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In outbred Western populations, most individuals with intellectual disability (ID) are sporadic

cases, dominant de novo mutations (DNM) are frequent, and autosomal recessive ID (ARID) is

very rare. Because of the high rate of parental consanguinity, which raises the risk for ARID and

other recessive disorders, the prevalence of ID is significantly higher in near- and middle-east

countries. Indeed, homozygosity mapping and sequencing in consanguineous families have

already identified a plethora of ARID genes, but because of the design of these studies, DNMs

could not be systematically assessed, and the proportion of cases that are potentially prevent-

able by avoiding consanguineous marriages or through carrier testing is hitherto unknown. This

prompted us to perform whole-exome sequencing in 100 sporadic ID patients from Iran and

their healthy consanguineous parents. In 61 patients, we identified apparently causative changes
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in known ID genes. Of these, 44 were homozygous recessive and 17 dominant DNMs. Assuming

that the DNM rate is stable, these results suggest that parental consanguinity raises the ID risk

about 3.6-fold, and about 4.1 to 4.25-fold for children of first-cousin unions. These results do

not rhyme with recent opinions that consanguinity-related health risks are generally small and

have been “overstated” in the past.
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1 | INTRODUCTION

Parental consanguinity (PC) is known to raise the risk of having chil-

dren with recessive disorders, and it is associated with increased pre-

natal and pre-reproductive mortality. In the offspring of first-cousin

matings, the prevalence of major congenital malformations (CM) is 2%

to 2.5% higher than in children of unrelated parents; in Western coun-

tries, this more than doubles the CM risk (1–5 and refs therein). More-

over, 3- to 5-fold elevated intellectual disability (ID) risks have been

reported for children whose parents are first cousins,6–10 but these

estimates are based on few and mostly small studies with different

designs, rendering direct comparisons difficult.

PC and autosomal recessive forms of ID (ARID) are rare in most

parts of Europe and the United States, where the vast majority of ID

patients are sporadic cases and dominant de novo mutations (DNMs)

are common.11–13 In contrast, PC is common in many developing

countries, from Morocco through the near- and middle-east to parts

of India (see Ref. 14), with current consanguinity rates being highest

in Pakistan and Sudan. Recessive disorders are also a major health

care problem in many other countries of the so-called “consanguinity

belt,” including Iran and, for example, Qatar, where a 30-year health

plan aims to reduce the frequency of consanguineous matings.15

As shown a decade ago,16 ARID is extremely heterogeneous, and

the number of causative genes is likely to run into thousands.17 This

has been confirmed by large-scale, high-throughput sequencing in

consanguineous families with two or more intellectually disabled chil-

dren (see Ref. 18 and refs therein): between the first and the most

recent study of this kind,18,19 the percentage of multiplex families

with mutations in known ARID genes has only risen from one-third to

about one half18 while the number of known ARID genes has

increased from about a dozen to about 800 today.18,20,21

In a recent study of the British Deciphering Developmental

Defects (DDD) project,22 whole-exome sequencing (WES) identified

bi-allelic (recessive) mutations in 3.6% of the patients with develop-

mental disorders (DD) and European ancestry, compared to 49.9%

DNMS in known DD genes. To date, no comparable molecular data

have been published for countries where PC is common, because

most sequencing studies performed in Iran, Turkey, Saudi Arabia or

Pakistan focused on recessive gene defects and were not designed to

capture DNM (eg,19–21), did not quantify consanguinity or autozygos-

ity, or were simply too small23.

Therefore, and in view of persisting disputes about the size of

health care risks conferred by PC and the appropriateness and effi-

ciency of efforts to discourage consanguineous matings (eg, see

Refs. 24 and 25), we present here the results of molecular investiga-

tions designed to infer the proportion of DNM and recessive inherited

mutations causing ID in the offspring of healthy consanguineous par-

ents. These data provide a backbone for estimating preventable ID

risks, in countries where PC is common and world-wide.

2 | MATERIAL AND METHODS

2.1 | Patients

The study was approved by the Ethics Committee of the University of

Social Welfare and Rehabilitation, Tehran, Iran. Consent for participa-

tion of their child in this study was obtained from at least one of the

parents and if possible, from the patients themselves.

Families with a single intellectually disabled child and healthy con-

sanguineous parents were recruited from different provinces of Iran,

who had been pre-screened to exclude chromosomal rearrangements

as well as fragile X syndrome. In total, 100 unrelated ID patients and

their parents were included in this study. All underwent a comprehen-

sive clinical examination by experienced clinical geneticists. To deter-

mine the intelligence quotient (IQ) of children and their parents, we

used Wechsler Intelligence Scales for Children (WISC) and adults

(WAIS). Clinical findings in affected children are provided in Table 1

and Table S1.

2.2 | Whole-exome sequencing and array-
comparative genomic hybridization

We extracted genomic DNA from white blood cells of patients and

parents, enriched exomic sequences with the Agilent SureSelectXT

Human All Exon V5 enrichment kit, performed 100 bp paired-end

sequencing on an Illumina HiSeq sequencer and employed the MERAP

pipeline for sequence analysis, as previously described.18,26

Previous studies16,19 had shown that in consanguineous ARID

families, microdeletions or duplications are very rare, and that the

analysis of WES data with our previously described MERAP pipeline26

identifies most clinically relevant homozygous copy number variants

(CNVs). Therefore, array-based comparative genomic hybridization
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(array CGH) was only performed in individuals where WES had failed

to identify possible disease-causing variants. For these studies, we

employed the CYTOCHIP ISCA 8X60K whole-genome oligo array ver-

sion 2. This array includes 60 000 spots with 51 Kb mean backbone

resolution and close to 500 targeted disease regions. The samples

were hybridized twice against reference samples, and the BlueFuse

Multi software was used to analyze the data.

2.3 | Criteria for selecting ID-causing mutations

Loss-of-function mutations in known ID genes were accepted as

disease-causing if the phenotype of the affected individual matched

previous descriptions; missense mutations were considered as

disease-causing if their ACMG score, determined by InterVar/wInter-

Var analysis27 was pathogenic or probably pathogenic, using annota-

tions generated by ANNOVAR28; if three out of four pathogenicity

scores (SIFT, PolyPhen2, MutationTaster and CADD) as well as Logit

scores provided by MERAP were high, and/or if the phenotype

matched and was specific enough to establish the molecular diagnosis.

For all variants selected in families with healthy children, we also per-

formed cosegregation studies. Possible ARID mutations were only

considered if embedded in a sufficiently large run of homozygous

markers, essentially using the ROH definitions in29 (for details, see

Supporting Information). Previous analyses had revealed that in gen-

eral, the density of informative variants retrieved by WES is high

enough to reliably identify ROHs in the offspring of consanguineous

parents (eg, see18). A comprehensive overview of the criteria for

selecting mutations causing ID is provided in Table S1.

3 | RESULTS

3.1 | Mutations involving known ID genes

All mutations in previously described ID genes were only seen in a sin-

gle patient; for two genes, SUCLA2 and ATP8A2, allelic mutations

were observed in two separate ID families. In another family

(M8800167), the complex ID phenotype may result from loss of func-

tion (LOF) mutations in two genes, a homozygous frameshift mutation

inactivating HADH, a known ID gene, as well as a heterozygous

de novo, stop-gain mutation in DRD2, which may explain the psychotic

signs observed in this patient. De novo DRD2 mutations have been

reported in patients with behavioral abnormalities, but not with ID

(for refs see Table S1).

Of note, we found a potentially actionable mutation inactivating

TRPM6 in a 9-year-old girl with seizures, muscle spasms and autistic

behavior (family M9300155). TRPM6 plays an essential role in epithe-

lial magnesium transport and absorption, and pathogenic TRPM6

mutations may cause infantile epileptic encephalopathy. Magnesium

supplementation has been reported to restore normal brain function if

started early in life.30

For many of the genes listed in Table S1 (see families M9300163,

M9300035, M9300014, M8800189 and M8900019), mutations in

patients with ID have only been reported very recently, including

VPS13C31; BOD1,32 TTI1,33 NEURL418; ATP13A1,34 a paralog of

ATP13A2, which is associated with autosomal recessive early-onset

parkinsonism, ceroid lipofuscinosis and ID,35 as well as MED13.36

Thus, our study confirms their identity as ID genes. Table S1 also lists

three apparently pathogenic CNVs that were detected by array-CGH

after WES had failed to identify disease-causing variants in these

patients. Details about these CNVs and the relevant genes are pro-

vided in the Supporting Information.

Taken together, our analyses suggest that we have identified the

molecular cause of ID in 61 (61%) of these trios (see Tables 1 and S1).

In 26 trios, we observed rare disruptive or damaging variants involving

brain-expressed genes that had not been associated with ID before,

including four genes that have been implicated in other disorders.

Table 1 summarizes our findings in families with ADID, ARID and

XLID. Compound heterozygous mutations were not observed (for fur-

ther details, see Table S1).

3.2 | Novel candidate genes for ID

Several of the selected variants in the remaining families were not

listed in the ExAC and gnomAD databases, and for most others, allele

frequencies were very low. As recently reported,37 the frequency of

ultra-rare disruptive or damaging mutations in brain-expressed genes

correlates with a decrease in years of education, a proxy for low IQ. In

most of the unsolved trios, stringent filtering enabled us to reduce the

number of possibly pathogenic variants in plausible candidate genes

to a single one, but occasionally, two or even three possibly ID-

causing variants in novel candidate genes were retained. Thus, numer-

ous but not all of the candidate genes listed in Table S1 may be novel

ID genes. Supportive evidence for several particularly promising ID

candidate genes is provided in the Supporting Information, and for a

number of others, allelic mutations in unrelated ID patients were iden-

tified through Gene Matcher-mediated data exchange with other

groups.38 Detailed genotypes and phenotypes of these matching

cases will be published separately. When estimating the frequency of

dominant DNMs and recessive inherited mutations in our cohort, vari-

ants in novel candidate genes were not included to avoid unnecessary

biases.

3.3 | Inferring ID risks from ARID and ADID
frequencies in consanguineous families

For this analysis, we have compared the frequency of ARID and ADID

among the “solved” cases with mutations in established ID genes.

Affected individuals from 44 trio families carried inherited ID-

causing mutations, including 41 homozygous mutations in known

ARID genes, two hemizygous mutations in known XLID genes, and a

homozygous CNV truncating a gene implicated in a syndromic form of

ID. Pathogenic DNM were identified in 17 individuals with ID, 14 in

known ADID genes and one in a known XLID gene, and 2 of the

de novo mutations were CNVs. Thus, 44 out of 61 disease-causing

mutations in “solved” trios (71.13%) turned out to be inherited, while

only 17 (27.86%) were DNM.

In keeping with other studies of consanguineous families, most

but not all couples of our cohort are first cousins. While the coeffi-

cient of consanguinity for offspring of first-cousin matings is
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F = 0.0625, the arithmetic mean of F for the 100 probands of our

cohort was only 0.05256 (see Table S1). Therefore, the 44 cases with

inherited forms of ID observed in our cohort would correspond with

44 × 0.0625/0.05256 = 52.32 cases if all parents were first cousins,

and the ID risk of their children would be (52.32 + 17)/17 = 4.08

times higher than the risk of children with unrelated parents. Among

the 34 “solved” cases with first-cousin parents of our cohort

(F = 0.0625, see Table S1), 26 (76.47%) were homozygous for inher-

ited ARID mutations while only 8 (23.53%) carried DNM, correspond-

ing with a 4.25-fold higher ID risk.

4 | DISCUSSION

4.1 | Impact of inbreeding on the incidence of ID

Numerous studies have estimated the impact of inbreeding on the

incidence of ID, with varying results (eg,7,9,39–41). Most published risk

estimates were lower than presented here, but it is not straight-

forward to compare these diverging results because they were

obtained in different ways and different populations. To the best of

our knowledge, our study is the first to employ WES data from

patients with consanguineous parents for this purpose. However,

there are several reasons why the outcome of this approach may be

biased, too, as discussed below.

First, for example, we have used pedigree information to infer the

F values for the affected individuals. However, in populations with a

long tradition of marrying within the family, hidden consanguinity, too

distant to be visible in the pedigree, cannot be excluded. Indeed, ROH

studies in Iran and other middle-east countries have revealed traces of

ancient consanguinity in purportedly unrelated couples.42 Thus, it is

probable that we have underestimated the consanguinity in some or

even many of the families studied, and consequently, the impact of

the “visible” consanguinity on the incidence of ID may have been

overestimated. For the absolute ID risk of children born to consan-

guineous Iranian couples, this would have no consequences, but for

offspring of apparently unrelated Iranian parents, hidden consanguin-

ity would enhance the ID risk. In contrast, the ID risks of consanguine-

ous families should be lower in outbred (eg, Central European)

populations where hidden consanguinity is expected to be rare or

absent.

Second, as shown by Wahlund43 and referred to by Overall,44 the

existence of endogamous subpopulations, for which there is ample

evidence in Iran and neighboring countries, will lead to an excess of

homozygosity. This may reduce the proportion of cases that can be

prevented by avoiding consanguineous marriages,45 but these effects

are generally small. In the present study, significant “Wahlund effects”

are also unlikely because all homozygous mutations considered as

causative for ARID were embedded in (mostly large) ROHs, indicating

that the paternally and maternally transmitted alleles were identical

by descent and derived from a closely related common ancestor.

Third, not all ID-causing mutations can be detected by Trio WES,

such as deep intronic variants interfering with splicing or remote regu-

latory mutations controlling gene expression, and some apparently

benign exonic variants may in fact be pathogenic (eg, exonic splicing

regulators, see Refs. 46–48). While missing these mutations may

impact on the proportion of dominant and recessive causes of ID, it is

probable that their effect will be relatively small.

In consanguineous pedigrees with two or more affected patients,

where ARID is the most probable explanation, mutations in known ID

genes account for only 50% of the families. This may reflect the large

size of the ARID gene pool, for which there is now compelling empiri-

cal evidence (eg, see Hu et al.18). Similarly, only 50% of sporadic

patients from outbred populations carry DNMs in known ADID

genes,22 but given the evidence that many ADID genes are already

known, mutations in hitherto unknown genes cannot explain these

findings. Instead, in sporadic cases that do not carry DNMs in known

ID genes, other disease-causing mechanisms may apply, including di-

or oligogenic inheritance, which has been described in patients with

CNVs,49,50 and even non-genetic (eg, epigenetic, environmental or

stochastic) factors may play important roles.51

Although most ARID genes are still unknown and the etiology of

sporadic ID is still largely unexplored, the available evidence suggests

that mutations in presently known ARID genes account for about half

of the inherited ID risk, and that DNM account for half the ID risk of

sporadic cases. Therefore, the proportion of affected individuals with

mutations in known ARID and ADID genes in our cohort should be

the same as the ratio between all patients with ARID and all individ-

uals with sporadic ID.

In this study, the proportion of cases with recessively inherited

mutations and with DNM was 44 to 17, as shown above. Assuming

that DNMs are equally frequent in different populations and not influ-

enced by consanguinity, it follows that for offspring of related Iranian

parents, the ID risk will be raised (44 + 17)/17 = 3.59-fold.

4.2 | ARID risks in middle east countries and
world-wide

While environmental factors, social deprivation and the quality of

health care may influence the IQ, inbreeding has emerged as the most

important factor in ID, even in deprived parts of India.41 Our data sug-

gest that in countries like Iran or Qatar, where close to 40% of the

children have consanguineous parents, the genetic ID risk should be

twice as high as in Central Europe, where consanguinity rates are neg-

ligibly low, and in areas of Pakistan or Saudi Arabia with up to 70%

consanguineous marriages, the genetic ID risk (and hence, the inci-

dence of ID) should be almost three times as high.

According to our data, the ID risk is even higher for children of

first cousins, which is in keeping with recent results of a study con-

ducted in India.41 Even though in Western populations, the

consanguinity-related risks may be slightly lower because of the

absence of hidden consanguinity, they are still considerable and cer-

tainly higher than ID risks related to advanced parental age.

5 | CONCLUSION AND OUTLOOK

This study has shown that in the offspring of healthy consanguineous

parents, ID is mostly due to homozygous recessive mutations, in con-

trast to the offspring of unrelated parents, where DNM are the
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predominant cause of ID. Our data suggest that having first-cousin

parents raises the ID risk 4.1- to 4.25-fold, higher than suggested by

several recent studies, but in good agreement with the 5-fold rise pre-

dicted by Newton Morton 40 years ago.9 These results should be of

interest to related couples and genetic counselors alike, not only in

highly consanguineous populations.

Using WES and array-CGH to investigate consanguineous parents

and their only affected child also enabled us to detect pathogenic vari-

ants affecting known ID genes in 61 out of 100 trios analyzed and to

identify several candidate genes for ID that had not been reported

before.

Moreover, our results illustrate that ARID is an important global

health care problem that is still far from being solved, partly because it

is relatively rare in outbred Western populations where most of the

research takes place. Given the enormous genetic heterogeneity of

ARID, even Genomics England's DDD study is far too small to identify

most or all underlying recessive defects. In view of the high diagnostic

success rate of trio-WES and -WGS and the recent decision of the

English National Health Service to implement (simplex or subse-

quently trio) WGS in routine genetic health care,52 the time may be

ripe for also introducing these methods as first-line genetic tests in

Iran and other highly consanguineous Middle-Eastern populations. As

shown here, this would greatly accelerate the identification of the

many ARID genes that are hitherto unknown; lay the groundwork for

efficient ID prevention through pre-conception carrier testing; and

shed more light on the function of the human brain in health and

disease.
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