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Why does musical rhythm have the structure it does? Musical rhythm, in all its cross-cultural diversity, exhibits
commonalities across world cultures. Traditionally, music research has been split into two fields. Some scientists
focused on musicality, namely the human biocognitive predispositions for music, with an emphasis on cross-cultural
similarities. Other scholars investigated music, seen as a cultural product, focusing on the variation in world musical
cultures. Recent experiments found deep connections between music and musicality, reconciling these opposing views.
Here, we address the question of how individual cognitive biases affect the process of cultural evolution of music.
Data from two experiments are analyzed using two complementary techniques. In the experiments, participants
hear drumming patterns and imitate them. These patterns are then given to the same or another participant to
imitate. The structure of these initially random patterns is tracked along experimental “generations.” Frequentist
statistics show how participants’ biases are amplified by cultural transmission, making drumming patterns more
structured. Structure is achieved faster in transmission within rather than between participants. A Bayesian model
approximates the motif structures participants learned and created. Our data and models suggest that individual
biases for musicality may shape the cultural transmission of musical rhythm.
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Introduction

The ability to produce music is a human behavior
found universally in all human cultures. Though
within the scientific study of music, there is a long-
standing division between those who are concerned
with music as a cultural product versus those who
focus primarily on music and the mind.1 Tradi-
tionally, music researchers distinguish music from
musicality:2 Music is a cultural product, while musi-
cality is the human biological machinery used to
produce and process music. At one extreme, cultural
anthropologists and field researchers have histor-
ically focused on music as a cultural product.3,4

∗Both of these authors contributed equally.

According to these scholars, only years of immersion
in a musical culture could enable us to truly under-
stand its uniqueness. However, embracing cultural
uniqueness leaves little room for cross-cultural com-
parability. If instead we consider cross-cultural
comparisons, illuminating patterns like the so-
called statistical universals can emerge. These sta-
tistical universals are musical features that appear
above chance across many or all musical cultures
in the world.5,6 At the other extreme, experimental
psychologists and cognitive neuroscientists have
traditionally focused on musicality by probing
into the biocognitive substrates that enable music
processing.7,8 This neuropsychological approach
assumes that these biocognitive substrates are com-
mon to all humans. As a result, data from a specific
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population and culture are assumed to be gen-
eralizable to mankind at large. While exceptions
exist,9 the field of music research has largely been
polarized into these two apparently segregated
dimensions. These separate approaches to music
research can be unified and revelatory, especially
when asking evolutionary questions.10,11

How music changes over time seems to be orthog-
onal to the evolution of the biocognitive appara-
tus underlying music making. Recent experiments,
however, have shown that music and musicality
are intimately connected.12–16 Focusing on rhythm,
individual participants14 were asked to imitate snare
drum sequences on an electronic drum set to the
best of their abilities. All participants were non-
musicians and were not told where the patterns
came from. A “first generation” of participants was
given computer-generated drum patterns, featur-
ing random beat intensity and duration. Successive
“generations,” however, were asked to imitate the
output of the previous participant in the experi-
ment (Fig. 1A, top chain of participants). Unbe-
known to each participant, patterns included all the
errors and imperfections introduced in the previ-
ous generation. In this way, the process of cultural
transmission of rhythmic patterns was recreated in
the laboratory.12,17,18 Over time, these sequences
became more structured and easier to imitate. In
addition, rhythmic sequences converged toward all
rhythmic universal features that characterize music
around the world.6,19 This experiment, which aligns
with similar findings in nonmusical domains,20–25

suggests a link among cognition, biology, and cul-
ture in human music.26,27 It shows that features
present in almost all musical traditions around
the world emerge through basic biocognitive biases
and are thereby amplified by the process of cul-
tural transmission. This experiment also raised a
number of additional questions. In particular, are
the biocognitive biases—responsible for the emer-
gence of structure and universals—specific to (1) all
humans, (2) adults, (3) Westerners, (4) a cognitive
domain or modality, or (5) particular individuals?

We begin to tackle the question: how do indi-
vidual biases affect the process of cultural evolution
of music?28 Two alternative hypotheses originally
advanced for language can be readily adapted.27,29

One nativist hypothesis sees human cognition as con-
strained to produce only certain forms of music
and musical structure as designed by individual

minds and transmitted down generations. Another
interactive hypothesis is that the structure in music
results from long-term distributed effects of mul-
tiple, individually varying minds that together
create a kind of structural compromise that is pleas-
ing to and learnable by all.17,18 These contrasting
hypotheses have an exact parallel in the human lan-
guage and animal communication literatures.30–33

In the nativist scenario, if all individuals share
strongly constraining biases, music would emerge
as a result of strengthening few, human-wide ten-
dencies toward musicality (akin to a vote by con-
sensus). In the alternative interactive scenario, if
all individuals have weak and potentially variable
biases, music would emerge as a result of the inter-
play among individual-specific tendencies toward
musicality, amplifying or averaging each other out
(similarly to mixing paint of different colors). To
summarize, we ask: do regularities in musical struc-
ture result (1) from humans imposing univer-
sal structural regularities, or (2) from distributed,
weakly biased processing?34

We address this question using experimental
manipulations and Bayesian modeling techniques.
First, we replicate a previous experiment with one
variation.14 In the original experiment, a set of
drumming patterns was transmitted across gen-
erations of participants in a between-participants
design (top row of Fig. 1A). In contrast, the current
experimental design features a within-participant
structure (bottom two rows of Fig. 1A).13,30,34,35

Each participant takes part in multiple rounds,
instead of one round per participant, as in the pre-
vious experiment. Second, we analyze and compare
the data from the two experiments using standard
inferential statistics. Third, we introduce a prob-
abilistic model for latent structures underpinning
rhythmic sequences, alongside a psychologically
plausible algorithm for inferring these structures.
This allows us to obtain approximate structural
descriptions of rhythmic patterns across conditions
and generations and to explore how these structures
are used and reused. Whereas previous models have
focused on inferring cognitive biases for integer-
ratio rhythmic categories from experimental data,13

our model focuses on approximating the process
through which individuals combine rhythmic cate-
gories into predictable motif-like sequences.

A general prediction is that the new within-
participants “chains” will likely produce data
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Figure 1. Experimental design and summary statistics tracking the evolution of patterns in the first six generations of both
experiments. (A) The experimental design follows a transmission chain paradigm: the output of one experimental generation
constitutes the input of the next generation. Generation 0 consists of computer-generated drumming patterns, where drum hits
have random velocity and inter-onset intervals (IOIs). Each generation 0 pattern is individually heard and imitated by a generation
1 participant. The resulting imitated patterns can be given to the same participant to imitate once again (bottom two rows of A,
within-individual design) or to a different participant (top row of A, between-individuals design). The procedure is repeated over
generations (left to right) and additional chains (not shown). (B) Increase in structural complexity quantified over generations
using a modified measure of entropy. (C) Decrease in imitation error between adjacent generations, quantified using a modified
Levenshtein distance. (D) Pattern length across generations and chains. Length measured in the r space.b (E) Variance in pattern
length across generations and chains. (B–E) Shaded areas depict bootstrapped 95% confidence intervals; lines connect the mean
value for each generation and experiment type across chains.

qualitatively comparable to the original between-
participant design. In particular, patterns should
increase in structure and become easier to learn.
If this holds, self-learning will be shown as an
effective method for uncovering musical biases

in participants. Quantitatively, however, the two
experimental designs might show different behav-
iors. In particular, if participants have individual-
specific biases, they will likely impose idiosyncratic
structure every generation. This, in turn, will make
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structure emerge faster in the within-participant
chains and slower in between-participants chains
(i.e., some innovations will cancel out). If this is
the case, we should observe a significant difference
between the variables measuring the evolution
of structure in the two experiments. If, instead,
participants have homogeneous biases toward
rhythmic structures, the evolution of chains will
be unaffected by experimentally substituting many
participants for one repeated participant. In this
case, the two experimental designs will produce
similar data, hence no measurable difference of key
variables between conditions.

Experimental methods

Data from six experimental chains (30 partici-
pants) from a previous experiment were reanalyzed
(details in Ref. 14). In brief, six different sets of 32
sequences of 12 random beats were given to first-
generation participants to imitate. First-generation
output became second-generation input, and so on
(Fig. 1). In addition, new data were collected from
12 experimental chains (12 participants) in con-
ditions comparable to the previous experiment,14

with two key differences (for details, see Supple-
ment, online only). First, each of the six different
sets of 32 sequences of 12 random beats used in the
first experiment was given to two first-generation
participants in this new experiment (as opposed
to one first-generation participant in the previous
experiment, see Fig. 1). Second, the new experiment
featured within-individual transmission, so that the
same participant listened and imitated his/her own
drum patterns over five experimental generations.a

Frequentist statistics: results and
discussion

The metrics tracking structure and imitation error
behave similarly over generations (Fig. 1B and 1C),
confirming our qualitative prediction. Analyses of
variance (ANOVAs) tested whether the generation
and transmission type (i.e., between or within indi-
vidual) could account for a possible increase in
structure14,36,37 (Fig. 1B) and decrease in imita-
tion error14,38 (Fig. 1C). Stepwise model selection
suggested that both generation and transmission

aIn both experiments, the participant was unaware that
she would imitate her own, or someone else’s, previous
pattern.

type should be entered in the ANOVA as predic-
tors of structure (minimizing Akaike information
criterion). Both variables were significant predic-
tors of structure (transmission type: F = 7.4, P <

0.01; generation: F = 14.5, P < 0.001). Another step-
wise model selection suggested that only generation
should be entered in the ANOVA as predictor of imi-
tation error. Generation was a significant predictor
of imitation error (F = 14.8, P < 0.001).

We used further ANOVAs to test that these dif-
ferences were not due to superficial features. We
calculated the length of each drumming pattern (in
the r space, see Figs. 1D and 2),b and computed
mean and variance length for each set of 32 pat-
terns. Stepwise model selection suggested that nei-
ther generation nor transmission type should be
entered in the ANOVA as a predictor of mean pat-
tern length, and only generation should be entered
in the ANOVA as a predictor of variance in pat-
tern length. Generation was a significant predictor
of variance in pattern length (F = 4.0, P < 0.05).
In other words, while participants vary the num-
ber of beats produced within an experimental ses-
sion across generations, this does not appear to be
affected by the transmission type. Crucially, trans-
mission type affects neither mean nor variance in
pattern length, suggesting that simple differences in
pattern length cannot account alone for structural
variability across experimental groups.

Together, these results suggest that both struc-
ture and learnability change over transmission
steps. Although transmission type does not affect
learnability, it does affect the amount of structure:
a within-participant design results in higher levels
of structure. This provides preliminary support
for the idiosyncrasy of biases hypothesis over the

bEach of the 32 imitated patterns can be described as a
time series of interonset intervals (i.e., the time between
adjacent drum hits IOI1, IOI2, . . . , IOIn). As in the orig-
inal study, to account for possible tempo drift within
and across patterns, we use the ratio between adjacent
beats41,46 (i.e., ri = IOIi+1/IOIi). Hence, each pattern of
n hits can be represented as a time series r1, . . . ,rn–2. The
computational model proceeds by first clustering data
points into rhythmic categories. We assume that partic-
ipants do not perceive and represent the absolute mag-
nitude of the ri data points, but potentially reduce the
variation among data points by assigning each to a rhyth-
mic category.43
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Figure 2. Latent variables Bayesian model. Sketch of how the algorithm processes two drumming patterns (workflow proceeds
from top to bottom and from left to right). A drumming pattern (first pattern, topmost row) can be conceptualized as a series of
durations marked by drum events (lines broken by circles). The (absolute) durations between drum events are represented as a
vector of IOIs. By taking the ratios between adjacent IOIs, one obtains a vector of relative durations r = (r1, . . . , rn–2). All IOI
sequences with the same r vector have the same rhythmic pattern up to a tempo multiplicative constant. The algorithm generalizes
first over ri categories (e.g., in the first pattern, 0.5 and 0.5 belong to the same category) and then assigns every hypothesized motif
either to its prototypical category or to a new category. When the participant hears a new pattern (second pattern) with more
variability, ratios such as 0.54 and 0.52 might be assigned to the same ri category. Likewise, the algorithm randomly attempts to
be “greedier,” probing the existence of motifs of length 3 or above, hence finding that sequences like (0.54, 1, 2) and (0.52, 1, 2.1)
belong to the same category.

homogeneity of biases hypothesis. These inferential
statistics suggest that repeated idiosyncrasies
enhance the emergence of structure (within-
participant transmission type). Conversely, new
minds introduce more variance, slowing down
the emergence of structure (between-participants
transmission type). Inferential statistics, however,

are unfit to unveil the structures participants
infer. Below, we outline a mathematical model
approximating what participants perceive and learn.

Bayesian model: methods

Data from both experiments were further analyzed
using a computational model (see Supplement,
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online only). Our model formalizes the idea that
participants may decompose individual drum pat-
terns into sequences of motifs that can be reused
across patterns. Given a drum pattern, the model
attempts to infer boundaries between latent
motifs and to categorize these motifs into coherent
groups based on prototypes. Our approach takes
inspiration from two related fields. First, since the
inferential task is essentially one of joint segmen-
tation and clustering, we can adapt techniques
from the machine learning and speech technology
literature39 to specify a probabilistic model of under-
lying latent variables (e.g., motifs and their bound-
aries). Second, the literature on statistical learning
provides a psychologically plausible algorithm that
makes guesses about these unobserved variables.40

Our model formalizes two levels of structure
within a pattern by grouping adjacent interval
ratios41 into a small number of Gaussian categories
via Bayesian inferenceb and by using sequences of
these inferred categories to construct an inventory
of motifs that can be reused. Our posterior approx-
imation algorithm learns this structure “on the fly”
in a probabilistic, sequentially dependent, psycho-
logically plausible fashion: as new elements of a
drumming sequence are perceived, the back-
wards transition probabilities (BTPs) between inter-
val ratio categories are estimated37 and used to
hypothesize boundaries between motifs. The model
attempts to assign any hypothesized motif to an
existing category of motifs (Fig. 2, top), and cre-
ates a new motif category whenever this fails (Fig. 2,
bottom).

A candidate subsequence has to go through two
criteria to be considered a motif: (1) how often has
the model seen this particular subsequence of cat-
egories? and (2) how often have the preceding and
current element been found together (BTPs)? If the
same sequence has been seen before, this provides
evidence for the current subsequence to be another
occurrence of this motif type. If the first element of
a subsequence and the previous element rarely co-
occur, this provides evidence that the two elements
belong to different motifs, implying a boundary.
The model includes parameters that influence, for
example, how willing the learner is to invent new
motif categories. These parameters and all other
details of the model are described in detail in the
supplement to this article. In the analyses we present
here, we set these parameters such that the model

is weakly biased to prefer reusing existing motifs
but able to invent new categories whenever the data
dictate. Because the model includes a free parameter
that determines this balance of reuse and invention,
this assumption could be straightforwardly revisited
in future analyses. Crucially, we fix parameters to be
identical across analyses of both experimental data
sets and examine how the structures inferred by the
model vary by experimental condition (rather than
examine the specific structures inferred, which can
be sensitive to model parameterization).

Bayesian model: results and discussion

We ran the model through both experimental data
sets 10 times, which (insofar as our model is a
psychologically plausible theory of participants’
behavior) provides an approximation to the rep-
resentation of patterns induced by participants. We
examined two principal measures of structure: (1)
the number of unique motifs discovered by the
model at each generation of each chain and (2) the
number of patterns in which each attested motif
was discovered at each generation of each chain.
Together, these measures quantify the evolution of
structural regularity across a set of rhythms, over
generations, as a function of the data participants
saw and produced.

In both experimental conditions, the number
of unique motifs attested within a generation
decreased over generations (Fig. 3A, top row). In
line with our inferential statistics, this suggests an
increased degree of reuse of prototypical building
blocks over generations and that these building
blocks are discoverable by a simple algorithm mak-
ing local, sequential decisions. The regression slope
plotted in Figure 3A shows that reuse happens faster
in the within-subjects chains and that the final gen-
eration of within-subjects chains reuses motifs to a
slightly greater extent than the final generation of
between-subjects chains.

Our analyses also suggest (Fig. 3A, second row)
that, in within-subjects chains, each attested motif
tends to be present in an increasing number of
patterns over generations, suggesting participants
are entrenching the motifs they have invented. This
pattern is also visible in the between-subjects chains,
but to a lesser extent. While these chains do evidence
increasing reuse of motifs, they do not appear to
evidence the same degree of entrenchment on a
small set of widely reused motifs, as is suggested in
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Figure 3. (A) The number of motifs inferred by the model (averaged over 10 independent simulations) at each generation (top
row) in the within-subjects (right) and between-subjects (left) chains and the number of independent patterns in which each motif
evidenced at least once in a generation was identified in that generation (bottom row). Points show these quantities for individual
motifs (simulated 10 times); lines show regression slopes. (B) Normalized histograms for the distribution of interval ratios at
each generation in the between-subjects (right) and within-subjects (left) chains. Lines show kernel density estimates of these
distributions.
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the within-subjects results. We interpret this as a
sign that (1) both experimental conditions lead to
an increase in structure, but (2) the within-subjects
condition allows the idiosyncrasies of individual
minds to repeatedly bias the distribution of struc-
tures in a chain-specific way that is less probable
when new learners are forced to reinterpret the
structures invented by previous individuals.

Visualizing integer ratios

We computed the distribution of interval ratios13,14

at each generation (Fig. 3B). Both experimental con-
ditions evidence a sharp transition from unstruc-
tured initial distributions (generation 0, top row) to
highly structured categories of intervals. Interest-
ingly, while the trimodal distribution with peaks
near interval ratios is clear in the between-subjects
data (as previously reported14), the within-
subjects chains appear to converge on an approx-
imately two-way category distribution with peaks
at 1:2 and 1:1 ratios.13,42 Figure 4 illustrates these
differences in more detail, providing an overview of
the evolution of interval ratio distributions across
generations. The figure shows Gaussian kernel den-
sity estimates of the distribution of interval ratios
that participants observed (blue lines) and then pro-
duced (black lines) at each generation of each chain
(in both conditions).

Focusing on the between-participants chains
(Fig. 4A), all five chains independently converge on
an approximately three-way category distinction
with one category of roughly equal-length intervals
and one category each for long–short intervals
and short–long intervals. In contrast, the within-
participant chains (Fig. 4B) do not converge so
emphatically toward this musical universal.6,13,14

Instead, within-participant chains demonstrate
idiosyncratic (but nonetheless structured) final
distributions. Only two of the within-participant
chains (chains 3 and 6) appear to approximate
the three-way category distinction found in all
between-participant chains, and even here those
distinctions are less clear. The other four within-
participant chains converge on different solutions:
a single primary category of equal-length intervals
strongly peaked at zero (chain 1); a four-way dis-
tinction with two below-zero categories (chain 2);
a two-category distinction (chain 4) with roughly
equal-length intervals and long–short intervals;
and an approximately five-way distinction covering

the range (chain 5). It is also notable that the
majority of chains in both conditions include a
well-defined final category at mean zero—roughly
adjacent equal-length intervals.

Also note the dynamics of distribution change
over generations. In the between-participant chains,
change is gradual and constant until the final gener-
ations: the distribution of produced interval ratios
(black line) marginally deviates from the observed
distribution (the blue line). In contrast, in the
within-participant chains, we see an initial gener-
ation of deviance between observed and produced
distributions as in the between-participant chains,
but the following generations generally repro-
duce the observed distribution accurately (black
lines trace blue lines). Along with the modeling
results above, we take this to imply that within-
participant chains do result in structured rhythms,
but that this structure is largely idiosyncratic, argu-
ing strongly against the nativist explanation for these
universals.

General discussion and conclusions

Here, we investigated the role of individual cog-
nitive biases in the creation of rhythmic patterns.
We presented two rhythm-imitation experiments
(simulated cultural transmission) in nonmusicians,
analyzed using two complementary techniques.
We showed that similar regularities emerge when
participants are asked to imitate their own or other
participants’ patterns. However, different designs
affect the degree of regularity emerging. When par-
ticipants imitate their own previous productions,
convergence is faster but results in less pronounced
universal rhythmic features. We suggest this is
due to the presence of weak idiosyncratic biases.
When transmission occurs between participants,
idiosyncratic biases partially cancel each other
out. Instead, when transmission occurs within a
participant, biases reinforce each other.c

Previous cultural transmission experiments
of musical rhythms show that12,14–16 (1) initially
random sequences become structured, and (2) the
resulting structures reflect universally observed

c Our conclusions partly contrast with computer simula-
tions done for language, where a few outlier agents dis-
tort the signal transmitted in an otherwise heterogeneous
population.34
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Figure 4. The evolution of interval-ratio distributions over generations, for all chains, in the between-participants (A) and within-
participants experiments (B). Lines show Gaussian kernel density estimates inferred from (the logarithms of) the raw interval
ratios participants observed (blue lines) and produced (black lines). We plot the distribution of the logarithm of interval ratios,
since we found this to be the clearest illustration of categories. An interval ratio of 1 denotes adjacent equal-length intervals, and
the logarithm of this ratio is 0. Values below zero in log space indicate that the second interval is shorter than the first (long–short
interval pair); values above zero indicate that the second interval is longer (short–long interval pair).

patterns in music, such as small integer ratios of
durations between note onsets. Our new experiment
probed whether repeated computation by the same
individual leads—as in the original experiment14—
to increased structure and increased proximity to
rhythmic universals. Our findings are surprising
because (1) structure indeed emerges, and even

faster than in the between-participants chains, but
(2) the resulting structure appears to be a poor
approximation to the integer ratio universal.6,13,14

We take this to be supportive of an account in which
rhythmic structure results from a balance between
individuals imprinting their biases and interac-
tive transmission among listeners, learners, and
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performers. Our results support the interactive
hypothesis over the nativist hypothesis.21

Several limitations of this study could be
addressed by future work. First, we adapted and
designed the model to have cognitive plausibil-
ity and match experimental conditions as closely
as possible. However, our Bayesian model still
neglects several findings from rhythm perception
and production43,44 and should be understood as a
first approximation. Future research should refine
the model toward greater psychological and neu-
ral plausibility. Likewise, while we focused on psy-
chological plausibility by implementing a sequential
posterior approximation algorithm as our model of
the learner, future analyses might instead focus on
inferring the best possible structural descriptions by
implementing more computationally intensive pos-
terior sampling procedures. Second, the intensity
information of each beat is unused in our mod-
els. Velocity and accents are an integral part of
rhythm, so future extensions of this work should go
beyond purely durational information. Third, sev-
eral parameters in the Bayesian model undoubtedly
influence our results. Future modeling efforts might
aim to find empirical motivation for parameters
accounting for human perception and induction of
categories of intervals43,44 or derive simpler models
with fewer parameters. Ours is a first attempt, and
we will share our data and scripts with interested
researchers who would like to perform modifica-
tions. Fourth, given a restricted set of assumptions,
we have predicted the number and distribution of
rhythmic motifs inferred by participants. Ideally,
whether participants actually acquire similar motif-
like substructures will need to be tested experimen-
tally by asking participants to classify motifs and
check how closely these decisions align with the
model’s predictions.d

dWhile we would expect less difference between condi-
tions if priors were strong and homogenous, the design of
the two experiments differs along one additional dimen-
sion. In the within-participant experiment, participants
can potentially carry memory over from previous gener-
ations. If that were the case, one would predict a slower
evolution of structure in the within-participant condi-
tion, as the effect of the prior would be relatively weak-
ened from the drag of increasing pile of data. The fact
that this does not occur may suggest that––at least in

This report makes a contribution to a number
of disciplines. Over the past century, a deep divide
has separated cultural anthropology and music
psychology.1,11 Our experiments aim to bridge this
divide with a design accounting for both the cul-
tural medium and human biopsychological fea-
tures. Likewise, our behavioral experiments could
be combined with neuroimaging or electrophysi-
ology techniques45 to tap into the neural basis of
human biases for musical rhythm. Within the inter-
disciplinary field of cultural evolution, we show how
within-participant transmission speeds up the pro-
cess of convergence. Quantitative models abound
in music information retrieval, but are still scarce
in music cognition. Here, we adapted some recent
computational techniques to the interpretation of
human data. In brief, we hope that our paper will
spur a tighter integration of modeling and empiri-
cal research in the study of the psychology, neuro-
science, and evolution of music.
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