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ABSTRACT
Complex answer retrieval (CAR) is the process of retrieving answers
to questions that have multifaceted or nuanced answers. In this
work, we present two novel approaches for CAR based on the
observation that question facets can vary in utility: from structural
(facets that can apply to many similar topics, such as ‘History’) to
topical (facets that are specific to the question’s topic, such as the
‘Westward expansion’ of the United States). We first explore a way
to incorporate facet utility into ranking models during query term
score combination. We then explore a general approach to reform
the structure of ranking models to aid in learning of facet utility
in the query-document term matching phase. When we use our
techniques with a leading neural ranker on the TREC CAR dataset,
our methods rank first in the 2017 TREC CAR benchmark, and yield
up to 26% higher performance than the next best method.

1 INTRODUCTION
As people become more comfortable using question answering
systems, it is inevitable that they will begin to expect the systems
to answer questions with complex answers. For instance, even the
seemingly simple question “Is cheese healthy?” cannot be answered
with a simple ‘yes’ or ‘no’. To fully answer the question, positive
and negative qualities should be discussed, along with the strength
of evidence, and conditions under which the qualities apply—a
complex answer. Complex Answer Retrieval (CAR) frames this
problem as an information retrieval (IR) task [2]. Given a query that
consists of a topic (e.g., ‘cheese’), and facets of the topic (e.g., ‘health
effects’), a CAR system should be able to retrieve information from a
variety of sources to throughly answer the corresponding question.

CAR has similarities with existing, yet distinct, areas of research
in IR. Although CAR involves passage retrieval, it is distinguishable
from passage retrieval because CAR compiles multiple passages
together to form complete answers. It is also different than factoid
question answering (questions with a simple answer, e.g. “Who
wrote Hamlet?” ), and complex question answering (questions that
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themselves require reasoning, e.g. “Which female characters are in
the same room as Homer in Act III Scene I?” ).

We observe that question facets can be structural or topical.
Structural facets refer to general categories of information that
could apply to other entities of the same type, such as the ‘History’
or ‘Economy’ of a country. Topical facets refer to categories of in-
formation that are specific to the entity mentioned in the question,
such as the ‘Westward expansion’ or ‘Banking crisis’ of the United
States. (Although either facet could be asked about other topics,
they are much more specific to details of the topic than structural
headings.) We call this distinction facet utility, and explain it in
detail in Section 2, along with additional background and related
work. We then present and evaluate two novel approaches to CAR
based on this observation and the hypothesis that it will affect how
terms are matched. The first approach integrates predictors of a
facet’s utility into the score combination component of an answer
ranker. The second approach is a technique to help any model learn
to make the distinction itself by treating different facets indepen-
dently. To predict facet utility, we use the heading structure of CAR
queries (described in Section 2) and corpus statistics. We show how
our approaches can be integrated with recent neural ranking mod-
els, and evaluate on the TREC CAR dataset. Our approaches yield
favorable results compared to other known methods, achieving the
top results overall and up to a 26% gain over the next best method.

2 BACKGROUND AND RELATEDWORK
The first major work done with CAR frames the task in terms
of Wikipedia content generation [1]. CAR fits naturally with this
domain because CAR query topics and facets often correspond
well with article titles and headings, respectively. Furthermore,
Wikipedia itself provides an extensive source of sample queries
(paths in the heading hierarchy from the title), partial answers (i.e.,
paragraphs), and automatic relevance judgments (paragraphs can be
assumed relevant to the headings they are under). For simplicity, we
use Wikipedia-focused terminology in the remainder of this work.
A heading refers to any component of a query, and corresponds
to a question topic or facet. The title is the first query component
(topic), the main heading is the last component, and intermediate
heading are any headings between the two (if any). The main and
intermediate headings represent the facet of interest to the topic.
Example queries using this terminology are given in Table 1.

A central challenge of CAR is resolving facet utility. Due to the
structure of CAR queries as a list of headings, we generalize the
concept to heading utility—the idea that headings (i.e., question
topics and facets) can serve a variety of functions in an article.
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Table 1: Example CAR queries from Wikipedia by heading
position. Some queries have no intermediate headings.

Title Intermediate Heading(s) Main Heading

Cheese » (none) » Nutrition and health
Green sea turtle » Ecology and behavior » Life cycle
History of the United States » 20th Century » Imperialism
Disturbance (ecology) » (none) » Cyclic disturbance
Medical tourism » Destinations » Europe » Finland

We distinguish between structural and topical headings. We define
structural headings as headings that serve a structural purpose for
an article—general question facets that could be asked about many
similar topics. In contrast, topical headings describe details that are
specific to the particular topic. For instance, “cooking and eating” is
a structural heading for Cheese (one would expect it to be found
in other food-related articles), whereas “cheeseboard” is a topical
heading because it relates specifically to the topic of the article.
Because the terminology in structural headings is necessarily more
generic (they accommodate many topics), we predict that terms
found in these headings are less likely to appear verbatim in relevant
paragraphs than terms in topical headings. Thus, modeling this
behavior should improve performance on CAR because it will be
able to learnwhich terms are less important. Previous work does not
model facet utility, treating all headings equally by concatenating
their components.

Nanni et al. [8] presents a survey of prominent general domain
ranking and query expansion approaches for CAR. They test one
deep neural model (Duet [7]), and find that it outperforms the
other approaches, including BM25, cosine similarity with TF-IDF
and word embeddings, and a learning-to-rank approach. The re-
cent 2017 TREC track focused on CAR [2]. This track yielded both
manual relevance judgments for evaluation of CAR systems, and
a variety of new CAR approaches (seven teams participated). One
prominent approach used a sequential dependence model [5]. They
modified the approach for CAR by limiting ordered ngrams to
those found within a single heading, and unordered ngrams to
only inter-heading pairs. Another approach uses a Siamese atten-
tion network [6], including topic features extracted from DBPedia.
While this approach does distinguish the title from other headings,
it only uses it for query expansion and related entity extraction.
Another submission applied a reinforcement learning-based query
reformulation approach to CAR [9].

3 METHOD
Since previous work shows that neural-based rankers have potential
for CAR, we focus on an approach that can be adapted for various
neural rankers. Many leading interaction-focused neural rankers
share a similar two-phase architecture, as shown in Figure 1a. Phase
1 performs matching of query terms to document terms, and phase
2 combines the matching results to produce a final relevance score.
For instance, DRMM [3] uses a feed-forward histogram matching
network, and a term gating combination network to predict rele-
vance. MatchPyramid [10] uses hierarchal convolution for match-
ing, followed by a dense layer for aggregation. Similarly, PACRR [4]
uses a max-pooled convolution phase for matching, and a recur-
rent or dense combination phase. Finally, DeepRank [11] generates

Table 2: Example contextual vectors for the query “green sea
turtle » ecology and behavior » life cycle”.

green sea turtle ecology and behavior life cycle

position_title 1 1 1 0 0 0 0 0
position_inter 0 0 0 1 1 1 0 0
position_main 0 0 0 0 0 0 1 1

heading_frequency 0 0 0 3 3 3 3 3

query contexts and uses a convolutional layer to generate local rel-
evance representations as a matching phase, and uses a term gating
mechanism for combination. We present two approaches to model
facet utility by modifying this generalized neural ranking structure.
The first approach applies contextual vectors in the combination
phase (Figure 1b), and the second approach splits the input into
independent matching phases (Figure 1c).

Contextual vectors. In the combination phase, signals across
query terms are combined to produce a relevance score, so it is
natural to include information here to provide additional context
about each query term when combining the results. For instance,
PACRR includes the inverse document frequency (IDF) in its com-
bination layer, allowing the model to learn how to weight results
based on this statistic [4]. We use this phase to inform the model
about heading utility based on predictions about the distinction
between structural and topical headings. We call these contextual
vectors, since they provide context in the CAR domain. The intu-
ition is that by providing the model with estimators of heading
utility, the model will learn which terms to weight higher. Here we
explore two types of contextual vectors: heading position (HP) and
heading frequency (HF).

When distinguishing between structural and topical headings,
it is important to consider the position itself in the query. For
instance, since the title is the question topic, it is necessarily topical.
Furthermore, it is reasonable to suspect that intermediate headings
will often be structural because they assist in the organization of an
article. Main headingsmay either be structural or topical, depending
on the question itself. Thus, for heading position contextual vectors,
we use a simple indicator to distinguish whether a term is from the
title, an intermediate, or the main heading. An example is given in
Figure 2.

Another approach to modeling structural and topical headings
using contextual vectors is to examine the prevalence of a given
heading. This is based on the intuition that structural headings
should appear in many similar documents, whereas the usage of top-
ical headings should be less widespread. For instance, the structural
heading “Nutrition and health” in the article Cheese also appears in
articles entitled Beef, Raisin, Miso, and others, whereas the topical
“Cheeseboard” heading only also appears as the title of a disambigua-
tion page. We model this behavior using heading usage frequency:
f rq(h) =

∑
a∈C I (h∈a)

|C | . That is, the probability that a given article
a in corpus C contains heading h, given the indicator function I .
Heading usage frequencies very close to 0 include titles and other
content-specific headings like Cheeseboard. Due to the wide variety
of Wikipedia articles, most probabilities are very low. Therefore,
we stratify the scores by percentile, grouping similarly-common
headings together. Based on pilot studies, we found the (1) 60th, (2)
90th, and (3) 99th percentiles to be effective breakpoints. We use
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Figure 1: (a) General interaction-focused ranking architecture, with matching and combination phases (unmodified). (b) Modi-
fied architecture, including contextual vectors for combination. (c) Modified architecture, splitting for heading independence.

complete, case insensitive heading matches. Unknown headings
are assumed to be infrequent, and belong to the 0th percentile. An
example of this vector is given in Table 2.

Heading independence. Since contextual vectors are applied
in the combination phase, they have no effect on the criteria con-
stituting a strong signal from the matching phase. However, we
hypothesize that facet utility can also be important when matching.
For instance, a structural heading like “History” might have a lower
matching threshold, allowing matches of similar words terms such
as “early” or “was” (both of which have a lower word2vec cosine
similarity score to “history” than functionally-related word pairs,
such as “cheese” and “chocolate” ).

Thus, we propose a method called heading independence. With
this approach, we modify the structure of a generic neural IR model
by splitting the matching stage into three independent parts: one
for the title, one for intermediate headings, and one for the main
heading. Each sub-matching phase operates independently as it
otherwise would for the combined query. Then, the results are
combined using the same combination logic of the original model
(e.g., a dense or recurrent layer). This allows the model to learn
separated logic for different heading components. The reasoning
behind the split by query component is the same as the reasoning
behind using heading position vectors: the title is topical, whereas
intermediate headings are likely structural, and the main heading
could be either. With separate matching logic for each, the model
should be able to more easily distinguish between the types.

An added benefit of this approach is that it improves heading
alignment in the combination phase. When headings are simply
concatenated (even with a symbol to indicate a change in head-
ings), the alignment of each query component will vary among
queries. Since the output of each matching stage is fixed in size,
the locations of each query component will be consistent among
queries. We suspect that this is particularly useful when using dense
combination.

4 EXPERIMENTAL SETUP
Dataset. TREC CAR provides several sets of queries based on a
recent dump of Wikipedia [1, 2]. Queries in each set are generated
from the heading structure of an article, where each query repre-
sents a path from the article title down to the main heading. Each
query also includes automatic relevance judgments based on the
assumption that paragraphs under a given heading are relevant
to the query with that main heading. Half of the dump belongs
to the train set, which is split into 5 folds. We use folds 1 and 2

in this work, consisting of 873, 746 queries and 2.2M automatic
relevance judgments (more data than this was not required for our
models to converge). The test200 set contains 1,860 queries and
4.7k automatic relevance judgments. The benchmarkY1test set
contains 2,125 queries and 5.8k automatic relevance judgments. It
also includes 30k manual relevance judgments, ranging from Trash
(-2) to Must be mentioned (3). The paragraphcorpus is a collection
of 30M paragraphs from the Wikipedia dump with no article or
heading structure provided, functioning as a source of answers for
retrieval.

Model integration. We evaluate our contextual vector and
heading independence approaches using the Position-Aware Con-
volutional Recurrent Relevance neural IR architecture (PACRR) [4],
which is a strong neural retrieval model with a structure that natu-
rally lends itself to incorporating contextual vectors and heading
independence signals. We refer the reader to Hui et al. [4] for full
details about the model, but we give a short description here to
provide details about how our approach is integrated. PACRR first
processes square convolutional filters over a q ×d query-document
similarity matrix, where each cell represents similarity scores be-
tween the corresponding query and document term. The filters are
max-pooled for each cell, and the scores are k-max pooled over
each query term (k = 2). Then a dense layer combines the scores
(along with term IDF scores) to yield a final relevance score for the
query-document pair. For runs that include contextual vectors, we
append them to each term (alongside IDF) during combination. For
heading independence, we use separate convolution and pooling
layers, followed by a dense layer for each heading component. We
also explore using the heading frequency contextual vector when
using heading independence (included after the pooling layer), and
before the independent dense layer.

Training and evaluation.We train themodels on samples from
train.fold1 and train.fold2. Positive training examples come
from the automatic relevance judgments, whereas negative train-
ing examples are selected from the top non-relevant BM25 results
for the given query. Each model is trained for 80 iterations, and
the top training iteration is selected using the R-Prec on test200.
Evaluation is conducted with automatic and manual judgments on
benchmarkY1test. The results are based on an initial ranking of
the top 100 BM25 results for each query. We report Mean Aver-
age Precision (MAP), R-Precision (R-Prec), Mean Reciprocal Rank
(MRR), and normalized Discounted Cumulative Gain (nDCG) of
each variation (all four official TREC CAR metrics).



Table 3: Performance results on benchmarkY1test. The top value is in bold. Records marked with * are based on official TREC
runs, and had top results included in the manual assessment pool. Significant results compared to the unmodified PACRR
model are marked with ▲ and ▼ (paired t-test, 95% confidence). The abbreviations for our methods are as follows: HP is the
heading position contextual vector; HF is the heading frequency contextual vector; HI is heading independence.

Automatic Manual

Approach MAP R-Prec MRR nDCG MAP R-Prec MRR nDCG

PACRR (no modification) 0.164 0.131 0.247 0.254 0.208 0.219 0.445 0.403
PACRR + HP* ▲ 0.170 0.135 ▲ 0.258 ▲ 0.260 0.209 0.218 0.452 0.406
PACRR + HP + HF* ▲ 0.170 0.134 ▲ 0.255 ▲ 0.259 ▲ 0.211 0.221 0.453 ▲ 0.408
PACRR + HI ▲ 0.171 0.139 ▲ 0.256 ▲ 0.260 0.205 0.213 0.442 0.403
PACRR + HI + HF ▲ 0.176 ▲ 0.146 ▲ 0.263 ▲ 0.265 0.204 0.214 0.440 0.401

Sequential dependence model* [5] ▼ 0.150 ▼ 0.116 ▼ 0.226 ▼ 0.238 ▼ 0.172 ▼ 0.186 ▼ 0.393 ▼ 0.350
Siamese attention network* [6] ▼ 0.121 ▼ 0.096 ▼ 0.185 ▼ 0.175 ▼ 0.137 ▼ 0.171 ▼ 0.345 ▼ 0.274
BM25 baseline* ▼ 0.122 ▼ 0.097 ▼ 0.183 ▼ 0.196 ▼ 0.138 ▼ 0.158 ▼ 0.317 ▼ 0.296

5 RESULTS
We present system performance in Table 3. Our methods are com-
pared to the unmodified PACRR model, two other top submissions
to TREC CAR 2017 (sequential dependency model [5] and the
Siamese attention network [6]), and a BM25 baseline (which pro-
duces the initial result set that our methods re-rank).

Our method outperforms the other TREC submissions and the
BM25 baseline by all metrics for both manual and automatic rele-
vance judgments (paired t-test, 95% confidence). The method that
uses heading independence (HI) and the heading frequency vector
(HF) yields up to a 26% improvement over the next best approach
(SDM).

Our approach also consistently outperforms the unmodified ver-
sion of PACRR when evaluating using automatic relevance judg-
ments, performing up to 11% better than the unmodified version
of PACRR. Our approach occasionally does better than unmodi-
fied PACRR when evaluating with manual relevance judgments.
Specifically, our approach that uses the heading position (HP) and
heading frequency (HF) contextual vectors does the best overall. We
acknowledge that this method (and the version with only heading
position) were included as official TREC runs, yielding an advantage
in the manual comparison.

This work is based on the distinction between structural and
topical headings, and the differences in how they interact with
terms in relevant documents. While there is no absolute distinction
between the two, we presented various approaches to approximate
the distinction. By plotting the term occurrence rate (that is, the
probability that any term occurs in a relevant paragraph) for title,
intermediate, and main headings, we see clear differences in the
distribution (Figure 2). Particularly, the plot shows that main head-
ings are much more likely to appear in relevant documents than
title and intermediate headings. Furthermore, the distributions of
intermediate and title headings are roughly opposite each other,
with titles (topical) more likely to occur than intermediate headings
(structural).

6 CONCLUSION
In this work, we presented an approach to the new and challeng-
ing task of complex answer retrieval. Our approach characterizes
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Figure 2: Kernel density estimation for main (solid), inter-
mediate (dashed), and title (dotted) heading term occurrence
rates, based on automatic judgments in train.fold0.

question facets by modifying a generic neural IR architecture. We
explored both approaches that focus on matching (heading inde-
pendence), and score combination (contextual vectors). When evalu-
ating on the TREC CAR dataset, we achieve the top results—up to
a 26% improvement over the next best method. Furthermore, our
approach significantly outperforms a leading neural IR model when
evaluating with both automatic and manual judgments.
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