improved the
results; in case of our test set they even got worse, as indicated by ME = —2.3 eV.
However, PBE did improve the atomization energies for a large test set of molecules,
and did perform similar to LDA for ionization potentials and electron affinities [36,
37, 38].

The comparison of PBE and LDA band gaps with experiment raises the question:
What is still missing in order to describe the electronic structure of insulating solids
properly? Or, more generally: Is an accurate prediction of the band gap possible with
(semi-)local XC functionals?

Hybrid density functionals

Already Kohn and Sham suggested [21] to use the non-local Fock operator for the
exchange functional instead of the exchange term from the HEG, i.e. the effective
potential veg in Eq. 1.27 is not local anymore. However, the first practical solutions to
combine (semi-)local XC functionals with exact exchange (EXX) were proposed and
numerically tested by Becke [39] (mixing with LDA) and later by Perdew et al. [40]
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(mixing with PBE). They all share the following kind of mixing:
Exc = a(Bpx — Eix) + Eixc (1.44)

with the mixing parameter «, the EXX energy Egxx, and the exchange (X) and XC
energy of the (semi-)local approximation such as LDA or GGA Ejx and Ejxc, respec-
tively. A question immediately arises: What is the proper value of a? Based on a
perturbative expansion of the adiabatic connection formula (cf. [41, 42, 43]) for the XC
energy, Becke suggested a = 0.5 in order to improve the IPs and EAs of molecules and
atoms. For larger molecules and for solids the fraction of av = 0.25 turned out to be
most successful for improving the IPs and EAs in the simple form of Eq. (1.44), which
was proposed by Perdew et al. [40] using the same argument as Becke. However,
Perdew et al. also pointed out that the proper portion of o depends on the system.
For example, the inclusion of EXX for metallic system is not expected to improve their
description, e.g. the positions of the electron bands, so « = 0 is the best choice. For
semiconductors and large-band-gap systems, o = 0.25 and 0.5 are giving best results
for the prediction of band gaps, respectively. Finally, for extreme cases such as Kr?6+,
a = 1 fits best for ionization energies. This analysis shows that the most commonly
used fraction o = 0.25 is just the one minimizing the MRE for certain properties such
as the band gap of non-metallic systems, but might not result in an improvement of
the electronic structure prediction for a specific system with either a very small or
very large band gap. For this reason, other approaches were suggested to determine
the optimal value of a. Here we focus on ab initio methods, i.e., without relying on
experimental values:

(a) A pure DFT-based solution of the problem proposed by Lany and Zunger [44],
where the a-parameter is used to restore Eq. (1.40). This approach only works for
localized orbitals, e.g., for defect states in the gap. For delocalized states Axc is
always zero. The task is to find the optimal fraction a,pt leading to Axc(opt) =
0.

(b) Minimizing the error with respect to higher-level electronic-structure
methods (e.g., GW method) for the ho level [45, 46, 47]. Different to method
(a) this approach can be applied to correct the position of extended states such
as the valence band maximum (VBM) and conduction band minimum (CBm).

(c) The fraction of exact exchange is chosen as a = 1/e.,, where the high-frequency
dielectric constant e, is calculated from the GGA orbitals [48, 49] or iteratively
until @« = 1/e4(a) [50]. This choice is based on the observation that the dif-
ference of GGA and experimental band gaps correlates with e, and is further
motivated with similarities of the COHSEX approximation [51] and the structure
of Eq. (1.44). In fact, this approach helps to significantly improve the description
of the band gaps.

Usually, these approaches improve the simulation of the electronic structure and in
particular the prediction of the band gap in general, but may give different results.
For example, in the case of rock salt MgO approach (a) leads to o = 0.48 for a hole
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polaron state (cf. Chapter 2) and approach (c) to a = 1/ ePBE — (0.33. In terms of the
band gap this results in a discrepancy of 1.1 eV, yet both give a significantly better
estimation of the band gap compared to GGA or LDA.

Nowadays, the most widely used hybrid functionals with global mixing parame-
ters are PBEO [40], HSE (Heyd-Scuseria-Ernzerhof) [52, 53] and B3LYP (Becke, three-
parameter, Lee-Yang-Parr) [54]. However, the evaluation of integrals required for the
calculation of the exact-exchange energy:

Frxx = —Z//dﬁdf'z?/) 1) (7'1)|r1

where 1); is the ith occupied orbital, or the Fock operator, is computationally expen-
sive for systems with a large number of electrons. The observation that the long-range
contribution of the GGA exchange and the EXX in Eq. (1.45) cancel each other moti-
vated the introduction of range-separated Coulomb potentials in Eq. (1.45). The first
work of this kind for the EXX was done by Heyd, Scuseria, and Ernzerhof (HSE) [52,
53], by dividing the 1/r in the exchange part into a long-range (LR) and short-range
(SR) parts:

Yi(r2)(r2), (1.45)

_2|

1 erfc(wr erf(wr
- = (wr) + ( ), (1.46)
r r r
—— N——
SR LR

with the error function erf(wr) and erfc(wr) = 1 — erf(wr), and the range-separation
parameter w . For example, for the total XC energy of the HSE functional (mixing PBE
and EXX) it follows:

EXE () = aFgix + (1 — o) Eppex + Eppe.x + Eppe-C (1.47)

The range-separation parameter w is numerically tested to give the smallest mean
absolute error for a test-set, and w = 0.11 Bohr ! with @ = 0.25 was proposed as
balanced description that provides a good speed and accuracy for both solids and
molecules [53]. Moreover, w is not only a numerical parameter, it additionally helped
to improve the description of metallic systems, since w incorporates an explicit screen-
ing effect. In Fig. 1.4(b) we again tested the prediction of the band gap for the same
eight oxides as before with the HSE(aw = 0.25). Indeed, the HSE functional dras-
tically improved the description of the band gap (ME= —0.64 eV, MAE= 0.84 eV,
MRE= —0.11, MARE= 0.18). However, in general all PBE band gaps are just shifted
by an amount of 1.7 eV with respect to HSE(aw = 0.25). This indicates that already
PBE can give meaningful results for properties of closed-shell systems as we have
demonstrated here for the band gap and is later shown for the geometry optimization
of the polaron. The computationally more expensive HSE functional is only needed
for single-point calculations afterwards to obtain electronic KS levels with higher accu-
racy. Nevertheless, many examples exist where the HSE functional is explicitly needed
in order to obtain the proper description of the desired property. An example is the
charge-transfer in hybrid inorganic-organic systems [55].
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For the sake of completeness we like to mention that the concept of the range-
separated Coulomb potential introduced in Eq. (1.46) is utilized for other purposes
as well: Baer, Neuhauser, and Livshits [56, 57] used the long-range separation part
to cancel the spurious self-repulsion appearing for the long-range LDA XC potential,
while short-range contributions of the exact exchange are neglected. To profit from
both the proper long-range and short-range behavior of the exact exchange potential
Eq. (1.47) has been naturally generalized to:

B (@, B, w) = aELR (W) + (1 — a) B, (w)
+BER (W) + (1 — B)ERRA (W) + ESpas (1.48)

and its parameter extensively tested on their performance for enthalpies, barrier
heights, IPs and EAs [58] of molecules. However, as stated above there are no perfect
parameters even for the general case Eq. (1.48), but it rather depends on the property
to predict and the regarded system.

1.5 Numeric electronic-structure calculations with FHI-aims

The purpose of this section is to present the main features of the electronic structure
software FHI-aims used throughout this work. FHI-aims (Fritz Haber Institute ab initio
molecular simulations package) [59] is an all-electron, full-potential electronic struc-
ture code with numeric atom-centered orbitals (NAQOs) used as the basis set. There
are other choices for the basis functions present in the field of DFT and quantum-
chemistry software packages as well, such as plane waves, Gaussian orbitals, Slater-
like orbitals, or even combinations of different types (e.g., the muffin-tin approxima-
tion)®. The basis functions in FHI-aims have the following form:

pi(r) = “Z@Yzm(ﬁ) (1.49)

with the spherical harmonics Y,,,(€2) and the numerically tabulated radial functions
u;(r). The u;(r) are obtained by solving the radial Schrodinger-like equation on a
logarithmic grid, where an artificial steep potential is added (cut-off potential) to spa-
tially confine the basis functions, which allows for an efficient numerical O(V) integra-
tion scheme in the solution of the KS equations [60]. The basis functions are species-
dependent, constructed and ordered in a way to give an increasing accuracy with
an increasing number of basis functions. The minimal basis consists of the core and
valence functions, and is obtained from the spherically symmetric free atoms. This
seemingly crude choice already gives a sufficiently good description of the rapidly

’An overview of the different choices of basis functions and their implementations in various
electronic-structure codes can be found at https://www.nomad-coe.eu/externals/codes.
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oscillating core functions. On top of the minimal basis additional functions are used,
namely hydrogen-like and free-ion radial functions, which are combined with differ-
ent angular momenta (s, p, d, f, ...) functions (for a detailed discussion of the selection
and construction of these functions c.f. Ref. [59]). The additional basis functions are
arranged hierarchically in tiers according to their contribution to the improvement to
the LDA total energy of a dimer for each element.

The basis set is used to expand the KS orbitals ¢X°:

Ny
Ky = Zcijgpj(r) (1.50)
J

and, with this, to discretize Eq. (1.27) into a generalized eigenvalue problem:
Z hijcjl = €] Z Sijcjl (151)
J J

with the number of basis functions IV}, the Hamilton matrix h;; and the overlap matrix

Si]‘:

hij = [dr (pi(T>iLKS(pj(’l“) (1.52)
Sij = [ droi(r)e;(r) (1.53)

The complex conjugation is omitted, since only the real-valued real and imaginary
part of the of complex spherical harmonics is used for the NAOs in FHI-aims. The
integrations in Egs. (1.52) and (1.53) are evaluated on a logarithmic grid for the radial
part and on a Lebedev grid [61] for the angular part. Efficient partitioning of the
integration grids as suggested by Becke [62] or Delley [63] takes advantage of the
localized nature of the orbitals and allows for tightly converged calculations even for
small grid sizes.

Energy derivatives, i.e., forces play a central role in this thesis for the relaxation of
the atomic positions, the optimization of the lattice, and the calculation of the phonon
spectra. In FHI-aims forces are calculated analytically. For NAOs, additional terms ap-
pear beside the Hellmann-Feynman forces
Eq. (1.14). Namely, these are the Pulay forces [64], which appear due to the “move-
ment” (i.e. the derivatives w.r.t the nuclei positions) of the incomplete set of numeric
atom-centered basis functions, and the electrostatic multipole derivatives [65], which
occur due to the truncation of the electrostatic potential beyond a certain multipole
moment.

The initial density for a self-consistent KS calculation is constructed from the su-
perposition of the free-atom densities. At the first step, the Hartree and XC potentials
are calculated with the resulting density. In order to calculate the Hartree potential
accurately, it is interpolated with cubic splines on a dense logarithmic grid. For large
molecules and periodic boundary conditions (PBC) the Ewald method [66, 67] is used
to account for the long-range contributions of distant atoms. The generalized eigen-
value problem Eq. (1.51) is solved with the aid of the “eigenvalue solvers for petascale
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applications” (ELPA) library [68], which is based on the standard libraries of linear
algebra such as Lapack and ScaLapack. The structure of the FHI-aims code is opti-
mized to allow for massively parallel computing, scaling almost linearly up to tens of
thousands of CPUs. The obtained KS orbitals are used to update the density, and the
procedure is repeated up to self-consistency, until the so-called self-consistent field
(SCF) cycle is converged. During the SCF the Hartree potential and the XC poten-
tial are only updated based on the corresponding differences of the density from the
previous and the current SCF cycle.

The linear scaling for parallel computing of the exact exchange energy is not di-
rectly achievable due to the non-local character of the two-electron Coulomb repulsion
integrals appearing in Eq. (1.45). However, this can be obtained by using the resolu-
tion of identity technique (cf. Ref. [69] for details on this scheme in connection with
the NAOs), which has been implemented for periodic systems recently [70].

The convergence of the numerical solution (total energies, eigenvalues, and densi-
ties) with respect to various criteria can be checked with the pre-defined default set-
tings light, tight, and really tight. This includes not only the number of basis functions
(the basis set tier), but also the integration grids, the accuracy of the Hartree potential,
and the radius of the cut-off potential. In this work, the system size (up to 1,000 atoms)
does not allow to easily go beyond light settings. However, we do test the convergence
for smaller unit cells, cf. App. E, and find that the light settings are sufficiently accurate
for the polaron binding energy and polaron energy level. Convergence parameters for
the numerical self-consistency have to be set and tested explicitly. The same applies to
the convergence of the number of £-points.
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1.6 The harmonic approximation and phonons

With the approximations introduced in Sec. 1.4 we now have efficient methods at hand
to calculate points on the PES even for large systems including many nuclei and elec-
trons. Yet, we have treated the electrons separately from the dynamics of the nuclei.
To account for the Vibrational dynamics, we can explore the PES E,j(R) in the vicinity
of a minimum R = {70} with the vector of the equilibrium positions {72,}, where
numbers the atoms in the basis of the unit cell and p denotes the index of the lattice
vector as it was introduced in Eq. (1.1). The total energy is expanded in terms of small
displacements A7, from 70;:
Eel(R) = el({ p})

’Eq(R
3 Y e

fop TfiapaTH o'p’

ff/ a/7p/

ATropATerary + O(ATY),  (1.54)
{79}

The Greek indices denote the Cartesian coordinates of the displacement. The first-
order term of the expansion in Eq. (1.54) vanishes, since {7,J,} is a minimum on the
PES. The second-order term contains the interatomic force constants defined as:

?Ey4(R OF,
Cnap,n/a’p’ = 9 g< ) = 7@ P y (155)
ThapOTk'a'p’ {9} Trhap
where we have introduced the force
0 Eq(R)
F.pp=—""2. 1.56
P OTkap ( )

If the expansion is truncated after the quadratic term, Eq. (1.54) is called the harmonic
approximation. By Fourier transforming Eq. (1.55) we obtain the dynamical matrix:

Dnoa,n/o/(q) = (MKM[;)_I/2 Z CﬁaO,n’a’p’eXp(iqu)a (157)
P

where the dynamical matrix has been weighted with the nuclei masses to simplify
the equations of motion M, 2 5 Ar,ip Do ! s Croprrp ATy pr . The eigenvectors exq ., (q)
of D are called phonon modes and the corresponding eigenvalues wg, are phonon
frequencies. A phonon is a collective vibration of atoms expanded in plane waves. As
can be seen from the solution of the eigenvalue problem:

Z Dna,n’a’(Q)en/a’,u(Q) = wgyeﬁa,u(q) (158)

the phonons decouple and, thus, each phonon mode represents an independent har-
monic oscillator. The 3Ny, eigenvectors, where Ny, is the number of nuclei in the
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unit cell, form a complete orthonormal basis for the nuclear coordinates:

Zez/a/,u(q)el’ua,l/(q) = 6/{/{’5040/ (159)
Zez’a’,y(q)eﬂa,u(q) = - (160)

We have just obtained the solution for the classical dynamics of the nuclei. For-
mally, the dynamics can be quantized using the Hamiltonian for the phonons:

X 1 02
th = 5 Z CHQP,HIOLIPIATKOIPATHIQIP/ — Z mm (161)
K,O[,p H,,O(,p I 7p

rr
N7a7p

The ground-state energy has been omitted, since the solutions of Eq. (1.61) do not
change, when the energy is shifted by an arbitrary constant. Eq. (1.61) can be ex-
pressed via phonon creation and annihilation operators a, and aq, with the commu-
tation relations for bosons [agy, at,] = 0,.,/0¢q and [agy, aq] = [ad,,as,] = 0. With
this, the form of the phonon Hamiltonian simplifies to:

Hop =Y hwgy [ag,aq, +1/2] . (1.62)

qv

The formal derivation can be found, e.g., in Ref. [71]. The Hamiltonian in Eq. (1.62)
has the spectrum of eigenvalues identical to the classical solution of Eq. (1.58). How-
ever, the total energy of the phonons differs by the zero-point energy 3 > qv gy, which
accounts for the uncertainty principle for quantum objects. The particle number opera-
tor aqﬁ,aqy gives the number of phonons Ng, in the v-th mode at q. A formal relation
between Ny, (also known as occupation number) and the amplitude of the classi-
cal vibration for the same mode can be derived by requiring that the classical and
quantum-mechanical oscillator have the same energy:

wey MoAZ, /2= hwgyNgy
— S——

classical quantum mechanical

2hN,
—Ag = =

— 2(02 1.63
MOqu < >’ ( )

qv

where we have omitted the zero-point contribution to make comparison with the clas-
sical amplitudes A4,. Eq. (1.63) outlines another difference between the classical and
quantum mechanical case: The classical amplitude is v/2times larger than the standard

deviation of the phonon probability amplitude 4/ ) 2,) for the same energy.

Usually, the classical description of the nuclei, i.e., Eq. (1.55), is used for the nu-
merical computation of phonon properties. A rather straightforward strategy is the
frozen-phonon approach, where the atoms are explicitly displaced by A7,qp, and the
forces are computed from SCF DFT calculations (here with FHI-aims). The number of
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different displacements that have to be considered depends on the crystal symmetry,
and is typically small for systems with a high symmetry. Based on the forces obtained
from the different configurations, the interatomic force constants Eq. (1.55) are approx-
imated as:

Fﬁla/p/ (ATHQP) — Fn’a’p’ (0)

1.64
ATeap ( )

Cliap,ﬁla/pl ~
In phonopy [72], the python package employed in this work for calculation of the
phonon properties, a modified Parlinski-Li-Kawazoe method is used to fit the force
constants from the forces and displacements. The calculated phonon properties are
usually insensitive to the displacement amplitude |A7,.p| within a reasonable range,
and is set by default to 0.01A. Yet, too small values of |A7,,yp| imply small energy dif-
ferences and, thus, leads to inaccuracies in the force evaluation and should be avoided.
A more severe problem of the frozen-phonon approach is the convergence with the su-
percell size. The forces are calculated ina N x N x NN supercell, while the interatomic
force constants are transformed to the reciprocal unit cellona N x N x N g-point grid.
The dynamical matrix is then Fourier-interpolated on a much denser g-point grid in
order to get a better estimation for integrated quantities, e.g., the density of states, or
the phonon band structure. However, for a very sparse initial grid this interpolation
might still give bad or even incorrect results. Therefor, a test for the supercell conver-
gence is always recommended. Note that the interatomic force constants can be also
obtained from density-functional perturbation theory (DFPT), where the energy gra-
dients are expanded in terms of perturbations of the density. For a detailed discussion
of this approach we refer to Ref. [73] or for the explicit implementation in the FHI-aims
code Ref. [74].
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FIGURE 1.5: The phonon band structure along the high-symmetry directions of the bcc
BZ for rock salt MgO calculated for a 2 x 2 x 2 cubic supercell. The blue line indicates the
wrong behavior of the LO mode without the non-analytic term correction at I' (cf. [75]
and see text for details), where the topmost red line shows the proper LO/TO splitting.

A prototypical phonon structure of a polar material is shown for rock salt MgO in
Fig. 1.5. Around the I'-point, the three acoustical branches with linear dispersion and
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the 3Ny — 3 optical branches can be observed. However, special care has to be taken
for the optical branches at small wave vectors. For ¢ — 0 the distortion introduced
by the longitudinal modes is accompanied by a macroscopic electric field, which is
not lattice-periodic and therefore can only be simulated in the limit of an infinitely
large supercell. Within the finite-differences approach the distortions at the I'-point
are calculated in the unit cell, and the macroscopic field is canceled. Consequently,
the longitudinal optical (LO) and transversal optical (TO) modes appear degenerate
at I'. To account for the proper LO/TO splitting, non-analytic corrections (cf. [75]) are
used in order to avoid very large supercell calculations. The non-analytic correction
can be calculated using the Born effective charges and the high-frequency dielectric
constant. A problem of a similar kind is encountered in the simulations of polarons in
finite supercells, where the scattering of excess electrons or holes with the LO modes
is an important mechanism for the formation of polarons.



28 Chapter 1. Ab initio concepts

1.7 The electron-phonon interaction and polarons

The decoupling of the electron and nuclei dynamics can only be regarded as a first
step for the estimation of the solid’s properties. It cannot entirely explain the behavior
of charge carriers in solids and associated temperature effects. For some scenarios the
interaction of phonons and electrons creates entities with unique properties strongly
dependent on the temperature. The electron-phonon (el-ph) coupling is responsible
for a number of exotic phenomena, for example superconductivity, but also explains
seemingly trivial effects on a quantum-mechanical level, e.g., the temperature depen-
dence of optical spectra (e.g. optical absorption edge or excitonic peaks) of semicon-
ductors and insulators, or the resistivity of metals.

The following section gives an introductory overview of the electron-phonon in-
teraction in order to explain the main challenges and to introduce the notations. In
this work, the el-ph contributions to the KS eigenvalues are not evaluated explicitly,
but rather implicitly by exploring the potential-energy surface due to the distortion of
the nuclei. This has the advantage of including anharmonic effects, which are hard to
access with DFPT techniques.

1.7.1 The electron-phonon interaction

In the framework of KS DFT the effect of phonons on the single-electron KS states are
given as the change of the effective potential V*5:

VE (e {Thap}) = VES(r, {0}) + AVES(r, {ATap)) s (1.65)

where VS depends parametrically on the atomic displacements {A7..p}, and
AVES(r {1ap}) = V(1 {ATrap}) —VES(r, {0}). For small displacements the change
of AVXS can be treated in a lower-oder power expansion of the nuclear displacements:

- avKS
AVO(r {reap}) = Y AThap +

T
Kap KRap

KS
> &m/mmpm;ap + ... (1.66)

As for the PES, including only terms up to the second order is often refered to as
the harmonic approximation of the electron-phonon coupling. In the theory proposed
by Allen, Heyne, and Cardona [76, 77] this includes the Fan and the Debye-Waller
terms, which are commonly evaluated in the framework of DFPT [78]. Using veg =
VES(p, {74ap}) in Eq. (1.27) and averaging over the phonon coordinates, the change
of the KS energy levels due to the el-ph coupling in the harmonic approximation is
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FIGURE 1.6: (a) The dependence of the total energy and the highest-occupied state on
the displacement along the LO mode at g-point (0, 1/4, 1/4) of the irreducible BZ for
rock salt MgO. The displacement (mode amplitude) is given in units of the zero-point
amplitude ly = (/2Mow,)"/?> = 0.17 A. The solid lines are parabolic fits for the two
smallest displacements. The deviation of the actual red squares from the red parabola
demonstrate the misconception of the harmonic approximation for the el-ph coupling of
the KS energy levels. (b) The ho KS eigenstate density averaged in the plane perpendic-
ular to the c axis of the cubic unit cell, as a function of the coordinate along the ¢ axis (in
units of the in-plane lattice constant ag = 4.211 A), calculated for atomic positions corre-
sponding to two different displacements [ along the same mode at the same g-point as in
(a). The gray- and red-shaded areas under the two highest peaks contain 0.73 and 0.96 of
the electron charge in this state, respectively. The 1 x 1 x 2 supercell of the conventional
cell for the simulated mode is ranging from —1 to 1 in the graph.
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obtained as:

52
(558({Uuq}az)> +ZQZ W’Sz ZUvq)|Z 0 (1.67)

where U,4 is the normalized real-space displacement corresponding to the phonon
eigenvector e, 4. Similar to the phonon problem, this expression can be evaluated us-
ing the linear-response technique DFPT (again cf. Ref [74] for the explicit implementa-
tion in FHI-aims) or with the frozen-phonon approach. A problem already pointed out
by Antonius et al. [79] and demonstrated in Fig. 1.6, panel a, is that often the harmonic
approximation used in Eq. (1.67) is not sufficient for an appropriate description of the
change of KS eigenvalues, even for small phonon amplitudes (this is in particular criti-
cal for the evaluation of the zero-point renormalization of the KS energy levels, where
often only second-order terms are considered). Instead, large anharmonic contribu-
tions® can be observed. To demonstrate this, the atoms in MgO were displaced along
the mode v = 6 at ¢ = (0,1/4,1/4), and the change in energies has been explicitly
evaluated for several amplitudes of the displacement. The quadratic fit for the highest
occupied KS state based on the smallest displacements deviates significantly from the
actual values for larger amplitudes, although the total energy shows an almost perfect
harmonic behavior. To explain this strong anharmonicity, we plotted the ho KS eigen-
state density for two different amplitudes | = 1.16lp and | = 0.26[, of this LO mode.
It can be seen that the density of the state increases its localization with increasing
the distortion along the mode. This means that the phonon mode carries a localized
charged along its direction, which in turn causes (macroscopic) polarization effects.
Yet, they are not (or at most only partly) present for small displacements, where the
charge is in fact still delocalized (see black curve in Fig. 1.6, panel b). This strong el-ph
coupling for the KS states makes the use of linear-response techniques not applicable
for strongly distorted lattice configurations, as in the case of small-polaron formation.

1.7.2 The polaron and model systems

The concept of a polaron is now almost 90 years old. The pioneering work was done by
Landau [6], Pekar [7], and Frohlich [8]. It is an extension of the single-electron picture
in solids to include the electron-phonon (el-ph) interaction leading to a renormaliza-
tion of the charge-carrier mass, localization, and mobility. This has extensive conse-
quences on how materials can be used, e.g., in solar cells, photocatalysts, or electric
devices. Thus, predicting polaronic behavior is crucial for designing new functional
materials.

Despite the aim of this chapter to introduce ab initio concepts, this section deals
only with model Hamiltonians for the polaron. However, the models are useful for
introducing the essential physics of the polaron. An ab initio approach for calculating

By anharmonic contributions we denote terms higher than second order in the Taylor expansion of
the KS eigenvalues as a function of phonon displacements.
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FIGURE 1.7: Formation of a polaron: A slow electron (or hole) is dressed by a cloud of
polar phonon modes leading to a renormalization of the charge carrier mass (indicated
by the larger circle), localization, and as a consequence its mobility. Due to the el-ph
interaction a separate level appears in the gap — the polaron level.

polaron properties is then presented and is the main object of this work. At the end
of this section we will summarize the deficiencies of the polaron models introduced
here.

Since the theory of polarons and in particular bi-polarons is discussed by several
authors as a potential theory for high-temperature superconductivity [80, 81], an ex-
tensive analytical and numerical work on (simplified) model systems can be found
in the literature. Moreover, a variety of mathematical tools were tested on this play-
ground as a representative scalar fermion-boson field interaction, e.g. Feynman’s path
integral method [82, 83], (diagrammatic quantum) Monte Carlo simulations [84, 85],
or the Green’s function approach [86]. For a detailed review of the early polaron the-
ory we refer to Ref. [87], and for the most recent results to Ref. [88]. Although, these
models are not based on first principles, they give a helpful insight into the polaron
behavior. Later it will be shown that these models can be used for correcting the ab
initio simulations a posteriori in order to account for long-range effects with a reduced
computational effort.

Overview of semi-empirical theories of the continuum polaron

Schematically, the polaron is described by the following scenario depicted in Fig. 1.7:
if an excess electron is put at the conduction-band minimum (CBm), the dipole of
polar phonon modes start to interact with the electron. As a consequence, on average
over time the electron appears to be dressed with the polar phonon modes. If the
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FIGURE 1.8: Localization of the electron wave function for different coupling strength:
(a) In the case of weak coupling large polarons form and the wave function is delocalized
over several hundreds (or more) atoms. (b) Strong el-ph coupling leads to small-polaron
formation, and the charge carrier is usually strongly localized around a single atomic
site and the geometry next to the central atoms is noticeably distorted.

electron moves (slowly) through the crystal, the cloud of phonons will accompany it.
This quasiparticle is named polaron —a portmanteau of polar and electron first used by
Solomon Pekar. The actual change of the electron properties depend on the strength of
the coupling. A rough but quick estimation is given by the Frohlich coupling constant:

ap = 2, | b (1 _ 1) (1.68)

2wio \eso €0

with the band mass my,, the frequency of the LO mode at the I'-point, the macroscopic
high-frequency dielectric constant e, and the static dielectric constant ¢y. The range
ar < 1 is associated with the weak-coupling region. For this region the number of
phonons Ny, coupling to the charge carrier is Ny, = ag/2 (i.e., smaller than one). Val-
ues of ap > 5 correspond to the strong-coupling regime, and the range 1 < ag < 5is
referred to as the intermediate-coupling regime. However, the limits for the different
coupling regimes are not strict. Especially for the case of strong el-ph coupling, the
actual consequences for the charge carrier depend strongly on the microscopic prop-
erties of the system, which are not taken into account by the descriptor ag. This issue
is investigated in detail in Ch. 3.

This classification into different strengths is based on the solutions of the Hamil-
tonian proposed by Herbert Frohlich [8] in 1954”. For his model Frohlich made the
following assumptions:

1. The regarded system has two different kinds of atoms in the basis with a single
LO mode only. This implies that the model is applicable only to simple crystal

"Historically, the first Hamiltonian for the polaron in the strong-coupling regime was derived by
Pekar. However, Frohlich’s Hamiltonian includes all coupling limits correctly, and Pekar’s Hamiltonian
can be obtained by a canonical transformation as will be shown later.
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structures.

2. The radius of the polaron (i.e., the extent of the lattice distortion and of the excess
charge) is large compared to the size of the unit cell. As a consequence, the
host system is treated as a continuous polarizable medium, where microscopic
properties are neglected.

3. Only the interaction with the LO modes close to the I'-point is taken into account
and, thus, the dispersion of the mode is neglected.

4. The excess charge carrier (hole or electron) is placed at the top or bottom of the
band extremum at k.

Based on these assumptions Frohlich derived the effective (single-electron) Hamil-
tonian through quantization of macroscopic expressions of the induced polarization
tield as follows:

f{polaron - f{kin,eff + I:Iph + I—irel-ph
hQ 2 .
= gV +2;MMW}M+2;U@%éW+h@y (1.69)

The first term ﬁkin,eff represents the effective kinetic energy of the excess charge. The
second term Hpy, is the total energy of the LO modes with frequency w0 and momen-

tum g, where the zero-point energy has been neglected, and the last term H, el-ph 18 the
el-ph interaction term with the Fourier components of the electron-nuclei potential V;:

1/2 1/4
‘@:%mm Amar f (1.70)
q| Q 2mpwro

The linear el-ph interaction term flel_ph is responsible for the excitation of a LO phonon
mode with momentum q due to the scattering of an electron plane wave with mo-
mentum k. In bra-ket notation the initial wave function |k,0) = e’*" |0) changes to
|k — g, 14), where |0) corresponds to the phonon vacuum, which illustrates the mean-
ing of the el-ph matrix elements:

(k — q,1q| Hepn |k, 0) = V7. (1.71)

Despite the simple form of the polaron Hamiltonian Eq. (1.69), it is not analytically
solvable. However, Frohlich obtained some physical insights with the aid of pertur-
bation theory regarding ffel_ph as a small perturbation of the electron-phonon system.
Obviously, the matrix elements yield no diagonal elements, and the second-order per-
turbation energy reads as:

B — h2k? _ Z |Val? (1.72)
kT omy . n2(k — q)2/2mp + wro + h2k2/2my, '
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FIGURE 1.9: The polaron binding energy for the Frohlich Hamiltonian Eq. (1.69) as a
function of the el-ph coupling strength o for different approximations.

For small electron momenta k (we assume here that k is close to the top or bottom of
the band extremum at the I" point ky = 0) Frohlich derived for the total energy of the

A~

polaron (Hpolaron):

h2k?
B = — — hwipag, (1.73)
2mp

where we refer to the second term as binding energy of the polaron Eynq4(i.e., the rest
energy of the polaron). For the polaron mass my, Frohlich derived:

mp = m*(1 + ag/6). (1.74)

Even in the weak-coupling regime the el-ph interaction is attractive and increases the
mass of charge carriers. However, for larger values of ar the el-ph interaction cannot
be considered as a small perturbation and Eq. (1.73) will break down.

Based on the analysis by Landau [6] of electron self-trapping, Pekar [7] calculated
the properties of the polaron in the strong-coupling regime. However, the Landau and
Pekar expressions were just derived from properties of a classical polarizable continu-
ous medium. The derivation presented in the remaining part of this section starts from
the (semi-empirical) quantum-mechanical Frohlich Hamiltonian and is demonstrating
the consistencies among the approximate solutions — from weak- to strong-coupling —
of the Frohlich Hamiltonian. We follow strictly the derivation given in Ref. [89]. For
large values of ar an adiabatic approach for the total wave function is plausible: if
the coupling is strong, the charge carrier will follow the ion movement adiabatically.
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Accordingly, we make the ansatz:

@) = [#) [X) (1.75)

where ¢ and x are the electronic and nuclear wave functions, respectively. This leads
for the expectation value of Eq. (1.69) to:

R h2
<Hpolaron> = —(p ) )
+ (x| Y hwroadag + Y (Vaagpg +hec) ), (1.76)
q q

where the Fourier transform of the excess-charge distribution is given by p, = (p|e'"|).
With the canonical transformation for the phonon operators:

_ Varq Varq .
S =exp [; (thO aq hoto g (1.77)

the phonon vacuum provides a minimum for the last two terms in Eq. (1.76) resulting
in:

V. 2
(05! (Z hwioag aq + Z (Vgagpq + h.c. ) S10) = Z 1V’ !pq\ . (1.78)
q q

For a detail derivation we refer to Ref. [89]. Consequently, the polaron binding energy
in the strong-coupling limit is given by:

Vallpql*

1.79

Eping = — (¢ V2|<P Z'

still depending on the electronic degrees of freedom. This result was first derived
by Pekar®, which is why we refer to it in this work as the Pekar polaron or Pekar
model. To find ¢ maximizing the absolute value of the binding energy, Pekar chose
different trial functions. Here, we choose a simple exponentially decaying function for
the minimization:

o(r) = Ne~Irl/me, (1.80)

with the normalization constant N' = 1/, /773 and the polaron radius . Note that

the anisotropy of the function in Eq. (1.80) does not exclude the overall anisotropy of
the polaron. As explained in App. C, this function is just an envelope to a state in
the valence or conduction bands (in case of a hole or electron polaron, respectively)
describing its localization, cf. Eq. (C.4).

The actual equations from Pekar were derived in real space. However, the real-space and the
reciprocal-space derivations are simply related by the Fourier transformation of Eq. (1.79).
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Using Eq. (1.80), for the binding energy one finds approximately:
Fiind = —0.1ahwi o, (1.81)

where the energy is minimized with the polaron radius:

1/ &
=32—/——. 1.82
" a'\l 2m*wro ( )

This is consistent with physical intuition that the polaron radius should decrease with
increasing el-ph coupling strength. But this also shows the limitations of the semi-
empirical theory of Landau and Pekar. For MgO we obtain r, = 1.9 A, ie., the ra-
dius of the polaron becomes comparable with the unit cell size and, thus, microscopic
properties of the host crystal become important. Interestingly, the functional Eq. (1.79)
gives a lower energy if a Gaussian trial function is used instead. However, as it is
shown later by our DFT calculations this strong localization is physically incorrect if
microscopic effects are considered, but the exponential decay of Eq. (1.80) turns out to
be the proper long-range behavior [90, 29]. The polaron level Ey, i.e. the vertical tran-
sition energy of the charge carrier, can be obtained by solving just the “electronic part”
of the Hamiltonian in Eq. (1.69) H, = H, kin,eff + f{el—ph' Then, the polaron level is an im-
portant quantity for optical effects in the solids, which can be related to luminescence
and absorption bands.

Despite the inconsistencies between assumptions and the result in the
strong-coupling limit, it can be used to explain substantial differences in the behav-
ior of small and large polarons (cf. Fig. 1.8). While large polarons in case of weak el-ph
coupling are delocalized over hundreds of atoms and floating like an effective-mass
charge carrier, the small polarons are mainly localized around a certain atomic site,
and their transport is characterized as hopping from one atomic site to another. This
has consequences for the temperature dependence of the mobility and conductivity
for the different polaron types as well: the large polaron’s mobility is decreasing with
increasing temperature, whereas for the small polaron it is the other way around.

Figure 1.9 shows a compilation of the polaron binding energies for different ap-
proximate solutions to the Frohlich Hamiltonian. For Pekar’s strong coupling limit,
the second-order term

EPekar — 10.1a% — 3log 2 — 0.75] fwro, (1.83)

has been added, which is calculated, e.g., in Ref. [91] numerically. This second-order
term is a constant and accounts for fluctuations of the polaron and non-adiabatic ef-
fects as it was discussed by several authors [87]. Also Feynman’s all-coupling solution
to the Frohlich Hamiltonian [82] is shown in Fig. 1.9, in which the Hamiltonian is re-
formulated using path integrals to obtain approximate solutions as a function of ag.
For large values of ar Pekar’s and Feynman'’s solution coincide, underlining the con-
sistency within the made approximations in the strong-coupling limit.

The solutions discussed above do not obey the symmetry of the host crystal due
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to our choice of the trial function Eq. (1.80). However, this can be easily fixed by
summing over all equivalent sites with the following ansatz:

Oy (r, R) =1/N Y o(r — R;)x(R — R;)e’*F (1.84)

7

with the number of equivalent sites in the Born-von Karman cell N. This form of the
wave function allows the calculation of a polaron band and therefore the estimation of
additional polaron properties such as the polaron mass and its band width. The pro-
cedure has been discussed by Tiablikov in 1952 and was used for KCl by Nettel [92] in
a tight-binding framework. The detailed equations can be found in the review by Ap-
pel [87]. The resulting finite width of the polaron band due to the ansatz of Eq. (1.84)
leads to ordinary band transport (coherent transport) for low temperatures. However,
if the localization is rather strong, i.e., in the order of the nearest-neighbor distance,
the overlap matrix elements become small and the band narrows. As a result, above a
certain critical temperature the energy due to interactions with phonons is sufficient to
activate the hopping and to break the symmetry — the narrower the polaron band, the
lower the temperature is where hopping starts to get a noticeable conduction mech-
anism. Please follow Ref. [9] for a qualitative discussion. For the strong-coupling
regime, which is considered in this work, the properties derived from the original
ansatz Eq. (1.76) is sufficient to characterize the polaron physics and we will not dis-
cuss the polaron-band properties.

From polaron models to ab initio simulations

One of the important limitations of the discussed models is the macroscopic treatment
of the lattice polarization. In the adiabatic approximation, this can be remedied by
simulating the involved electrons quantum-mechanically, with the nuclei remaining
classical point charges. In terms of a DFT calculation the polaron is a point defect in
the host crystal, and for this task several approaches exist. First, the embedded-cluster
approach is noteworthy, where a small cluster is embedded in (finite but huge) lattice
of point charges representing the ions of the crystal. Due to the localized nature of the
defect another embedding scheme [93, 94] can be used, where the atoms are divided
into two sub-regions, A and B. Region A contains atoms close to the “defect” center
and is treated self-consistently with a high-level quantum-mechanical method. Region
B contains atoms far away from the center and is treated with lower-level methods,
e.g. semi-empirical or force-field methods. Both regions are coupled using Green’s
functions formalism. A great advantages of the method in Ref. [93] is that the energy
contribution from geometry relaxations can be included from both regions, simulating
the proper elastic response of the host crystal and the quantum-mechanical behavior
close to the “defect” center. However, in this work we are using a much simpler ap-
proach, that is, the supercell approach.

In the supercell approach, a cluster is repeated periodically in each spatial direc-
tion in order to cover the entire space. Because of the periodic arrangements of the
simulated defect, the calculated energies are not just that of an isolated defect, but
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FIGURE 1.10: The PES of the perfect lattice configuration (left side) and the polaron
configuration (right side) in different charge states. The PES is schematically indicated
by parabolas.

that of an interacting defect lattice. For neutral system the interaction of neighboring
defects decays quickly, and well-localized defects can be simulated nearly interaction-
free in a moderately sized supercell. However, a charged defect such as a polaron
leads to Coulomb interactions between neighboring defects and between defects and
the compensating charge (necessary to avoid the divergence of the energy for an in-
finite periodic system with a charged unit cell). Consequently, the calculated total
energies and forces become sensitive to the supercell size. Solving this problem is one
of the main objectives of the second part of this work.

Using density functionals as implemented in the FHI-aims code in combination
with the supercell approach allows s to simulate all electrons at the same (quantum-
mechanical) level. In order to relate the polaron level and binding energy derived from
the previously discussed models to DFT quantities (total energy differences and Kohn-
Sham levels), we sketch the PES along the configurational coordinate towards the po-
laron geometry in Fig. 1.10. The total energy of the perfect neutral system Epe (V)
is obtained from the relaxed geometry of the pristine unit cell. Creating a supercell,
keeping the perfect lattice geometry, and removing an electron (in case of the forma-
tion of a hole polaron; otherwise an electron has to be added) leads to the total energy
of the perfect charged system with no localized distortions Epers(N — 1). According

to the IP theorem Eq. (1.36), Epert(N — 1) — Epers(N) = —sﬁff(]\f ), where sﬁgrf(N ) is
the highest-occupied Kohn-Sham energy level for the neutral perfect-crystal geome-
try. The total energies and Kohn-Sham states at the polaron (distorted) geometry are

labeled with “polar”. With the equality 5Eglar(N ) =eb’ lar(N —1) (in general only valid
for functionals, which are at least one-electron self-interaction free) the polaron level
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is given by:

Eo = L2 (N) — £7(V) (1.85)

and the binding energy of the polaron is given as:
Elj_ind - Epolar(N —-1) - Eperf(N - 1)' (1.86)

This corresponds to electron removal (hole polaron). The analog for the electron addi-
tion (electron polaron) should be obvious:

l;ind = Epolar(N + 1) - Eperf(N + 1)- (1.87)

Epolar 18 the total energy of the distorted system (polaron geometry). The number of
electrons in the system is given in parenthesis, with N corresponding always to the
neutral system. A negative Ebiin 4 indicates an energy gain and a stable (self-trapped)
polaron. The above given derivation demonstrates how the polaron properties such
as the binding energy and the level of the polaron can be calculated using DFT.
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Chapter 2

Polarons and the DFT supercell
approach

At the end of the previous chapter we discussed relevant polaron models for polar
materials. However, the approximations made in these models are severe, especially
for the small-polaron formation in case of strong el-ph coupling, when phonon modes
of the entire BZ are contributing to the polaron binding energy, since a strong localiza-
tion in real-space translates into delocalization in the k-space. The ab initio simulation
of polarons in a supercell or in embedded cluster models using DFT provides a way to
a parameter-free modeling in the adiabatic limit — an ab initio analogue of the Pekar’s
model, including accurate microscopic properties of the host crystal. A first attempt
to simulate small polarons with an atomistic model was the study of Shluger et al. [95]
using the semi-empirical quantum chemistry method INDO and applying it to a clus-
ter of MgO embedded in an array of point charges. They found that the hole is not
stable in bulk, but at the surface. However, considering the weak dispersion of oxy-
gen bands (cf. App. E.3), the strong el-ph coupling with ag = 4.4 in MgO, and the fact
that the long-range medium response was not included, it can be expected that small
polarons in the bulk are stable. Below we show that small hole polarons are indeed
strongly bound and stable in MgO. The first-principles studies of small polarons are
scarce due to the high required accuracy and the associated large computational cost.
Only recently [96, 97] it became possible to compute sufficiently large supercells to cor-
rectly predict self-trapping in an otherwise pristine host crystal using more accurate
but costly hybrid density functionals such as HSE06 [52, 53] or B3LYP [39, 54]. How-
ever, unsolved challenges remain associated with the DFT supercell approach, namely
the dependence of polaron properties on the size of the supercell (i.e. the long-range
screening by electrons and nuclei) and on the XC approximation. The following chap-
ter investigates in detail and provides solutions to these issues.
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2.1 Elastic long-range behavior

DFT in combination with the supercell approach has become the method of choice
for the ab inito calculation of point defects in solids. However, the supercell approach
suffers from finite-size effects, especially for charged defects. These finite-size effects
include the interaction of the excess charge with its periodic images, with the compen-
sating constant background charge introduced to keep the unit cell neutral, and with
the periodic constraint on the atomic relaxation. To overcome these finite-size limita-
tions, two strategies are commonly used: (a) extending the supercell and extrapolating
to the dilute limit based on a scaling law, or (b) applying an a posteriori correction. For
(a) only general knowledge about the size dependence is necessary. For example, the
formation energy of a charged defect in the bulk as a function of the supercell size L
(L = 0'/3, where  is the supercell volume) can be written as an inverse powerlaw:

1 1
E(L) :E(OO)*’alz‘i'aBﬁ, (2.1)

where F(oc0) is the formation energy in the dilute limit. This scaling law was derived
by Makov and Payne [98], and the prefactors are given by:

2
q-aMm

: (2.2)

“ = 2e
0= [ drpr)r® 2.3)
3e Q

where ¢ is the charge of the localized point defect, a the Madelung constant depend-
ing on the crystal structure, and ¢ is the linear response of the medium to an external
electric field. If only the polarization of the electrons is considered, the response ¢
corresponds to the high-frequency dielectric constant €., or, if the response of both
the electrons and ions is considered, it corresponds to the static dielectric constant .
The latter is often referred to as the elastic response and is of great importance for our
discussion on the long-range behavior of the polarons. Usually the terms a; and a3 are
not evaluated explicitly, but determined by fitting the energies of different supercell
sizes. The disadvantage of this procedure is that at least three supercell calculations
of increasing size are needed to estimate F(oo) in Eq. (2.1), which is computationally
very demanding, especially if atomic relaxations are included.

Conversely, approach (b) requires an appropriate physical model for the long-
range interactions in the solid. If only the electronic response to the excess charge
is considered, its long-range contribution to the energy is described by a term propor-
tional to 1/esr (e.g. Ref. [99]). However, if the ionic response cannot be neglected,
the problem becomes challenging, and so far this case has not been solved. It has
been suggested that the long-range elastic contribution is similar to the electronic one,
but with the high-frequency dielectric constant e, replaced by the static one ¢y, i.e.,
the long-range potential behaves classically like 1/¢or. However, corrections based on
this assumption generally overestimate F(c0), in particular for vacancies [100]. This
overestimation has two reasons. First, the aforementioned long-range behavior is a
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crude approximation, neglecting all details of the underlying phonon structure. Sec-
ond, short-range screening can be much more efficient due to the strong coupling of
the excess charge to localized phonon modes close to the defect and, thus, short-range
screening will be different from 1/¢¢r. In the following we analyze the screening ef-
fects in detail and show that only in the strong-coupling limit of the el-ph interaction
the substitution of ., with g is a good approximation.

We start by splitting the long-range elastic potential V! into the electron-phonon

Ir Ir .

interaction Vel—ph and electrostatic potential V[ :

1 1 1
VI = Vi + Vi (2.4)

el-st

VI . is generated by the charge density pg(r) of the localized excess charge. The

el-st
Fourier transform of VI is then given by:

k
Versi(k) = 2w,€‘;ﬁ03€ : (2.5)
where p4(k) is the Fourier transform of p,(7).

To obtain a corresponding expression for Ve"Ph we first have to introduce addi-
tional assumptions. First, we will focus on polar crystals. Second, we only consider
the interaction of an electron with a single phonon at a time, neglecting higher-order
contributions!. Third, we assume that the adiabatic approximation (factorization of
the electron and phonon wave functions) is applicable?. With these assumptions the
long-range part of VP reduces to [89]:

1 2
Vvellr—ph(k) == Z m gg—ph(ky)‘ pd(k) ) (26)

which was derived earlier in this thesis, cf. Egs. (1.76) — (1.78), but for now considering
the general long-range el-ph matrix elements gg_ph. The potential in Eq. (2.6) is attrac-
tive, lending further stabilization to the polaron. An analytic expression for gtleli—ph was

recently derived by Verdi and Guistino [101]:

1/2 1.7 r7x
h ) kT Z e, (k) 27

Ir .
kv) = idme
Gel-ph () = idme - <2NMMV kTe  k

where v labels the phonon mode, wy,, is the corresponding phonon frequency of ion
x with mass M. Z7 is the Born effective charge tensor and e, (k) are the phonon
eigenvectors of the dynamical matrix.

'With this assumption we essentially limit the el-ph interactions to include only linear terms as for
Eq. (1.76). This is in line with our goal to model the long-range part of the el-ph interactions, for which
the displacements are small. The displacements can be large close to the center of the small polaron, but
these short-range effects are simulated explicitly in the supercell.

In the framework of classical DFT (i.e., the nuclei are considered as external potential) this is always
fulfilled. However, non-adiabatic effects could alter the DFT results significantly.
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Equations (2.6) and (2.7) describe the scattering of all phonon modes with py.
Thus, the long-range behavior of the el-ph interaction depends on the phonon struc-
ture across the entire phonon Brillouin zone, and the elastic behavior is not captured
by the classical 1/¢or limit. If we only consider the interaction of p; with a single
dispersion-less longitudinal optical mode wro, we recover the limit of the Frohlich
electron-phonon interaction in the strong-coupling limit, which was first investigated
by Pekar [7]. With the Frohlich matrix element (for the general case of an anisotropic
medium [102]):

i ) ) 1/2
=ie |2 — 2.
") = e 2o (gra - e )] @8)

we obtain the potential:

pa(k)
kTe k

pa(k)

P
T T ek

Vllr—ph(k) =27

; (2.9)
where e, and g are high-frequency and static dielectric tensors, respectively. Upon
substituting Eq. (2.9) and Eq. (2.5) into Eq. (2.4), we finally arrive at the classical limit
of a screened potential for a localized charge distribution in an anisotropic medium:

Ir pd(k)
k) =2 .
VE(E) Tk Teok

(2.10)

The el-ph potential given by Eq. (2.9) is an upper bound and, consequently, Eq. (2.10)
is also an upper bound. This explains why any correction based on Eq. (2.10) over-
estimates the actual limit. We find that, despite the approximations we made, V" (k)
in Eq. (2.10) is still appropriate for polarons in the intermediate coupling regime (1 <
ap < 5). Vice versa, our derivation can be used to improve the long-range model
for polarons and charged point defects, if needed, since all assumptions are clearly
defined.

Based on the knowledge of the long-range behavior, the errors due to finite size
of the supercell can be corrected using a posteriori methods, such as the method of
Freysoldt et al. [99, 103]. Generalizing the Freysoldt method to an arbitrary interaction
potential V() and anisotropic media (in the standard approach of Freysoldt et al.,
V(r) ~ 1/exr), the correction for the interaction energy is obtained as the difference
between the energy of the artificial lattice of charged defects, Ej,t, and the energy of
an isolated defect, Ei:

Ecorr(Q) = Elatt(Q) — Eiso
- % > V(G)q(G) - (Q:F);;/V(k)Qd(k)dk , (2.11)
G#0

where V can be VI oh VI or the sum of both, and g4(k) is the Fourier transform of
the excess charge distribution, ¥ is the volume of the supercell. The first term Ej,(£2)
is a sum over all reciprocal lattice vectors G' omitting the divergent contribution at

G = 0. Taking into account the alignment term gAV [99, 103], where ¢ is the total
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charge per supercell, the corrected energy E(oco) is obtained as:
E(00) = E(Q) — Ecorr(Q) + qAV (2.12)

for the energy E(f2) calculated in the supercell with volume 2. A summary of the
Freysoldt et al. correction scheme including the meaning of the alignment term can be
found in the App. B. Having derived the correction for the elastic contribution, we can
apply it to the polaron problem and investigate the effects of the two parts in Eq. (2.4)
separately.
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2.2 The polaron in a supercell

In the following subsections, two ways of obtaining optimized polaron geometry, the
polaron binding energy, and the polaron level are presented. The conventional way is
presented first, i.e., where the polaron geometry and ensuing properties are simulated
in an explicitly charged supercell. In the second approach only the neutral supercell
is needed. In this approach, the atomic positions are allowed to relax according to the
polaron charge distribution, but without having introduced a charge explicitly. The
forces needed for the optimization are obtained by calculating gradients of a modi-
fied potential-energy surface. At the end of this chapter we formulate our approach
to calculating polarons, which minimizes the influence of the errors due to the XC
functional approximations and the finite-size effects.

221 The charged supercell

An important property of a polaron is its binding energy as we have introduced in
Eq. (1.86) with
El:ﬁnd — Epolaron(N ¥ 1) _ Eperf(N ¥ 1)

where the energies have not been corrected for finite-size effects, yet. The simplest
way to calculate the polaron binding energy is straightforward: in Eq. (1.86)
EPolaron(N £ 1) is computed with DFT and full structure relaxation in the charged
supercell. To ease the system out of possible high symmetry configurations, an initial
symmetry-breaking distortion have to be applied. Finite-size effects are expected to be
small, since the elastic long-range interaction falls off with 1/eqr and the static dielec-
tric constant ¢ is usually large (210) for ionic crystals (however, as demonstrated and
explained below, the dependence of the polaron binding energy defined by Eq. (1.86)
on the approximations in the exchange-correlation functional is strong).

In the following, we focus on the hole polaron for brevity, since only small ad-
justments of the formalism are needed for the electron polaron case. The supercell
dependence of E;\. . for MgO is shown in Fig. 2.1, panel a, where we used HSE06 hy-
brid functional [52, 53] with the fraction of exact exchange o = 1 [denoted HSE(« = 1);
see Section 2.2.2 for more computational details]. We find a small hole polaron mainly
localized at the central oxygen atom. The displacements of the nearest neighbors are
of the order of 0.1 A and decaying fast away from the center’; cf. App. E.3 for further
details of the behavior of the displacements and their dependence on the supercell
size. The shape of the excess charge density distribution is p-like (cf. Fig. 2.4). For
sufficiently large supercells in Fig. 2.1, when the long-range regime is valid, the de-
pendence of the binding energy on the supercell size L becomes 1/e9L. From the
slope of E;% ((1/L) at 1/L = 0 we obtain gy = 10.32, in good agreement with the
experimental static dielectric constant for MgO ¢¢ = 9.8.

*However, the contribution of the displacements to the polaron energy is not decaying fast as it is
demonstrated below.
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Next, we calculate the correction for the artificial electrostatic interaction due to the
periodic arrangement of the holes and their interaction with the constant background,
using Eq. (2.11) with the potential Eq. (2.5) (that is ~ 1/e,7). To model the excess
charge density py(r) needed here and for following finite-size corrections, we fit the
envelope of the KS eigenstate density (decays exponentially for a localized state) with
an exponential function:

Pmodel = Aexp(—|7" - TO|/7)7 (2-13)

where A is a normalization constant, ry is the center of the polaron, and v the fit-
ting parameter corresponding to the polaron radius (cf. Sec. C for more details). Ad-
ditionally, we calculated the alignment term AV in Eq. (2.12) between the charged,
neutral, and model (i.e., including the model excess charge density compensated by
a constant background charge) systems following the approach outlined in Ref. [103].
After this correction, according to Eq. (2.4) the remaining contribution is due to the
long-range electron-phonon interaction. This contribution is shown by the blue line
in Fig. 2.1, panel a. The line is almost perfectly straight, and the slope is equal to
(et — €51 )q%am/2, where gy = 10.32 is taken from the fit of £, introduced above,
and 5, = 2.4 is obtained from an independent calculation*. This analysis reveals
the role of different long-range interactions in Eq. (2.4) in the supercell dependence of
polaron properties.

Thus, the approximations in Eq. (2.9) work well for MgO, which is expected since
it has only one longitudinal optical phonon mode, strong el-ph coupling, and is an
isotropic material. However, we find that the polaron binding energy defined by
Eq. (1.86) is extremely sensitive to the approximations in the exchange-correlation
functional. Figure 2.1, panel b, shows the dependence of the binding energy on the
fraction of exact exchange « in the HSE06 functional. Within a small range 4-0.05 of o
around the standard value (0.25) the binding energy changes by about 0.5 eV, which
is in the order of the change of the band gap (6.1 eV for a=0.2 and 6.8 eV for a=0.3,
cf. Fig. 2.5). This leads to a qualitative change in small polaron stability, from a stable
self-trapped polaron (negative binding energy) to an unstable small polaron (positive
binding energy). This strong functional dependence makes even a qualitative assess-
ment of the existence of self-trapped polarons impossible. Several approaches have
been suggested in the literature for determining the correct or at least optimal value
of a [45, 46, 104, 50, 105, 106, 107]. Here we focus on restoring the IP theorem [104] as a
consistent DFT-based solution of the problem.

In (exact) DFT within the scope of Kohn-Sham (KS) scheme the vertical ionization
potential I P should be equal to the negative of the highest occupied KS state energy
€ho 1IN the system:

IP=FE(N —1)— E(N) = —eno(N), (2.14)

*The dielectric constant ., was obtained by fitting unrelaxed singly positively charged oxygen va-
cancy’s formation energy for MgO as a function of the supercell size, using the Eq. (2.1). See App. D.2 for
details. This approach of calculating the dielectric constant with non-local functionals implicitly includes
local field effects, as is also shown in App. D.2.
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FIGURE 2.1: (a) The supercell dependence of the hole polaron binding energy including
different corrections and definitions, calculated for MgO with HSEO6(a=1). The black
and red lines are the binding energies as defined by Eqgs. (1.86) and (2.18), respectively.
The term ¢AV corresponds to the potential alignment explained for Eq. (2.12). The blue
line includes the correction for the polarization of the electrons E¢:(Q) and the potential
alignment term. The difference between the red and blue lines corresponds to the green
line, the XC error due to the deviation from the straight-line behavior Axc. The atomic
positions are fully relaxed for each supercell size. (b) Dependence of the polaron binding
energies on the fraction of exact exchange. The fixed geometry of the 3 x 3 x 3 supercell
from panel (a) is used and binding energies for different fractions of exact exchange are
calculated.
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where E(N — 1) and E(N) are total energies of the ionized and neutral system, re-
spectively. In this work we refer to this relation as IP-theorem, but it is also known as
HOMO-I condition [45] or generalized Koopmans’ theorem [104], and is directly re-
lated to the straight-line dependence of the total energy on occupation of the highest-
occupied state [26] or the fact that the position of €}, is independent on its occupation.
Equation (2.14) is always correct for any extended (delocalized) state, as was already
pointed out by Janak (1978) and extended to the case of the generalized KS scheme
by Perdew et al. [33]. However, for a given density-functional approximation (DFA),
Eq. (2.14) does not necessarily hold if the orbital is localized, unless the satisfaction of
the straight-line condition is explicitly included in the design of the functional. The
deviation from the straight line Axc(«):

E(N —1) = E(N) = —eno(N) + Axc(a) (2.15)

is described by two contributions to Eq. 2.14, Axc = II + X, with the self-interaction
error IT causing a convex curvature of the total energy as a function of occupation, and
the orbital relaxation X a concave curvature. The optimal o = ¢ minimizing the XC
error [46, 44] is then determined from the condition Axc(aopt) = 0.

The straight-line theorem (Eq. (2.14)) was originally proven for finite systems, and
transferring it to a solid with periodic boundary conditions needs special care. For any
finite supercell with volume (2, the energy of the artificial electrostatic interactions due
to the periodic arrangement [ES-54(Q), obtained using Eq. (2.11) with potential from
Eq. (2.5)], has to be removed from E(N — 1):

E(N —1) — EESHQ) — BE(N) = —eno(N) + Axc(a), (2.16)

since it would only vanish in the limit of an infinite supercell. Combining Eq. (2.16)
and Eq. (1.86), we get:

El;rind = Egind + E’cecl)_rsrt + AXC(Ol) ) (2.17)

where ES:st stands for the artificial electrostatic interaction energy for the distorted
geometry (since for the perfect geometry this contribution vanishes) and the quantity

Efpg = AEPRO — B, (2.18)

is calculated using only neutral unit cells, with the energy of distortion from perfect to
polaronic geometry AEPolaron — ppolaron( 1y _ pperf( \') and the polaron level energy

with respect to the VBM Ej = eﬁglaron(N ) — e{’%{,{(]\f ). According to Eq. (2.17), when
Axc(w) is zero, EY. 4 represents the polaron binding energy corrected for the artificial
electrostatic interaction.

EQ. 4 is shown in Fig. 2.1, panel a, as red line (top-most line), where the optimized
polaron geometry of the charged supercell is used. Note that, despite including only
quantities calculated using neutral unit cells, EY; , has a strong dependence on the
supercell size. As discussed below, this dependence is due to the interaction of the

ionic relaxations in different unit cells. According to Eq. (2.17), the difference between
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EQ. 4 and Ef , corrected for the electrostatic supercell interactions (the blue line in
Fig. 2.1, panel a) is the XC error for a given supercell size. We find that the XC error
Axc is practically independent on the unit cell size (green line in Fig. 2.1, panel a),
starting from the smallest supercell with 64 atoms we have considered. This implies
that Axc(a) could be calculated even in the smallest supercell and then removed in
any larger supercell. In order to obtain the optimized o = apt we have to remove
Eet(2) from the binding energy E;_, and determine the intersection with Ep; ;. The
resultis shown in Fig. 2.1, panel b, and we obtain apt = 0.48. Since the dependence on
« is not linear, at least three different values of o have to be calculated to estimate cpt.
Additionally for each value of a the dielectric constant e, has to be calculated. Thus,
the simulation of the polaron in a charged supercell is computationally demanding,
since it is extremely sensitive to the underlying functional. In the next subsection we
demonstrate an approach to overcome this problem.

2.2.2 The neutral supercell

As mentioned above, Ek?ind in Eq. (2.17) is equal to the polaron binding energy cor-
rected for the artificial electrostatic interaction, only when Axc(«) vanishes. However,
similar to previous work [108, 109], we find that E&nd is far less sensitive to the un-
derlying functional than Eg‘m 4 as can be seen for MgO in Fig. 2.1, panel b. The same is
true for TiOy, but the remainig dependence is larger than for MgO (see Fig. 2.3). This
has an interesting implication: EY; , is the polaron binding energy with most of the
exchange-correlation error removed (because for an exact functional EY, ; is equal to
the polaron binding energy). The reason for the insensitivity of Egin 4 on the functional
remains unclear, but might benefit from the closed-shell character of the system [108].

As a consequence, even with PBE we find a stable self-trapped hole polaron in
MgO, which is not the case when charged supercells are used. Also, we find that the
polaron level with respect to the band edge (E)), calculated using a neutral supercell,
is insensitive to the functional, as can be seen in Fig. 2.5. A stronger functional depen-
dence of £ is expected when the character of the polaronic state or states of the band
edges are sensitive to the functional.

Polaron geometry optimization in the neutral cell
(approach by Sadigh et al.)

Using EY, 4 for calculating polaron binidng energies has been first implicitly intro-
duced by Zawadski et al. [109]. The independence of E_, ; on the functional has been
discussed by Sadigh et al. [108]. In their work, Sadigh et al. have also suggested a way
to obtain forces for a polaronic distortion directly using EY. , PES. This facilitates the
calculation of accurate elastic response to the excess charge at the level of a hybrid
functional, but at the cost of a PBE calculation. Their approach to calculate the forces
from the neutral PES is shortly introduced in this paragraph.
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In general, the force on the ith atom is given by the gradient of the energy with
respect to its position:

Fiy(N = 1) = Vi (E(N) = €r0(N)) (2.19)

where we already have substituted E(N — 1) with E(N) — ep,(N) from Eq. (1.36).
The first term is just the force obtained from the neutral PES. For the second term
we apply Janak’s theorem ¢, = dE(N)/dN (cf. Fig. 2.2 for the following numerical
approximations):

F(N - 1) =F(N) - V; (di%\”) (2.20)
o d ' o dF;(N)
=F(N) ~ S (ViB(N) = F(N) - 8 (21)
~F(N) — Mg [F] (N), 02)

where A; [F](N) is the backward finite difference approximation of the derivative,
e.g. in first order:

F(N) — F(N - 6)

A [F)(N) = ;

(2.23)

With this approximation, we can calculate the forces F;(N — 1) from the forces F;(N)
in the neutral cell and the forces F; (/N —¢) in a slightly charged cell (with a fraction § of
an electron removed). Since ¢ is small, the error due to the artificial charged supercell
interactions is also small. For our calculations, we used a second-order approximation
of the backward finite differences, analogous to the approach suggested by Sadigh
et al. [108]. The forces are calculated directly with FHI-aims, whereas the geometry
optimization is performed using the Atomic Simulation Environment package [110] to
calculate A; [F] (N) in Eq.(2.23). The parameter £ is set to 0.0025 (as proposed in [108])
giving a deviation to true €, ;,, smaller than 0.01 eV. Forces have been considered con-
verged as soon as they were smaller than 0.001 eV /A. For all our geometry relaxations
we see a stable but slow convergence below this limit. Furthermore, for this geometry
optimization we used the PBE functional, which is sufficient to get the right atomic
positions as we show in the App. E comparing the different functionals and methods.
Applying this optimization method to MgO, we find a self-trapped hole polaron in
MgO on the E{, ; PES with PBE as before on the E;._, PES with HSE(a=1). However,
a stronger dependence of the polaron properties on the supercell size is observed,
which can be corrected by the approach presented next.

A posteriori finite-size correction in the neutral cell

Using the EY. , PES instead of charged supercells allows us to significantly reduce the
functional dependence. Naively, one may expect that the supercell dependence is also
reduced, since only neutral supercell calculations are performed. However, this is not
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FIGURE 2.2: The numerical evaluation of the ho KS state using Janak’s theorem. The red
point indicates the total energy of a SCF calculation of the charged system, the blue point
represents the same energy estimated by using the IP theorem. The difference appears
due to the violation of the IP theorem. The green points and the corresponding text box
represent the finite difference approximation of the energy derivative.

the case. As can be seen from Fig. 2.1, panel a, the dependence of E&n 4 on the super-
cell size is much stronger than in the case of charged suercells. This dependence is
due to the artificial interaction between ionic relaxation fields in different supercells.
Indeed, the E;_, — ESstand B, supercell dependence are practically identical and
correspond to the long-range part of the electron-phonon interaction potential given
by Eq. (2.9) in the strong el-ph coupling limit. This understanding allows us to in-
troduce an a posteriori correction ESP! calculated using Eq. (2.11) with V = VI oh of

Eq. (2.9), which removes the dependence of E&n 4 on the supercell size. To remove the
artificial interaction terms, we use the approach of Freysoldt et al. [99, 103] Eq. (2.11),
but for a different long-range potential, namely the one given by Eq. (2.9). Note that
the original approach by Freysoldt et al. was developed for electronic response effects,
while we use the general scheme to treat nuclear distortions as well. This new correc-
tion scheme relies on the adiabatic approach, which is usually applicable for strong
el-ph coupling, but, as will be demonstrated below, works reasonably well also for
intermediate coupling regimes.

The polaron level Ej also depends on the supercell size. Because of special prop-
erties of the small polaron in the adiabatic strong-coupling limit, it is possible to relate
the polaron binding energy to the polaron level, in accordance with Pekar’s 1:2:3:4
theorem [111] . It follows from the theorem that (see details in App. C.1):

Ey(00) = Eo(Q) +2 Bk () | (2.24)

where E(£2) denotes the polaron level calculated in a supercell with volume 2. Thus,
the correction to Ey(£2) in a finite supercell is expected to be about twice as large as for
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the polaron binding energy calculated using neutral supercells. Indeed, this is what
we observe for MgO (see Fig. 2.3, panel a), where the absolute value of the Ej slope
as a function of L = Q~!/3 is almost exactly twice of the absolute value of the E;
slope. For TiO,, the relation between the Ey and Egin 4 dependencies deviates from
the one derived from Pekar’s 1:2:3:4 theorem (see Fig. 2.3, panel b) due to a weaker

electron-phonon coupling, as discussed in detail in the next Section 2.2.2.

The new approach for simulating small polarons using DFT

In summary, we find that the dependence on the exchange-correlation approximation
is drastically reduced by transforming the treatment from a charged to a neutral super-
cell. However, the finite-size effects are significantly more pronounced. These effects,
caused by the electron-phonon long-range potential (eq. (2.9)), can be corrected using
the general scheme of Freysoldt et al., but with the potential V. oh derived in the previ-
ous chapter of this thesis. This makes possible using moderately sized supercells and
semi-local functionals to predict polaron properties as it will be demonstrated more
clearly in the remaining part of this chapter (especially cf. Fig. 2.3). Building on the
findings and understanding obtained in the previous sections, we formulate an ap-
proach for a reliable calculation of polaron properties in the adiabatic approximation:

1. We obtain the atomic structure of the polaron using the PBE functional [corre-
sponding to HSE06(a=0)], where the forces for the atomic relaxation are evalu-
ated according to the approach of Sadigh et al. [108], namely the evaluation of
Eq. (2.20).

2. HSE06(a=1) calculations (as a limiting case) are performed for the fixed geome-
tries obtained with PBE. This allows the estimation of the results on the XC func-
tional.

3. The polaron binding energies are calculated using Eq. (2.17). The finite-size cor-
rection for the binding energy is calculated using Eq. (2.11) with the potential
from Eq. (2.9). The correction for the polaron level is calculated as twice the
correction for the binding energy. The polaron radius needed for the finite size
correction is estimated by fitting the envelop of the excess-charge density as de-
scribed in App. C.

The different sign of the correction for the hole polaron versus the electron polaron
(compare panels a and b in Fig. 2.3) is explained by the fact that the equation for the
electron affinity has to be used for the electron instead of the ionization potential for
the hole.

The approach described above is applied for the simulation of a hole polaron in
MgO and an electron polaron in rutile TiOs. The results are shown in Fig. 2.3. We use
the hybrid-functional implementation [70] in the all-electron full-potential electronic-
structure package FHI-aims [59, 60, 69]. The evaluation of forces and total energies are
computed with FHI-aims using the default light settings, to obtain consistent results
for all unit cell sizes. As is shown in the App. E, using default tight settings, which
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FIGURE 2.3: The polaron binding energy Ep. ; (Eq. 2.18), the polaron KS level E, with
respect to band edge, and the relaxation energy AEP°R™" for (a) MgO and (b) rutile TiO,
as a function of the inverse supercell size 2~1/3. The x axis is given in units of the cubic
root of the unit cell volume €y. The PBE polaron binding energies corrected for the finite-
size effects are shown by square symbols. The solid lines show linear least-squares fit
for different energy components and DFT approximations. For all supercells the atoms
are relaxed according to the approach described in the text.
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are the recommended settings for well-converged calculations, does not change the
results for the smallest supercell. For the cubic 8-atom MgO unit cell we use a lattice
constant of = 4.211 A obtained with HSE06 (a=0.25), and a I'-centered 8 x 8x 8 k-grid.
The number of k-points for each direction is scaled down linearly for larger supercell
sizes. For the tetragonal 6-atom TiO unit cell we use a = 4.64 A and ¢ = 2.97 A ob-
tained with the PBE functional and a 9 x 9 x 15 k-grid. Due to one more degree of
freedom the positions of the atoms are optimized, too, using the PBE functional (for
details see Sec. 3.1). For every supercell size we allow all atoms to relax to obtain the
full elastic contribution within the cell. The corrected E, ; values for each supercell
are shown for PBE.

Clearly, the supercell-size dependence of Ep; , for both MgO and TiO, agrees very
well with the behavior corresponding to the electron-phonon long-range contribu-
tion described by Eq. (2.9). As mentioned above, the Frohlich coupling constant ar
is equal to 4.4 for MgO and 2.2 for TiO3. Thus, MgO is better described with Pekar’s
long-range el-ph potential Eq. (2.9), and the size-corrected binding energy practically
coincides with the binding energy obtained from a linear extrapolation to the dilute
limit. The polaron radii of MgO and TiO» needed for our finite-size correction are
shown in Fig. 2.4. The sensitivity of the polaron radius to the XC approximations has
been investigated for MgO for different fractions of exact exchange, too, and we find
only a weak XC functional dependence (cf. Fig. E.2). For TiO,, the corrected energy
deviates (surprisingly only slightly) from the extrapolated one (within 0.05 eV), re-
flecting approximations in Pekar’s long-range el-ph potential, since four LO modes
exist in rutile TiO, and can interact with the excess charges. Also, the dependence of
the binding energy and polaron level on the XC functional is stronger for TiO; and ad-
ditionally, we observe that the atomic structure of the pristine unit cell is sensitive to
the XC functional as well (cf. E1 for details) demonstrating limitations of obtaining po-
laron properties with only the PBE functional. However, the changes in the geometry
as a function of « are still small, and we use the configurations of the systems obtained
with PBE. We find final polaron binding energies in the dilute limit -0.38...-0.58 eV for
MgO and -0.14...-0.41 eV for TiO,, where the range indicates changes in a from 0 to
1. For the polaron level with respect to the band edge we find 1.42...1.74 eV for MgO
and -0.86...-1.44 eV for TiOy. These results remain both qualitatively and quantita-
tively consistent across a broad range of functionals generated by varying the fraction
of exact exchange. This consistency is remarkable when compared to previous the-
oretical studies, especially for TiO,, since it was either shown that the small polaron
formation is expected only for a certain range of a parameter, e.g. for DFT+U [112,
113] or HSE(«) [114], or it was demonstrated only for a specific value of a parameter,
e.g. for HSE(«=0.25) [115].

To make a connection to experimentally accessible quantities, in particular photo-
luminescence (PL) measurements, an accurate prediction of polaron level is important.
Since the quantities obtained with the neutral PES E?; , are weakly dependent on the
underlying functional, the fraction of exact exchange o can be used to tune the gap
FEgap to recover the experimental band gap, which ensures a good estimation of the
absolute position of the polaron level w.r.t. band edges. Then, the main PL peak due
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FIGURE 2.4: The Kohn-Sham eigenstate densities (black solid lines) along the c-axis for
(a) the hole polaron in MgO and (b) the electron polaron in TiO,. The blue dashed lines
represent the envelope pq(r) of the densities. The obtained polaron radius is 1.3 A and
2.1 A for MgO and TiO,, respectively. For details see C. The isosurfaces shown in the
insets encompass 0.95% of the polaron density. Red nodes represent oxygen, green —
magnesium, and silver — titanium atoms. The geometries are optimized with the Sadigh
et al. approach [108] using the PBE functional. The center of the polaron emerges auto-
matically from the fitting of Eq. (2.13).

to the small polaron formation can be expected at:
PL = Egap — |Eo| . (2.25)

For MgO, the experimental band gap was measured as 7.8-7.9 eV [10], which is ob-
tainedin our DFT-HSE calculation for o = 0.4. Based on our HSE06(cv = 0.4) calcu-
lations, the PL peak should be at 6.3 £ 0.1eV. Unfortunately, we could not find any
experimental reference for this region of PL. There are PL bands at 7.65 for 6.9 eV as-
signed to free and self-trapped excitons, respectively [116]. The high intensity of the
PL suggests that it is an intrinsic property of MgO. The difference to our theoretical
prediction could have many reasons: we are not explicitly considering an exciton in
our simulation, nor do we include any temperature or non-adiabatic effects. Addi-
tionally, we have not used the optimized lattice constant for HSE(a=0.4). For rutile
TiO; a fraction a = 0.2 is needed in order to reproduce the experimental band gap
of 3.1 eV [117], and the corresponding photoluminescence peak is predicted by our
calculation to be at 2.1 & 0.1 eV. This is in good agreement with experimental find-
ings of PL = 2.34 eV for rutile powders [118] and direct measurements of the polaron
level Ey = 0.7+ 0.1 eV corresponding to PL = 2.4 eV with scanning tunneling spec-
troscopy [112]. We note that the results provided here only represent an upper limit
for the polaron level or lower limit for the PL peak, since neither finite-temperature
nor non-adiabatic effects are taken into account.

In summary we could demonstrate that our approach leads to a robust qualitative
prediction and description of small polarons and allows an estimation of the influence
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FIGURE 2.5: The dependence of the hole-polaron level calculated in the charged (blue
line) and in the neutral (black line) 3 x 3 x 3 supercell of MgO. The negative I P = E(N —
1) — E(N) of the systems is given by the red line. N corresponds to the number of
electrons in the neutral system. Clearly, the black line tracks the VBM for the entire range
of a, and therefore gives a better description of the polaron level than in the explicitly
charged system. The energies are calculated for a fixed geometry, where the geometry
has been optimized with the approach by Sadigh et al. and the PBE functional.

of the XC approximation. The quantitative values of the polaron binding energies is
drastically reduced by our approach compared to the previous, conventional approach
(cf. Fig. 2.1, panel b (black line)), where charged supercells are used. However, at
this point we have to admit that the actual reasons for this advantageous behavior
is not fully understood. One might argue that the neutral supercell is a closed-shell
system, i.e., all states are doubly occupied, and the empirically established rule is that
the KS potentials of closed-shell systems are sufficiently accurate for many properties,
as we have demonstrated for the band gap of several oxides (cf. Fig. 1.4). This is
confirmed by the analysis of the dependence of the polaron level on the fraction of
exact exchange « calculated in either the charged or the neutral supercell and shown
in Fig. 2.5. The position of the level calculated in a charged supercell changes from
deep in the gap for a=1 to delocalized at the VBM for a<0.2. Moreover, compared to
the IP = E(N — 1) — E(N) at the polaron geometry, ex (/N — 1) is twice as strongly
affected by the XC functional. On the other hand, as shown in Fig. 2.5, we find that
the polaron state in the neutral system ex (V) perfectly tracks the VBM of the pristine
system. This explains why the dependence on the XC approximations is weaker for
the binding energy calculated using the Eq. (2.17). Clearly, the character of the polaron
is bound to the character of the VBM state. This explains the similar changes of their
levels as a function of « (Fig. 2.5) in the neutral system.
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2.3 The adiabatic PES of the polaron

The optimized polaron geometry represents a single point on the adiabatic PES of
the charged system, and hence provides little information about the dynamics of the
polaron. Therefore, it is of great interest to explore the PES in the vicinity of the undis-
torted and the minimum-energy polaron configurations, and paths connecting them.
For a rough estimate (and an upper bound) of the barriers along those paths we inter-
polate linearly between different configurations, as described below. There are several
paths of particular importance for understanding the formation and migration of po-
larons: (1) the transition from the pristine to the polaron configuration, (2) transfer to
nearest-neighbor atoms, and (3) on-site transitions, when the polaron flips its orienta-
tion, but remains on the same site. Below we present and discuss calculations of these
three paths on the E, , PES.

The existence of a barrier along the path connecting the pristine and polaron con-
figurations indicates the possibility for the co-existence of a delocalized and a localized
charge carrier. In our simulations we find such a barrier in MgO, as shown in Fig. 2.6,
but the height of the barrier is strongly supercell-dependent. Removing the finite-
size effects by applying our correction scheme results in a barrierless transition. This
is surprising, but is qualitatively in agreement with the semi-classical picture of the
Pekar model, which predicts a parabola shown in Fig. 2.6 (b). In the adiabatic pic-
ture described by our polaron simulations, no stable free (delocalized) hole in MgO
exists. However, due to different time-scales of the nuclear and electronic response,
non-adiabatic effects can alter this conclusion. Note that the finite-size correction gives
nearly the same result for all calculated points on the PES for the three different super-
cell sizes, confirming the validity of our polaron model in the long range. Deviations
from the Pekar model (see Fig. 2.6 (b)) are due to the more accurate short-range de-
scription of the polaron, which is the advantage of our atomistic model in contrast to
the continuum model of Pekar. However, we still rely on the adiabatic approximation.
This approximation is likely to break in systems with quasi-degenerate states at the
band edges.

The PES along the paths connecting polaron configurations localized at nearest-
neighbor atoms and the on-site transformations in MgO are evaluated in a similar
manner. The geometries are interpolated linearly between the initial and final polaron
configurations to estimate the upper limit of the barriers. The finite-size effects on
the barrier (concentration dependence) for these scenarios were found to be weaker,
since the polaron state remained localized along the whole path. Let us first discuss
the movement of the polaron along a path to a nearest-neighbor O atom. We focus on
the path along the long axis of the p-orbital (the [110] direction) as shown in the inset
of Fig. 2.7(a). Due to the large overlap with the O atoms in [110] direction, the barrier
calculated with PBE is very low (0.045 eV) compared to the binding energy (-0.324 eV).
The PBE barrier for the on-site rotation is 0.061 eV. Based on these results, we conclude
that any in-plane motion of the polaron in MgO would combine a hindered on-site ro-
tation and hopping to nearest-neighbor O atoms. Despite its high binding energy, the
polaron hopping activation energy is rather small, indicating a high mobility. Yet, to
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FIGURE 2.6: (a) PES of the polaron in MgO along a straight line starting from the perfect
geometry (configurational coordinate value 0) to the optimized polaron geometry (con-
figurational coordinate value 11) for three different supercell sizes. The configurational
coordinate z is related to the displacements of atoms with respect to the perfect geome-
try as - AR /11, where AR corresponds to the minimum-energy polaron geometry. The
three topmost curves are the PES directly obtained from the PBE calculations, and the
three remaining curves are the corresponding finite-size corrected ones for the 3 x 3 x 3,
4x4x4,and 5x5x5MgO supercells. (b) The PES as a function of the polaron radius. The
polaron radius on the z axis was obtained by fitting Eq. (2.13) for each integer value of
the configurational coordinate. The parabola corresponding to Pekar model was shifted
to give the same binding energy as obtained in our simulation. The energy zero is set to
the potential energy of the configurational coordinate 0. All calculations are carried out
with the PBE functional on the E. ;| PES.

our best knowledge charge carriers with such high mobility have never been observed
in MgO (according to Arrhenius plots, charge carriers with activation energies around
1.1 eV lowest have been observed in the region of temperatures below 1300°C [119]).
Thus, from our results it follows that the hole polarons are most likely trapped at deep

donors such as the O vacancy, and the electrical conductivity is determined by the
defects.
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FIGURE 2.7: (a) The polaron PES along the line in [110] direction connecting nearest-
neighbor O atoms. The direction is indicated by the arrow shown in the inset in the
upper right corner. The change of the energy is given as a function of the position of
the polaron center ry as defined in Eq. (2.13). (b) The binding energy as a function of
the angle of rotation. The inset in the upper right corner shows the clockwise rotation in
the (001) plane of the cell, as well as the start and end orientation of the polaron density
indicated by the black lines. The energies in both figures are finite-size corrected, with
the energy zero referring to the pristine configuration. All calculations are carried out in
the 3 x 3 x 3 neutral MgO supercell with the PBE functional on the E. ; PES.
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Chapter 3

Small polarons in polymorphs of
TiOz and Ga203

The developed approach presented in the previous chapter has been tested for a hole
and electron polaron in different materials and the validity of our assumptions in our
model could be confirmed. It could predict with sufficient accuracy the polaron bind-
ing energy and polaron level. As an interesting application of the approach, we in-
vestigate the structural dependence of the polarons for different polymorphs, i.e., ma-
terials with the same chemical composition, but different crystal structure. For each
system, we first study the pristine crystal structure and its electron and phonon band
structure. Based on the obtained parameters for the band mass, LO phonon frequency,
and dielectric constants, we test the predictive power of the Frohlich coupling strength
as a descriptor of the small hole and/or electron polaron stability. Our results demon-
strate that the Frohlich constant is not uniquely defined in materials with complex
crystal structure. Thus, its value as a descriptor of the polaron stability is limited.
This emphasizes the value of the ab initio simulations of small polarons, which are
presented at the end of the discussion for each material investigated in this chapter.

3.1 Rutile and anatase TiO,

Titanium dioxide TiO; can appear in various polymorphs, where the most common
are rutile, anatase, and brookite in descending thermodynamic stability order at am-
bient conditions. In addition, different high-pressure polymorphs were discovered
over the past years. Yet, rutile and anatase are the most commonly used polymorphs
for industrial applications, in particular in the area of hydrolysis [3] - the splitting of
water into its elemental components. More breakthrough developments in the field of
photochemistry followed, e.g. the Gritzel solar cell [120], or self-cleaning surfaces due
to UV irradiation [121]. Although, the surface properties of the materials play a very
important role for the applications, bulk properties have a significant impact as well,
since the surface chemistry can be activated by the absorption of UV light happening
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Rutile Anatase
This work | Exp. [123] | This work | Exp. [123]
0-01 2.56 2.778 2.49 2.465
0-02 2.96 2.959 2.81 2.793
Ti-Ti 2.96 2.959 3.06 3.039

TABLE 3.1: Nearest-neighbor distances for the rutile and anatase structure optimized
with the PBE functional. The parameters of this work refer to distances at T=0 K and
without zero-point motions, where the experimental values of Ref. [123] were measured
at room temperature. All values are given in A.

most likely not at the surface, but in the bulk. An important question for the pho-
tochemistry of heterogeneous catalysts is which kind of charge carriers are available
in the bulk and how fast these carriers can reach the surface. This is determined pri-
marily by the physical processes of the bulk, in particular by the competition between
recombination, trapping, and propagation of the UV-generated electrons and holes.
The following section presents a study of the self-trapping of the charge carriers in
the otherwise pristine anatase and rutile crystals. Obviously, trapping hinders charge-
carrier propagation. Despite the identical chemical composition, the self-trapping can
explain in parts the different properties of anatase and rutile. Before evaluating this,
we introduce the basic electron and phonon properties of the polymorphs to find out
the alterations for the particular crystal phases.

Crystal structure. The tetragonal rutile phase of TiO has six atoms in the unit cell
and corresponds to the space group P4y/mnm (No. 136). The Ti atoms are sixfold-
coordinated, where the O atoms have threefold planar coordination (cf. Fig. 3.1). The
corresponding nearest-neighbor distances are summarized in the Tab. 3.1 and com-
pared to experimental findings.

The optimization of the rutile structure using the PBE functional and adding small
distortions to the atoms leads to a structure with slightly lower symmetry (changing
from space group number 136 to 102) even in the unit cell. The coordination of the
Ti atom remains slightly asymmetric as shown in Fig. 3.2. Subsequent calculations
with different fractions of exact exchange a in the HSE06 functional confirmed this
effect in the unit cell, but the distortion decreases with « (cf. the extended analysis in
App. E1). However, even for PBE the difference in energy to the perfect rutile structure
is rather small (15 meV). The degree of the symmetry breaking in the pristine cell
depends on the size of the supercell. An optimized structure of the 3 x 3 x 5 supercell
is shown in Fig. 3.2(b). The failure of the PBE functional in predicting the proper
crystal structure for rutile TiO, has been reported earlier [122]. The crystal structure
is predicted correctly with the PW-LDA functional. Thus, the problem is in the PBE
functional.

Anatase has a tetragonal structure belonging to the space group [4;/amd (No. 141).
Although it has 12 atoms in the conventional unit cell, the nearest-neighbor coordina-
tion of the Ti and O atoms is similar to rutile, which can be seen by comparing Fig. 3.3
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(2) (b) (©)

FIGURE 3.1: (a) The unit cell of the pristine rutile TiO, structure (without symmetry
breaking). (b) The coordinations of the oxygen atoms (red spheres) (upper panel) and
the nearest oxygen neighbors (lower panel), where the O atoms are represented as balls
and for clarity Ti atoms as nodes. (c) The same as in (b) shown for the titanium atoms
(gray balls).

FIGURE 3.2: (a) Breaking the symmetry lowers the total energy of the rutile geometry.
The angles of the central Ti are given to demonstrate the distortion (the angles in the
perfect structure are 180° and 90°). (b) The optimized 3 x 3 x 5 supercell. The blue circle
points the strong symmetry breaking along soft modes.
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(a) (b) (©)

FIGURE 3.3: The unit cell of the anatase TiO, structure and the coordination of the cor-
responding oxygen (red spheres) and titanium (gray spheres) atoms.

with 3.1, top of panels (b) and (c). Differences become visible farther away from the
central atom. For comparison, the distances between equivalent sites are listed in
Tab. 3.1. For details of the crystal structure cf. App. FE2. There is also a slight differ-
ence in the number of nearest neighbors. The oxygen atom has eleven nearest oxygen
neighbors in rutile, while the number for anatase is only ten. In contrast, the Ti atom
is coordinated by two nearest Ti neighbors in rutile and four in anatase. As is shown
below, this difference has important consequences for the small-polaron formation in
these two polymorphs.

Electronic structure. As a consequence of the difference in the structure of rutile and
anatase, there are differences in the electronic structure between the two TiO; poly-
morphs. The occupied and unoccupied KS bands in rutile and anatase TiO, are shown
in Fig. 3.5 along a path connecting the high symmetry points in the Brillouin zone of
tetragonal structure. For the estimation of the el-ph coupling based on the Frohlich
constant the proper evaluation of the band masses is crucial but ambiguous for a com-
plex electronic structure as the one we find in TiO,. First, we discuss the valence and
conduction bands in rutile [Fig. 3.5(a)]. The valence bands have a pronounced maxi-
mum at the I" point, with a rather small curvature. Yet, the situation is more complex
for the conduction bands, where we find the minimum at the R point, with a higher
curvature and, consequently, a lower band mass. However, close to the minimum
there are flat bands along I'-X-M-TI', which tend to couple stronger to the LO modes,
contributing to the stabilization of the polaron. The band mass along this part of the
path is more than twice as high as for the VBM and, consequently, according to Eq. (1)
to a higher coupling constant. Thus, it is unclear what value of the band mass is to be
used for the estimation of the polaron properties for rutile. This emphasizes the need
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for ab initio calculations of polaron properties. Considering the range of masses for the
conduction band, we find the range of ag = 2.2...3.8 for excess electrons in rutile.
For the excess holes we find ar = 2.6. Based on this estimation we can only conclude
that for both types of charge carriers the formation of small polarons is similarly likely.
The situation in anatase is more clear. We find a pronounced VBM at the M point and
CBm at the I" point (an indirect band gap). In Fig. 3.5(b) the CBm has clearly a higher
curvature than the VBM, i.e., hole masses are higher than the electron masses. Based
on the Frohlich coupling constant with ap = 2.6 and 1.2 for the excess holes and elec-
trons, respectively, we can conclude that the hole polaron is much stronger localized
and, probably, can be simulated with our supercell approach. Here we neglect the
anisotropy of the band extrema, i.e., the fact that the effective masses are in general
tensors.

The comparison of the density of states (DOS) clearly shows the differences be-
tween rutile and anatase electronic structure (see Fig. 3.4). The DOS at the conduction
band edge (dominated by Ti d states) increases much sharper in rutile than in anatase,
indicating flat bands with high electron masses, while for the valence band edge the
situation is opposite. Summarizing the analysis of the electronic structure, we de-
duce that self-trapped electron polarons in rutile should be much more stable than in
anatase, whereas the behavior of hole polarons in anatase and rutile is not clear from
the discussion using only the Frohlich constant. However, this is clarified by our ab
initio approach discussed below. Due to the symmetry breaking described above ru-
tile does not exhibit a direct band gap as reported in the literature (cf. e.g. Ref. [124]),
due to changes in the conduction band. However, the difference between the I'- to the
R-point for the conduction band is less than 0.1 eV.

Phonon properties. The calculated phonon band structure (see Fig. 3.6) unveils again
a complex picture — an anisotropic material with four LO modes at the I' point. The
two LO modes with the highest frequencies are marked by the blue shaded area in
Fig. 3.6 representing the most important contribution to the polaron binding energy
according to the Frohlich model. The LO bands are not narrow and exhibit a signifi-
cant dispersion. Thus, the assumptions in the Frohlich model are not entirely fulfilled.
However, since for ¢ — 0 only the LO modes are contributing to the stabilization of
the polaron (since g* Z}e., (q) vanishes for TO modes, cf. Eq. (2.7)), the finite-size
correction based on Pekar’s long-range el-ph potential leads to reasonable results for
sufficiently large supercells (cf. Fig. 2.3(b)), which are close to the actual dilute limit
as is shown in the next paragraph. For the frequency of the highest LO modes wio
we find 25.3 THz and 25.8 THz for rutile and anatase, respectively. The anisotropy of
the crystal leads to a splitting of the LO modes at the I'-point for different directions
of the wave vector. The main contribution to the phonon DOS above 17 THz is from
the LO modes for both rutile and anatase. In rutile the LO modes even separate from
the remaining optical modes (as indicated by the blue shaded area in Fig. 3.6(a)). The
dielectric tensors and the Born effective charges have been taken from Ref. [125] in
order to evaluate the LO/TO splitting at the I'-point.



66 Chapter 3. Small polarons in polymorphs of TiO; and Ga;O3

— Titanium
— Oxygen

Rutile

DOS (arbitrary units)

Anatase

5 -4 -3-2-101 2 3 456 7
Energy (eV)

FIGURE 3.4: The electronic density of states for rutile (upper part) and anatase (lower
part). To characterize the band edges the DOS has been projected onto the Ti (black line)
and O atoms (red line). The zero of the energy corresponds to the VBM.

Small polaron formation. In the last paragraphs we have outlined the differences in
geometry and electronic structure for anatase and rutile TiOy. The subtle variations
may appear negligible, but they have a significant impact on the small polaron for-
mation. From the electron and phonon band structures we can estimate the Frohlich
coupling constant ag. For the holes we obtain ar = 2.6 for both rutile and anatase,
and for the electrons we obtain 2.2-3.8 and 1.2 in rutile and anatase, respectively. The
estimates indicate that in rutile both electrons and holes could form small polarons,
whereas in anatase only small holes could form. Below we show that these expecta-
tions are not exactly fulfilled, emphasizing the importance of more accurate polaron
modeling.

Proceeding with the approach described in the Sec. 2.2.2, we start the atomic relax-
ation from ten initially distorted geometries for both an electron and a hole polaron in
anatase and rutile. The atoms around the expected localization center are displaced
randomly according to a Gaussian distribution. For the electron polaron the localiza-
tion center is the Ti atom and for the hole polaron the O atom. The results for the
electron polaron in rutile have already been presented in Fig. 2.3(b). For the hole po-
laron we could not find any stable self-trapped configuration (i.e., a localized hole
with a negative binding energy) within the largest supercell considered (4 x 4 x 6 in-
cluding 576 atoms). This is in agreement with the expectations: the VBM has a much
weaker coupling to the phonon modes than the electrons. A much larger supercell
may be needed in order to directly obtain the self-trapped polaron. On the contrary,
we could only find a stable hole polaron in anatase, but no stable electron polaron in a
supercell with a size up to 6 x 6 x 2. The shape of the electron polaron in rutile is that
of a d-orbital confirming the notion that the character of the polaron wave function is
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FIGURE 3.5: The electronic band structure of (a) rutile and (b) anatase calculated with the
PBE functional. The numbers in the box indicate the band gap, and the small numbers
with arrows show the calculated band masses.
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FIGURE 3.6: Phonon band structure and DOS (right panel) for (a) the slightly distorted
rutile TiO; structure shown in Fig. 3.2, and (b) anatase. The blue shaded area indicates
the contribution of the highest LO modes to the DOS. Despite reduced symmetry the
rutile structure still exhibits soft modes.
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derived from the character of the corresponding band edge. The electron is mainly lo-
calized at the three nearest neighbors shown in Fig. 3.1(c). The hole polaron in anatase
is p-shaped and strongly localized at the oxygen atom.

In order to make a quantitative prediction we adjust the fraction of exact exchange
a in HSEQ6 to reproduce the experimental band gap. As explained previously, our
approach is much less sensitive to the underlying XC functional than the standard ap-
proach, and the polaron properties do not change qualitatively for the whole range
of a, but there is still some quantitative dependence remaining. The dielectric tensors
used for the finite-size correction can be found in the App. F.1 and F2. We use o = 0.2,
which gives band gaps of 3.1 eV! and 3.3 eV? for rutile and anatase, respectively, in
good agreement with the experiments. The level of the electron polaron in rutile is
1.0 eV below the CBm with a corresponding binding energy of -0.2 eV. Similar results
for the polaron level were predicted by Janotti et al. [115]: 0.77 eV for the polaron level
and a binding energy of -0.15 eV, using the conventional approach and HSE(«=0.25).
It is noteworthy that despite the higher fraction of exact exchange Janotti et al. pre-
dicted a less stable electron polaron indicating that we might have found a more sta-
ble polaron configuration. Additionally, we find that the HSE(a=0.25) is still a convex
functional for the polaron level by checking the condition EA=-¢},,(N). Consequently,
the convex behavior leads to a smaller polaron level in the charged supercell.

Some of the observed spectroscopic features of TiO, have been attributed to an
electron polaron [127, 112]. In TiO; the oxygen vacancy serves as an electron donor.
The formal oxidation state of Ti atoms in TiO is +4, while the electron-polaron self-
trapping results in the change of the oxidation state to +3. An absorption peak near
our simulated polaron level 1 eV could be assigned to a transition of the electron from
a free (effective-mass like) to self-trapped state. Our (and others’ [115]) work suggests
that this reduction appears even in the absence of oxygen vacancies. The absorption
maximum in the sub-gap region occurs at 0.75 eV at room temperature [128] in ru-
tile TiO,. Recent scanning tunneling spectroscopy (STS) experiments measured an
electronic level at 0.7 eV below the band edge at 78 K [112], with the spectra being
similar when taken near an oxygen vacancy or further away. It was concluded that
the electrons can localize at any Ti atom and not only close to the oxygen atoms. The
discrepancy between our result and the experimental values could be related to non-
adiabatic and temperature effects, as well as the presence of oxygen vacancies in the
sub-surface region, which were not taken into account in our calculations.

According to our simulations with the HSE(0.2) functional and after removing
the finite-size effects the hole polaron in anatase forms a level 1.2 eV above the VBM
and has a binding energy of -0.52 eV (see Fig. 3.7). Thus, it is more stable than the elec-
tron polaron in rutile TiOs. The available experimental results [129] are in good agree-
ment with our predictions: the photoluminescence spectra of UV-irradiated (3.4 eV)
anatase shows a peak at 2.3 eV, which corresponds to a level of 1.0 eV with respect
to the VBM, stable up to room temperature. In the study of Setvin et al. [112] the STS

!The experimental optical band gap of rutile at 0K with zero-point renormalization removed is 3.04 eV,
cf. [117].

*The experimental optical band gap of anatase at 0K with zero-point renormalization removed is
3.44 eV, cf. [126].
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FIGURE 3.7: The electron polaron and hole polaron in rutile and anatase, respectively.
The numbers are calculated with the HSE(«=0.2) functional and are finite-size corrected
(i.e., correspond to the dilute limit). The KS eigenstate densities of the corresponding
polaron are shown as insets, where the isosurfaces encompass 95% of the eigenstate
density.

spectra were similar for the pristine and reduced materials (where oxygen vacancies
were found). It was therefore concluded that free electrons can move quickly to the
oxygen vacancies and do not self-trap at the Ti sites, confirming our result of no stable
electron polaron in anatase. The high mobility of electrons in anatase has been already
reported by Forro et al. [130].

In summary we find that, despite the identical chemical composition, the two poly-
morphs of TiO, show opposite self-trapping behavior for different types of excess
charges. This difference is traced back to the different coordination environments of
the Ti and O atoms. However, to get a more realistic picture of the behavior of the
charge carriers in anatase and rutile, defects such as oxygen vacancies and/or the
trapping at surface states have to be taken into account. Nevertheless, our study helps
to understand why rutile has been successfully used as a photocatalyst for oxidation:
Due to its light mass the photo-generated hole propagates easily to the surface. How-
ever, it has been argued that anatase should be the better photocatalyst, since the life-
time of the charge carriers should be higher due to the indirect band gap [131]. This
illustrates how the actual application of a material depends on multiple properties.
The polaron formation is one of these important properties.
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\ crystal system (SG) \ AE/FU (eV) \ band gap (eV)

« | trigonal (167) 0.145 2.40 (indirect)
B | monoclinic (12) 0.0 1.99 (direct)
é | cubic (206) 0.151 2.25 (indirect)
k | orthorhombic (33) 0.102 2.08 (indirect)
v | defected spinel (227) 0.207 1.33 (direct)

TABLE 3.2: Five different phases of Ga;O3. The geometries have been optimized and the
electronic structure has been calculated with the PBE functional. The energy difference
per formula unit AE/FU is given with respect to the S-phase, which is the most stable
out of the five phases at T=0K and standard pressure. The number of the space group
(SG) is given in parenthesis in the column of the crystal system. As a general trend, the
stability of the phases decreases with increasing symmetry of the crystal.

3.2 The B- and k—phase of Ga,0;

Gallium oxide is anticipated to be a promising material for several applications in the
field of transparent conducting oxides (TCO) and high voltage devices. Although, the
interest in this material has only started a few years ago as in a potential successor
of the more expensive indium oxide, its applicability has been already proved in sev-
eral devices: field-effect transistors [132, 133], UV photodetectors [134, 135], and UV
transparent electrodes [136]. The soaring demand of Ga»Os is originated in its unique
combination of properties, such as its high band gap of about 4.8-4.9 eV [137, 138], a
high breakdown electric field of about 8MV /cm [133], and a high n-conductivity with
electron concentrations (due to doping) of about 10" ecm™—3 [139, 136]. Throughout all
the applications only the monoclinic S-phase of Ga;Os is used, which is the thermo-
dynamically stable polymorph (cf. Ref. [140], Fig. 14, for an overview of the stability
conditions and the duration of existence for several polymoprhs of Ga;O3). However,
other phases have been already discovered long time ago [141] and are named anal-
ogous to the phases of the related sesquioxide Al,Os. A list of the different phases
and basic information about them are given in Tab. 3.2. For the investigation of the
small-polaron formation we only focus on two configurations — the - and s-phase.

Geometry. The structure of the Ga;O3 [S-phase is well-understood and character-
ized. The monoclinic crystal has 20 atoms in its conventional unit cell containing four
formula units. The crystallographic properties calculated with the PBE functional are
summarized in Tab. 3.2. All atoms of one formula unit of the /- (and x-)phase oc-
cupy different Wyckoff-positions and, with this, have (slightly) different coordina-
tions. Therefore, we only focus on important differences in our analysis. The 8- and «-
structures used here and in the following have been optimized with the PBE XC func-
tional and with tight FHI-aims settings. The complete structural information for the 3
and x phases is given in the Appendix G and the unit cells are visualized in Fig. 3.8,
panel a.
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FIGURE 3.8: The conventional unit cells of the 8- (upper panels) and x-phase (lower pan-
els). A selection of characteristic atom coordinations and nearest-neighbor structures are
shown in panels (b)-(d). Red and gray spheres represent O and Ga atoms, respectively.
The atom positions and lattice parameters are given in Appendix G.
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For the less studied s phase inconsistent naming can be found in the literature.
Roy et al. discovered a fifth phase naming it € according to the position in the Greek
alphabet. However, they could not identify a crystal structure of this phase. Today,
it is believed that this fifth phase from Roy et al. corresponds to the orthorhombic
crystal class analogous to the k-polymorph of AloO3, which is why the orthorhombic
Gay0O3 is often denoted with &, i.e., both classifications can be found in literature.
Here, we follow the consistent labeling according to the Al,O3 phases. Up to now,
studies of the x-phase are scarce. It only appeared transiently during a conversion
from Ga;O7(OH) to the thermodynamically stable S-phase at 500°C [140].

Figure 3.8 shows the Ga and O coordination in the two polymorphs. It can be
immediately seen that the coordination in both polymorphs is similar: the Ga atoms
are tetragonally bonded with the neighboring O atoms. For the O atoms a trigonal-
planar and tetragonal coordination can be found. Noticeable differences can be found
if the arrangement of the nearest neighbors of the same atom type is considered. In
k-GapO3 we find a higher number of nearest Ga atoms than in the -phase, as shown
in Fig. 3.8, panel b. An almost identical nearest-neighbor structure in the two phases
is found for the trigonally-coordinated O atom, where the central O atom is enclosed
in a cage-like structure with the same number of nearest neighbors (Fig. 3.8, panel
c). However, the tetragonally-coordinated O atom has a significantly different envi-
ronment in the two polymorphs (Fig. 3.8, panel d). Moreover, there are additional
building blocks in k-GasOs3, which are not present in the 3-phase.

Electronic structure. Our analysis of the geometries unveiled minor differences in
the coordination of the two atoms Ga and O in the - and s-phase. Similarly, we
find for the electronic properties large similarities. The PBE band gap changes only by
0.09 eV from 1.99 eV for the 3 phase to 2.08 eV for the x-phase. In both phases, the top-
most valence bands (dominated by oxygen states) are very flat, and the the bottom of
the conduction band (dominated by Ga states) has a parabolic shape with a high cur-
vature (Fig. 3.9). However, the values of the band masses reveal that the valence bands
are significantly flatter in k-GapO3 than in the S-phase (my=57 and =6.7-36 for the x-
and f-phase, respectively), which is supported by the more pronounced peak in the
DOS close to the VBM. Even lower-energy valence bands remain flat in k-Ga>Os3. The
conduction bands exhibit the opposite behavior: the band mass is smaller in x-GaOs.
This is in good agreement with our geometric analysis, where we found that some
of the Ga atoms have a higher number of nearest neighbors, and some of the oxygen
atoms have a lower number in the x phase. Based on these observations one can con-
clude that if holes get self-trapped in the S-phase, the self-trapping should be even
more pronounced in the x-phase.

Phonon properties. Due to the large number of atoms in the conventional unit cell
(20 and 40 atoms for 8 and « phases, respectively), the system’s response to an excess
charge cannot be described by a few well-defined phonon modes (Fig. 3.10). Both
B and k phases exhibit optical modes with rather low frequencies around 2.5 THz.
For the highest optical mode we find 22.5 THz and 22.3 THz for the § and « phase,
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FIGURE 3.9: The electronic band structure for the (a) 8- and (b) x-phase of Ga;O3 along
a path connecting high-symmetry points, calculated with the PBE XC functional. The
corresponding DOS is shown on the right side. The numbers in the boxes show the PBE
band gap, and the numbers with arrows are the calculated band masses of the conduc-
tion and valence bands at the extrema.
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respectively. Note that the non-analytic correction [75] has not been applied to the LO
modes in GaOs. According to the literature [142], the correction is rather small for
ﬂ—GagOg.

Small-polaron formation. We proceed in the same way as in the case of TiO,. A
fraction of exact exchange o = 0.4 is needed to obtain the value of the gap close to
the experimental band gap of 4.8-4.9 eV for $-GapO3. Since we could not find any
measured band gap for the x-phase, we used a = 0.4 for k-GazO3 as well. The dielec-
tric parameters and polaron radii needed for the finite-size correction are listed in the
Appendix G.

Fig. 3.11 summarizes the results of the calculations of the polaron binding energy
EQ. , and the hole-polaron level Ej. An electron polaron has not been found using su-
percells up to 240 and 320 atoms for the 8- and x-phase, respectively. On the other
hand, we find strongly localized holes corresponding to deep polaron levels with
1.9 eV and 2.2 eV with a large binding energy of -0.85 eV and -1.12 eV in the - and
k-phase, respectively. The dielectric tensors used for the finite-size correction can be
found in the App. G.1 and G.2. The explicit supercell size dependence was tested for
the x phase (using the PBE functional) and was tested against our finite-size correction
(cf. App. G.3). Again we find that the finite-size correction for both the binding energy
and the polaron level for every supercell size is close to the explicitly evaluated dilute
limit (the uncertainty is below 0.1 eV).

Photoluminescence data are only available for 5-GasO3. Three characteristic lumi-
nescence bands have been detected in the region of UV [143, 144], blue [145, 146, 144],
and green [147] wavelengths with energies of 3.4 eV, 2.95 eV, and 2.48 eV. The UV lu-
minescence has been observed to be independent of the sample (doping and history)
from which is concluded that it appears due to the recombination of the self-trapped
exciton [143]. No mechanism has been proposed for the green luminescence so far.
The blue luminescence (BL) is usually attributed to Ga-O defect complexes. The BL
was first claimed to be observed only for n-doped (e.g. Si or Sn) Ga;O3. However, a
recent study [148] showed that a shoulder at around 3.0 eV is present in the spectra
independent of the type of doping : (n-, p-, or pristine). Consequently, the BL can
be also attributed to intrinsic properties. However, it remains unclear whether this
spectral feature can be at least partly attributed to self-trapped hole polarons. Ac-
cording to our calculations (Fig. 3.11) this can be the case. The broad luminescence
band indicates that there are several states in the sub-gap region, responsible for mul-
tiple channels of the broad-band luminescence. In Fig. 3.12 we summarize pictorially
the experimental results of Onuma et al. [148]. The panel (a) shows the situation for
the Mg-doped Ga»O3, where the samples were insulating or p-type semiconducting.
Clearly, in this case the BL should appear strongest, if the Fermi level is below the po-
laron level. Panel (b) explains why in case of n-doped samples the BL is suppressed.
In this case, the Fermi level is close to the CBm, and all defect states below should be
filled. As a result, lower-energy optical transitions within the gap become possible.
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FIGURE 3.10: The phonon band structures for the (a) - and (b) x-phase of Ga;O3 along
the path connecting high-symmetry points, calculated with the PBE XC functional. For
(a) the primitive unit cell is used. The corresponding DOS is shown on the right side. The
non-analytic term correction has not been taken into account for the LO/TO splitting,
i.e., the actual highest LO mode should be higher than shown here.



3.2. The B- and k—phase of Gaz0O; 77

B—phase Gazo:), K'phase
Conduction bnds

A

\ l \ l

Valence bands Valence bands
EY  =-085eV  E%  =—112¢V

FIGURE 3.11: The hole polarons in 5- and x-GazOs. The numbers are calculated with
the HSE06(a=0.4) functional and are finite-size corrected (i.e., correspond to the dilute
limit). The KS eigenstate densities of the corresponding polaron are shown as insets,
where the isosurfaces encompass 95% of the eigenstate density.
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FIGURE 3.12: Photoluminescence (PL) of 8-Ga;Os according to the experimental re-
sults [148]. The gray shaded area indicates the upper and lower limit of the observed
PL, E is the self-trapped hole polaron level position with respect to VBM. The red line
marks the Fermi level Er for different scenarios: (a) the insulating case for an Mg-doped
sample and (b) n-doped samples Panel (c) suggests a pump-probe experiment to esti-
mate the position of the polaron level with respect to the VBM (or Fermi level) by pump-
ing the sample with red light and subsequently probing UV-induced luminescence.

Based on our results and analysis, we suggest the following pump-probe type ex-
periment to determine the position of the polaron level in p-doped Ga203. An illumi-
nation of the sample with red light in the region of 2 eV with UV radiation 4.9 eV? at
the same time will pump electrons from the valence band to the states of the polaron.
When the pump photon energy of the red light matches the polaron state energy, an
increased absorption should be observed (e.g. compare with the experiment in [149])
or, alternatively, a suppression of the BL following a UV probe illumination should be
observed.

3The UV light of 4.9 eV excites electrons from the VBM to the CBm and creates holes at the VBM,
which then relax to the final polaron state.
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Conclusions

In the present work we developed a new ab initio supercell approach for the simula-
tion of small polarons. The approach overcomes severe shortcomings of the traditional
charged supercell approach, in particular the strong exchange-correlation functional
dependence, which makes even a qualitative prediction of small polaron stability un-
certain. This uncertainty was demonstrated for the HSE06 functional by varying the
fraction of exact exchange from 0 to 1. The reformulation of the polaron binding en-
ergy in terms of energies calculated in the neutral supercell fixed this strong depen-
dence on the functional approximation. However, we found much more pronounced
finite-size effects in the neutral cell by comparing supercells of different sizes. An anal-
ysis of the classical polaron theories based on the semi-empirical Hamiltonian of Froh-
lich shows that the adiabatic el-ph potential Eq. (2.9) proposed by Pekar can properly
model the missing long-range electron-phonon interactions in the supercell. Pekar’s
potential of this long-range interaction was used in the a posteriori finite-size correction
similar to the correction of Freysoldt et al. to obtain the polaron binding energy and
the corresponding level in the dilute limit. The new approach is completed with the
proposal of Sadigh et al., who suggested a way to calculate forces in a supercell with
a localized charge using only the neutral supercell. Thus, the approach opened the
possibility to obtain qualitatively correct polaron properties using computationally
inexpensive XC-functionals such as PBE for large supercells with up to 1,000 atoms.
The approach suggested in this study was thoroughly tested with respect to supercell
size and the XC functional dependence, and was demonstrated to work for electron
and hole polarons likewise. As a continuation of our study, it would be interesting to
investigate how the proposed generalized long-range el-ph response Eq. (2.7) of the
solid to an isotropic excess charge improves the description of anisotropic and com-
plex materials.

The new insights into the DFT supercell approach were applied to investigate the
formation of small polarons in polymorphs of TiO, and Ga2O3. The rutile and anatase
phases of TiO, show a very unique behavior. Despite their equal chemical composi-
tion and small changes in the crystal structure, we only found small electron polarons
in rutile, whereas in anatase only small hole polarons have been found. This is in
good agreement with the experimental data available in the literature. The different
self-trapping behavior opens new possibilities for understanding and manipulating
chemical reactions at the surfaces, e.g., for photocatalysis. By contrast the polymorphs
of GaxO3 exhibit a uniform self-trapping behavior. The electrons in the 3- and x-phase
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FIGURE 4.1: The polaron binding energies E{, , obtained with the DFT supercell ap-
proach, in comparison with different solutions of Frohlich’s Hamiltonian. The pairs of
circles connected by the vertical lines represent the DFT results in the dilute limit for the
small polarons in the simulated materials, where the empty circles indicate the range
of the simulated functionals (HSE06(a=0) corresponds to PBE). The black filled circles
show Ep, , for the fraction of exact exchange to reproduce experimental band gaps as
it was described in the previous chapter (for MgO HSE06(a=0.35) was used). In MgO,
anatase TiO; (a-TiOz), and (- and k-GayOs stable hole polarons have been found, while
in rutile TiO; (r-TiO3) a stable electron polaron is found.

couple weakly to the polar phonon modes, whereas the holes exhibit a very strong el-
ph interaction. Consistently, we find strongly bound hole polarons with a level deep
in the gap. Due to their high binding energy small polarons in Ga;O3 could serve
as reasonable explanation for the observed broad luminescence bands. Traditionally,
the observed blue luminescence is attributed to defects. However, recent experiments
showed that blue luminescence is present in n-, p-, and undoped samples [148]. Based
on our results, we provide an alternative interpretation of the blue luminescence sig-
nal, namely as due to the self-trapped hole polaron level at about 2 eV above the VBM.

Our findings are summarized and compared to common approximate solutions
of the Frohlich Hamiltonian in Fig. 4.1. One of the advantages of our DFT approach
for calculating polaron properties over Frohlich’s Hamiltonian is that the ionic lat-
tice is considered explicitly in our polaron approach. Such a description is partic-
ularly appropriate for small polarons that have been of interest here. The DFT ap-
proach is based on the adiabatic (Born-Oppenheimer) approximation. As such, in the
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strong-coupling limit, it physically corresponds to Pekar’s polaron model, the adi-
abatic static description of polarons, where the polarization of the lattice is treated
classically. Pekar’s model predicts smaller (in absolute values) polaron binding en-
ergies compared to DFT. Considering that in Pekar’s model (as well as in Frohlich’s
Hamiltonian) the electron (or hole) only interacts with a single phonon mode, it is not
surprising that Pekar’s solution only provides an upper limit to the polaron binding
energy. The el-ph interaction for the small polaron includes couplings to almost all
the phonon modes throughout the Brillouin zone, leading to a further stabilization of
the polaron in our simulations. The DFT results are close to Feynman’s approximate
solution of the Frohlich Hamiltonian [82]. However, Feynman’s model includes quan-
tum fluctuations and non-adiabatic effects [150] due to the interaction with a single
dispersionless phonon mode, not accounted for in our DFT approach and, therefore,
should not be compared with the DFT results directly. Thus, on the one hand the com-
parison between Pekar’s and Feynman’s approximate solution shows the significance
of possible non-adiabatic effects for polarons in oxides. The impact of non-adiabatic
effects can be crucial in the range of the weak and intermediate coupling (ar < 5),
where the difference of the binding energies obtained from the Pekar and Feynman
models is large. For ag > 5, the binding energies calculated with the two models
are very close and only shifted by a constant, cf. Eq. (1.83). On the other hand, by
comparing Pekar’s solution with our DFT results the importance of the proper mi-
croscopic treatment of the lattice polarization is illustrated. This becomes obvious for
the GapOs-phases, where the el-ph interaction is very strong. Frohlich’s Hamiltonian
predicts for increasing coupling strength a collapse towards a point charge. This, how-
ever, is not physical, since only a finite polaron radius is reasonable. Indeed, as can be
seen in Fig. 4.1, the binding of a hole polaron in the x-phase of Ga;Os3 is significantly
weaker than the binding predicted by Pekar’s solution, despite the strong el-ph cou-
pling. This underlines the importance of ab initio calculations for predictive modeling
of small polarons.






83

Chapter 5

Outlook

Number of distinct polarons in a crystal

For rocksalt MgO, and rutile and anatase TiO; phases investigated in this thesis, all
species of the same type occupy identical Wyckoff position, i.e., all atoms of the same
species are equivalent. Therefore, as expected, we find only one stable small polaron
(if at all) localized near the corresponding atomic species (hole polarons at O atoms
and electron polarons at metal atoms). However, the situation is different for the poly-
morphs of GaO3. Since in GaO3 only the formation of small hole polarons is pre-
dicted, we focus on distinct oxygen positions. In the -phase, all O atoms occupy the
Wyckoff position 2i, but at different spatial positions (cf. Tab. G.1). In the x-phase, the
O atoms occupy six different Wyckoff positions 4a. Consequently, we expect that three
different hole polarons in the $-phase and six different hole polarons in the x-phase
could exist.

Indeed, in a preliminary analysis using the PBE functional (but the neutral cell
approach, so that the functional dependence is reduced), we find different hole po-
larons in both phases. To stabilize the polaron at sites with different symmetry (i.e.,
at different Wyckoff positions or same Wyckoff position but inequivalent atoms), we
initially distort randomly the surrounding atoms of the corresponding site, where we
expect distinct meta-stable polarons to be protected by barriers. For 5-Ga;O3 we find
self-trapped hole polarons for the oxygen atoms O2 and O3 (labeling is according to
Tab. G.1). The O3 polaron corresponds to the one shown in Fig. 3.11. The KS eigenstate
densities of the polarons are shown in Fig. 5.1. We do not find a stable hole polaron at

6-G3203 H-Gazog
o1 | 02 O3 O1 02| O3 |04 | O5 | O6
Ebind (eV) — -0.61 -0.77 Ebind (eV) — —_— -0.82 — -0.88 —
Eo(eV) | — | 1.65 | 1.78 Eo(eV) | — | — | 1.86 | — | 2.00 | —

TABLE 5.1: The binding energy Eling and the polaron level Ey for the hole polarons in j3-
and x-GaO3 calculated with the PBE functional and with long-range corection included.
For the 3 phase a1 x 3 x 2 and for the x phase a 2 x 1 x 1 supercell has been used. The
hyphens indicate that no stable hole polaron localized at a corresponding O atom could
be found.
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FIGURE 5.1: The KS eigenstate densities for the self-trapped hole polarons in f—GazOj3 at
the (a) O2 and (b) O3 atoms. While in (a) the polaron is atom-centered, the polaron in (b)
is bond centered and localized on two neighboring O3 atoms. In (c) an interim relaxation
step is shown, where the polaron “jumps” from the O1 to O2 atom. The polarons are
simulated with the PBE functional in a 1 x 3 x 2 supercell. The point of view is along the
b axis.

the O1 atom. Instead, we observe during interim relaxation steps that the charge den-
sity originally localized at the O1 atom jumps to an O2 atom, cf. Fig. 5.1(c). A plausible
reason why we did not find the O1 polaron is the position of band extrema of the O1
bands within the valence bands. Pronounced peaks in the DOS are indicating band
extrema with a high band mass and, thus, a strong el-ph coupling according to the
Frohlich coupling constant Eq. (1) can be expected. The analysis of the atom-projected
DOS unveils that the O1 atom contributes least to the VBM and has its largest con-
tribution ~1 eV below the VBM, cf. Fig. 5.2. Due to their lower energies, bands of
the O1 atoms coupling to LO phonon modes are leading to a shallower polaron level
and, consequently, to an increased binding energy according to Eq. (2.18)!. Assum-
ing a similar coupling for the O1 polaron as for the O2 or O3 polaron, the binding
energy would be increased by 1 eV just due to the position of the O1 electronic band
and, with this, not stable anymore. The position of the bands might be sensitive to the
used XC functional and, therefore, we will investigate this as function of the exact ex-
change in the HSE functional in future work. However, the total valence band width of
7.37 eV obtained from photo-emission spectra of 5-Ga;O3 at room temperature [151]
is already in good agreement with the PBE band width of 7.1 eV (corresponding to
T = 0 K). Therefore, we do not expect qualitative changes in stability of the polaron
at the O1 atom when computed with a different functional. Another interesting fact is
that the polarons at O2 and O3 show different kinds of localization: while O2 is atom-
centered, we find at the O3 atom a bond-centered polaron, where the polaron mainly
localizes between two neighboring O3 atoms. It is often assumed that only one kind of
polaron exists for a certain material. However, our analysis indicates that due to their

! According to our convention an increased binding energy refers to less stable polaron.
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FIGURE 5.2: The density of states of pristine S— and xk—GazOs3 projected on the oxygen
atoms of different site symmetries calculated with the PBE functional. The labeling of
the atomic positions is as given in Tab. G.1. The energy zero was shifted to the VBM.

different structural environments, the O2 and O3 atoms accommodate chemically dif-
ferent small polarons. The finite-size corrected polaron binding energies and levels
calculated with the PBE functional are summarized in Tab. 5.1.

For the k—phase we could find so far only two stable out of six possible small hole
polarons. Again, this is in good agreement with the contribution of the different oxy-
gen atoms to the VBM. We find that the O3 and O5 atoms, that are the oxygen atoms
where we could find trapped hole polarons, contribute most to the VBM, whereas the
01, 02, and O4 contribute least and have their largest peaks in the DOS at around
1 eV below the VBM. More uncertain is the analysis of the DOS w.r.t. the O6 atom
having a main peak at the VBM as well (but less pronounced). More different ini-
tial configurations for the O6 site have to be used in order to decisively exclude the
trapping of hole polarons at this site. Additionally, due to the deep polaron levels
of the trapped hole polaron we found so far, the simulation with the PBE functional
suffers from the clearly underestimated band gap, that is, 2 eV for PBE band gap com-
pared to 4.9 eV measured in experiments. This problem is particularly severe for the

 phase, suggesting that polaron levels may be found at higher energies with a better
electronic-structure method.
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FIGURE 5.3: The KS eigenstate densities for the self-trapped hole polarons in x Ga;Os at
the (a) O3 and (b) O5 atoms. Both polarons are atom-centered. The point of view is along
the b axis.
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Appendix A

Homogeneous electron gas

The homogeneous electron gas (HEG) is a simple model system, e.g., for metals, which
will be used here to demonstrate important concepts in the field of solid-state physics.
It is assumed that the ground-state density of the electrons as well as the nuclei is
uniformly distributed in a unit cell with volume (2, and lattice vectors a, b, ¢ and
reciprocal lattice vectors a*, b*, ¢*. In order to simulate a solid we use Born-von Kar-
man (BvK) boundary conditions, i.e., the unit cell is repeated L-times in each spatial
direction, where the states should fulfill ¢ (r + La) = ¢ (r) and equally for b and ¢
directions. Due to the periodic arrangement, the Hamiltonian H has the same period-
icity, too, and from the Bloch theorem follows that any eigenfunction ) must have the
form:

wk(T) = e“‘"uk(r) (Al)

As a consequence of the BvK boundary conditions, the states v are described by quan-
tum numbers k;:

nCi *

Lc,nx:O,l,...,L—l (A.2)

Na, & N,
kz‘: _ZCL +Tb*+

within the first Brillouin zone (BZ).

A.1 Non-interacting electrons

The Hamiltonian of the non-interacting HEG is just described by the kinetic operator:

. h2 9
H[$) = =5 -V i) = e|y) (A3)

and by plugging Eq. (A.1) the solution is simply given by plane waves:

V() = \}ﬁek (A4)
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with the energy:
R k2

€k; = (A5)
2m
The total energy per non-interacting electron is given by:
— W23, 5 2
E/N =e(n) = %5(371' n)s (A.6)

A.2 The Hartree-Fock approximation for the HEG

The purpose of this section is twofold. Fist, we introduce the approximation proposed
by Fock, whose equations are used for the computation of the exact exchange energy
of solids. Second, we derive the exchange energy of the HEG, which is important for
functionals such as LDA and GGA.

The idea of Hartree was to start with a simple form of the wave function. He
derived single particle equations with the following ansatz for total wave function
for N electrons (we ignore the spin degrees of freedom, since none of the operators
considered below is acting on them):

\I/H(’I“l, T2,... ,T‘N) = (251(7"1)(252(7“2) . ¢N(""N) (A7)

Fock additionally enforced the proper symmetry for the fermionic wave function by
building a Slater determinant:

¢1(r1)  ga(r1) ... on(r1)

Uyp = (A.8)

N1 : : . :

o1(ry)  ¢a2(rn) ... On(TN)
The idea of Hartree and Fock was to find the best wave function of the form VUyr by
the variation of the total energy Eq. (1.15) (we follow Ashcroft and Mermin):

§(H)g =0 (A.9)

Yy

with respect to the single-electron orbital ¢}. As a result, we obtain the (canonical)
Hartree-Fock equations:

hQVQ' d/62 AP A . A.10
i) =3 [ S )y ) = i(r) (A10)

“om -
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Assuming that the ground state is homogeneous, it can be shown that the eigenstates
are plane waves, too. Substituting the Fourier transform of the second term:

2
e 2 dq 1 ialr—r'
[ — 4me / Gn) —qze a(r—r’) (A.11)

into Eq. (A.10), one can obtain (c.f. Ashcroft/Mermin, p. 334 for details):

ﬁ2k2 dk’ 1
e(k) = o de? /k<k, (27‘(’)3m
_ f;?:; B 2eik:p P ( kkf > (A.12)
with the function: 1 1-22 |14z

Finally, we give the important result of the total energy in the Hartree-Fock approxi-
mation per electron:

epr(n)  =ts(n) +ex(n)
3 hQ 2 2 3 62 2 1

ex = —=—(372n)3, (A.15)
T

ts = ———(3n%n)3 (A.16)

A.2.1 Fully interacting HEG

To summarize what we have so far, we write down all terms calculated previously:
e(N) = ts(n) + ex(n) + ec(n), (A.17)

where we have collected the remaining unknown terms in e.(n), the so-called correla-
tion energy, which is defined formally by:

ec(n) =t(n) — ts(n) + eee(n) — ex(n). (A.18)
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where ¢(n) is the kinetic energy of the interacting electrons and ec(n) the energy of the
electron-electron interaction as introduced in Eq. (1.2). The evaluation of e. is challeng-
ing even for the HEG, and a closed analytical expression as for the exchange energy
cannot be found. However, due to work by Ceperley and Alder, who computed the
correlation energy using quantum Monte Carlo method, a very accurate parameter-
ization of e. exists. Most prominent parameterizations for recent density-functional
software codes are Perdew and Zunger, or Vosko-Wilkes-Nusiar. A very recent and
simple, but on the same side accurate parametrization was suggested by Chachiyo
(2016). Here, we give just the one proposed by Perdew and Zunger (PZ), which is
used in case of LDA calculations in our work:

(A.19)

ePZ( J) = {—0.0480 +0.0311n(rs) — 0.011675 + 0.00207, In(rs), rs <1

¢ | —0.1423/(1 + 1.0529, /75 + 0.3334r), rs > 1,

where r¢ denotes the radius of sphere containing one electron of the HEG and is re-
3 me? 11/
47 K2 n :

lated to the density n as s = |
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Appendix B

The Freysoldt et al. correction
scheme

An important part of the developed method is the correction of finite-size effects for
supercell calculations. For completeness we present the main ideas of the correction
scheme proposed by Freysoldt et al.[99, 103]. Starting point is the simulation of a
charged point defect in an otherwise pristine crystal causing a localized excess-charge
distribution p. It is assumed that for a sufficiently large supercell the quantum nature
of the defect is simulated properly and only long-ranged interactions affect the defect
potential in neighboring cells. For simplicity, Freysoldt et al. suggest to model p with a
simple isotropic function pmeqel, such as an exponential or a Gaussian (the fitting of pg
by pmodel is demonstrated in App.C). The actual detailed excess-charge distribution is
not necessary to know and would change the correction only negligibly. As Freysoldt
et al. note in their original paper, it is not even important to imitate the proper local-
ization of p as long as the distribution is well-localized within the supercell. With this,
it is possible to evaluate the lattice sum of the long-range potential (i.e., the potential
energy due to the periodic arrangement of the defects):

1
Elatt = ﬁ Z Vlr(G)qmodel(G)a (B~1)

G#0

where V(G) is the Fourier-transform of the long-range potential, and the sum runs
over all reciprocal lattice vectors |G| < Gcut. The cut-off Gyt has to be chosen carefully
to ensure convergence of the sum. Eq. (B.1) is the artificial energy, which has to be
removed (e.g., from the polaron binding energy or level), the energy of the isolated
defect has to be added. The latter is easily calculated by:

1

Eiso = (27T)3 /Vlr(k)qmodel(k)dkv (B~2)

and the total correction is given by Ecorr = Ejatt — Eiso. To obtain the desired energy
in the dilute limit F, the correction E.({2) has to be applied to the energy E(f2)
calculated in the supercell of size 2:

Ex = E<Q) - Ecorr(Q) + qAV. (B.3)
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The last term gAV is the so-called alignment term. It appears for two reasons. First,
E(Q) is usually calculated with respect to a reference system, often the pristine bulk
system. Due to defect or the charge there might be difference in the potentials for
the defect system and the pristine system even far away from the defect center. This
difference can be removed by aligning the electrostatic potentials (or Hartree poten-
tials). Second, the absolute magnitude of the long-range potential calculated from
Pmodel Might not be equal to the one from the original p. This difference must be also
removed. The term gAYV is the correction accounting for these two contributions.
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Appendix C

Pekar’s polaron and its relation to
KS eigenstates

The objective of this appendix is to show how we connected the analytical polaron
model of Pekar with the actual many-electron problem treated with DFT. In particular,
the relation of the electronic part of the polaron wave function to the highest occupied
(ho) or lowest unoccupied (lu) KS state is discussed below.

Pekar’s polaron model [7] can be derived from the Frohlich Hamiltonian [8] in the
adiabatic static strong-coupling limit, as was shown for example by Devreese [89] (cf.
also references therein for original work). In this limit, assuming adiabatic separation
of the ionic and electronic dynamics, the potential of the electron-phonon interaction
has the form (here it is shown in real space and not its Fourier transform as in Eq. (2.9)):

/
Vagn(r) =~ [ &L a0, )
which is the classical response of a polar dielectric to an extended excess charge dis-
tribution p(r). Due to the adiabatic limit the el-ph potential in Eq. (C.1) depends only
on the electron coordinates. The inverse dielectric constant k™1 = e} — g ! describes
the polarization of the rigid ions in the medium by the electron or hole. For simplicity,
here we assume an excess electron in an isotropic medium (the dielectric response is
described by a single constant).
Let us regard Eq. (C.1) as a perturbation of the perfect (undistorted) system Hpes
— the single-particle KS Hamiltonian of the system where an additional electron has
been placed at the bottom of the conduction band minimum (CBm) ¢cpm, with energy
€CBm*
Hperfd)CBm = €CBm®CBm (C.2)

Following the Kohn-Luttinger perturbation theory [152] the solution of:
(Hperf + V;el—ph)\ll =¥ (C3)
in first order is given by:

€ = €cpm + Fo
U = ¢cpm® (C4)
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where Fjy and ® are obtained from the solution of the effective Hamiltonian [152]:

(Hyineff + Velph)® = Eg®
V. 1 [|e()? 5, _
< o Wd ) e(r) = Ee®(r), (C.5)

with the effective mass m* from the CBm. With Eq. (C.5) we recover the original
problem of Pekar’s polaron, with Ej being the energy of the bound (polaron) state
relative to the conduction-band edge for the case of an electron polaron.

Eq. (C.5) does not contain microscopic details. However, it can be regarded as
describing the asymptotic el-ph interaction far away from the localized part of the ex-
cess electron charge distribution. According to Eq. (C.4), ®(r) represents the envelop
of the original electronic state ¢cpm and in this work is assumed as exponentially de-
caying function pmogel, cf. Eq. (2.13). The electron KS eigenstate qulFT corresponding to
€1u(V) in the DFT calculation at the distorted (polaron) geometry is the polaron wave
function ¥. Thus, in an infinite extended crystal with a single polaron the envelop
of ¢PFT shows the localization of p(r) needed for the correction scheme Eq. (2.11).
However, for the supercell approach we have a superposition of polaron densities
changing slightly the actual polaron radius. Therefor, in our correction model we use
a superposition of pmedel () for each of the neighboring supercells as well to estimate
the polaron radius. An example of the polaron KS eigenstate density p(r) calculated
with the PBE functional and the fitted envelope pmodel () is shown in Fig. 2.4 (a) and
(b) for MgO and TiOy, respectively.
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C.1 Pekar’s 1:2:3:4 theorem

For our correction scheme, we derived in Sec. 2.1 the proper long-range el-ph poten-
tial. However, the binding energy and the polaron level as a function of the supercell
do show different slopes (cf. Fig. 2.3) indicating a different dependence on the el-ph
interaction potential on the supercell size. The ratio of the slopes is obtained using the
theorem introduced in this section. The result is used to correct the polaron level.

For arbitrary coupling constants in the Frohlich Hamiltonian:

Heronlich = Hyineff + Hph + Velph, (C.6)

with the Hamiltonian of the phonons Hyy, it has been shown [111] that there exist fixed
ratios of the effective kinetic energy FEyineff, lattice distortion (phonon field) energy
AEPOlaron the polaron state energy Ep, and the electron-phonon interaction energy
Eel—ph:

Ekin,eff . AEpolaron : —EO : _Eel-ph =1: n(ap) 13 4, (C7)

where 7 depends on the value of Frohlich coupling constant ag. In the limit of strong
electron-phonon coupling (i.e. where the adiabatic approximation is reasonable), the
polaron energy is dictated by the polarization of the lattice, and 7 approaches 2. From
this it follows:

1
Fyind = Binett + AEPN 4 By op = Eyineft + o Pel-ph (C.3)
Ey = Elinest + Eelph (C.9)

Egs. (C.8) and (C.9) clearly show the dependence of the binding energy and the po-
laron level on the energy of the el-ph interaction. The latter energy is the one that
remains to be corrected for the artificial supercell interactions, and thus the correction
for the polaron level has to be twice the correction for the binding energy, which leads
to Eq. (2.24).

However, the ratios Eq. (C.7) are only based on an effective single-particle model
(Eq. (C.5)). In our microscopic (DFT) model, additional (short-range) contributions to
the energy components and variations of 7 < 2 lead to violation of the above ratios.
In particular for TiO; the ratios are not preserved.
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Appendix D

The electronic properties of rocksalt
MgO

D.1 The electronic structure

For the sake of completeness we report the electronic structure of rocksalt MgO. The
band structure shown in Fig. D.1 has been computed with the PBE functional with a
lattice constant of a = 4.211 A'. MgO has a direct band gap with an isotropic minimum
at I for the conduction band with a small band mass of m; = 0.35m,.. On the contrary,
the valence bands exhibit an anisotropic maximum with high band masses for the hole
of my, = 2.0...5.4m.. The high band mass for the holes leads to a strong coupling to the
LO modes and in turn to the formation of a small polaron.

10
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FIGURE D.1: Band structure of rocksalt MgO calculated with PBE. Band masses (in units
of electron mass) at particular extrema are shown.

This is the equilibrium lattice constant of MgO calculated with HSE(«=0.25), which is used for all
calculations of MgO in this thesis.



98 Appendix D. The electronic properties of rocksalt MgO

D.2 The high-frequency dielectric constants for
functionals including exact exchange

A straightforward way of obtaining e is to determine the coefficients in
Eq. (2.1) for several supercell sizes of a structure including a localized excess charge
distribution without relaxing atomic positions. For this purpose we calculated the for-
mation energy of the unrelaxed singly-charged oxygen vacancy. We obtained e, = 2.4
from the fit, as shown in Fig. D.2(a). For a general understanding of the importance
of the local field effects for functionals including exact exchange [50] we plotted e, as
a function of the fraction of exact exchange in the HSE functional for rock salt MgO,
shown in Fig. D.2(b).
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FIGURE D.2: (a) The formation energy of the unrelaxed singly-charged oxygen vacancy
in MgO calculated with HSE(«=1.0). For large supercell sizes the slope of the line ap-
proaches q?an/2e5, where ay is the Madelung constant (a = 2.8373 for MgO), and ¢ is
the charge of the defect (¢ = 1 in our case). By determining the coefficients in Eq. (2.1) we
find e = 2.4. (b) Comparison of e, calculated with (blue line) and without local field
(no local field, NLF) effects (black line). The values with local field effects included are
obtained from Ref. [50] — and the values without are calculated according to Ref. [153] as
implemented in the FHI-aims code. The result from (a) is indicated by the red square.
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Appendix E

Convergence tests for the polaron in
MgO

E.1 Comparing light and tight settings in FHI-aims

For the smallest used supercell of MgO containing 216 atoms in our polaron study we
compare different standard settings of FHI-aims, namely the change in energies be-
tween light and tight settings, where light and tight settings refer to numerical standard
parameters for the integration grid, basis set, and convergence criteria. All values are
given in eV. As a result we see that the binding energies are shifted by about +0.02 eV.
So, we conclude that light settings are sufficient to demonstrate the effect of polaron

trapping.

PBE HSE(a=1)
agwn | By | By | AP B, | B
light | 0.630 | 0.644 | -0.014 | 0.703 | 0.768 | -0.065
tight | 0637 | 0612|0025 | 0711 | 0.758 | -0.048

TABLE E.1: The relaxation energy AEPan, the polaron level Ey, and the polaron bind-
ing energy EY. ; calculated with different numerical settings (light and tight) and differ-
ent functionals for the fixed geometry optimized with the PBE functional.

E.2 Geometry optimization with PBE

Here, we show that the geometry optimization using the method of Sadigh et al. [108]
introduced in Sec. 2.2.2 is sufficient, if carried out only with the PBE functional. It will
be tested for the 3 x 3 x 3 supercell of MgO including 216 atoms. We compare structures
relaxed with PBE and HSE06(a = 1.0) using forces computed from the A EPolaron _ g,
potential-energy surface, as well as from the usual E(N — 1) potential-energy surface
calculated with HSE06(aw = 0.4). For each of these different structures we perform a
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Functional, Method ‘ Egmd (eV) ‘ Ey (eV) ‘ RMSD (A) ‘ Max. Dev. (A)

HSE(a=0.4), conv. -0.109 1.045 0.0000 0.000
PBE, Sadigh -0.064 0.768 0.0040 0.028
HSE(a=1.0), Sadigh | -0.111 1.027 0.0023 0.015

TABLE E.2: The polaron binding energy E{. , and the polaron level Ey computed as a
function of the geometry optimized with different functionals and force evaluations. In
the conventional approach (conv.) the forces are calculated as derivatives of E(N — 1)
and in the Sadigh approach as derivatives of E(N) — epo(N). In the two last columns
a measure for the deviations of the geometries w.r.t. the first row is given, namely the

RMSD and the maximum deviation of a single atom.

single-point calculation with HSE06(«v = 1.0) to estimate the largest differences with
this functional. The geometry from the conventional optimization is used as reference
for root mean square deviation (RMSD) of the atomic positions:

RMSD = \/ % Z (x; —y;)* (E.1)

E.3 Supercell convergence of the polaron geometry

In a solid, the long-range response to an excess charge involves a large number of
atoms, so that even small displacements of the atoms far from the charge add up to
a significant contribution to the PES of the polaron. However, in a supercell the dis-
placements are limited to a finite volume. Figure E.1 shows the sensitivity of the dis-
placements for the optimized polaron geometry in a 3 x 3 x 3 MgO supercell compared
toa 5 x 5 x 5 supercell. In general, it can be observed that while the absolute value
of the displacements decreases fast with the distance to the polaron center, their con-
tribution to the polaron energy (~ AR - R?) is long-ranged and strongly depends on
the supercell size, as illustrated in Fig. E.1. Thus, this contribution and, consequently;,
polaron properties converge very slowly with the supercell size, as we have already
pointed out, cf. Fig. 2.3. However, as we demonstrate in this thesis, there is no need
to explicitly treat the atomic displacements at long range in the dilute limit, since the
finite-size effects can be accounted for via a simple physical model of the long-range
response, provided the supercell size is large enough to explicitly include the remain-
ing, more complex but also more localized effects. Indeed, as shown in Tab. E.3, the
polaron radius obtained from the KS eigenstate density is smaller than the size of the
smallest supercell we have considered, and is only weakly dependent on the size for
larger supercells.

The proper asymptotic behavior of the atomic displacements for a polaron in the
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dilute limit can be estimated as follows. For small displacements the polarization at
atom ~ due to the displacement u, is given as P = ezg% with the Born effective
charge tensor Z,;, and the unit cell size €)y. The source of the polarization of the atoms
is the el-ph potential determining the displacements as a function of the distance from
the polaron center u, = u,(R). The asymptotic behavior of the el-ph potential Ve1pn
is described by Eq. (C.1). It is related to the polarization as P ~ V V. Assuming
a strong localization of the polaron (electron) density p(r) ~ §(0), we obtain P ~
u.(R) ~ R/R3. Thus, the product AR - R? should approach a constant, which is
depicted as black dotted line in Fig. E.1 for the oxygen atoms. But in a finite supercell,
the displacements of the atoms far away from the polaron center decrease faster than
1/R? (see Fig. E.1), which is the effect of the periodic boundary conditions.

supercell size | polaron radius (A)
3x3x3 1.861
4x4x4 1.634
5X5HxXH 1.638

TABLE E.3: The radius of the polaron in MgO as a function of the supercell size obtained
by fitting the envelop of the KS eigenstate density (calculated with the PBE functional).
The 3 x 3 x 3,4 x4 x4, and 5 x 5 x 5 supercells contain 216, 512, and 1000 atoms,
respectively.

1 . 5 ' ' ' ' ' = Magnesium
= Oxygen
® Oxygen along [1,1,0]
Oxygen along [1,1,0] for 5x5%5

\ Dilute Limit

/LG

IR
Distance to center R (A)

FIGURE E.1: The displacements AR times the squared distance to the polaron center
R? for the Mg (black squares) and O (red squares) atoms in a 3 x 3 x 3 MgO supercell
at the optimized polaron geometry, obtained using the approach of Sadigh et al. [108]
presented in Sec. 2.2.2. The largest displacements can be observed for the oxygen atoms
along the [1,1,0] direction (red circles connected by the red line). For comparison, the
O displacements along the same direction are shown for the 5 x 5 x 5 supercell (brown
circles). The displacements should approach the black dotted line in the dilute limit.
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E.4 Dependence of the polaron radius on the fraction of exact
exchange

In order to check the dependence of the polaron radius obtained by fitting the KS
eigenstate density we optimized the geometry for o = 0.0,0.5, 1.0 (cf. Fig. E.2) accord-
ing to the approach by Sadigh et al. [108] presented in the manuscript, cf. Sec.2.2.2. We
find only a small variation of the radius, which is in line with the calculated energy
differences in the polaron binding energy and the polaron level as fraction of exact
exchange obtained with our approach, cf. Fig. 2.3.

— [ [
@) 3 o0

Polaron radius (&)

f—
N

l 1
) 0.8 1
Fraction of exact exchange

! ! !

L | | |
L4 02 04 06

FIGURE E.2: The polaron radius fitted as the envelop of the KS eigenstate density for
three different fractions of exact exchange in the HSE functional.
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Appendix F

Properties of rutile and anatase TiO,

FE1 Rutile TiO,

(a) Lattice parameters (b) Atomic coordinates
\ Til \ o1
a | 0.0 | 0.3045106

b | 0.0 | 0.3045106
c | 0.0 | 0.0437906

[ad) | cA)
PBE | 4.650 | 2.982
Expt. [154] | 4594 | 2.959

TABLE F.1: Structural properties of the rutile phase obtained from the optimization with
the PBE functional. The lattice parameters of Ref. [154] are measured at T=30°C and
ambient pressure, where the PBE results refer to T=0 K (without zero-point effects). The
atomic coordinates in (b) are given in fractional coordinates of the lattice vectors a, b,
and c.

With PBE we find a crystal structure with slightly reduced symmetry corresponding
to the space group P4,nm (space group number 102). The position of the O1 atom for
P4ynm can be represented by two parameters v and v as (u, u, v) However, in experi-
ments the space group P4,/mnm (space group number 136) is found. The difference
can be observed for the z coordinate of the O1 atom: for perfect rutile v = 0.0. The
energy difference between this two configurations, that is v = 0.0 and v = 0.043906
calculated with PBE is 15 meV and, thus, rather small. Further, we investigate the de-
pendence of the u and v parameters obtained with HSE06(«x) on the fraction of exact
exchange a. The lattice constants are kept fixed at the PBE values (see Tab. E1). The
result is shown in Fig. F.1. We observe an abrupt change between a = 0.5 and = 0.75,
where the system’s symmetry changes abruptly to the space group P4,/mnm, since
v = 0.0 for o = 0.75. Similarly, using PBE+U with U=7.5 for the 3d orbital of the Ti
atom results in the optimized structure of P4, /mnm symmetry. For this value of U the
calculated KS band gap is close to the experimentally measured optical gap. However,
since the changes are small we use the PBE functional for the polaron simulations.

The high-frequency dielectric tensor €., used for the finite-size correction for rutile
supercells is calculated with the DFPT formalism at PBE level (for details of imple-
mentation cf. Ref [74]), but the tensor of the static dielectric constants ¢ is taken from
experiment [155]:
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FIGURE F.1: The u (black) and v (red) parameters for rutile TiO, determining the position
of the O1 atom in the space group P4;nm as a function of the fraction of exact exchange

« in the HSEQ6 functional.

6.859 0 0

Eoo = 0 6859 0 (F.1)
0 0 8.033
8 0 0

g0 = |0 8 0 (F.2)
0 0 170

The dielectric tensor e, of rutile obtained from DFPT are in good agreement with ex-
perimental findings at room temperature [156] €., = diag(6.8,6.8,8.4). Note that in
principle €y can be calculated within the DFT framework, but we use here the experi-
mental values due to the minor significance of € for the correction scheme. The same
consideration is valid for the materials discussed below.
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F2 Anatase TiO,

(a) Lattice parameters (b) Atomic coordinates
o o Til 1
Lad) [ c() || O
a | 00 0.5
PBE 3.80 | 9.74 5100 05
Expt. [154] | 3.785 | 9.514 - 100 (02941

TABLE F.2: Structural properties of the anatase phase of TiO, obtained from the opti-
mization with the PBE functional. The lattice parameters of Ref. [154] are measured at
T=28°C and ambient pressure, where the PBE results refer to T=0 K (without zero-point
effects). The atomic coordinates in (b) are given in fractional coordinates of the lattice
vectors a, b, and c.

Proceeding as for rutile, we get for anatase the following dielectric tensors:

674 0 0

e = | 0 674 0 (E.3)
0 0 627
45 0 0

g0 = |0 45 0], (F4)
0 0 23

where the static dielectric tensor was taken from experiments [12]. Also the dielectric
tensor e, of anatase obtained from DFPT is in reasonable agreement with experimen-
tal findings at room temperature [12] e, = diag(5.8,5.8,5.4).
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Appendix G

Properties of the 3— and xk—phase of
Ga203

G.1 B—Ga203

(a) Lattice parameters

| a@d) [b@A) @A) | B
PBE | 12463 | 3.084 | 5.877 | 103.7°
Expt. [157] | 12.233 | 3.038 | 5.807 | 103.8°

(b) Atomic coordinates
\ Gal \ Ga2 \ 01 \ 02 \ 03
a | 0.34145 | 0.08978 | 0.17372 | 0.16352 | 0.49611
c | 0.18569 | 0.29479 | 0.06431 | 0.60921 | 0.75685

TABLE G.1: Structural properties of the 5-phase of Ga;O3 obtained from the optimiza-
tion with the PBE functional. For all atoms given in (b) y = 0.0. The atomic coordinates
in (b) are given in fractional coordinates of the lattice vectors a and b. The experimental
values of Ref. [157] were obtained at ambient temperature and pressure, where the PBE
values refer to T=0 K (without zero-point effects).

The high-frequency dielectric tensor €, used for the finite-size correction is calculated
with the DFPT formalism at PBE level (for details of implementation cf. Ref [74]), but
the tensor of the static dielectric constants has been approximated by a single constant
o and is taken from experiment [158]:

4.02 0 1-1072
€oo = 0 4.15 0 (G.1)

1-1072 0 4.16
g =~ 10 (GZ)

From the experimental data of Ref. [159] we obtain for T=0 K dielectric constants in
the range of e, = 3.49..3.62 showing a clear deviation from our calculations as we
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have similar observed for the band gap, too.

G.2 H—GaQOg),

(a) Lattice parameters (b) Atomic coordinates

| o x |y | z

Gal | 0.17995 | 0.65144 | 0.99776
Ga2 | 0.81285 | 0.66190 | 0.30893
| PBE | Bt 0] e e 79507

= a: . . .
32‘3 Z;éf 85'60855472 O1 | 097357 | 0.82575 | 042725
A) | 8 : O2 | 052167 | 098748 | 043307
c(A) [ 9417 ] 9.27585 O3 | 0.65004 | 050332 | 0.20180
O | 0.15415 | 0.65894 | 0.19780
O5 | 0.85009 | 0.67144 | 0.67217
06 | 052310 | 0.66673 | 0.93840

TABLE G.2: Structural properties of the x-phase of Ga;O3 obtained from the optimiza-
tion with the PBE functional. All atomic coordinates in (b) are given in fractional coordi-
nates of the lattice vectors a, b, and c. The lattice parameters of Ref. [140] were measured
at 550°C and ambient pressure, where the PBE results refer to T=0 K (without zero-point
effects).

The high-frequency dielectric tensor €, used for the finite-size correction is calculated
with the DFPT formalism at PBE level (for details of implementation cf. Ref [74]), but
the tensor of the static dielectric constants has been approximated by a single constant
o and is taken from experiment [158] of the S-phase, since no data is available for the
k-phase:

438 0 0
Eoo = 0 432 0 (G.3)
0 4.30

eog ~ 10 (G4)
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G.3 Test of the supercell-size dependence for the hole polaron
in Ii—G&gOg

To confirm the validity of our approach we explicitly tested the supercell-size depen-
dence of the polaron properties for the x-phase. We performed calculations up to
supercells containing 480 atoms. The result is shown in Fig. G.1. We find a good
agreement (within 0.1 eV) of the finite-size corrected energies with the actual dilute
limit obtained from the linear fit of the data as a function of the inverse supercell size.
The polaron energies for the 2 x 1 x 1 supercell computed with HSE06(a=0.4) are
shown as reference as well in Fig. G.1.

Number of atoms 480 320 160 80 40

T T I I Hl
e oS0 ;i
- T To-—a___ f
o | Y
A | S—— o o 3 .
2 e e
& | |— Binding energy: | ]
Sl T Polaron level | | 1
0 |— Relaxation energy 7
f _ oo
- 6--6--""9" é 1
-1 ——\ ‘ L ? \E : i
0 0.2 0.4 0.6 0.8 1

Inverse supercell size Q' (in units of Q%)

FIGURE G.1: The polaron binding energy EZ, , (black line), the polaron level E; (blue

line), and the relaxation energy A FPolaron (re::l line) as a function of the inverse super-
cell size /3 given in units of the unit cell size € /%, calculated with the PBE func-
tional. The dashed lines represent the calculated energies, whereas the solid lines are the
long-range corrected energies. The filled symbols represent the results for the polaron
energies calculated with HSE06(a=0.4).
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