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Abstract

We consider systems of strict multivariate polynomial inequalities over

the reals. All polynomial coefficients are parameters ranging over the re-

als, where for each coefficient we prescribe its sign. We are interested in

the existence of positive real solutions of our system for all choices of co-

efficients subject to our sign conditions. We give a decision procedure for

the existence of such solutions. In the positive case our procedure yields

a parametric positive solution as a rational function in the coefficients.

Our framework allows to reformulate heuristic subtropical approaches for

non-parametric systems of polynomial inequalities that have been recently

used in qualitative biological network analysis and, independently, in sat-

isfiability modulo theory solving. We apply our results to characterize the

incompleteness of those methods.

1 Introduction

We investigate the problem of finding a parametric positive solution of a system
of signed parametric polynomial inequalities, if exists. We illustrate the problem
by means of two toy examples:

f(x) = c2x2 − c1x + c0, g(x) = −c2x2 + c1x − c0,

where c2, c1, c0 are parameters. An expression z(c) is called a parametric
positive solution of f(x) > 0 if for all c > 0 we have z(c) > 0 and f(z(c)) > 0.
One easily verifies that z(c) = c1

c2
is a parametric positive solution of f(x).
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However, g(x) > 0 does not have any parametric positive solution since g(x) > 0
has no positive solution when, e.g, c2 = c1 = c0 = 1. Of course, we are interested
in tackling much larger cases with respect to numbers of variables, monomials,
and polynomials.

The problem is important as systems of polynomial inequalities often arise in
science and engineering applications, including, e.g., the qualitative analysis of
biological or chemical networks [28, 11, 5, 10] or Satisfiability Modulo Theories
(SMT) solving [20, 1, 12]. Surprisingly often one is indeed interested in positive
solutions. For instance, unknowns in the biological and chemical context of
[28, 11, 5, 10] are typically positive concentrations of species or reaction rates,
where the direction of the reaction is known. In SMT solving, positivity is often
not required but, in the satisfiable case, benchmarks typically have also positive
solutions; comprehensive statistical data for several thousand benchmarks can
be found in [12, Sect. 6]. In many areas systems have parameters and one desires
to have parametric solutions. Hence, an efficient and reliable tool for finding
parametric positive solutions can aid scientists and engineers in developing and
investigating their mathematical models.

The problem of finding parametric positive solution is essentially that of
quantifier elimination over the first order theory of real closed fields. In 1930,
Alfred Tarski [26] showed that real quantifier elimination can be carried out algo-
rithmically. Since then, there have been intensive research, producing profound
theories, dramatically improved algorithms, and highly refined implementations
in widely available computer algebra software such as Mathematica, Maple,
Qepcad B, or Reduce, e.g., [26, 8, 2, 19, 13, 7, 14, 15, 9, 29, 25, 23, 6, 22, 16, 17].
However, existing general quantifier elimination algorithms are still too ineffi-
cient for tackling even small problems of finding parametric positive solutions.

The main contribution of this paper is to provide simple and efficient algo-
rithmic criteria for deciding whether or not a given signed parametric system
has a parametric positive solution. If so, we provide an explicit formula (rational
function) for a parametric positive solution. The main challenge was eliminating
many universal quantifiers in the problem statement. We tackled that challenge
by, firstly, carefully approximating/bounding polynomials by suitable multiple
of monomials and, secondly, tropicalizing, i.e., linearizing monomials by tak-
ing logarithms in the style of [27]. However, unlike standard tropicalization
approaches, we determine sufficiently large finite bases for our logarithms, in
order to get an explicit formula for parametric positive solutions.

Our main result also shines a new light on recent heuristic subtropical meth-
ods [24, 12]: We provide a precise characterization of their incompleteness in
terms of the existence of parametric positive solutions for the originally non-
parametric input problems considered there.

The paper is structured as follows. In Section 2, we motivate and present
a compact and convenient notation for a systems of multivariate polynomials,
which will be used throughout the paper. In Section 3, we precisely define
the key notions of signed parametric systems and parametric positive solutions.
Then we present and prove the main result of this paper, which shows how to
check the existence of a parametric positive solution and, in the positive case,
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how to find one. In Section 4, we apply use our framework and our result to
re-analyze and improve the above-mentioned subtropical methods [24, 12].

2 Notation

The principal mathematical object studied in this paper are systems of multi-
variate polynomials over the real numbers. In order to minimize cumbersome
indices, we are going to introduce some compact notations. Let us start with a
motivation by means of a simple example.

Example 1. Consider the following system of three polynomials in two vari-
ables:

f1 = 2x2
1x2 − x3

1

f2 = −3x1x2
2 + 6x3

1

f3 = −x2
1 + 5x1

1x2
2.

We rewrite those polynomials by aligning their signs, coefficients, and monomials
supports:

f1 = 1 · 2 · x2
1x1

2 + 0 · 1 · x1
1x2

2 + −1 · 4 · x3
1x0

2

f2 = 0 · 1 · x2
1x1

2 + −1 · 3 · x1
1x2

2 + 1 · 6 · x3
1x0

2

f3 = −1 · 1 · x2
1x1

2 + 1 · 5 · x1
1x2

2 + 0 · 1 · x3
1x0

2,

where signs are represented by −1, 0, and 1. Note that we are writing 0 coeffi-
cients as 0·1 for notational uniformity. Rewriting this in matrix-vector notation,
we have





f1

f2

f3



 =









1 0 −1
0 −1 1

−1 1 0



 ◦





2 1 4
1 3 6
1 5 1













x2
1x1

2

x1
1x2

2

x3
1x0

2



,

where ◦ is the component-wise Hadamard product. Pushing this even further,
we have





f1

f2

f3



 =









1 0 −1
0 −1 1

−1 1 0



 ◦





2 1 4
1 3 6
1 5 1









[

x1 x2

]





2 1
1 2
3 0





.

Thus we have arrived at a form

f = (s ◦ c)xe,

where
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f =





f1

f2

f3



, s =





1 0 −1
0 −1 1

−1 1 0



, c =





2 1 4
1 3 6
1 5 1



,

x = [ x1 x2 ], e =





e1

e2

e3



 =





2 1
1 2
3 0



.

This concludes our example.

In general, a system f ∈ R[x1, . . . , xd]u of multivariate polynomials over the
reals will be written compactly as

f = (s ◦ c)xe,

where

f =







f1

...
fu






, s =







s11 · · · s1v

...
...

su1 · · · suv






, c =







c11 · · · c1v

...
...

cu1 · · · cuv






,

x = [ x1 · · · xd ], e =







e1

...
ev






=







e11 · · · e1d

...
ev1 · · · evd






.

We call s ∈ {−1, 0, 1}
u×v the sign matrix, c ∈ Ru×v

+ the coefficient matrix, and
e ∈ Nv×d the exponent matrix of f .

3 Main Result

Definition 2 (Signed parametric systems). A signed parametric system is given
by

f = (s ◦ c)xe,

where the sign matrix s ∈ {−1, 0, 1}u×v and the exponent matrix e ∈ Nv×d are
specified but the coefficient matrix c is unspecified in the sense that it is left
parametric. Formally c is a u × v-matrix of pairwise different indeterminates.

Definition 3 (Parametric positive solutions). Consider a signed parametric
system f = (s ◦ c)xe. A parametric positive solution of f(x) > 0 is a function
z : Ru×v

+ → Rd
+ that maps each possible specification of the coefficient matrix c

to a solution of the corresponding non-parametric system, i.e.,

∀
c>0

f
(

z(c)
)

> 0.
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Theorem 4 (Main). Let f = (s ◦ c)xe be a signed parametric system. Let

C(n) :=
∧

i

∧

sik<0

∨

sij>0

(ej − ek) · n ≥ 1.

Then the following are equivalent:

(i) f(x) > 0 has a parametric positive solution.

(ii) C(n) has a solution n ∈ Rd.

(iii) C(n) has a solution n ∈ Zd.

In the positive case, the following function z is a parametric positive solution of
f(x) > 0:

z(c) = tn, where t = 1 +
∑

sij >0

sik<0

cik

cij

.

In fact, we even have ∀
c>0

∀
r≥t

f(rn) > 0.

Proof. We first show that (i) implies (ii):

(i) ⇐⇒ ∀
c>0

∃
x>0

(s ◦ c)xe > 0

⇐⇒ ∀
c>0

∃
x>0

∧

i

∑

sij>0

cijxej >
∑

sik<0

cikxek

=⇒ ∃
x>0

∧

i

∑

sij>0

xej >
∑

sik<0

2vxek , by instantiating c

=⇒ ∃
x>0

∧

i

v max
sij>0

xej > max
sik>0

2vxek

⇐⇒ ∃
x>0

∧

i

max
sij>0

xej > max
sik>0

2xek

⇐⇒ ∃
x>0

∧

i

∧

sik<0

∨

sij>0

xej > 2xek

⇐⇒ ∃
x>0

∧

i

∧

sik<0

∨

sij>0

xej −ek > 2

⇐⇒ ∃
x>0

∧

i

∧

sik<0

∨

sij>0

(ej − ek) · log2 x > 1

⇐⇒ ∃
n∈Rd

∧

i

∧

sik<0

∨

sij>0

(ej − ek) · n > 1, using log2 : R+ ↔ R

=⇒ (ii).

Assume now that (ii) holds. The existence of solutions n ∈ Rd and n ∈ Qd

of C(n) coincides due to the Linear Tarski Principle: Ordered fields admit
quantifier elimination for linear formulas, and therefore Q is an elementary

5



substructure of R with respect to linear sentences [18]. Given a solution n ∈ Qd,
we can use the principal denominator δ > 0 of all coordinates of n to obtain a
solution δn ∈ Zd. Hence (iii) holds.

We finally show that (iii) implies (i):

(i) ⇐⇒ ∀
c>0

∃
x>0

(s ◦ c)xe > 0

⇐⇒ ∀
c>0

∃
x>0

∧

i

∑

sij >0

cijxej >
∑

sik<0

cikxek

⇐= ∀
c>0

∃
x>0

∧

i

max
sij >0

cijxej > ci max
sik<0

xek , where ci =
∑

sik′ <0

cik′

⇐⇒ ∀
c>0

∃
x>0

∧

i

∧

sik<0

∨

sij >0

cijxej > cix
ek

⇐⇒ ∀
c>0

∃
x>0

∧

i

∧

sik<0

∨

sij >0

xej −ek >
ci

cij

⇐= ∀
c>0

∃
x>0

∧

i

∧

sik<0

∨

sij >0

xej −ek ≥ t,

where t is as stated in the theorem

⇐⇒ ∀
c>0

∃
x>0

∧

i

∧

sik<0

∨

sij >0

(ej − ek) · logt x ≥ 1,

⇐⇒ ∃
n

∧

i

∧

sik<0

∨

sij>0

(ej − ek) · n ≥ 1, using logt : R+ ↔ R

⇐= ∃
n∈Zd

∧

i

∧

sik<0

∨

sij >0

(ej − ek) · n ≥ 1

⇐⇒ (iii).

In our proof of the implication from (iii) to (i) we have applied logt so that
n = logt x and, accordingly, x = tn, where t is as stated in the theorem. Notice
that any larger choice r ≥ t would work there as well.

Example 5. Consider f =
[

f1

f2

]

with

f1 = −c11x5
1 + c12x2

1x2 − c13x2
1 + c15x2

2

f2 = c21x5
1 + c22x2

1x2 + c23x2
1 − c24x3

2.

That is

s =
[

−1 1 −1 0 1
1 1 1 −1 0

]

, e =















5 0
2 1
2 0
0 3
0 2















.
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Then C(n) has a solution n ∈ Z2, e.g.,

n =
[

−12 −11
]

.

Hence f = (s ◦ c)xe > 0 has a parametric positive solution, e.g.,

z(c) =
[

t−12 t−11
]

,

where t = 1 +
c11

c12

+
c11

c15

+
c13

c12

+
c13

c15

+
c24

c21

+
c24

c22

+
c24

c23

.

Example 6. We slightly modify Example 5 and consider f =
[

f1

f2

]

with

f1 = −c11x5
1 + c12x2

1x2 − c13x2
1 + c15x2

2

f2 = c21x5
1 + c22x2

1x2 − c23x2
1 − c24x3

2.

That is

s =
[

−1 1 −1 0 1
1 1 −1 −1 0

]

, e =















5 0
2 1
2 0
0 3
0 2















.

Then C(n) does not have a solution n ∈ Z2. Hence f = (s ◦ c)xe > 0 does not
have a parametric positive solution.

4 A Re-analysis of Subtropical Methods

For non-parametric systems of real polynomial inequalities, heuristic Newton
polytope-based subtropical methods [24, 12] have been successfully applied in
two quite different areas: Firstly, qualitative analysis of biological and chemical
networks and, secondly, SMT solving.

In the first area, a positive solution of a very large single inequality could
be computed. The left hand side polynomial there has more than 8 · 105 mono-
mials in 10 variables with individual degrees up to 10. This computation was
the hard step in finding an exact positive solution of the corresponding equa-
tion using a known positive point with negative value of the polynomial and
applying the intermediate value theorem. To give a very rough idea of the bio-
logical background: The polynomial is a Hurwitz determinant originating from
a system of ordinary differential equations modeling mitogen-activated protein
kinase (MAPK) in the metabolism of a frog. Positive zeros of the Hurwitz de-
terminant point at Hopf bifurcations, which are in turn indicators for possible
oscillation of the corresponding reaction network. For further details see [11].

In the second area, a subtropical approach for systems of several polynomial
inequalities has been integrated with an SMT solver. That combination could
solve a surprisingly large percentage of SMT benchmarks very fast and thus
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establishes an interesting heuristic preprocessing step for the SMT theory of
QF_NRA (quantifier-free nonlinear arithmetic). For detailed statistics see [12,
Sect. 6].

The goal of this section is, to make precise the connections between subtrop-
ical methods and our main result here, to use these connections to improve the
subtropical methods, and to precisely characterize their incompleteness.

4.1 Subtropical Real Root Finding

In [24] we have studied an incomplete method for heuristically finding a posi-
tive solution for a single multivariate polynomial inequality with fixed integer
coefficients:

[f1] = (s ◦ c)xe where s ∈ {−1, 0, 1}1×v, c ∈ Z1×v
+ , e ∈ Nv×d.

The method considers the positive and the negative support, which in terms of
our notions is given by

S+ = { ej | s1j > 0 }, S− = { ek | s1k < 0 }.

Then [24, Lemma 4] essentially states that f1(x) > 0 has a positive solution if

C′ :=
∨

ej∈S+

∃
n∈Rd

∃
γ∈R

(

[

−ej 1
]

[

n

γ

]

≤ −1 ∧

∧

ek∈S+∪S−

ek 6=ej

[

ek −1
]

[

n

γ

]

≤ −1

)

.

Unfortunately, in [24, Lemma 4] vectors el =
[

0 . . . 0
]

corresponding to
absolute summands are treated specially. We have noted already in [12, p.192]
that an inspection of the proof shows that this is not necessary. Therefore
we discuss here a slightly improved and simpler version without that special
treatment, which has been explicitly stated as [12, Lemma 2].

The proof of the loop invariant (I1) in [24, Theorem 5(ii)] shows that the
positive support need not be considered in the conjunction:

C′ ⇐⇒
∨

ej ∈S+

∃
n∈Rd

∃
γ∈R

(

[

−ej 1
]

[

n

γ

]

≤ 1 ∧

∧

ek∈S−

[

ek −1
]

[

n

γ

]

≤ −1

)

.

Starting with Fourier–Motzkin elimination [21, Sect. 12.2] of γ, we obtain

C′ ⇐⇒
∨

ej∈S+

∃
n∈Rd

∧

ek∈S−

(ek − ej) · n ≤ −2

8



⇐⇒
∨

ej∈S+

∃
n∈Rd

∧

ek∈S−

(ej − ek) · n ≥ 1

⇐⇒ ∃
n∈Rd

∨

ej∈S+

∧

ek∈S−

(ej − ek) · n ≥ 1

⇐⇒ ∃
n∈Rd

max
ej∈S+

(ej · n) ≥ max
ek∈S−

(ek · n + 1)

⇐⇒ ∃
n∈Rd

∧

ek∈S−

∨

ej ∈S+

(ej − ek) · n ≥ 1

⇐⇒ ∃
n∈Rd

C(n)

with C(n) as in Theorem 4.

Corollary 7. Consider f1 ∈ Z[x1, . . . , xd], say, f1 = (s ◦ c)xe, where s ∈
{−1, 0, 1}1×v, c ∈ Z1×v

+ , e ∈ Nv×d. Let f∗ = [(s ◦ c∗)xe], where c∗ is a 1 × v-
matrix of pairwise different indeterminates. Then the following are equivalent:

(i) The algorithm find-positive [24, Algorithm 1] does not fail, and thus
finds a rational solution of f1 > 0 with positive coordinates.

(ii) There is a row ej of e with s1j > 0 such that the following LP problem has
a solution n ∈ Qd:

∧

s1k<0

(ej − ek) · n ≥ 1.

(iii) f∗ > 0 has a parametric positive solution.

In the positive case, f(rn) > 0 for all r ≥ 1 + v
∑

s1k<0

c1k.

Proof. The equivalence between (i), (ii), and (iii) has been derived above.
According to Theorem 4, a solution for f1 > 0 can be obtained by plugging c

into the parametric positive solution for f∗. Since we have positive integer
coefficients, we can bound t from above as follows.

t = 1 +
∑

s1j >0

s1k<0

c1k

c1j

≤ 1 +
∑

s1j >0

s1k<0

c1k

1
≤ 1 + v

∑

s1k<0

c1k.

In simple words the equivalence between (i) and (iii) in the corollary states
the following: The incomplete heuristic [24, Algorithm 1] succeeds if and only
if not only the inequality for the input polynomial has a solution as required,
but also the inequality for all polynomials with the same monomials and signs
of coefficients as the input polynomial.

We have added (ii) to the corollary, because we consider this form optimal for
algorithmic purposes. Our special case of one single inequality allows to trans-
form the conjunctive normal form provided by Theorem 4 into an equivalent
disjunctive normal form without increasing size. This way, a decision procedure
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can use finitely many LP solving steps [21] instead of employing more general
methods like SMT solving [20].

Finally notice that the brute force search for a suitable t in find-positive

[24, Algorithm 1, l.10–12] is not necessary anymore. Our corollary computes a
suitable number from the coefficients.

4.2 Subtropical Satisfiability Checking

Subsequent work [12] takes an entirely geometric approach to generalize the
work in [24] from one polynomial inequality to finitely many such inequalities.
Consider a system with fixed integer coefficients in our notation:

f =







f1

...
fu






= (s ◦ c)xe, where s ∈ {−1, 0, 1}u×v, c ∈ Zu×v

+ , e ∈ Nv×d.

Then [12, Theorem 12] derives the following sufficient condition for the existence
of a positive solution of f > 0:

C′′ := ∃
n∈Rd

∃
γ1∈R

. . . ∃
γu∈R

u
∧

i=1

((

∨

sij>0

nej + γi > 0

)

∧
∧

sik<0

nek + γi < 0

)

.

After an equivalence transformation, we can once more apply Fourier–Motzkin
elimination [21, Sect. 12.2]:

C′′ ⇐⇒ ∃
n∈Rd

u
∧

i=1

∨

sij>0

∃
γi∈R

(

nej + γi > 0 ∧
∧

sik<0

nek + γi < 0

)

⇐⇒ ∃
n∈Rd

u
∧

i=1

∨

sij>0

∧

sik<0

(ej − ek) · n > 0

⇐⇒ ∃
n∈Rd

u
∧

i=1

max
sij>0

ejn > max
sik<0

ekn

⇐⇒ ∃
n∈Rd

u
∧

i=1

∧

sik<0

∨

sij>0

(ej − ek) · n > 0

⇐⇒ ∃
n∈Rd

u
∧

i=1

∧

sik<0

∨

sij>0

(ej − ek) · n ≥ 1

⇐⇒ ∃
n∈Rd

C(n)

with C(n) as in Theorem 4.

Corollary 8. Consider f ∈ Z[x1, . . . , xd]u, say, f = (s ◦ c)xe, where s ∈
{−1, 0, 1}u×v, c ∈ Zu×v

+ , e ∈ Nv×d. Let f∗ = (s ◦ c∗)xe, where c∗ is a u × v-
matrix of pairwise different indeterminates. Then the following are equivalent:
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(i) The incomplete subtropical satisfiability checking method for several in-
equalities over QF_NRA (quantifier-free nonlinear real arithmetic) intro-
duced in [12] succeeds on f > 0.

(ii) The following SMT problem with unknowns n is satisfiable in QF_LRA
(quantifier-free linear real arithmetic):

u
∧

i=1

∧

sik<0

∨

sij >0

(ej − ek) · n ≥ 1.

(iii) f∗ > 0 has a parametric positive solution.

In the positive case, f(rn) > 0 for all r ≥ 1 + v
∑

sik<0

cik.

Proof. The equivalence between (i), (ii), and (iii) has been derived above. About
the solution r see the proof of Corollary 7.

The equivalence between (i) and (iii) in the corollary states the following:
The procedure in [12] yields “sat” in contrast to “unknown” if and only if not
only the input system is satisfiable, but that system with all real choices of
coefficients with the same signs as in the input system. While there are no formal
algorithms in [12], the work has been implemented within a combination of the
veriT solver [4] with the library STROPSAT [12, Sect. 6]. Our characterization
applies in particular to the completeness of this software.

We have added (ii) to the corollary, because we consider this form optimal for
algorithmic purposes. Like the original input C′′ used in [12] this is a conjunctive
normal form, which is ideal for DPLL-based SMT solvers [20]. Recall that u is
the number of inequalities in the input, and d is the number of variables. Let ι

and κ be the numbers of positive and negative coefficients, respectively. Then
compared to [12] we have reduced d + u variables to d variables, and we have
reduced uκ clauses with ι atoms each plus u unit clauses to some different uκ

clauses with ι atoms each but without any additional unit clauses.
With the :produce-model option the SMT-LIB standard [3] supports solu-

tions like the rn provided by our corollary. The work in [12] does not address the
computation of solutions. It only mentions that sufficiently large r will work,
which implicitly suggests a brute-force search like the one in [24, Algorithm 1,
l.10–12].
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