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Abstract

Detecting small sets of relevant patterns from a given dataset is a central challenge in data mining. The
relevance of a pattern is based on user-provided criteria; typically, all patterns that satisfy certain criteria
are considered relevant. Rule-based languages like Answer Set Programming (ASP) seem well-suited
for specifying such criteria in a form of constraints. Although progress has been made, on the one hand,
on solving individual mining problems and, on the other hand, developing generic mining systems, the
existing methods either focus on scalability or on generality. In this paper we make steps towards combining
local (frequency, size, cost) and global (various condensed representations like maximal, closed, skyline)
constraints in a generic and efficient way. We present a hybrid approach for itemset, sequence and graph
mining which exploits dedicated highly optimized mining systems to detect frequent patterns and then
filters the results using declarative ASP. To further demonstrate the generic nature of our hybrid framework
we apply it to a problem of approximately tiling a database. Experiments on real-world datasets show the
effectiveness of the proposed method and computational gains for itemset, sequence and graph mining, as
well as approximate tiling.

Under consideration in Theory and Practice of Logic Programming (TPLP).
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1 Introduction

Motivation. Availability of vast amounts of data from different domains has led to an increasing
interest in the development of scalable and flexible methods for data analysis. A key feature of
flexible data analysis methods is their ability to incorporate users’ background knowledge and
different criteria of interest. They are often provided in the form of constraints to the valid set
of answers, the most common of which is the frequency threshold: a pattern is only considered
interesting if it appears often enough. Mining all frequent (and otherwise interesting) patterns is a
very general problem in data analysis, with applications in medical treatments, customer shopping
sequences, Weblog click streams and text analysis, to name but a few examples.

Most data analysis methods consider only one (or few) types of constraints, limiting their
applicability. Constraint Programming (CP) (Négrevergne and Guns 2015; Guns et al. 2017) has
been proposed as a general approach for (sequential) mining of frequent patterns (Agrawal et al.
1996), and Answer Set Programming (ASP) (Gelfond and Lifschitz 1988; Eiter et al. 2009) has
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been proven to be well-suited for defining the constraints conveniently (see e.g., Järvisalo (2011),
Gebser et al. (2016) and Guyet et al. (2014) for existing approaches on ASP-based frequent pattern
mining) thanks to its expressive and intuitive modelling language and the availability of optimized
ASP solvers such as Clasp (Gebser et al. 2007) and WASP (Alviano et al. 2013).

In general, all constraints can be classified into local constraints, that can be validated by
the pattern candidate alone, and global constraints, that can only be validated via an exhaustive
comparison of the pattern candidate against all other candidates. Combining local and global
constraints in a generic way is an important and challenging problem, which has been widely
acknowledged in the constraint-based mining community. The existing methods have focused
either on scalability of solving individual mining problems or on generality, but rarely address
both of these aspects. This naturally limits the practical applicability of the existing approaches.

State of the art and its limitations. Purely declarative ASP encodings for frequent and maximal
itemset mining were proposed by Järvisalo (2011). In this approach, every item’s inclusion into
the candidate itemset is guessed at first, and the guessed candidate pattern is checked against
frequency and maximality constraints. While natural, this encoding is not truly generic, as adding
extra local constraints requires significant changes in it. Indeed, for a database where all available
items form a frequent (and hence maximal) itemset, the maximal ASP encoding has a single
model. The latter is, however, eliminated once restriction on the length of allowed itemsets is
added to the program. This is undesired, as being maximal is not a property of an itemset on its
own, but rather in the context of a collection of other itemsets (Bonchi and Lucchese 2006). Thus,
ideally one would be willing to first apply all local constraints and only afterwards construct a
condensed representation of them, which is not possible in the approach of Järvisalo (2011).

This shortcoming has been addressed in the recent work on ASP-based sequential pattern
mining (Gebser et al. 2016), which exploits ASP preference-handling capacities to extract patterns
of interest and supports the combination of local and global constraints. However, both Gebser et al.
(2016) and Järvisalo (2011) present purely declarative encodings, which suffer from scalability
issues caused by the exhaustive exploration of the huge search space of candidate patterns (existing
solvers cannot yet take the full advantage of the stucture of the problem (van der Hallen et al.
2016), as specialized algorithms do to scale up and work with large datasets). The subsequence
check amounts to testing whether an embedding exists (matching of the individual symbols)
between sequences. In sequence mining, a pattern of size m can be embedded into a sequence
of size n in O(nm) different ways, therefore, clearly a direct pattern enumeration is unfeasible in
practice.

While a number of individual methods tackling selective constraint-based mining tasks exist (see
Table 1 for comparison) there is no uniform ASP-based framework that is capable of effectively
combining constraints both on the global and local level and is suitable for itemsets, sequences
and graphs alike.

Contributions. The goal of our work is to make steps towards building a generic framework
that supports mining of condensed patterns, which (1) effectively combines dedicated algorithms
and declarative means for pattern mining and (2) is easily extendable to incorporation of various
constraints. We propose a two-step approach. In the first step, optimized algorithms are applied to
discover a set of frequent patterns, and in the second step, the patterns are post-processed using
declarative means. The key advantage of our approach stems from the fact that it preserves the
generality of purely declarative methods with respect to the frequent pattern mining problems of
the specified types, while providing an efficient system to develop prototypes which can run on
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Datatype Task

Järvisalo
2011

G
ebser et al. 2016

N
égrevergne et al. 2013

O
ur work

Itemset
frequent pattern mining X – X X

condensed (closed, max, etc) X∗ – X X
condensed under constraints – – X X

Sequence
frequent pattern mining – X – X

condensed (closed, max, etc) – X – X
condensed under constraints – X – X

Graphs
frequent pattern mining – – – X

condensed (closed, max, etc) – – – X
condensed under constraints – – – X

Table 1: Feature comparison between various ASP mining models and dominance programming
(“–” : “not designed for this datatype”, X∗ : only maximal is supported)

real-world datasets where typically only specialized algorithms are deployed. This is especially
beneficial in the setting where a user considers a new variation of a pattern mining problem and
needs to prototype a system to run on the standard real-world pattern mining datasets. Typically,
even standard pattern mining datasets are too large for purely declarative systems, and researchers
have to experiment with the smallest datasets available (see, for example, experimental sections of
Gebser et al. (2016), Négrevergne et al. (2013), Négrevergne and Guns (2015), Guns et al. (2013)
and Paramonov et al. (2015)); contrary to this, developers of specialized algorithms, practically,
have to rewrite the algorithms almost completely to model and solve new variations of a problem
(for example, see separate algorithms and papers for gSpan (Yan and Han 2002) and cloSpan (Yan
et al. 2003)). Our approach provides a middle ground between them, on the one hand, a researcher
can model a new problem variation without changing the whole model and, on the other hand, she
can experiment with the real-world datasets, which indeed makes the declarative approach more
practical and appealing for applications.

The salient contributions of our work can be summarized as follows:

• We present a general extensible pattern mining framework for mining patterns of different
types using ASP.

• In addition to the classical pattern mining problems, we demonstrate the generic nature of
our framework by applying it to a problem of approximately tiling a database.

• We introduce a feature comparison between different ASP mining models and dominance
programming (a generic itemset mining language and solver).

• We demonstrate the feasibility of our approach with an experimental evaluation across
multiple itemset, sequence and graph datasets using state-of-the-art ASP solvers.

Structure. After providing necessary background in Section 2 we introduce our approach
in Section 3, and discuss approximate pattern mining in Section 4. Experimental results are
described in Section 5, while related work and final remarks are provided in Section 6 and
Section 7 respectively.
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ID a b c d e

1 X X X X

2 X X X

3 X X

Table 2: Transaction database

ID Sequence

1 〈abcd aeb〉

2 〈bceb〉

3 〈aae〉

Table 3: Sequence database

2 Preliminaries

In this section we briefly recap the necessary background both from the fields of pattern mining
and Answer Set Programming (ASP).

Let D be a dataset, L a language for expressing pattern properties or defining subgroups of
the data, and q a selection predicate. The task of pattern mining is to find Th(L ,D,q) = {φ ∈
L | q(D,φ) is true}, that is, to find all patterns φ ∈L that are selected by q (see, e.g, the seminal
work of Mannila and Toivonen (1997)).

Pattern mining has been mainly studied for itemsets, sequences, graphs and tilings. These
settings are determined by the language of L . In this work we discuss all of these pattern types.

2.1 Patterns

2.1.1 Itemsets

Itemsets represent the most simple setting of frequent pattern mining. Let I be a set of items
{o1,o2, . . . ,on}. A nonempty subset of I is called an itemset. A transaction dataset D is a
collection of itemsets, D = {t1, . . . , tm}, where ti ⊆I . For any itemset α , we denote the set of
transactions that contain α as Dα = {i | α ⊆ ti, ti ∈ D}; we refer to Dα as the cover of an itemset
α and to |Dα | as the support (frequency) of α in D, written sup(α). The relative frequency of α

in D refers to the ratio between sup(α) and |D|. The cardinality (or size) |α| of an itemset α is
the number of items contained in it.

Definition 1 (Frequent Itemset). Given a transaction dataset D and a frequency threshold σ ≥ 0,
an itemset α is frequent in D if sup(α)≥ σ .1

We illustrate the introduced notions by the following example.

Example 1. Consider a transaction dataset D from Table 2. We have I = {a,b,c,d,e} and
|D|= 3. For σ = 2, the following itemsets are frequent: α1={a}, α2={b}, α3={e}, α4={a,e}
and α5={b,e}. Moreover, it holds that Dα4 = {1,3},Dα5 = {1,2}, and the coverage for the rest
of the itemsets can be analogously found.

1 In frequent pattern mining, often, a relative threshold, i.e., σ/ |D| is specified by the user.
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a b

c de
(a) Graph G1

a b

c fe
(b) Graph G2

a b

c f a
(c) Graph G3

Figure 1: Graph examples

2.1.2 Sequences

A sequence is an ordered set of items 〈s1, . . . ,sn〉. The setting of sequence mining includes two
related yet different cases: frequent substrings and frequent subsequences. In this work we focus
on the latter.

Definition 2 (Embedding in a Sequence). Let S = 〈s1, . . . ,sm〉 and S′ = 〈s′1, . . . ,s′n〉 be two se-
quences of size m and n respectively with m ≤ n. The tuple of integers e = (e1, . . . ,em) is an
embedding of S in S′ (denoted Sve S′) if and only if e1 < .. . < em and for any i ∈ {1, . . . ,m} it
holds that si = s′ei

.

Example 2. For the dataset in Table 3 we have that 〈bceb〉 ve1 〈abcd aeb〉 for e1 = (2,3,6,7)
and analogously, 〈aae〉 ve2 〈abcd aeb〉 with e2 = (1,5,6).

We are now ready to define an inclusion relation for sequences.

Definition 3 (Sequence Inclusion). Given two sequences S = 〈s1, . . . ,sm〉 and S′ = 〈s′1, . . . ,s′n〉, of
size m and n, respectively, with m≤ n, we say that S is included in S′ or S is a subsequence of S′

denoted by Sv S′ iff an embedding e of S in S′ exists, i.e.

Sv S′↔∃e1 < .. . < em and ∀i ∈ 1 . . .m : si = s′ei
. (1)

Example 3. In Example 2 we have 〈bceb〉 v 〈abcd aeb〉 but 〈aae〉 6v 〈bceb〉.

For a given sequence S and a sequential dataset D = {S1, . . . ,Sn} we denote by DS the subset
of D s.t. Sv S′ for all S′ ∈ DS. The support of S is sup(S) = |DS|. Frequent sequences are defined
analogously to frequent itemsets.

Definition 4 (Frequent Sequence). Given a sequential dataset D = {S1, . . . ,Sn} and a frequency
threshold σ ≥ 0, a sequence S is frequent in D if sup(S)≥ σ .

Example 4. For the dataset in Table 3 and σ = 2, it holds that 〈bceb〉 and 〈aae〉 are frequent,
while 〈bd b〉 is not.

Note that v and ⊆ are incomparable relations. Indeed, consider two sequences s1 = 〈ab〉 and
s2 = 〈baa〉. While s1 ⊂ s2, we clearly have that s1 6< s2.

2.1.3 Graphs

A graph G is a triple 〈V,E, l〉 where V is a set of vertices, E is a set of edges and l is a labeling
function that maps each edge and each vertex to a label.

In this work we consider undirected graphs. Moreover, we primarily focus on two settings: a
restricted one, where unique labels are ensured and a general one, where labels of the graph are
not necessarily unique.
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a b

ce
(a) Graph G′1

a b

f
(b) Graph G′2

Figure 2: Isomorphic subgraphs for graphs in Figure 1

Uniquely Labelled Graphs. In this restricted setting, we assume that each node has a unique label
within the graph, and no labels on the edges are provided. This restriction makes the sub-pattern
check computationally easier and allows certain reductions to other pattern mining problems as
indicated below.

Example 5. The graphs in Figure 1a and 1b are unique-labeled ones, while the graph from
Figure 1c is clearly not.

General Case of Graph Mining. In the general case we consider graphs, whose nodes have labels,
that are not necessarily unique. Here, a pattern is an arbitrary graph with labeled nodes and edges.
This general case is computationally more demanding than the special case of uniquely labelled
graphs.

In the further exposition of the results, the general case is assumed by default, unless explicitly
stated otherwise.

Definition 5 (Graph Isomorphism). Given two graphs G = 〈V,E, l〉 and G′ = 〈V ′,E ′, l′〉, we say
that G is isomorphic to G′ iff there is a bijective function f such that

• v ∈V iff f (v) ∈V ′ and for all v ∈V it holds that l(v) = l′( f (v))
• e ∈ E iff f (e) ∈ E ′ and for all e ∈ E it holds that l(e) = l′( f (e)).

The graph isomorphism problem is claimed to be solvable in quasipolynomial time (Babai
2015).

Definition 6 (Graph Inclusion). Given two graphs G= 〈V,E〉 and H = 〈U,F〉, such that |V | ≤ |F |,
we say that G is an (isomorphic) subgraph of H denoted by G v H iff there exists a subgraph
H ′ = 〈U ′ ⊆U,F ′ ⊆ F〉 such that G is isomorphic to H ′.

We now illustrate the introduce notions by the following example.

Example 6. The graph G′1 of Figure 2 is an isomorphic subgraph of graphs G1 and G2 of Figure 1;
it is not isomorphic to the graph G3. The graph G′2 is isomorphic to graphs G2 and G3, but it is
not isomorphic to G1.

In the general setting, the problem of deciding whether a subgraph isomorphism exists (which
is at the core of graph mining problems) is NP-complete (Cook 1971). However, several restricted
settings have been identified, for which the problem can be solved in polynomial time, e.g.,
unique-labelled undirected graphs (Kimelfeld and Kolaitis 2014).

2.2 Condensed Pattern Representations under Constraints

In data mining, constraints are typically specified by the user to encode domain background
knowledge. Négrevergne and Guns (2015) distinguish four types of constraints: 1) constraints over
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the pattern (e.g., restriction on its size), 2) constraints over the cover set (e.g., minimal frequency),
3) constraints over the inclusion relation (e.g., maximal allowed gap in sequential patterns) and 4)
constraints over the solution set (e.g., condensed representations).

Orthogonally, constraints can be classified into local and global ones. A constraint is local
if deciding whether a given pattern satisfies it is possible without looking at other patterns.
For example, minimal frequency or maximal pattern size are local constraints. On the contrary,
deciding whether a pattern satisfies a global constraint requires comparing it to other patterns. All
constraints from the 4th group are global ones.

As argued in Section 1, the order in which constraints are applied influences the solution set
(Bonchi and Lucchese 2006). Following Bonchi and Lucchese (2006), in this work we apply
global constraints only after local ones.

We now present the notions required in our pattern mining framework. Here, the definitions
are given for itemsets; for sequences and graphs they are identical up to substitution of ⊂ with <

(subsequence/subgraph relation). First, to rule out patterns that do not satisfy some of the local
constraints, we introduce the notion of validity.

Definition 7 (Valid pattern under constraints). Let C be a constraint function (local constraint)
from L to {>,⊥} and let p be a pattern in L . Then the pattern p is called valid iff C(p) =>;
otherwise it is referred to as invalid.

Example 7. Let C be a constraint function checking whether a given pattern is of size at least 2.
Then in Example 1, we have C(αi) =⊥, i ∈ {1,2,3}, and C(α j) =>, j ∈ {4,5}.

For detecting patterns that satisfy a given global constraint, the notion of dominance is of crucial
importance. Intuitively, a dominance relation reflects pairwise preference (<∗) between patterns,
and it is specific for each mining setting. In this work we primarily focus on global constraints
related to maximal, closed, free and skyline condensed representations, for which <∗ is defined as
follows:

(i) Maximal. For itemsets p and q, p <∗ q holds iff p⊂ q
(ii) Closed. For itemsets p and q, p <∗ q holds iff p⊂ q and sup(p) = sup(q)

(iii) Free. For itemsets p and q, p <∗ q holds iff q⊂ p and sup(p) = sup(q)
(iv) Skyline. For itemsets p and q, p <∗ q holds iff

(a) sup(p)≤ sup(q) and size(p)< size(q) or
(b) sup(p)< sup(q) and size(p)≤ size(q)

We are now ready to define dominated patterns under constraints.

Definition 8 (Dominated pattern under constraints). Let C be a constraint function, and let p be
a pattern, then p is called dominated iff there exists a pattern p′ ∈L such that p <∗ p′, and p′ is
valid under C.

Example 8. In Example 1 for the maximality constraint we have that α1 is dominated by α4, α2

by α5, while α3 both by α4 and α5.

Exploiting the above definitions we obtain condensed patterns under constraints.

Definition 9 (Condensed pattern under constraints). Let p be a pattern from L , and let C be a
constraint function, then a pattern p is called condensed under constraints iff it is valid and not
dominated under C.



8 S. Paramonov, D. Stepanova and P. Miettinen

Example 9. For the constraint function selecting maximal itemsets of size at least 2 and support
at least 2, α4 and α5 from Example 1 are condensed patterns. The restriction on the pattern size
rules out α3.

Intuitively, a condensed representation is the smallest set of “good” patterns describing the data,
i.e., a set that does not contain any redundant or invalid patterns. By redundant here, we mean
patterns dominated by others. More formally,

Definition 10 (Condensed representation). A condensed representation is a set of all condensed
patterns.

Condensed representations allow one to get insight about the data without analyzing all frequent
patterns. This is advantageous, since typically there are orders of magnitude fewer condensed
patterns than frequent ones. Moreover, many standard condensed representations (e.g., closed)
allow a full reconstruction of the whole set of frequent patterns. In other words, from a substantially
smaller set of condensed patterns, often the same knowledge can be extracted about the data, as
from all frequent patterns. Note that in the literature condensed representations are also known
under other names, e.g., dominating sets (Négrevergne et al. 2013).

2.3 Answer Set Programming

Answer Set Programming (ASP) (Gelfond and Lifschitz 1988) is a declarative problem solving
paradigm oriented towards difficult search problems. ASP has its roots in Logic Programming
and Nonmonotonic Reasoning. An ASP program Π is a set of rules r of the form

a 0 :- b 1, ..., b k, not b k+1, ..., not b m. (2)

where 0≤ k ≤ m, a 0, b 1, ..., b m are classical literals, and not is default negation. The
right-hand side of r is its body, body(r), while the left-hand side is the head, head(r). body+(r)
and body−(r) stand for the positive and negative sets of atoms (respectively) that compose body(r).
A rule of the form (2) is a fact if m = 0. We omit the symbol :- when referring to facts. A rule
without head literals is a constraint. Moreover, a rule is positive if k = m.

An ASP program Π is ground if it consists of only ground rules, i.e. rules without variables.
Ground instantiation Gr(Π) of a nonground program Π is obtained by substituting variables with
constants in all possible ways. The Herbrand universe HU(Π) (resp. Herbrand base HB(Π)) of
Π, is the set of all constants occurring in Π, (resp. the set of all possible ground atoms that can
be formed with predicates and constants appearing in Π). Any subset of HB(P) is a Herbrand
interpretation. MM(Π) denotes the subset-minimal Herbrand interpretation that is a model of a
ground positive program Π.

The semantics of an ASP program is given in terms of its answer sets. An interpretation A of Π

is an answer set (or stable model) of Π iff A = MM(ΠA), where ΠA is the Gelfond–Lifschitz (GL)
reduct (Gelfond and Lifschitz 1988) of Π, obtained from Gr(Π) by removing (i) each rule r such
that body−(r)∩A 6= /0, and (ii) all the negative atoms from the remaining rules. The set of answer
sets of a program Π is denoted by AS(Π).

Example 10. Consider the program Π given as follows:
(1) pattern(1); (2) pattern(2); (3) item(1,a);

(4) item(1,b); (5) item(2,a);

(6) not superset(J,I):-pattern(I), item(I,V), I != J,

pattern(J), not item(J,V).
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Apart from the facts (1)-(5) the program Π contains a rule, which intuitively states that the
pattern J is not a superset of the pattern I if I has an item V that J does not have. The grounding
Gr(Π) of Π is obtained from Π by substituting I,J,V with the constants 1,2,a,b in all possible
ways. Consider the interpretation A = {pattern(1),pattern(2),item(1,a),item(1,b),
item(2,a),not superset(2,1)}. The GL-reduct ΠA(Π) for A contains the facts (1)-() and
the rule (6) with only positive atoms in its body, and with I,J,V substituted by 2,1,b respectively.
A is the minimal model of ΠA(Π), and thus it is in AS(Π).

Cardinality constraints. Cardinality constraints are extended literals (Simons et al. 2002). They
are of the form

l{b 1, . . ., b m}u,

for m≥ 1, where l, u are lower and upper bounds on the cardinality of subsets of {b 1, . . .,

b m} satisfied in an encompassing answer set. They can appear in the head or in the body of a
rule. A cardinality constraint is satisfied in an answer set A, if the number of atoms from b 1,

. . ., b m belonging to A is between l and u.

Example 11. For instance, 1 {a(X),b(X)} 3 is satisfied in A, whenever between 1 and 3
instances of a(X),b(X) are true in A.

Other relevant language constructs include conditional literals. A conditional literal is an
expression of the form

{a:b 1,...,b m},

where a and b i are possibly default negated literals. This expression denotes the set of atoms
a(X) for which it holds that b 1(X),...,b m(X) are true.

Example 12. For example, the cardinality atom: k {in subset(X) : in set(X)} k ex-
presses the condition that a subset has exactly k elements when the predicate in set(X) defines
the elements that belong to the set and the predicate in subset(X) defines the subset.

Aggregate functions and aggregate atoms. An aggregate function is of the form f(S), where
S is a set and f is a function name among #count, #min, #max, #sum, and #times. An
aggregate atom is

Lg ≺1 f(S) ≺2 Rg,

where f(S) is an aggregate function, ≺1,≺2∈ {=,<,≤,>,≥}, and Lg and Rg (called left guard
and right guard, respectively) are terms. One of Lg≺1 and ≺2Rg can be omitted, in which case,
“0” and “+∞” are assumed, respectively. If both ≺1 and ≺2 are present, we assume for simplicity
that ≺1∈ {<,≤} if and only if ≺2∈ {<,≤}, and that both ≺1 and ≺2 are different from = (Faber
et al. 2008). We consider the standard semantics of aggregates:

• #count(X), defined over a multiset of atoms X , is the number of atoms X that hold in an
answer set (zero for the empty set)

• #min(X), defined over a multiset of atoms X , is a minimal atom in X that holds in an
answer set

• #max(X), defined over a multiset of atoms X , is a maximal atom in X that holds in an
answer set
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• #sum(X), defined over a multiset of atoms X , is the sum of atoms X (which are typically
numbers) that hold in an answer set

• #time(X), defined over a multiset of atoms X , is the product of atoms X (which are
typically numbers) that hold in an answer set (one for the empty set).

Encoding methodology and ASP solvers. In this paper we make use of two existing ASP
systems Clasp (Gebser et al. 2007) and WASP (Alviano et al. 2013). We mostly focus on the
former and use the latter to provide an experimental comparison on how two different systems
perform on various pattern mining tasks with respect to runtime and memory usage.

Clasp extends the standard ASP theory described here with a number of features such as
incremental grounding, preferences, Satisfiability Modulo Theories, various solving parameters
such as brave and cautious reasoning, parallel executions, heuristics and meta-programming
(Gebser et al. 2012).

A typical modelling approach in ASP follows the guess and check paradigm, where at first we
define potential stable model candidates (typically through non-deterministic constructs) and then
eliminate invalid candidates (typically through integrity constraints) (Gebser et al. 2007; Gebser
et al. 2012; Lifschitz 2008), which in a nutshell allows us to write the following formula for ASP
modelling:

ASP program = Data + Generator + Tester ( + Optimizer) 2

We follow this modelling paradigm throughout the paper. To demonstrate it, consider as an
example, n-queen modelling problem, where one needs to put a number of queens on the board
such that no queen attacks another. This can be modelled as in Listing 1. First we specify data as
facts, in Lines 2 and 3, then we define the set of possible answer sets using a choice rule in Line 5
and finally we validate them in Lines 7,8 and 9.� �

1 % Data specifying the board

2 col (1..k).

3 row (1..k).

4 % Choice rule to specify possible stable models

5 k { queen(Row ,Col) : col(Col), row(Row) } k.

6 % Integrity constraint to validate the candidate models

7 :- queen(Rw ,Cw), queen(Rb ,Cb), Rw = Rb , Cw != Cb.

8 :- queen(Rw ,Cw), queen(Rb ,Cb), Rw != Rb , Cw = Cb.

9 :- queen(Rw ,Cw), queen(Rb ,Cb), Rw != Rb , | Rw - Rb | = | Cw - Cb |.� �
Listing 1: An ASP guess-and-check paradigm modelling example on the n-queen problem

3 Hybrid ASP-based Mining Approach

In this section we present our hybrid method for frequent pattern mining. Unlike previous ASP-
based mining methods, our approach consists of two steps, where in the first step, we apply highly
optimized algorithms for frequent pattern discovery and, in the second step, we use a declarative
ASP solver for their convenient post-processing. Here, we mainly focus on itemsets, sequence
and graph mining.

2 https://www.cs.uni-potsdam.de/~torsten/Potassco/Slides/asp.pdf

https://www.cs.uni-potsdam.de/~torsten/Potassco/Slides/asp.pdf
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Given a frequency threshold σ , a dataset D and a set of constraints C = Cl ∪Cg, where Cl and
Cg are respectively local and global constraints, we proceed in two steps as follows.

Step 1. First, we launch a dedicated optimized algorithm to extract all frequent patterns from a
given dataset, satisfying the minimal frequency threshold σ . Here, any frequent pattern mining
algorithm can be invoked. We use Eclat (Zaki et al. 1997) for itemsets, PPIC (Aoga et al. 2016)
for sequences and gSpan (Yan and Han 2002) for graphs.

Step 2. Second, the computed patterns are post-processed using the declarative means to select a
set of valid patterns (i.e., those satisfying constraints in Cl). For that the frequent patterns obtained
in Step 1 are encoded as facts item(i,j) for itemsets and seq(i,j,p) for sequences, where
i is the pattern’s ID, j is an item contained in it and p is its position. Analogously, we encode
graphs with unique labels using facts graph u(i,j,k), where i is the pattern’s ID, j and k are
node labels, and the respective fact means that in the graph i, the node j is connected to k. In
the general setting, we have graph(i,j,k,l), where i is again the pattern’s ID, j and k are
node labels, and l is the label of an edge connecting j and k in i. The local constraints in Cl are
represented as ASP rules, which collect IDs of patterns satisfying constraints from Cl into the
dedicated predicate valid, while the rest of the IDs are put into the not valid predicate.

Finally, from all valid patterns a desired condensed representation is constructed by storing
patterns i in the selected predicate if they are not dominated by other valid patterns based
on constraints from Cg. Following the principle of (Järvisalo 2011), for itemsets and sequences
in our work every answer set represents a single desired pattern, which satisfies both local and
global constraints (for graphs slight variations apply, as we discuss later in this section). The set
of all such patterns forms a condensed representation. In what follows we present our encodings
of local and global constraints in details.

3.1 Encoding Local Constraints

In our declarative program we specify local constraints by the predicate valid, which reflects
the conditions given in Definition 7. For every constraint in Cl we have a set of dedicated rules,
stating when a pattern is not valid. For instance, a constraint checking whether the cost of items in
a pattern exceeds a given threshold N is encoded as

not valid(I) :- #sum{C,J:item(I,J),cost(J,C)} > N, pattern(I).

A similar rule for sequences can be defined as follows:

not valid(I) :- #sum{C,J,P:seq(I,J,P),cost(J,C)} > N, pattern(I).

Analogously, one can specify arbitrary domain constraints on patterns.

Example 13. Consider a dataset storing moving habits of young people during their stud-
ies. Let the dedicated frequent sequence mining algorithm return the following patterns: S1 =

〈bG mA ba mG ma〉; S2 = 〈bA mG ba mA ma〉; S3 = 〈bUS mA ba mUS ma〉, where bG,bA,bUS
stand for born in Germany, Austria and US, ba,ma stand for bachelors and masters and the
predicates mG,mA,mUS reflect that a person moved to Germany, Austria and US, respectively.
Suppose, we are only interested in moving habits of German native speakers, who got their masters
degree from a German university. The local domain constraint expressing this would state that
(1) bUS should not be in the pattern, while (2) either both bG and ma should be in it without any
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1 time (1..5).

2 % people born in Germany or Austria are German-speaking

3 gs(I) :- seq(I,bG,P).

4 gs(I) :- seq(I,bA,P).

5 % collect those who moved to Austria or US before P

6 moved_before(X,P) :- seq(X,mA, P1), P > P1, time(P), time(P1).

7 moved_before(X,P) :- seq(X,mUS, P1), P > P1, time(P), time(P1)

8 % collect those who moved to Austria or US after P and before masters

9 moved_after(X,P) :- seq(X,mA, P1), seq(X,ma,P2), P < P1,

10 P1 < P2, time(P), time(P1), time(P2).

11 moved_after(X,P) :- seq(X,mUS, P1), seq(X,ma,P2), P < P1,

12 P1 < P2, time(P), time(P1), time(P2).

13 % keep German speakers who moved to Germany straight before masters

14 keep(X) :- seq(X,ma,P+1), seq(X,mG,P), gs(X).

15 % keep Germans who did not move before masters

16 keep(X) :- seq(X,bG,P1), seq(X,ma,P), not moved_before(X,P).

17 % keep German speakers whose last move before masters was to Germany

18 keep(X) :- seq(X,mG,P1), seq(X,ma,P2), P1 < P2,

19 gs(X), not moved_after(X,P1).

20 % a pattern is not valid, if it should not be kept

21 not_valid(X) :- pattern(X), not keep(X).

22� �
Listing 2: Moving habits of people during studies

mA or mUS in between or mG should directly precede ma. These constraints are encoded in the
program in Listing 2. From the answer set of this program we get that both S2 and S3 are not valid,
while S1 is.

To combine all local constraints from Cl we add to a program a generic rule specifying that a
pattern I is valid whenever not valid(I) cannot be inferred.

valid(I) :- pattern(I), not not valid(I)

Patterns i, for which valid(i) is deduced are then further analyzed to construct a condensed
representation based on global constraints from Cg.

3.2 Encoding Global Constraints

The key for encoding global constraints is the declarative formalization of the dominance relation
(Defintion 8). For example, for itemsets the maximality constraint boils down to pairwise checking
of subset inclusion between patterns. For sequences this requires a check of embedding existence
between sequences.

Regardless of a pattern type from L and a constraint from Cg every encoding presented in this
section is supplied with a rule, which guesses (selected/1 predicate) a single valid pattern
to be a candidate for inclusion in the condensed representation, and a constraint that rules out
dominated patterns thus enforcing a different guess.

1 {selected(I) : valid(I)} 1.

:- dominated.
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1 % J is not a superset of I if I has items that are not in J

2 not_superset(J) :- selected(I), item(I,V), not item(J,V),

3 valid(J), I != J.

4 % derive dominated whenever I is a subset of J

5 dominated :- selected(I), valid(J),

6 I != J, not not_superset(J).� �
Listing 3: Maximal itemsets encoding

� �
1 % support and size comparison among patterns

2 g_size_geq_fr(J) :- selected(I), valid(J), support(I,X),

3 support(J,Y), size(I,Si), size(J,Sj),

4 Si < Sj, X <= Y.

5 geq_size_g_fr(J) :- selected(I), valid(J), support(I,X),

6 support(J,Y), size(I,Si), size(J,Sj),

7 Si <= Sj, X < Y.

8 % derivation of the domination condition

9 dominated :- valid(J), g_size_geq_fr(J).

10 dominated :- valid(J), geq_size_g_fr(J).� �
Listing 4: Skyline itemsets encoding

In what follows, we discuss concrete realizations of the dominance relation both for itemsets
and sequences for various global constraints, i.e., we present specific rules related to the derivation
of the dominated/0 predicate.

Itemset Mining. We first provide an encoding for maximal itemset mining in Listing 3. To recall,
a pattern is maximal if none of its supersets is frequent. An itemset I is included in J iff for every
item i ∈ I we have i ∈ J. We encode the violation of this condition in lines (1)–(3). The second
rule presents the dominance criteria. We provide a correctness proof of this encoding in Appendix.
The correctness of the rest of the encodings can be analagously shown.

For closed itemset mining a simple modification of Listing 3 is required. An itemset is closed
if none of its supersets has the same support. Thus to both of the rules from Listing 3 we need
to add atoms support(I,X), support(J,X), which store the support of I and J respectively
(extracted from the output of Step 1).

For free itemset mining the rules of the maximal encoding are changed as follows:� �
4 not_superset(J) :- selected(I), item(J,V), not item(I,V),

5 valid(J), I != J.

6 dominated :- selected(I), valid(J), support(I,X),

7 I != J, not not_superset(J), support(J,X).� �
Finally, the skyline itemset encoding is given in Listing 4, where the first two rules specify the

conditions (a) and (b) for skyline itemsets as specified in Section 2.

Sequence Mining. The subpattern relation for sequences is slightly more involved, than for
itemsets, as it preserves the order of elements in a pattern. To recall, a sequence S is included in S′

iff an embedding e exists, such that Sve S′.
In Listing 5 we present the encoding for maximal sequence mining. A selected pattern is

not maximal if it has at least one valid superpattern. We rule out patterns that are for sure not



14 S. Paramonov, D. Stepanova and P. Miettinen� �
1 % if V appears in a valid pattern I, derive in(V,I)

2 in(V,I) :- seq(I,V,P), valid(I).

3 % J is not a superset of I if I has V that J does not have

4 not_superset(J) :- selected(I), valid(J), I != J,

5 seq(I,V,P), not in(V,J).

6 % if for a subseq <V,W> in I there is V followed

7 % by W in J then deduce domcand(V,J)

8 domcand(V,J,P) :- selected(I), seq(I,V,P), seq(I,W,P+1), I != J

9 valid(J), seq(J,V,Q), seq(J,W,Q’), Q’>Q.

10 % if domcand(V,J) does not hold for some V in I

11 % and a pattern J then derive not dominated by(J)

12 not_dominated_by(J) :- selected(I), seq(I,V,P), seq(I,W,P+1),

13 I != J, valid(J), not domcand(V,J,P).

14 % if neither not dominated by(J) nor not superset(J)

15 % are derived for some J, then I is dominated

16 dominated :- selected(I), valid(J), I != J,

17 not not_superset(J), not not_dominated_by(J).� �
Listing 5: Maximal sequence encoding

superpatterns of a selected sequence. First, J is not a superpattern of I if it is not a superset of I
(lines (4)–(5)), i.e., if not superset(J) is derived, then J does not dominate I. If J is a superset
of I then to ensure that I is not dominated by J, the embedding existence has to be checked (lines
(6)–(9)). I is not dominated by J if an item exists in I, which together with its sequential neighbor
cannot be embedded in J. This condition is checked in lines (10)–(13), where domcand(V,J,P)
is derived if for an item V at position P and its follower, embedding in J can be found.

The encoding for closed sequence mining is obtained from the maximal sequence encoding
analogously as it is done for itemsets. The rules for free sequence mining are constructed by
substituting lines (4)–(13) of Listing 5 with the following ones:� �

4 not_superset(J) :- selected(I), in(V,J),

5 not in(V,I), I != J.

6 domcand(V,J,P) :- selected(I), seq(J,V,P), seq(J,W,P+1),

7 seq(I,V,Q), seq(I,W,Q’), Q’>Q, I != J.

8 not_dominated_by(J) :- selected(I), valid(J), I != J,

9 seq(J,V,P), seq(J,W,P+1),

10 not domcand(V,J,P).� �
Finally, the encoding for mining skyline sequences coincides with the skyline itemsets encoding,

which is provided in Listing 4.

Graph Mining. Graphs represent the most complex pattern type. The subpattern relation between
graphs amounts to testing subgraph isomorphism between them. In general, this problem is NP-
complete; however, for some restricted graph types, it is solvable in polynomial time.

Uniquely Labelled Graphs. One of such graph types are undirected graphs, where every node
has a unique label (and consequently, every edge (u,v) is labelled uniquely as (l(u), l(v))). For
instance, the first two graphs in Figure 1 fall into this category, while the third one does not. For
this restricted graph type, we have that G is subgraph isomorphic to G′ iff every edge in G is also
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4 % I is not a subgraph of J if I has an edge (X,Y) that J does not have

5 not_supergraph(J) :- selected(I), graph u(I,X,Y), valid(J),

6 not graph u(J,X,Y), not graph u(J,Y,X), I != J.

7 % derive dominated, whenever I is a subgraph of J

8 dominated :- selected(I), valid(J), not not_supergraph(J), I != J.� �
Listing 6: Maximal graph encoding (unique labeled; IDs represent labels as well; graph u(I,X,Y)
represents here a graph I with an edge between X and Y, whose values are their labels respectively)

present in G′. Therefore, the subgraph isomorphism test for these restricted graphs essentially
boils down to subpattern test for itemsets (Neumann and Miettinen 2017).

We treat every edge in a graph as an item. Since the graph is allowed to have only unique
labels, there cannot be any repetitions of the edge labels. The encoding of maximal frequent
graph patterns is presented in Listing 6. A selected graph pattern is not maximal if at least one of
its frequent supergraphs is valid. Similar to the case of itemsets and sequences we rule out the
patterns that are guaranteed to be not maximal. A pattern J is not a superpattern of I if I contains
an edge that J does not have.

The encoding for closed frequent graph patterns differs from the one for maximal graph patterns
only in that in the second rule in Listing 6 the atoms support(I,X), support(J,X) are added.
Encodings for other condensed representations are analogous.

Example 14. The edges of the graph G1 in Figure 1 are represented with the following facts
graph u(g1,e,c), graph u(g1,c,a), etc. Given the unique-labeled graphs G1 and G2 and
the frequency threshold σ = 2, we have that both {(a,b)} and {(e,c),(c,a),(a,b)} are
frequent subgraphs. However, only the latter graph pattern is maximal.

General Case of Graph Mining. The encoding for maximal (closed, etc) graph mining problem in
the general case is slightly more complicated. For the maximal constraint we depict the encoding
in Listing 7 (the rest of the constraints are treated analogously). Since the subgraph isomorphism
check is an NP-complete problem, after obtaining a set F of frequent candidate graph patterns
using a dedicated algorithm, we perform a dominance check using the ASP program in Listing 7
for each pattern separately (unlike in earlier presented encodings, where such a check was done
for all frequent patterns jointly within a single ASP program).

More specifically, the solver receives as input a selected graph candidate G and the rest
of the frequent patterns in F excluding G. The graph G is represented using two predicates:
selected node(v,lv) reflecting labelled vertices of G and selected edge(v,w,le), where
v,w are nodes and the edge (v,w) is labeled with le in G. First, in (2) of Listing 7 the guess
is performed on a graph in the set F of frequent patterns, to which G can be mapped, i.e., a
dominating candidate pattern is guessed. Second, in (4) the guess on a mapping from G to the
dominating candidate graph is done. Finally, in (6)-(9) the mapping is validated by two integrity
constraints. Finally, the constraint in (10)-(11) ensures the injectivity of the constructed mapping.
If the solver returns an answer set, then the selected graph G is removed from the dataset as a
dominated pattern, i.e., it is guaranteed to be not maximal.
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1 % pick one graph to map to the originally selected

2 1 { mapped_to(X) : graph(X,_,_,_)} 1.

3 % guess the mapping to the selected graph

4 1 { map(X,N) : node(I,N,_) } 1 :- selected_node(X,_), mapped to(I).

5 % check mapping validity on the edges with labels

6 :- mapped_to(I), map(X1 ,V1), map(X2 ,V2),

7 selected_edge(X1 ,X2 ,L), not graph(I,V1 ,V2 ,L).

8 % check validity on the nodes

9 :- mapped_to(I), map(X,V), selected_node(X,L), not node(I,V,L).

10 % enforces injectivity of the mapping

11 :- map(X,V1), map(X,V2), V1 != V2.� �
Listing 7: Maximal graph encoding (core); general case with non-unique labels; the method picks a
graph from the set of patterns and a) removes it from the graph dataset (we know the picked graph
would always match itself) b) reify it as selected node(X,L) and selected edge(X,Y,L),
then the encoding is trying to construct an injective mapping map(X,N), which maps nodes in
the originally selected graph to the one picked in the dataset, i.e., mapped to(I) to one of the
graphs in the dataset, i.e., the graph predicate (since it constructs a mapping names or ordering of
nodes does not play a role here) such that it preserves edges and labels. If it fails to construct such
a mapping, then the original selected graph is maximal

4 Covering with Approximate Patterns

So far, we have concentrated on exact patterns, that is, patterns that are present exactly in the
data; for example, an itemset is present only in transactions that contain every item in the itemset.
This is a standard assumption in pattern mining, and it is heavily utilized by the pattern mining
algorithms. But it also means that the patterns are not robust against noise: a single item missing
from a single transaction can turn a frequent itemset into an infrequent one. To make the patterns
more robust to noise, we can study approximate patterns, that is, patterns that are considered as
contained in transactions even if the transaction does not contain all of the items in the pattern. In
this section, we demonstrate how our hybrid approach can be used also with approximate patterns.

The approximate patterns we are interested in are based on the concept of tiles (Geerts et al.
2004). Let α be an itemset and D be a database. The tile corresponding to α is defined as
τ(α,D) = {(tid , i) | tid ∈ Dα , i ∈ α}. When D is clear from the context, we write τ(α). The area
of τ(α) is equal to its cardinality.

Example 15. The tile corresponding to the itemset {b,e} from Table 2 is {(1,b),(2,b),(1,e),(2,e)}.

A tiling T = {τ(α1), . . . ,τ(αk)} consists of a finite number of tiles. Its area is area(T,D) =

|τ(α1)∪, . . . ,∪τ(αk)|. In Maximum k-Tiling the goal is to find a tiling of k tiles with the maximum
area, whereas in the Minimum Tiling the goal is to find the least number of tiles such that for all
tid ∈ D and for all i ∈ tid , there exists at least one tile τ(α) such that (tid , i) ∈ τ(α) (Geerts et al.
2004).

Another way to define tiles is via binary matrices. A transaction database D can be regarded as
a binary matrix D of size m×n, where m is the number of transactions in D and n is the number
of items in I . The (i, j)th element in the binary matrix corresponding to D is equal to 1 if the
ith transaction contains item j, and it is equal to 0 otherwise. In this framework, a tile is a rank-1
matrix T that is dominated by the data matrix D. Matrix T is rank-1 if it is an outer product of two
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binary vectors, that is, T = uvT where u ∈ {0,1}m and v ∈ {0,1}n. Matrix T = (ti j) is dominated
by matrix D = (di j) if ti j ≤ di j for all i and j.

Example 16. The transaction database in Table 2 corresponds to the following binary matrix:1 1 0 1 1
0 1 1 0 1
1 0 0 0 1

 ,

and the tile from Example 15 corresponds to the matrix0 1 0 0 1
0 1 0 0 1
0 0 0 0 0

=

1
1
0

(0 1 0 0 1
)
.

A tiling is an element-wise logical disjunction of the matrices corresponding to the tiles,

S = T1∨T2∨·· ·∨Tk .

Assuming that T` = u`vT
` , we can write each element of S = (si j) as

si j =
k∨

`=1

ui`v j` ,

that is, S is the Boolean matrix product of matrices U = [u1 u2 · · · uk] and V = [v1 v2 · · · vk] (see
Miettinen (2009) for more discussion on the connections between pattern mining and Boolean
matrix factorization).

The formulation of tiles as rank-1 binary matrices immediately suggests the concept of approx-
imate tiles as possibly non-dominated rank-1 matrices and approximate tiling as approximate
Boolean matrix factorization. We will call both exact and approximate tiles simply as tiles from
now on.

Example 17. Consider the following Boolean matrix:

1 1 0
1 0 1
0 1 1




The areas with the red, blue and black border highlight the respective three approximate tiles of
the matrix.

A common approach to calculate an approximate Boolean matrix factorization (or tiling) is to
first calculate a set of candidate tiles (or rank-1 matrices) and then select the final set from these
(Miettinen et al. 2008; Tyukin et al. 2014). In what follows, we concentrate on a version of this
problem where the user gives the target quality, and we try to find a set of tiles that obtains this
quality.

Definition 11 (Approximate Tile Selection Problem). Given a binary matrix D ∈ {0,1}m×n, a set
T of tiles (rank-1 matrices) and an integer threshold σ , find a subset T ′ = {T(1),T(2), . . . ,T(k)} ⊆
T , such that when we write S = (si j) with si j = t(1)i j ∨ t(2)i j ∨·· ·∨ t(k)i j , the error∣∣{(i, j) | di j = 1∧ si j = 0}

∣∣+ ∣∣{(i, j) | di j = 0∧ si j = 1}
∣∣ (3)
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1 % for every tile store its ID and coordinates of 1s that it encodes

2 tileid(X) :- tile(X,Y,Z).

3 one(Y,Z) :- tile(X,Y,Z).

4 % among tiles guess at least one to be included in the tiling

5 1 { intiling(X) : tileid(X)}.

6 % collect and count ones that are outside the constructed tiling

7 incell(Y,Z) :- intiling(X), tile(X,Y,Z).

8 outsideone(Y,Z) :- tile(X,Y,Z), not incell(Y,Z).

9 numberofoutsideones(N) :- N = #count{Y, Z : outsideone(Y,Z)}.

10 % collect and count zeros that are inside the constructed tiling

11 insidezero(Y,Z) :- intiling(X), relitem(X,Y),

12 reltrans(X,Z), not one(Y,Z).

13 numberofinsidezeros(N) :- N = #count{Y, Z : insidezero(Y,Z)}.

14 % compute the total error

15 er(0,K) :- numberofinsidezeros(K).

16 er(1,K) :- numberofoutsideones(K).

17 totalerror(N) :- N = #sum{X, Y : er(Y,X)}.

18 % ensure that the total error does not exceed the threshold

19 :- totalerror(N), threshold(K), N > K.� �
Listing 8: Encoding for the approximate tiling problem from Def. 11

(i.e., the number of ones outside of the tiling plus the number of zeros inside the tiling) is smaller
then the threshold σ .

It is worth noticing that (3) corresponds to the Hamming distance between D and S. The
decision version of the Approximate Tile Selection problem is NP-hard (Miettinen 2015), and
the optimization version (finding the smallest possible error) is NP-hard to approximate to within
Ω(2log1−ε |D|) for any ε > 0, where |D| is the number of 1s in D (Miettinen 2015). The problem
has two alternative characterizations, either as a variant of the famous Set Cover problem called
Positive-Negative Partial Set Cover (Miettinen 2008) or as a form of Boolean linear programming:
given a binary design matrix A, and a binary target vector b, find a binary vector x that minimizes
the Hamming distance between b and Ax, where the matrix-vector product is over Boolean
algebra.

For computing a set of candidate tiles T to choose from, effective implementations exist (see,
e.g., Tyukin et al. (2014)). From these candidates a subset needs to be selected, which will be a
solution to the problem from Def. 11. In Figure 8 we provide an ASP program, whose answer sets
exactly correspond to solutions to the above problem.

In the input the ASP program gets a set of tile candidates to choose from. A natural encoding
of tiles is via the positions of 1s that they contain, i.e., for a tile with ID id that has 1 in the
intersection of a column i and a row t, we could store a fact tile(id,i,t). For instance,
provided that the ID of the red tile from Example 17 is 1, it can be represented as a set of
facts tile(1,1,1),tile(1,2,1),tile(1,1,2),tile(1,3,2). However, storing only infor-
mation about 1s in a tile is insufficient for its encoding, since multiple tiles can have 1s in the
same positions, as illustrated next.

Example 18. Consider the matrix in Figure 3 and two of its tiles. If we only encode tiles using the
positions of 1s in them, then both of the tiles in Figure 3 will have the exact same representation
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1 0 0 1
0 0 0 0
1 0 0 1


 1 0 0 1

0 0 0 0
1 0 0 1


 1 0 0 1

0 0 0 0
1 0 0 1




Figure 3: Examples of tiles in a matrix

given by the following facts tile(1,1,1), tile(1,4,1), tile(1,1,3), tile(1,4,3).

In order to ensure that the encoding represents a unique tile, along with the positions of 1s, we
also need to identify columns and rows that are parts of a tile but contain only 0s. We do that by
storing IDs of all items and transactions that are part of a tile (i.e., relevant to it) using the facts
relitem(id,i) and reltrans(id,t) respectively.

Example 19. The facts in Example 18 and {relitem(1,1),relitem(1,2),relitem(1,3),
relitem(1,4), reltrans(1,1), reltrans(1,2)} uniquely represent the tile in the middle
of Figure 3. Analogously, if we instead {relitem(1,1), relitem(1,2), reltrans(1,3)}
are added to the facts in Example 18, then the encoding of the tile on the right-hand side of
Figure 3 is obtained.

Note that if there exists a 1 in the original data that is not a part of any tile, no method will be
able to cover it. Hence such 1s are accumulated into a constant error, and we ignore them in our
setting.

In (1)–(3) of Listing 8 we collect tiles’ IDs and locations of ones using the dedicated predicates
tileid and one respectively. Than in (4)–(5) for every tile we perform a guess on whether to
include it into the tiling. In lines (6)–(9), we count the number of 1s that are outside of the tiling,
while in lines (10)–(13), the number of 0s inside the tiling is computed. Finally, the total error
is determined in lines (14)–(17) and its admissibility based on the given threshold is checked in
lines (18)–(19).

This ASP program can be exploited to solve Boolean matrix factorization, when used together
with existing candidate generation approaches, or to solve Boolean linear programming instances.
In fact, in Boolean linear programming, the design matrix A is given as a part of the problem
instance, hence for that even a purely declarative programming solution will suffice.

5 Evaluation

In this section we evaluate the proposed hybrid approach by comparing it to the existing declarative
pattern mining methods: ASP model for sequences (Gebser et al. 2016) and Dominance Program-
ming (DP) (Négrevergne et al. 2013). We do not consider the itemset mining ASP model (Järvisalo
2011), since it focuses only on frequent itemset mining and is not applicable to the construction
of condensed representations under constraints as explained and addressed in (Négrevergne et al.
2013). Moreover, we do not perform comparison with dedicated algorithms designed for a specific
problem type; these are known to be more efficient (in terms of runtime and memory usage) than
declarative mining approaches (Négrevergne and Guns 2015), yet obviously less flexible (in terms
of modelling flexibility, i.e., how general the method is and how easily it can be modified to model
a variaton of the problem).

More specifically, we investigate the following experimental questions.
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• Q1: How does the runtime of our method compare to the existing ASP-based sequence
mining models?

• Q2: What is the runtime gap between the specialized mining languages such as dominance
programming and our method?

• Q3: What is the influence of local constraints on the runtime of our method?

• Q4: How does the choice of an ASP solver influence the overall performance of the system?

• Q5: How does the hybrid system perform on highly structured graph mining task in com-
parison to other logic-based mining systems?

• Q6: How does the hybrid method perform on the approximate tiling problem?

For Q1 we compare our work with the ASP-based model by Gebser et al. (2016). For Q2 we
measure the runtime difference between specialized itemset mining languages (Négrevergne et al.
2013) and our ASP-based model. To address Q3 we estimate the runtime effect of adding local
constraints. Moreover, for Q4 we compare the performance of our system with two state-of-the-art
ASP solvers: Clasp and WASP. Regarding Q5, we perform the comparison of our hybrid mining
system against the existing ILP-based method for graph mining. Finally, to tackle Q6 as a proof of
concept we test the effectiveness of our hybrid method for solving the problem from Definition 11.

We report our evaluation results on 2 transaction datasets3: Mushrooms (8124 transactions/119
items) and Vote (435/48), 3 sequence datasets (full)4: JMLR (788 sequences/3847 distinct symbols),
Unix Users (9099/4093), and iPRG (8628/21), 3 graph datasets5: Yoshida (265 graphs/20 avg.
vertices/23 avg. edges/9 distinct labels), Nctrer (232/19/20/9) and Bloodbarr(413/21/23/9), and
2 datasets for the tiling problem: Divorce6 (50 transactions/9 items) and Glass7 (214/48). All
experiments have been performed on a desktop with Ubuntu 14.04, 64-bit environment, Intel Core
i5-3570 4xCPU 3.40GHz and 8GB memory using clingo 4.5.48 C++14 for the itemset/sequence
wrapper and python 2.7 for the graph wrapper. In the evaluation we used the latest available
version 2 of WASP9. The timeout was set to one hour. Free pattern mining demonstrates the same
runtime behavior as closed, due to the symmetric encoding, and is thus omitted.

To investigate Q1, in Figure 4a, we compare the ASP model (Gebser et al. 2016) with our
method on the default 200 sequence sample, generated by the tool10 of Gebser et al. (2016). We
performed the comparison on the synthetic data, as the sequence-mining model (Gebser et al.
2016) failed to compute condensed representations on any of the standard sequence datasets for
any support threshold value within the timeout. One can observe that our method consistently
outperforms the purely declarative approach of Gebser et al. (2016) and the advantage naturally
becomes more apparent for smaller frequency threshold values.

In Figures 4b, 4c and 4d (the point 0.05 for JMLR is a timeout), we present the runtimes of our
method for maximal, closed and skyline sequential pattern mining settings on JMRL, Unix Users

3 From https://dtai.cs.kuleuven.be/CP4IM/datasets/.
4 From https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html.
5 From https://github.com/amaunz/ofsdata
6 https://sparse.tamu.edu/Pajek/divorce
7 http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html
8 http://potassco.sourceforge.net
9 https://github.com/alviano/wasp

10 https://sites.google.com/site/aspseqmining

https://dtai.cs.kuleuven.be/CP4IM/datasets/
https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html
https://github.com/amaunz/ofsdata
https://sparse.tamu.edu/Pajek/divorce
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html
http://potassco.sourceforge.net
https://github.com/alviano/wasp
https://sites.google.com/site/aspseqmining
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(a) Comparing with ASP sequence model (Gebser
et al. 2016) on the 200 generated sequences (closed)

(b) Maximal sequence patterns

(c) Closed sequence patterns (d) Skyline sequence patterns
Figure 4: Investigating Q1: comparison with pure ASP model (4a) and maximal (4b), closed (4c),
and skyline (4d) sequence mining on JMLR, Unix Users, and iPRG datasets.

and iPRG datasets. In contrast to Gebser et al. (2016), our method managed to produce results on
all of these datasets for reasonable threshold values within a couple of minutes.

To investigate Q2, we compare out-of-the-box performance of DP (Négrevergne et al. 2013)
with our approach on maximal, closed and skyline itemset mining problems using standard
datasets Vote and Mushrooms. As we see in Figures. 5a and 5b, on average, DP is one-to-two
orders of magnitude faster; this gap is, however, diminishing as the minimum frequency increases.
Surprisingly, our approach is significantly faster than DP out-of-the-box for skyline patterns
(Figure 5c); this holds also for the Mushrooms dataset, not presented here.

Fine-tuning parameters of DP by changing the order in which operators are applied within the
system (skyline+ option) allowed to close this gap. With this adaptation DP demonstrates one-to-
two orders of magnitude better performance, as can be seen in Figure 5c. However, fine-tuning
such a system requires the understanding of its inner mechanisms or exhaustive application of all
available options.

To address Q3 we introduced three simple local constraints for the itemset mining setting from
Q2: two size constraints size(I) > 2 and size(I) < 7 and a cost constraint: each item gets weight
equal to its value with the maximal budget of n, which is set to 20 in the experiments.

In Figure 5d, we present the results for closed itemset mining with and without local constraints
(experiments with other global constraints demonstrate a similar runtime pattern). Local constraints
ensure better propagation and speed up the search. One of the key design features of our encoding
is the filtering technique used to select candidate patterns among only valid patterns. Its effect can
be clearly seen, e.g., for the Vote dataset in Figure 5d, where for certain frequencies the runtime
gap is close to an order of magnitude.

To analyze Q4, we have replaced Clasp solver with WASP (Alviano et al. 2013) in our system.
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(a) Maximal itemset mining: comparing with DP on
Vote and Mushrooms

(b) Closed itemset mining: comparing with DP on
Vote and Mushrooms

(c) Skyline itemset mining: comparing with out-of-
the-box and fine-tuned DP on Vote

(d) Closed itemset mining: our method with (w/o)
local constraints on Vote and Mushrooms

As we see in Figure 6a, for mining closed itemsets two systems perform on par except for
a timeout of WASP on mushrooms with frequency 0.22. However, we already can observe
significant difference in performance on maximal patterns for both itemsets and sequences. A
similar behavior can be seen in the setting of closed sequences mining: there is at least an order
of magnitude difference in performance. The runtime gap cannot be explained by differences in
grounding, since for both tasks Gringo has been used. However, we have noticed the difference in
memory management: Clasp seems to be able to reason and keep track of significantly larger sets
of patterns, while being economic and provident with memory. Since the task naturally allows
one to generate problem instances of practically any size, we presume that our setting might be
well-suited as one of the tests for ASP solvers’ performance.

To address Q5, we consider the standard graph mining datasets in Figs. 7a, 7b and 7c. One can
observe, that our system is indeed able to handle real-sized datasets and process hundreds or even
thousands of graph patterns within the time-limit. Furthermore, the comparison with the purely
declarative framework presented in Figure 7d demonstrates the two orders of magnitude speedup
in runtime. In addition, note that our system is able to enumerate all condensed graph patterns,
while the purely declarative approach is not capable of doing that within the timeout.

To investigate Q6, we tested our hybrid approach on the approximate tile selection problem
from Def. 11, exploiting Clasp reasoner for the ASP part of the algorithm. Since the considered
problem is very computationally demanding, we did not set any timeout in this experimental
setting. In Table 4 and Table 5 we report the results for the Divorce and Glass datasets respectively.
We compute the candidate tiles using an approach based on association confidences (see Miettinen
et al. 2008). Given the set of candidate tiles, we use our ASP encoding from Listing 8 to find all
tilings whose overall error is below a specified threshold. We compare this approach to a greedy
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(a) Itemset mining: closed patterns (b) Itemset mining: maximal patterns

(c) Sequence mining: closed patterns (d) Sequence mining: maximal patterns
Figure 6: Q4: comparing ASP solvers performance – WASP and Clasp on itemset and sequence
mining tasks

method for finding any tiling that has error below the threshold. The greedy tiling approach,
proposed by Miettinen et al. (2008), will add the candidate tiles one-by-one until it has either
found an admissible tiling, or it has exhausted all tiles. Note that, since the problem of finding
the tiling is NP-hard, the greedy method is not guaranteed to find an admissible tiling even if one
exists.

The first column in Table 4 (respectively Table 5) reports the number n of candidate tiles and
the error threshold value σ . In the second column we present the details of the solution found
by the greedy method, i.e., the number k of tiles in the solution tiling and its overall error. The
computation of the tilings by the greedy algorithm takes less than a second. In the third column,
the results of our hybrid approach are provided. More specifically, we present the number k of
tiles and the overall error for the first solution found by the solver together with the running time,
as well as the details of the optimal tiling. To compute the optimal tiling we enforce the solver to
find all models of the given ASP program (their total number is likewise reported).

The candidate tiles are computed by the dedicated algorithm within a fraction of a second, and
the major computational efforts are done by the ASP solver to find the final tiling. Moreover,
observe that since the grounding step is the most time-consuming, the time difference between
the first found solution and all solutions including the optimal one is actually neglectable. Note
that comparing the running time of the greedy and our hybrid algorithms is not entirely fair, as the
former is not complete (i.e., it might not find any tiling, satisfying the conditions imposed by the
error threshold even if one exists), which is in contrast to our hybrid approach.

The greedy algorithm is capable of computing the optimal tiling only for small instances of the
Divorce dataset. Starting from n = 5, our hybrid method outperforms the greedy one with respect
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(a) Bloodbarr dataset: maximal and closed graph pat-
terns

(b) Nctrer dataset: maximal and closed graph patterns

(c) Yoshida dataset: maximal and closed graph pat-
terns

(d) Comparison with logic programming ILP frame-
work (Paramonov et al. 2015). For the ILP framework
time to find a maximal solution is indicated, while
for our system time to enumerate all maximal graph
patterns (frequency 0.2) is shown.

Figure 7: Investigating Q5: evaluation on standard graph datasets (a,b,c) and comparison to the
declarative ILP system for graph mining (d). Log-scale on all plots

to the quality of the found solutions. For the Glass dataset the benefit of our method is apparent
even for smaller instances.

Summary. In all experiments, Step 1 of our method contributes to less than 5% of runtime.
Overall, our approach can handle real world datasets for sequential pattern mining as demonstrated
in Q1. In many cases its performance is close to the specialized mining languages, as shown in Q2.
As demonstrated in Q3 various local constraints can be effectively incorporated into our encoding
bringing additional performance benefits. The choice of an ASP solver plays a crucial role in
the overall performance of the system, as discussed in Q4. In Q5, it has been established that
our approach leads to a significant speed up (of orders of magnitude) for the mining tasks with a
complex structure, such as graph mining. Finally, the results of Q6 have proved the applicability
of our hybrid framework for other computationally intensive data mining tasks, e.g., approximate
tile selection problem, where our method is able to find solutions of higher quality.

6 Related Work

Pattern mining approaches, especially frequent (closed or maximal) itemset, sequence, and
subgraph mining are amongst the foundational methods in data mining (see, e.g., Aggarwal (2015)
for a recent textbook on the topic), and have been studied actively since mid-nineties (Agrawal
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n/σ
greedy hybrid

k error
first

k opt error opt time all |all solutions|
k error time

3/59 1 51 1 59 38.961 1 51 38.962 5

4/54 1 51 2 51 38.127 1 51 38.135 8

5/60 2 51 2 58 50.616 2 47 50.617 15

6/60 2 51 2 58 50.601 2 47 50.600 30

Table 4: Addressing Q6: approximate tiling problem solution using specialized native algorithm
for tile candidate generation and ASP encoding for selecting the resulting tiling (Divorce dataset)

n/σ
greedy hybrid

k error
first

k opt error opt time all |all solutions|
k error time

3/214 1 184 1 196 294.172 3 88 294.173 7

4/168 3 142 2 154 1194.088 3 142 1194.093 2

5/222 3 180 3 192 2126.944 4 142 2126.948 11

6/224 3 182 3 194 2198.739 5 142 2198.743 25

Table 5: Addressing Q6: approximate tiling problem solution using specialized native algorithm
for tile candidate generation and ASP encoding for selecting the resulting tiling (Glass dataset)

et al. 1993; Agrawal et al. 1996). These problems are considered local and exhaustive, as the goal
is always to enumerate all patterns that satisfy the (local) frequency constraint (together with
some global constraints, such as closedness). In addition, the patterns have to be exact, that is,
they have to be present in the data. The exactness was relaxed in later work (Pensa and Boulicaut
2005), while Geerts et al. (2004) considered the problem of summarizing the data using closed
itemsests, that is, tiling. These two approaches, non-exact patterns and summarization using them,
were combined by Miettinen et al. (2008) in their work on Boolean matrix factorization.

The problem of enhancing pattern mining by injecting various user-specified constraints has
recently gained increasing attention. On the one hand, optimized dedicated approaches exist,
in which some of the constraints are deeply integrated into the mining algorithm (e.g., Pei and
Han 2000). On the other hand, declarative methods based on Constraint Programming (Rojas
et al. 2014; Négrevergne and Guns 2015; Métivier et al. 2013), SAT solving (Jabbour et al. 2015;
Jabbour et al. 2013) and ASP (Järvisalo 2011; Gebser et al. 2016; Guyet et al. 2014) have been
proposed.

Techniques from the last group are the closest to our work. However, in contrast to our
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method, they typically focus only on one particular pattern type and consider local constraints
and condensed representations in isolation (Pei et al. 2000; Yan et al. 2003). Négrevergne et al.
(2013) and Guns et al. (2017) focused on CP-based rather than ASP-based itemset mining and did
not take into account sequences unlike we do. Gebser et al. (2016) studied declarative sequence
mining with ASP, but in contrast to our approach, optimized algorithms for frequent pattern
discovery are not exploited in their method. A theoretical framework for structured pattern mining
was proposed by Guns et al. (2016), whose main goal was to formally define the core components
of the main mining tasks and compare dedicated mining algorithms to their declarative versions.
While generic, this work did not take into account local and global constraints and neither has it
been implemented.

Järvisalo (2011) and Gebser et al. (2016) considered purely declarative ASP methods; unlike our
approach, they do not admit integration of optimized mining algorithms and thus lack practicality.
In fact, the need for such an integration in the context of complex structured mining was even
explicitly stated by Paramonov et al. (2015) and by van der Hallen et al. (2016), which study
formalizations of graph mining problems using logical means. While the ASP (Gebser et al. 2016)
and CP models (Négrevergne and Guns 2015) for frequent pattern mining cannot be hybridized
completely out-of-the-box, due to dependencies between constraints and assumptions on the
input-output structure, in principle, as we see from our work that it is possible to re-use ideas
and the general modelling approach to turn them into hybrid models to reach more practical
performance, for example, our ASP model for sequence mining is inspired by the non-hybrid ASP
model of Gebser et al. (2016). The main observation here is that typically these systems have a
number of constraint groups: to generate patterns, check patterns validity and perform dominance
or group-property checks. Our hybridization idea suggests to replace one of these groups with
a highly optimized solver, while keeping the other groups (with minor changes to adapt for the
input-output structure) in the model to guarantee generality.

7 Conclusion

We have presented a hybrid approach for condensed itemset, sequence and graph mining, which
uses the optimized dedicated algorithms to determine the frequent patterns and post-filters them
using a declarative ASP program. The idea of exploiting ASP for pattern mining is not new; it
was studied for both itemsets and sequences. However, unlike previous methods we made steps
towards optimizing the declarative techniques by making use of the existing specialized methods
and also integrated the dominance programming machinery in our implementation to allow for
combining local and global constraints on a generic level. Moreover, using the example of the
approximate tile selection problem, we have demonstrated that our hybrid method can be further
generalized to other data mining tasks.

One of the possible future directions is to extend the proposed approach to an iterative technique,
where dedicated data mining and declarative methods are interlinked and applied in an alternating
fashion. More specifically, all constraints can be split into two parts: those that can be effectively
handled using declarative means and those for which specialized algorithms are much more
scalable. Answer set programs with external computations (Eiter et al. 2009) could be possibly
exploited in this mining context.

Another promising but challenging research stream concerns the integration of data decomposi-
tion techniques into our approach. Here, one can divide a given dataset into several parts, such that
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the frequent patterns are identified in these parts separately, and then the results are effectively
combined; such data decomposition is expected to yield further computational gains.

Acknowledgment. This work has been supported by the FWO and by the ERC-ADG-201 project
694980 SYNTH funded by the European Research Council.

Appendix A Correctness of ASP Encoding for Maximal Itemset Computation

Proposition. Let S be a set of frequent itemsets, represented as facts of the form item(i,j)

reflecting that the itemset with ID i contains an item j. Moreover, let valid(i) be in S if i is a
valid pattern, and let P be the following logic program:

(1) 1 {selected(I) : valid(I)} 1.

(2) not superset(J) :- selected(I), item(I,V), not item(J,V), valid(J), I != J.

(3) dominated :- selected(I), valid(J), I != J, not not superset(J).

(4) :- dominated.

Then it holds that

(i) if I ⊇selected(x) is an answer set of P∪S, then x is a valid maximal itemset
(ii) if an itemset with ID y is a valid maximal itemset then an answer set I of P∪ S exists, such that

selected(y)∈ I.

Proof.

(i) Let I ⊇selected(x) be an answer set of P∪S. Since S does not contain any facts over the selected
predicate by our assumption, we have that selected(x) must have been obtained due to the rule
(1), i.e., valid(x)∈ S, meaning that the itemset x is valid. Since the set S contains only frequent
itemsets, x must be also frequent. Moreover, we know that S also stores all other frequent itemsets.
Therefore, in order to show that x is maximal, we need to show that no valid itemset in S is a superset
of x. Towards a contradiction, assume the contrary, and let x’ be such an itemset. Then it holds that
every item that is in x is also contained in x’. However, in this case the body of the grounding of
the rule (2) with I substituted by x and J by x’ is not satisfied. Thus, not superset(x’)6∈ I, as
the respective predicate does not appear in any other rule head of P. However, then the body of (3)
is satisfied for the grounding with I and J being substituted by x and x’ respectively, meaning that
dominated must be present in I, for it to be a model of P∪S, but then the constraint (4) is violated,
leading to the contradiction of I being a model of P∪S.

(ii) Suppose that x is a valid maximal itemset. Then by construction of S, valid(x)∈ S. Consider
an interpretation I = S∪{selected(x),valid(x)∪{not superset(x’) | valid(x’) ∈ S,x’ 6=
x}}. We show that this interpretation is an answer set of P∪ S. Towards a contradiction, assume
the contrary. Then either (a) I is not a model of P∪ S or (b) I is not minimal. First suppose that
(a) holds. Then we have that body(r) ∈ I, but head(r) 6∈ I for some rule r among the rules (1)-(4).
Note that since by construction, I contains just a single atom over the selected predicate, i.e.,
selected(x), such that valid(x)∈ S, the rule (1) must be satisfied. Assume that (2) is not satisfied.
Then the itemset x must contain some item j, which another valid itemset x’ does not contain, but
not superset(x’)6∈ I. By construction of I, we have not superset(x) for all valid itemsets in S
apart from x; in particular, not superset(x’)∈ I, meaning that (2) is satisfied. Therefore, (3) must
be a problematic rule. However, since by construction not superset(x’)∈ I for all x’ such that
valid(x’)∈ S, the body of (3) cannot be satisfied. Finally, again by construction dominated6∈ I.
This means that I is a model of P∪S. Hence, (b) must hold, i.e., I′ ⊆ I must exists, such that I′ is
a model of P∪S. Note that for I′ to be a model, it must contain all facts in S. The assumption that
selected(x) ∈ I\I′ is not valid by construction of I. If not superset(x’) ∈ I\I′ for some x’,
such that valid(x’)∈ S then the body of rule (3) is satisfied by I′ but not its head, as dominated6∈ I
by construction. This means that I must be a minimal model of P∪S and thus its answer set.
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GUNS, T., PARAMONOV, S., AND NÉGREVERGNE, B. 2016. On declarative modeling of structured pattern
mining. In Declarative Learning Based Programming, Papers from the 2016 AAAI Workshop, Phoenix,
Arizona, USA, February 13, 2016.

GUYET, T., MOINARD, Y., AND QUINIOU, R. 2014. Using answer set programming for pattern mining.
CoRR abs/1409.7777.

JABBOUR, S., SAIS, L., AND SALHI, Y. 2013. Boolean satisfiability for sequence mining. In 22nd ACM
International Conference on Information and Knowledge Management, CIKM’13, San Francisco, CA,
USA, October 27 - November 1, 2013. 649–658.

JABBOUR, S., SAIS, L., AND SALHI, Y. 2015. Decomposition based SAT encodings for itemset mining
problems. In PAKDD. 662–674.



Theory and Practice of Logic Programming 29

JÄRVISALO, M. 2011. Itemset mining as a challenge application for answer set enumeration. In Logic
Programming and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver,
Canada, May 16-19, 2011. Proceedings. 304–310.

KIMELFELD, B. AND KOLAITIS, P. G. 2014. The Complexity of Mining Maximal Frequent Subgraphs.
ACM Trans. Database Syst. 39, 4, 32–33.

LIFSCHITZ, V. 2008. What is answer set programming? AAAI.
MANNILA, H. AND TOIVONEN, H. 1997. Levelwise search and borders of theories in knowledge discovery.

Data Min. Knowl. Discov. 1, 3, 241–258.
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